


 

 

 

Constructionism 2018 Conference 
 

 

 

Constructionism 2018 
Constructionism, Computational Thinking and 

Educational Innovation: conference proceedings 

 

 

Organizers: 

Vilnius University 
Faculty of Philosophy and 

Institute of Data Science and Digital Technologies 
in cooperation with Lithuanian Computer Society 

 
August 20-25, Vilnius, Lithuania 

 

 

 

 

 

Edited by 
Valentina Dagienė and Eglė Jasutė 

 

 

 

 

  



Constructionism 2018, Vilnius, Lithuania 

2 

 

ISBN 978-609-95760-1-5 

 

 

 

 

The conference is partially supported by Research Council of Lithuania 

 

 

 

 

 

 

 

 

All publications are copyright © 2018 by the authors unless specified otherwise. 
Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies 
are not made or distributed for profit or commercial advantage and that the full citation is included. To copy otherwise, to republish, 

to post on servers, or to redistribute to lists, articles that are copyright by the author requires a written request to the authors. 

 
 
 
 
 
 
 
 
 
 
 
 
 

CONFERENCE VENUE 
 

Faculty of Philosophy 
Vilnius University 
Universiteto str. 9 
01513 Vilnius, Lithuania 
Located at the Old Campus of Vilnius University 
 

 
The conference website: http://www.constructionism2018.fsf.vu.lt 
 
 

Book of abstracts is available at:  http://www.constructionism2018.fsf.vu.lt/book-of-abstracts 

Full papers are available at: http://www.constructionism2018.fsf.vu.lt/proceedings   

http://www.constructionism2018.fsf.vu.lt/
http://www.constructionism2018.fsf.vu.lt/book-of-abstracts
http://www.constructionism2018.fsf.vu.lt/proceedings


Constructionism 2018, Vilnius, Lithuania 

3 

 

CONSTRUCTIONISM 2018 COMMITTEES 
Conference Chairs 

Valentina Dagienė, Vilnius University Institute of Data Science and Digital Technologies, Lithuania 
Arūnas Poviliūnas, Vilnius University Faculty of Philosophy, Lithuania 
Arnan (Roger) Sipitakiat, Chiang Mai University, Thailand 
 

Scientific Committee / Reviewers 

 
Tim Bell, University of Canterbury, New Zealand 
Paulo Blikstein, Stanford University, USA 
Pavel Boytchev, Sofia Universoty, Portugal 
James Clayson, American University of Paris, 

France 
Secundino Correia, Imagina, Coimbra, Portugal 
Barbara Demo, University of Torino, Italy 
Vladimiras Dolgopolovas, Vilnius University, 

Lithuania 
Michael Eisenberg, University of Washington, 

USA 
Gerald Futschek, Vienna University of 

Technology, Austria 
Carina Girvan, Cardiff University, Cardiff, Wales,  
Paul Goldenberg, Education Development 

Center, USA 
Brian Harvey, University of California, USA 

Bulgaria 
Arthur Hjorth, Northwestern University, USA 
Celia Hoyles, University College London Institute 

of Education, UK 
Eglė Jasutė, Vilnius University, Lithuania  
Tatjana Jevsikova, Vilnius University, Lithuania 
Anita Juškevičienė, Vilnius University, Lithuania 
Ivan Kalaš, Comenius University, Slovakia 
Eric Klopfer, Massachusetts Institute of 

Technology, USA 
Witold Kranas, OEIiZK, Poland 
Chronis Kynigos, National and Kapodistrian 

University of Athens, Greece 
Manolis Mavrikis, University of London, UK 
Mattia Monga, Università degli Studi di Milano, 

Italy 

Jens Mönig, SAP, Germany 
Erich Neuwirth,  University of Vienna, Austria 
Richard Noss, University College London Institute 

of Education, UK 
Mareen Przybylla, University of Potsdam, 

University of Potsdam, Germany 
Mitchel Resnick, MIT Media Lab, Massachusetts 

Institute of Technology, USA 
Ralf Romeike, Friedrich-Alexander-Universität 

Erlangen-Nürnberg, Germany 
Ana Isabel Sacristán, Cinvestav, Mexico 
Jenny Sendova, Institute of Mathematics, 

Bulgaria 
Giovanni Serafini, ETH Zurich, Switzerland, Italy 
Wolfgang Slany, Graz University of Technology 

Institute of Software Technology, Austria 
Gary Stager, Constructing Modern Knowledge, 

Torrance, USA 
Eliza Stefanova, Sofia University "St. Kliment 

Ohridski", Bulgaria 
Gabrielė Stupurienė, Vilnius University, Lithuania 
Maciej Syslo, University of Wroclaw, Poland 
Márta Turcsányi-Szabó, Eötvös Loránd 

University, Hungary 
José Armando Valente, State University of 

Campinas, UNICAMP, Brazil 
Jiří Vaníček, University of South Bohemia, 

Czechia 
Michael Weigend, University of Münster, 

Germany 
Uri Wilensky, Northwestern University, Evanston, 

USA 
Michelle Wilkerson, University of California, USA 

 
 

Local Organizing Committee 

Vida Jakutienė 
Aldona Mačiūnienė 
Saulius Maskeliūnas 
Olga Suprun 
  

http://www.constructionism2018.fsf.vu.lt/file/manual/CV_Valentina_DAGIENĖ.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV_Arūnas_POVILIŪNAS.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV_Arnan_Sipitakiat.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV1%20Tim%20Bell.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV2%20Paulo%20BLIKSTEIN.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV3%20James%20CLAYSON.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV5%20Gerald%20FUTSCHEK.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV6%20Paul%20Goldenberg.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV7%20Brian%20Harvey.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV8_Arthur_HJORTH.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV9%20Celia%20Hoyles.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV10%20Ivan%20KALAŠ.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV11%20Chronis%20Kynigos.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV12%20Jens%20MÖNIG.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV13%20Richard%20NOSS.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV14%20Mitchel%20RESNICK.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV15%20Ana%20Isabel%20SAKRISTAN.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV16%20Jenny%20SENDOVA.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV17%20Wolfgang%20SLANY.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV18%20Gary%20Stager.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV19%20Uri%20WILENSKY.pdf


Constructionism 2018, Vilnius, Lithuania 

4 

 

 
                                                   Photo E. Kurauskas 

 

  
Photo E. Kurauskas 

 

Welcome Message 

 

Dear Colleagues 

We would to like to welcome you to the Constructionism conference.  

The Constructionism conference celebrates its fifth anniversary under this name, building on the 27-
year tradition of biennial Eurologo conferences established by the European Logo community. Logo is 
the computer programming language for learners in which the constructionist approach was first 
developed. Seymour Papert, who has coined the term constructionism, in order to define its meaning, 
started from the comparison with the term constructivism:  

Constructionism shares constructivism's connotation of learning as ‘building knowledge structures’ 
irrespective of the circumstances of the learning. It then adds the idea that this happens especially 
felicitously in a context where the learner is consciously engaged in constructing a public entity, whether 
it's a sand castle on the beach or a theory of the universe” (Papert, S. & Harel, I. Constructionism. New York: Ablex Publ. 

Corp., 1991).  

The constructionism shares the main idea of genetic epistemology elaborated by Jean Piaget about the 
immanence of the cognitive development. In Piaget’s version, the immanent algorithm of the cognitive 
development includes the sensorimotor, preoperational, concrete operational, and formal operational 
stages.  

The pioneer of the radical constructivism Ernst von Glasersfeld has enriched the constructivist 
educational discourse by introducing ideas from the Italian philosopher Giambattista Vico. In his 
Magnum opus Scienza Nuova, Vico  has elaborated the principle verum esse ipsum factum ("What is 
true is precisely what is made"). According to Vico, “/…/ the world of civil society has certainly been 
made by men, and that its principles are therefore to be found within the modifications of our own human 
mind.” The world of civil society differs from the world of nature, “which, since God made it, He alone 
knows” (Vico, J.-B. The New Science. Transl. by T. G. Bergin & M. H. Fisch. Ithaca, N Y: Cornell Univ. Press, 

1948 [1744]: 85).  

Another important idea brought from Vico is the application of tropology for the description of different 
modes of consciousness or phases of its development. American post-structuralist Hayden White has 
applied tropes for the explanation of different phases of cognitive development discovered by Piaget. It 
seems that it is important for the development of constructionism to track the processes in the field of 
constructivism and vice versa. 

Seymour Papert has stressed that the picture of how scientists actually work should be shared with 
children but not in the way of verbally-expressed formal knowledge. Closer cooperation with the Science 



Constructionism 2018, Vilnius, Lithuania 

5 

 

and Technology Studies could assist in identifying more adequate forms how to communicate scientific 
knowledge and how to engage children into the attractive and actual scientific research.  

What have we achieved until today? Has our concept of education in general and computer science 
(computing or informatics) education in particular changed and its quality improved? Can we use the 
lessons of the past to prepare for the future? In an increasingly interdependent and complex world, how 
is technology and informatics changing society and affecting education through the subject areas of 
humanities, science, mathematics, and arts? The Constructionism conference has addressed these 
questions by offering experts from across the world the opportunity to exchange ideas and knowledge, 
and to generate a more informed understanding of the issues of informatics and digital technologies in 
education. The Conference offered a number of themes: 

- Constructionist epistemology 
- Informal learning 
- Innovative computing education 
- Learning from pioneers 
- Methodologies, tools and technologies 
- Monitoring, evaluation and research 
- Outreach and communication 
- Progressive education in national and regional contexts 
- Social justice, equity and citizenship 
- Teacher training and educational policies 
- Technology unplugged activities 
- Visual and creative arts 

The Conference brings together delegates from all over the world to address pressing issues in 
computing education. In addition to keynote speakers, research and practice papers, panels, posters, 
demonstrations, and workshops, the Conference provides facilities and exposure for working groups for 
the first time. The working groups are formed by participants with a common interest in a topic. 
Participating in a working group provides a unique opportunity to work with people from different 
countries who are interested and knowledgeable in the area of the working group. It is also one of the 
best ways to become part of the constructivist community. Seven working groups have been accepted, 
covering a broad spectrum of topics. Participants present their preliminary results to conference 
attendees at a special working group presentation session, and submit a final report after the conference 
concludes. 

The Constructionism conference continues to be truly international with about 150 submissions from 40 
countries. The accepted submissions consisted of 18 keynotes talks, 57 research and practice papers, 
3 panels, 7 working group proposals, and 27 proposals for posters, demonstrations and workshops. In 
addition, a special Teachers’ Day is organized before the conference: 13 workshops were proposed for 
more than 150 Lithuanian teachers. 

Selected research papers will be published in the international peer-reviewed journals “Informatics in 
Education” and “Problemos”. After the conference, there will be possibility to extend the best papers 
and publish them in the international peer-reviewed journal “Constructivist Foundations”. 

We are grateful to all committee members participating in any way in the conference.  

Welcome to Vilnius, the capital of Lithuania! Enjoy the Constructionism conference in the country 
celebrating 100 years of independence! 

 

 

Conference Co-Chairs      Valentina Dagienė 

Arūnas Poviliūnas 

 

https://www.mii.lt/informatics_in_education/index.html
https://www.mii.lt/informatics_in_education/index.html
http://www.journals.vu.lt/problemos
http://www.univie.ac.at/constructivism/journal


Constructionism 2018, Vilnius, Lithuania 

6 

 

 

Program at a glance 

Monday, 
August 20 

Tuesday 
August 21 
Location: Main 
Building, The 
Theatre Hall* 

Time 

Wednesday 
August 22  
Location:  
The Faculty of 
Philosophy** 

Thursday August 
23  
Location:  
The Faculty of 
Philosophy** 

Friday 
August 24 
Location:  
The Faculty of 
Philosophy** 

Saturday August 
25  
Location:  
The Faculty of 
Philosophy** 

T
E

A
C

H
E

R
S

  
D

A
Y

 

900-1000 

Registration 
(in front of the 
Theatre Hall) 

830–all day 
Registration 

830–1030 

In parallel: 

 Plenary session III 

 Plenary session IV 

In parallel: 

 Plenary session V 

 Plenary session VI 

In parallel:   

 Plenary session VII 

 Plenary session VIII 

In parallel: 

 Plenary session IX 

 Plenary session X 

1000-1200 

Welcome 
Speakers 
(Main Building, 
The Theatre 
Hall*) 

1000-1130 

Excursion to 
Old Vilnius 
University I 

1030–1100 

In parallel: 

 Working Group 
presentations I 

 Panel discussion II 

In parallel: 

 Poster session I 

 Poster session II 

In parallel: 

 Paper session 9 

 Demo session 1 

In parallel: 

 Demo session 2 

 Demo session 3 

 Workshop 6 

1100–1130 Coffee break Coffee break Coffee break 1130-1200 

Closing: Farewell 
buffet  
Location: Grand 
Courtyard next to the 
Main Building* 

1200-1300 

Lunch 
(Registration in 
the Faculty of 
Philosophy**) 

1130-1300 
Excursion to 
Old Vilnius 
University II 

1130–1330 

In parallel: 

 Paper session 1 

 Paper session 2  

 Workshop 1 

 Workshop 2 

In parallel: 

 Paper session 6 

 Paper session 7 

 Paper session 8 

 Panel discussion III 

In parallel: 

 Paper session 10 

 Paper session 11 

 Paper session 12 

1300-1500 

Workshops  
in parallel 
(The Faculty of 
Philosophy**) 

1330–1430 Lunch Lunch Lunch 

1300–2000 

 
Post Conference 
Excursions 
(not included in 
conference fee) 

1500-1530 
Coffee 
Break 

1400-1600 

Plenary 

session I 

1430–1600 

In parallel: 

 Working Group 
presentations II 

 Working Group 
presentations III 

1430–2200 

 
Excursion  
 
Dinner 

In parallel: 

 Paper session 13 

 Paper session 14 

 Workshop 3 

1530–1700 

Workshops  
in parallel 
(The Faculty of 
Philosophy**) 

Coffee 
break 

1600–1630 Coffee break Coffee break 

1700-1800  
Reflections 
and Panel 
Discussion 
(The Faculty of 
Philosophy**, 
room 301) 

1630-1730 
Plenary   
Session II 

1630–1830 

In parallel: 

 Paper session 3 

 Paper session 4 

 Paper session 5 
 

In parallel: 

 Paper session 15 

 Paper session 16 

 Workshop 4 

 Workshop 5 

1730-1830 

Panel 
Discussion I 

  1830–1930 
Welcome 
Reception 

 
  

 
 
* Main Building, The Theatre Hall: Universiteto St.3 
**The Faculty of Philosophy: Universiteto St. 9 

 



Constructionism 2018, Vilnius, Lithuania 

7 

 

 

Conference program  

Monday, August 20                        Teachers‘ day (Pre-Conference) 

900–1000  Registration & Coffee (in front of the Theatre Hall) 

1000–1200  

Opening Session: Main Building, The Theatre Hall (Universiteto St. 3) 

 

Welcome 

 

Giedrius Vaidelis (Lithuania). Updating Educational Content: Challenges and Possibilities 
Evgenia Sendova (Bulgaria). The Beauty in Science and the Science in Beauty 
Rimantas Želvys (Lithuania). Future Education: New Challenges for Lithuania? 

1200–1300  
Lunch 
Registration in the Faculty of Philosophy (Universiteto St. 9) 

1300–1500  

 

Workshops (WS) in parallel: The Faculty of Philosophy (Universiteto St. 9) 
 

WS 1: room 106. Judith Bell (New Zealand). Dynamic Teaching Ideas for Teaching Music Theory. Target audience: 

primary school teachers & music teachers 

 

WS 3: room 204. Paul Goldenberg, Cynthia J. Carter (USA). Developing Algebraic Habits of Mind in Students. Target 

audience: mathematics teachers for students ages 11–18 

 

WS 7: room 111. Petra Enges-Pyykönen (Finland). ViLLE – Electronic Learning Path for Mathematics and Programming. 

Target audience: primary school teachers 

 

WS 8: room 201. Evgenia Sendova, Nikolina Nikolova (Bulgaria). Constructionism in Action: Do we Need to Start from 
Scratch? Target audience: all teachers 

 

WS 9: room 313. Gary Stager (USA). Teaching Coding and Physical Computing. Target audience: all teachers 

 
 

WS 10: room 112. Jacqueline Staub (Switzerland). The Essence of Programming at School – Logo in a Spiral Curriculum. 

Target audience: primary and lower secondary school teachers  

 

WS 11: room 308. Carol Sperry Suziedelis (USA). How to Create and Sustain a Progressive Pedagogy in a Traditional 
Setting. Target audience: all teachers 

 

WS 13: room 306. Annalise Duca, Angele Giuliano (Malta), Sofia Nikitopoulou, Nikoleta Yiannoutsou, Chronis 
Kynigos (Greece). The ER4STEM Repository for Educational Robotics. Target audience: all teachers  

1500–1530 Coffee break 

1530–1700 

Workshops (WS) in parallel: The Faculty of Philosophy (Universiteto St. 9).  

 

 WS 2: room 106. Tim Bell (New Zealand). Computer Science Unplugged for Teachers. Target audience: primary school 

teachers 

 

WS 4: room 204. Paul Goldenberg, Cynthia J. Carter (USA). Puzzles & Programming to Develop Mathematical Habits 
of Mind in 6–10-year Olds. Target audience: primary school teachers for students ages: 6–10 

 

WS 5: room 201. Ivan Kalaš (Slovakia). Powerful Ideas in Lower Primary Programming: High Time to Recognize Them. 

Target audience: educators interested in lower primary computing (pupils aged 5 to 9) and general primary teachers  

 

WS 6: room 111. Witek Kranas (Poland). SNAP! - Beauty & Joy of Computing (visually). Target audience: informatics 

teachers, lower and upper secondary schools (6-12 grades) 

 

WS 8: room 401. Evgenia Sendova, Nikolina Nikolova (Bulgaria). Constructionism in Action: Do we Need to Start from 
Scratch? Target audience: all teachers 

 

WS 9: room 313. Gary Stager (USA). Teaching Coding and Physical Computing. Target audience: all teachers 

 

WS 10: room 112. Jacqueline Staub (Switzerland). The Essence of Programming at School – Logo in a Spiral Curriculum. 

Target audience: primary and lower secondary school teachers  

 

WS 11: room 308. Carol Sperry Suziedelis (USA). How to Create and Sustain a Progressive Pedagogy in a Traditional 
Setting. Target audience: all teachers 
WS 12: room 205. Igor Verner, Khayriah Massarwe, Daoud Bshouty (Israel). Joyful Learning of Geometry in Cultural 

Context. Analysis and Construction of Geometric Ornaments. Target audience: all teachers  

 

WS 13: room 306. Annalise Duca, Angele Giuliano (Malta), Sofia Nikitopoulou, Nikoleta Yiannoutsou, Chronis 
Kynigos (Greece). The ER4STEM Repository for Educational Robotics. Target audience: all teachers 

1700–1800  Reflections and Panel Discussion: room 301 

  



Constructionism 2018, Vilnius, Lithuania 

8 

 

Tuesday, August 21 / Location: Main Building, The Theatre Hall (Universiteto St. 3)  

830–all day Registration 

1000–1130 Excursion to Old Vilnius University I 

1130–1300 Excursion to Old Vilnius University II 

1400–1600  

Session chair: Valentina Dagienė 
Opening 
Plenary session I 

Rimantas Želvys. One Hundred Years of Educational Development in Lithuania 
James Clayson. Look Closely, Watch What Happens: Visual Modelling and Constructionism 

1600–1630 Coffee break 

1630–1730 

Session chair: Arūnas Poviliūnas 
Plenary session II 
Gary Stager. Making Constructionism Great Again 

1730–1830 

Panel Discussion I 
Inside the Trojan Horse – A Discussion Among the Next Generation of Constructionists 
Sylvia Martinez (moderator), Gary Stager, Amy Dugré, Angela Sofia Lombardo, Susana Tesconi, Tracy Rudzitis, Brian C. 
Smith, Jaymes Dec 

1830–1930 Welcome Reception / Location: Grand Courtyard 

Wednesday, August 22 / Location: The Faculty of Philosophy (Universiteto St. 9) 

830–1030 

Session chair: Gerald Futschek 
Plenary session III: room 301 

Carol Sperry Suziedelis. The Evolution of a 
Constructionist Teacher (with Reminders from Seymour 
Papert)  

Evgenia Sendova. Back 100 000(2) 

Session chair: Chronis Kynigos 
Plenary session IV: room 302 

Celia Hoyles, Richard Noss. Scratchmaths: A Positive 
Outcome for Constructionism at Scale  

Ivan Kalaš. Programming in Lower Primary Years: Design 
Principles and Powerful Ideas 

  Working Group (WG) presentations I: room 301 

WG 2: Don Passey, Loice Victorine Atieno, Wilfried 
Baumann, Valentina Dagienė. Developing 
Constructionism, or a New Learning Concept, Across the 
Ages.  

Panel discussion II room 302 

Constructionism at Scale. 

Nathan Holbert (moderator), Matthew Berland, Yasmin 
Kafai, Richard Noss, Celia Hoyles, Kylie Peppler, Debbie 
Fields 

 1030– 1100 

  

1100–1130 Coffee break 

  

Session chair: Natasa Grgurina 
Paper session 1: room 301 
Education and innovations 
Arthur Hjorth, Corey Brady, Uri 
Wilensky. Sharing is Caring in the 
Commons – Students’ Conceptions 
about Sharing and Sustainability in 
Social-Ecological Systems 
Arthur Hjorth, Uri Wilensky. Urban 
Planning-in-Pieces: A 
Computational Approach to 
Understanding Conceptual Change 
and Causal Reasoning about Urban 
Planning 
Sugat Dabholkar, Gabriella Anton, 
Uri Wilensky. Developing Mathetic 
Content Knowledge Using an 
Emergent Systems Microworld 
Elmara Pereira de Souza, Luísa 
Moura. Constructionism as an 
Epistemological Option in Courses 
of Youth Center for Science and 
Culture – Bahia – Brazil 

Session chair: Evgenia Sendova 
Paper session 2: room 302 
Constructionism in Mathematics 
Chantal Buteau, Ana Isabel Sacristán, 
Eric Muller. Teaching in a Sustained Post-
Secondary Constructionist Implementation 
of Computational Thinking for Mathematics 
Maite Mascaró, Ana Isabel Sacristán. 
Assessing Learning through Exploratory 
Projects in Constructionist R-based 
Statistics Courses for Environmental 
Science Students 
Christina Todorova, Carina Girvan, 
Nikoleta Yiannoutsou, Marianthi Grizioti, 
Ivaylo Gueorguiev, Pavel Varbanov, 
George Sharkov. Visualizing Mathematics 
with the MathBot: A Constructionist Activity 
to Explore Mathematical Concepts through 
Robotics 
Einari Kurvinen, Valentina Dagiene, 
Mikko-Jussi Laakso. The Impact and 
Effectiveness of Technology Enhanced 
Mathematics Learning 

Session chair: Eglė Jasutė 
Workshop 1: room 111 
 

Jacqueline Staub. The Essence of 
Programming at School – Learning 
for Life 
 
Workshop 2: room 111 
 

Stephen Howell, Lizbeth 
Goodman. Developing Body 
Tracking Software with Scratch and 
Kinect 

 1130– 1330 

  

1330–1430   Lunch 

1430–1600 

Session chair: Gabrielė Stupurienė 
Working Group (WG) presentations II: room 301 
 

WG 1: Gerald Futschek, Bernhard Standl, Chantal 

Buteau, Andrew Csizmadia, Lilia Georgieva, Lina 
Vinikienė, Jane Waite. Constructionist Approaches to 
Computational Thinking.  

Session chair: Tatjana Jevsikova 
Working Group (WG) presentations III: room 302 
 

WG 3: Evgenia Sendova, Christos Chytas, Katarzyna 
Olędzka, Ralf Romeike, Wolfgang Slany. Creating and 
Looking at Art with Logo Eyes.  

http://www.constructionism2018.fsf.vu.lt/file/manual/Working%20Groups/2WG_D.Passey.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/Working%20Groups/2WG_D.Passey.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/Working%20Groups/2WG_D.Passey.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/CV5%20Gerald%20FUTSCHEK.pdf
https://www.researchgate.net/profile/Bernhard_Standl-TU_Wien
http://www.constructionism2018.fsf.vu.lt/file/manual/Working%20Groups/1WG_GFutschek_Standl.pdf
http://www.constructionism2018.fsf.vu.lt/file/manual/Working%20Groups/1WG_GFutschek_Standl.pdf


Constructionism 2018, Vilnius, Lithuania 

9 

 

WG 5: Michael Weigend, Kazunari Ito, Anita 

Juškevičienė, Igor Pesek, Zsuzsa Pluhár, Jiří Vaníček. 
Constructionism in the Classroom: Creative Learning 
Activities on Computational Thinking.  
WG 6: Mattia Monga, Michael Lodi, Dario Malchiodi, 

Anna Morpurgo, Oluwakemi Oduwole, Bamidele Oluchi, 
Bernadette Spieler. Learning to Program in a 
Constructionist Way. 

WG 4: Lilija Duoblienė, Jūratė Baranova, Luc Anckaert, 
Wilfried Baumann .The Constructive Strategies in Teaching 
Humanities with Films.  
WG 7: Ana Isabel Sacristán, Richard Akrofi Kwabena 
Baafi, Lina Kaminskienė, Michaela Sabin. Constructionism 
in Upper Secondary and Tertiary Levels.  

1600–1630 Coffee break 

1630–1830 

Session chair: Mattia Monga 
Paper session 3: room 301 
 

Computational Thinking 
Judith Bell, Tim Bell. 

Computational Thinking and Music 
Learning 
Marianthi Grizioti, Chronis 
Kynigos. Programming Approaches 

to Computational Thinking: 
Integrating Turtle Geometry, 
Dynamic Manipulation and 3D 
Space 
Marianthi Grizioti, Chronis 
Kynigos. Constructionist 
Approaches to Computational 
Thinking: A Case of Game Modding 
with ChoiCo 
Anita Juškevičienė, Valentina 
Dagienė. Interconnection Between 
Computational Thinking and Digital 
Competence 

Session chair: Jiří Vaníček 
Paper session 4: room 302 
 

Constructionist approaches 
Valentina Dagienė, Gabrielė Stupurienė. 

Short Tasks – Big Ideas: Constructive 
Approach for Learning and Teaching of 
Informatics Concepts in Primary Education.  
Miroslava Černochová, Radek Čuma, 
Hasan Selcuk. Forming Concepts for 
Programming Conditional Statements in 
the Primary School 
Jean Griffin. Constructionism and De-

Constructionism as Complementary 
Pedagogies 
Tilman Michaeli, Stefan Seegerer, Ralf 
Romeike. Enabling Collaboration and 
Tinkering: A Version Control System for 
Block-based Languages 
Jake Rowan Byrne, Kevin Sullivan, 
Katriona O’sullivan. Active Learning of 
Computer Science Using a Hackathon-like 
Pedagogical Model 

Session chair: Arthur Hjorth 
Paper session 5: room 306 
 

Reflections 
Nicolas Pope, Jonathan Foss, 
Meurig Beynon. Reconstructing 
Constructionism by Construal 
Deborah Fields, Mia Shaw, 
Yasmin Kafai. Personal Learning 

Journeys: Reflective Portfolios as 
“Objects-to-Learn-With” in an E-
textiles High School Class 
Evgeny Patarakin. Using Agent-

based Modelling of Collaboration 
for Social Reflection 
Francesca Agatolio, Alfredo 
Asiain, Alfredo Pina, Gabriel 
Rubio, Michele Moro. 

Constructive and Collaborative 
Digital Storytelling for Enhancing 
Creativity and Cooperation In and 
Out of School 

Thursday, August 23 / Location: The Faculty of Philosophy (Universiteto St. 9) 

830–1030 

Session chair: Gary Stager 
Plenary session V: room 301 

 

Gerald Futschek. Computational Thinking and Creativity 
Tim Bell. CS Unplugged and Computational thinking 

Session chair: James Clayson 
Plenary session VI: room 302 
 

Uri Wilensky. Reempowering powerful ideas 
Paulo Blikstein. Constructionism Won, Now What? The 

Role of Constructionist Research in the Age of Ubiquitous 
Computing 

1030–1100 

Session chair: Anita Juškevičienė 
Poster Session I: room 301 
 

Nalin Tutiyaphuengprasert. Applied Constructionism: 
Critical Reflection and Learning Through Play in Adult 
Learning 
Sawaros Thanapornsangsuth, Nathan Holbert, Monica 
Chan. Towards Girls’ Self-perception in Technology and 
Craft: Challenges and Implications 
Enric Ortega Torres, Vincent Sanjosé López, Joan-
Josep Solaz Portolés. Influence of Students’ Self-
perceived Use of Metacognitive Strategies and Sensory 
Preferences on Academic Achievement in Science and 
Technology 
Takeshi Watanabe, Yuriko Nakayama, Yasunori 
Harada, Yasushi Kuno. Programming Lessons for 
Kindergarten Children in Japan 
Sayaka Tohyama, Yugo Takeuchi. Collaborative 
Creative Music Activity with ICT: A Case Study for Children 
in Grade Five 
Yoshiaki Matsuzawa, Misako Noguchi, Issei Nakano. 

Exploration of Algorithm Abstraction Process with Cubetto 
and Middle Grade Elementary Kids 
Aoi Yoshida, Kazunari Ito, Kazuhiro Abee. A Practical 
Report on a Programming Course with “Making” Using 
micro:bit 
Liudmyla Kryvoruchka. Heuristic Potential of Open 
Institutional Models in Researchers Education. 

Session chair: Lina Vinikienė 
Poster Session II: room 302 
 

Michael Tan. Constructing what? Knowledge of the powerful, 
and powerful knowledge 
Carina Girvan, Wilfried Lepuschitz, Ivaylo  
Gueorguiev, Christina Todorova, Chronis Kynigos, 
Marianthi Grizioti, Angele Giuliano, Annalise Duca, 
Julian Mauricio Angel-Fernandez, Markus Vincze. 

Educational Robotics for STEM: From Workshops to 
Curricula and Framework 
Ivaylo Gueorguiev, Christina Todorova, Nikoleta 
Yiannoutsou, Xristina Greka, Pavel Varbanov, George 
Sharkov, Carina Girvan, Julian Mauricio Angel-
Fernandez, Lisa Vittori, Annalise Duca. Towards a Generic 
Curriculum for Educational Robotics in STEM: From Scientific 
Concepts to Technologies and Powerful Ideas 
Barbara Sabitzer. Modeling Across the Subjects 
Jinbao Zhang. An Experimental Exploration of the 
Development of Design Thinking in University Maker Courses 
Márton Visnovitz, Győző Horváth. The Web – A Platform 

for Creation 
Pekka Mäkiaho, Timo Poranen, Katriina Vartiainen. 
Construction of a Project Monitoring Application Iteratively 
and Incrementally 
Lina Vinikienė, Valentina Dagienė. Different Cultures – 
Different Approaches to Reasoning and Algorithms 



Constructionism 2018, Vilnius, Lithuania 

10 

 

1100–1130 Coffee break 

  

Session chair: Jacqueline Staub 
Paper session 6: room 301 
 

Programming education 
Jiří Vaníček. Concept-building 
Oriented Programming Education 
Ungyeol Jung, Young Jun Lee. 
The Direction and Possibility for 
Social Justice in Informatics 
Education based on Bebras 
Challenge in Republic of Korea 
Ken Kahn, Niall Winters. AI 
Programming by Children 
Elisabeth Wetzinger, Gerald 
Futschek, Bernhard Standl. A 
Creative Learning Sequence in an 
Introductory Programming MOOC 
 

Session chair: Wolfgang Slany 
Paper session 7: room 302  
 

Robotics 
Julian Mauricio Angel Fernandez, 
Nikoleta Yiannoutsou, Chronis Kynigos, 
Carina Girvan, Markus Vincze. Towards 

a Framework for Educational Robotics 
Flavio Campos. Design Curriculum for 
Educational Robotics: Constructionist 
Pedagogical Experience in Formal 
Education 
Dave Catlin, Martin Kandlhofer, 
Stephanie Holmquist, Andrew Paul 
Csizmadia, Julian Mauricio Angel 
Fernandez, John-John Cabibihan. 

EduRobot Taxonomy and Papert’s 
Paradigm 
Karolína Mayerová, Michaela 
Veselovská. How Students Struggled with 

Preparation of Activities for a Leisure Time 
Robotic Workshop 

Session chair: Ana Isabel 
Sacristán 
Paper session 8: room 306 
 

Jose Armando Valente, Paulo 
Blikstein. The Construction of 

Knowledge in Maker Education: A 
Constructivist Perspective 

 1130 – 1330  Panel discussion III: room 306 
Constructionism across Cultures: 
Commonalities and Differences of 
Constructionist Implementations 
Around the World  
 

joined with papers 
 

Jose Armando Valente, Paulo 
Blikstein. Constructionism in 
Different Cultures: the case of 
Brazil & 
Deborah Fields, Paulo Blikstein. 

What Is Constructionism? Views 
from a Thai Perspective 
Jose Armando Valente (moderator), 
Paulo Blikstein, Deborah Fields, 
Michael Tan 

1330–1430   Lunch 

1430–2200 Excursion & Dinner 

Friday, August 24 / Location: The Faculty of Philosophy (Universiteto St. 9) 

830–1030 

Session chair: Ivan Kalaš 
Plenary session VII: room 301 
 

Paul Goldenberg. Teaching Children to be Problem 
Posers and Puzzle-creators in Mathematics 
Ana Isabel Sacristán. Constructionist Experiences for 

Mathematics across Educational Levels 

Session chair: Jose Armando Valente 
Plenary session VIII: room 302 
 

Wolfgang Slany. Rock Bottom, the World, the Sky: 
Catrobat, an Extremely Large-scaling and Long-term Visual 
Coding Project Relying Purely on Smartphones 
Gary Stager, co-speaker Sylvia Martinez. Turning Theory 
Into Practice – Spreading Constructionism 

  
Paper session 9: room 301 
 

Tiina Partanen, Pia Niemelä, Timo Poranen. Racket 
Programming Material for Finnish Elementary Math 
Education 

Demo session 1: room 302 
 

Markus Klein, Clemens Koza, Wilfried Lepuschitz, 
Gottfried Koppensteiner. Hedgehog: A Versatile Controller 
for Educational Robotics 

 1030– 1100 

1100–1130  Coffee break 

1130–1330 

Session chair: Miroslava 
Černochová 
Paper session 10: room 301 
 

Designing activities 
Yasmin Kafai, Deborah Fields. 
Some Reflections on Designing 
Constructionist Activities for 
Classrooms 
Kit Martin, Michael Horn, Uri 
Wilensky. Ant Adaptation: A 

Complex Interactive Multitouch 
Game About Ants Designed for 
Museums 
Michael Weigend, Fenja Göcking, 
Alexander Knuth, Patrick Pais 
Pereira, Laura Schmidt. Media 
Parkour – Experiential Learning 
Activities for Media Education 
Brendan Tangney, Ian Boran, 
Tony Knox, Aibhín Bray. 
Constructionist STEM Activities 
Using the Bridge21 Model 

Session chair: Márton Visnovitz 
Paper session 11: room 302 
 

Teacher education 
Daniel Hickmott, Elena Prieto-
Rodriguez. To Assess or Not to 
Assess: Tensions Negotiated in Six 
Years of Teaching Teachers about 
Computational Thinking 
Daniel Hickmott, Elena Prieto-
Rodriguez. Constructionist 
Experiences in Teacher Professional 
Development: A Tale of Five Years 
Igor Verner, Khayriah Massarwe, 
Daoud Bshouty. Ethnomathematics 
in Teacher Education: Analysis and 
Construction of Geometric Ornaments 
Xiaoxue Du, Kay Chioma Igwe. 
Computational Thinking in Teacher 
Professional Development Programs 

Session chair: Don Passey 
Paper session 12: room 306 
 

Methodologies 
Sven Jatzlau, Ralf Romeike. How High 
is the Ceiling? Applying Core Concepts 
of Block-based Languages to Extend 
Programming Environments 
Anton Chukhnov, Sergei Pozdniakov, 
Ilya Posov, Athit Maytarattanakhon. 
Analysis of Constructive and Cognitive 
Activities of Participants in Online 
Competitions in Computer Science 
Vladimiras Dolgopolovas, Valentina 
Dagienė, Eglė Jasutė, Tatjana 
Jevsikova. Design Science Research 
for Computational Thinking in 
Constructionist Education: A 
Pragmatistic Perspective 
Aleksandra Klašnja-Milićević, Mirjana 
Ivanović. Learning Analytics in 

Education: Objectives, Application 
Possibilities and Challenges 



Constructionism 2018, Vilnius, Lithuania 

11 

 

1330–1430 Lunch 

  

Session chair: Mihaela Sabin 
Paper session 13: room 301 
Curriculum matters 
Eva Klimeková. Curriculum 
Intervention for Learning 
Programming in Python with Turtle 
Geometry 
Carol Angulo, Alberto J. Cañas, 
Ana Gabriela Castro, Leda Muñoz, 
Natalia Zamora. Think, Create and 

Program: Evolving to a K-9 
Nationwide Computational Thinking 
Curriculum in Costa Rica 
Michael Weigend. Coding to Learn 

- Informatics in Science Education 

Session chair: Carina Girvan 
Paper session 14: room 302 
Girls in computing 
Bernadette Spieler, Wolfgang 
Slany. Female Teenagers and 
Coding: Create Gender Sensitive and 
Creative Learning Environments 
Caitlin Davey, Sawaros 
Thanapornsangsuth, Nathan 
Holbert. Making Together: Cultivating 

Community of Practice in an All-Girl 
Constructionist Learning Environment 
Sawaros Thanapornsangsuth, 
Nathan Holbert. Exploring Girls’ 

Values and Perspectives in Making 
for Others 

Session chair: Wilfried Baumann 
Workshop 3: room 111 
 

Corey Brady, Walter Stroup, Tony 
Petrosino, Uri Wilensky. Group-based 

Simulation and Modelling: Technology 
Supports for Social Constructionism 
 

 

 1430– 1600 

  

1600–1630 Coffee break 

  

Session chair: Witold Kranas 
Paper session 15: room 301 
Constructionist environments 
Christos Chytas, Ira Diethelm. 
Designing Constructionist Learning 
Environments with Computational 
Design and Digital Fabrication 
Kazunari Ito. Pictogramming: 
Learning Environment Using Human 
Pictograms Based on 
Constructionism 
Kazunari Ito, Aoi Yoshida, 
Takashi Yoneda, Yuichi Oie. 
Human Pictogram Unplugged: 
Unified Learning Environment of 
Computer Science Unplugged Using 
Human Pictograms 
Nobuko Kishi, Mari Yoshida, 
Minori Yoshizawa, Aoi Yoshida. 

VISURATCTH: Visualization Tool for 
Finding Characteristics of Teaching 
and Learning Process of Scratch 
Programmers 

Session chair: Michael Weigend 
Paper session 16: room 302 
Modeling 
Natasa Grgurina, Erik Barendsen, 
Cor Suhre, Klaas van Veen, Bert 
Zwaneveld. Assessment of Modeling 
Projects in Informatics Class 
Kit Martin, Gabriella Anton. 
Modeling Time 
 

Ümit Aslan, Uri Wilensky. Agent-
based Construction (a-b-c) 
Interviews: A Generative Case Study 
Yu Guo, Uri Wilensky. Mind the 

Gap: Teaching High School Students 
about Wealth Inequality through 
Agent-Based Participatory 
Simulations 

Session chair: Brian Harvey 
Workshop 4: room 111 
 

Ken Kahn. AI Programming in Snap! 
 

Workshop 5: room 111 
 

Stephen Howell, Neeltje Berger, Peter 
Heldens, Kevin Marshall, Clare Riley. 
Developing Affordable STEM Maker 
Projects with BBC Micro:bits and 
Microsoft MakeCode 

 1630– 1830 

  

Saturday, August 25 / Location: The Faculty of Philosophy (Universiteto St. 9) 

830–1030 

Session chair: Deborah Fields 
Plenary session IX: room 301 
Chronis Kynigos. In Support of Integrated Approaches to 
Constructionist Designs and Interventions: The Case of 
ChoiCo and MaLT 
Arthur Hjorth. Social Gears - a Constructionist Approach 
to Social Studies 

Session chair: Paul Goldenberg 
Plenary session X: room 302 
Brian Harvey. May I Teach an Algorithm? 
Jens Mönig. Bones, Gears and Witchcraft 

  

Session chair: Eugenijus Kurilovas 
Demo session 2: room 301 
Nevin Akcay, Hulya Avci, Ali 
Güngör, Tufan Adiguzel. The 

Relationship between Computer 
Programming and English 
Language Skills  
Monica Chan, Gary Lee. 

Synthesizing the Mesh: Using 
Constructible Authentic 
Representations to Gain Intuitive 
Understanding of Bayesian 
Reasoning 

Session chair: Christos Chytas 
Demo session 3: room 302 
Ken Kahn. Interpolating (and 
Extrapolating) 3D Turtle Programs in 
Beetle Blocks 
Stephen Howell. Teaching Computational 
Thinking with Minecraft & Microsoft 
MakeCode  
 

 

Session chair: Ralf Romeike 
Workshop 6: room 111 
 

Brian Broll, Corey Brady, Ákos 
Lédeczi. NetsBlox: A 
Constructionist Environment for 
Creating Distributed Applications 

 
 

 1035– 1130 

  

1130–1200 Closing: Farewell buffet / Location: Grand Courtyard 

1300–2000 Post Conference Excursions 
(not included in conference fee) 



Constructionism 2018, Vilnius, Lithuania 

12 

 

 

Content 

Opening / Plenaries ................................................................................................................... 19 

One Hundred Years of Educational Development in Lithuania ................................................................. 20 
Rimantas Želvys 

CS Unplugged and Computational thinking .............................................................................................. 21 
Tim Bell 

Constructionism Won, Now What? The Role of Constructionist Research in the Age of Ubiquitous 
Computing ................................................................................................................................................. 29 

Paulo Blikstein 

Look Closely, Watch What Happens: Visual Modelling and Constructionism .......................................... 30 
James Clayson 

Computational Thinking and Creativity ..................................................................................................... 38 
Gerald Futschek 

Teaching Children to be Problem Posers and Puzzle Creators in Mathematics ...................................... 39 
Paul Goldenberg 

May I Teach an Algorithm? ....................................................................................................................... 53 
Brain Harvey 

Social Gears – a Constructionist Approach to Social Studies .................................................................. 68 
Arthur Hjorth 

Scratchmaths: a Positive Outcome for Constructionism at Scale ............................................................. 69 
Richard Noss, Celia Hoyles 

Programming in Lower Primary Years: Design Principles and Powerful Ideas ........................................ 71 
Ivan Kalaš 

In Support of Integrated Approaches to Constructionist Designs and Interventions: The Case of ChoiCo 
and MaLT .................................................................................................................................................. 81 

Chronis Kynigos 

Bones, Gears and Witchcraft .................................................................................................................... 82 
Jens Monig 

Constructionist Experiences for Mathematics Across Educational Levels ............................................... 83 
Ana Isabel Sacristán 

Back 100 000(2) .......................................................................................................................................... 94 
Evgenia Sendova 

Rock Bottom, the World, the Sky: Catrobat, an Extremely Large-scale and Long-term Visual Coding Project 
Relying Purely on Smartphones .............................................................................................................. 104 

Wolfgang Slany, Kirshan Kumar Luhana, Matthias Mueller, Christian Schindler, Bernadette Spieler 

Making Constructionism Great Again ...................................................................................................... 120 
Gary S. Stager 

Turning Theory into Practice – Spreading Constructionism .................................................................... 121 
Gary S. Stager, Sylvia Martinez 

The Evolution of a Constructionist Teacher (with Some Reminders from Seymour).............................. 122 
Carol Sperrry Suziedelis 

Reempowering Powerful Ideas ............................................................................................................... 123 
Uri Wilensky 

Research papers ..................................................................................................................... 124 

Agent-based Construction (a-b-c) Interviews: A Generative Case Study ............................................... 125 
Umit Aslan, Uri Wilensky 



Constructionism 2018, Vilnius, Lithuania 

13 

 

Active Learning of Computer Science Using a Hackathon-like Pedagogical Model ............................... 138 
Jake Rowan Byrne, Kevin Sullivan, Katriona O’Sullivan 

EduRobot Taxonomy and Papert’s Paradigm ......................................................................................... 150 
Dave Catlin, Martin Kandlhofer, Stephanie Holmquist, Andrew Paul Csizmadia, Julian M. Angel-

Fernandez, John-John Cabibihan 

Analysis of Constructive and Cognitive Activities of Participants in Online Competitions in Computer 
Science .................................................................................................................................................... 160 

Anton Chukhnov, Sergei Pozdniakov, Ilya Posov, Athit Maytarattanakhon 

Short Tasks – Big Ideas: Constructive Approach for Learning and Teaching of Informatics Concepts in 
Primary Education ................................................................................................................................... 169 

Valentina Dagienė, Gabrielė Stupurienė 

Design Science Research for Computational Thinking in Constructionist Education: A Pragmatistic 
Perspective .............................................................................................................................................. 180 

Vladimiras Dolgopolovas, Valentina Dagienė, Eglė Jasutė, Tatjana Jevsikova 

Computational Thinking in Teacher Professional Development Programs ............................................. 193 
Xiaoxue Du, Kay Chioma Igwe 

What is Constructionism? Views from a Thai Perspective ...................................................................... 203 
Deborah A. Fields, Paulo Blikstein 

Personal Learning Journeys: Reflective Portfolios as “Objects-to-Learn-With” in an E-textiles High School 
Class ........................................................................................................................................................ 214 

Deborah A. Fields, Mia S. Shaw, Yasmin B. Kafai 

Constructionism and De-Constructionism as Complementary Pedagogies............................................ 225 
Jean M. Griffin 

Mind the Gap: Teaching High School Students about Wealth Inequality through Agent-based Participatory 
Simulations .............................................................................................................................................. 238 

Yu Guo, Uri Wilensky 

To Assess or Not to Assess: Tensions Negotiated in Six Years of Teaching Teachers about Computational 
Thinking ................................................................................................................................................... 251 

Daniel Hickmott, Elena Prieto-Rodriguez 

Sharing is Caring in the Commons – Students’ Conceptions about Sharing and Sustainability in Social-
Ecological Systems ................................................................................................................................. 263 

Arthur Hjorth, Corey Brady, Uri Wilensky 

Urban Planning-in-Pieces: A Computational Approach to Understanding Conceptual Change and Causal 
Reasoning about Urban Planning............................................................................................................ 274 

Arthur Hjorth, Uri Wilensky 

How High is the Ceiling? Applying Core Concepts of Block-based Languages to Extend Programming 
Environments ........................................................................................................................................... 285 

Sven Jatzlau, Ralf Romeike 

The Direction and Possibility for Social Justice in Informatics Education based on Bebras Challenge in 
Republic of Korea .................................................................................................................................... 295 

Ungyeol Jung, Young-jun Lee 

Interconnection between Computational Thinking and Digital Competence ........................................... 305 
Anita Juškevičienė, Valentina Dagienė 

AI Programming by Children ................................................................................................................... 315 
Ken Kahn, Niall Winters 

VISURATCH: Visualization Tool for Finding Characteristics of Teaching and Learning Process of Scratch 
Programmers ........................................................................................................................................... 325 

Nobuko Kishi, Mari Yoshida, Minori Yoshizawa, Aoi Yoshida 

  



Constructionism 2018, Vilnius, Lithuania 

14 

 

Curriculum Intervention for Learning Programming in Python with Turtle Geometry ............................. 334 
Eva Klimeková 

The Impact and Effectiveness of Technology Enhanced Mathematics Learning ................................... 344 
Einari Kurvinen, Valentina Dagienė, Mikko-Jussi Laakso 

Constructionist Approaches to Computational Thinking: A Case of Game Modding with ChoiCo ......... 357 
Grizioti Marianthi, Chronis Kynigos 

Programming Approaches to Computational Thinking: Integrating Turtle Geometry, Dynamic Manipulation 
and 3D Space .......................................................................................................................................... 369 

Grizioti Marianthi, Chronis Kynigos 

Modeling Time ......................................................................................................................................... 380 
Kit Martin, Gabriella Anton 

Ant Adaptation: A Complex Interactive Multitouch Game about Ants Designed for Museums .............. 392 
Kit Martin, Michael Horn, Uri Wilensky 

Enabling Collaboration and Tinkering: A Version Control System for Block-based Languages ............. 405 
Tilman Michaeli, Stefan Seegerer, Ralf Romeike 

Racket Programming Material for Finnish Elementary Math Education ................................................. 415 
Tiina Partanen, Pia Niemelä, Timo Poranen 

Using Agent-based Modelling of Collaboration for Social Reflection ...................................................... 426 
Evgeny Patarakin 

Reconstructing Constructionism by Construal ........................................................................................ 437 
Nicolas Pope, Jonathan Foss, Meurig Beynon 

Constructionist STEM Activities Using the Bridge21 Model .................................................................... 449 
Brendan Tangney, Ian Boran, Tony Knox, Aibhín Bray 

Exploring Girls’ Values and Perspectives in Making for Others .............................................................. 460 
Sawaros Thanapornsangsuth, Nathan Holbert 

The Construction of Knowledge in Maker Education: A Constructivist Perspective ............................... 472 
José Armando Valente, Paulo Blikstein 

Constructionism in Different Cultures: the Case of Brazil ....................................................................... 481 
José Armando Valente, Paulo Blikstein, 

Concept-building Oriented Programming Education ............................................................................... 488 
Jiří Vaníček 

Practice papers ....................................................................................................................... 497 

Constructive and Collaborative Digital Storytelling for Enhancing Creativity and Cooperation In and Out of 
School ...................................................................................................................................................... 498 

Francesca Agatolio, Alfredo Asiain, Alfredo Pina, Gabriel Rubio, Michele Moro 

Towards a Framework for Educational Robotics ................................................................................ 506 
Julian M. Angel-Fernandez, Nikoleta Yiannoutsou, Chronis Kynigos, Carina Girvan, Markus Vincze 

Think, Create and Program: Evolving to a K-9 Nationwide Computational Thinking Curriculum in Costa 
Rica ......................................................................................................................................................... 514 

Carol Angulo, Alberto J. Cañas, Ana Gabriela Castro, Leda Muñoz, Natalia Zamora 

Computational Thinking and Music Learning .......................................................................................... 520 
Judith Bell, Tim Bell 

Teaching in a Sustained Post-Secondary Constructionist  Implementation of Computational Thinking for 
Mathematics ............................................................................................................................................ 528 

Chantal Buteau, Ana Isabel Sacristán, Eric Muller 

Design Curriculum for Educational Robotics: Constructionist Pedagogical Experience in Formal Education
 ................................................................................................................................................................. 536 

Flavio Campos 



Constructionism 2018, Vilnius, Lithuania 

15 

 

Forming Concepts for Programming Conditional Statements in the Primary School ............................. 543 
Miroslava Černochová, Radek Čuma, Hasan Selcuk 

Designing Constructionist Learning Environments with Computational Design and Digital Fabrication 547 
Christos Chytas, Ira Diethelm 

Developing Mathetic Content Knowledge using an Emergent Systems Microworld ............................... 554 
Sugat Dabholkar, Gabriella Anton, Uri Wilensky 

Making Together: Cultivating Community of Practice in an All-Girl Constructionist Learning Environment
 ................................................................................................................................................................. 561 

Caitlin Davey, Sawaros Thanapornsangsuth, Nathan Holbert 

Assessment of Modeling Projects in Informatics Class ........................................................................... 570 
Natasa Grgurina, Erik Barendsen, Cor Suhre, Klaas van Veen, Bert Zwaneveld 

Constructionist Experiences in Teacher Professional Development: A Tale of Five Years .................... 577 
Daniel Hickmott, Elena Prieto-Rodriguez 

Pictogramming: Learning Environment Using Human Pictograms Based on Constructionism .............. 585 
Kazunari Ito 

Human Pictogram Unplugged: Unified Learning Environment of Computer Science Unplugged Using 
Human Pictograms .................................................................................................................................. 593 

Kazunari Ito, Aoi Yoshida, Takashi Yoneda, Yuichi Oie 

Some Reflections on Designing Constructionist Activities for Classrooms ............................................. 601 
Yasmin B. Kafai, Deborah A. Fields 

Learning Analytics in Education: Objectives, Application Possibilities and Challenges .......................... 608 
Aleksandra Klašnja-Milićević, Mirjana Ivanović 

Assessing Learning through Exploratory Projects in Cnstructionist R-based Statistics Courses for 
Environmental Science Students............................................................................................................. 615 

Maite Mascaró, Ana Isabel Sacristán 

How Students Struggled with Preparation of Activities for a Leisure Time Robotic Workshop............... 623 
Karolína Mayerová, Michaela Veselovská 

Constructionism as an Epistemological Option in Courses of Youth Center for Science and Culture – Bahia 
– Brazil ..................................................................................................................................................... 631 

Elmara Pereira de Souza, Luísa Souza Moura 

Female Teenagers and Coding: Create Gender Sensitive and Creative Learning Environments ......... 637 
Bernadette Spieler, Wolfgang Slany 

Visualizing Mathematics with the MathBot: a Constructionist Activity to Explore Mathematical Concepts 
through Robotics...................................................................................................................................... 649 

Christina Todorova, Carina Girvan, Nikoleta Yiannoutsou, Marianthi Grizioti, Ivaylo Gueorguiev, 

Pavel Varbanov, George Sharkov 

Ethnomathematics in Teacher Education: Analysis and Construction of Geometric Ornaments ........... 657 
Igor Verner, Khayriah Massarwe, Daoud Bshouty 

Coding to Learn – Informatics in Science Education............................................................................... 664 
Michael Weigend 

Media Parkour– Experiential Learning Activities for Media Education .................................................... 672 
Michael Weigend, Fenja Göcking, Alexander Knuth, Patrick Pais Pereira, Laura Schmidt 

A Creative Learning Sequence in an Introductory Programming MOOC ............................................... 678 
Elisabeth Wetzinger, Gerald Futschek, Bernhard Standl 

Posters ..................................................................................................................................... 685 

Educational Robotics for STEM: From Workshops to Curricula and Framework ................................... 686 
Carina Girvan, Wilfried Lepuschitz, Ivaylo Gueorguiev, Christina Todorova, Chronis Kynigos, 

Marianthi Grizioti, Angele Giuliano, Annalise Duca, Julian M. Angel-Fernandez, Markus Vincze 



Constructionism 2018, Vilnius, Lithuania 

16 

 

Towards a Generic Curriculum for Educational Robotics in STEM: From Scientific Concepts to 
Technologies and Powerful Ideas ........................................................................................................... 690 

Ivaylo Gueorguiev, Christina Todorova, Nikoleta Yiannoutsou, Xristina Greka, Pavel Varbanov, 

George Sharkov, Carina Girvan, Julian M. Angel-Fernandez, Lisa Vittori, Annalise Duca 

Heuristic Potential of Open Institutional Models in Researchers Education ........................................... 694 
Liudmyla Kryvoruchka 

Construction of a Project Monitoring Application Iteratively and Incrementally ...................................... 698 
Pekka Mäkiaho, Timo Poranen, Katriina Vartiainen 

Exploration of Algorithm Abstraction Process with Cubetto and Middle Grade Elementary Kids ........... 703 
Yoshiaki Matsuzawa, Misako Noguchi, Issei Nakano 

Influence of Students’ Self-perceived Use of Metacognitive Strategies and Sensory Preferences on 
Academic Achievement in Science and Technology .............................................................................. 707 

Enric Ortega Torres, Vincent Sanjosé López, Joan-Josep Solaz Portolés 

Modeling Across the Subjects ................................................................................................................. 711 
Barbara Sabitzer 

Constructing What? Knowledges of the Pwerful, and Powerful Knowledges ......................................... 714 
Michael Tan 

Towards Girls’ Self-perception in Technology and Craft: Challenges and Implications ......................... 718 
Sawaros Thanapornsangsuth, Nathan Holbert, Monica Chan 

Collaborative Creative Music Activity with ICT: A Case Study for Children in Grade Five ..................... 723 
Sayaka Tohyama, Yugo Takeuchi 

Applied Constructionism: Critical Reflection and Learning Through Play in Adult Learning .................. 727 
Nalin Tutiyaphuengprasert 

Different Cultures – Different Approaches to Reasoning and Algorithms ............................................... 731 
Valentina Dagienė, Lina Vinikienė 

The Web – A Platform for Creation ......................................................................................................... 736 
Márton Visnovitz, Győző Horváth 

Programming Lessons for Kindergarten Children in Japan .................................................................... 741 
Takeshi Watanabe, Yuriko Nakayama, Yasunori Harada, Yasushi Kuno 

A Practical Report on a Programming Course with “Making” Using Micro:bit ........................................ 745 
Aoi Yoshida, Kazunari Ito, Kazuhiro Abee 

An Experimental Exploration of the Development of Design Thinking in University Maker Courses ..... 750 
Jinbao Zhang 

Panels / Workshops / Demonstrations / Working groups .................................................... 753 

Panels ...................................................................................................................................... 754 

Constructionism across Cultures: Commonalities and Differences of Constructionist Implementations 
around the World ..................................................................................................................................... 754 

Paulo Blikstein 

Constructionism at Scale ......................................................................................................................... 754 
Celia Hoyles, Richard Noss, Yasmin B. Kafai, Kylie Peppler, Deborah A. Fields, Nathan Holbert 

Inside the Trojan Horse – A Discussion Among the Next Generation of Constructionists ..................... 755 
Gary Stager, Sylvia Martinez, Amy Dugré, Angela Lombardo, Susana Tesconi, Tracy Rudzitis, 

Brian C. Smith, Jaymes Dec 

Workshops............................................................................................................................................... 756 

WS1: The Essence of Programming at School – Learning for Life......................................................... 756 
Jacqueline Staub 

  



Constructionism 2018, Vilnius, Lithuania 

17 

 

WS2: Developing Body Tracking Software with Scratch and Kinect ....................................................... 759 
Stephen Howell, Lizbeth Goodman 

WS3: Group-based Simulation and Modelling: Technology Supports for Social Constructionism ......... 761 
Corey Brady, Walter Stroup, Tony Petrosino, Uri Wilensky 

WS4: AI Programming in Snap! ............................................................................................................... 765 
Ken Kahn 

WS5: Developing Affordable STEM Maker Projects with BBC Micro:bits and Microsoft MakeCode ..... 767 
Stephen Howell, Neeltje Berger, Peter Heldens, Kevin Marshall, Clare Riley 

WS6: NetsBlox: A Constructionist Environment for Creating Distributed Applications ........................... 769 
Brian Broll, Corey Brady, Ákos Lédeczi 

WS7: The ER4STEM Repository for Educational Robotics .................................................................... 773 
Annalise Duca, Angele Giuliano, Sofia Nikitopoulou, Nikoleta Yiannoutsou, Chronis Kynigos 

Demonstrations ....................................................................................................................... 777 

The Relationship between Computer Programming and English Language Skills ................................. 777 
Nevin Akcay, Hulya Avci, Ali Gungor, Tufan Adiguzel 

Synthesizing the Mesh: Using Constructible Authentic Representations to Gain Intuitive Understanding of 
Bayesian Reasoning ................................................................................................................................ 781 

Monica Chan, Gary C. F. Lee 

Teaching Computational Thinking with Minecraft & Microsoft MakeCode .............................................. 786 
Stephen Howell 

Interpolating (and Extrapolating) 3D turtle Programs in Beetle Blocks ................................................... 788 
Ken Kahn 

Hedgehog: A Versatile Controller for Educational Robotics .................................................................... 791 
Markus Klein, Clemens Koza, Wilfried Lepuschitz, Gottfried Koppensteiner 

Working groups ....................................................................................................................... 794 

WG1: Constructionist Approaches to Computational Thinking ............................................................... 794 
Bernhard Standl, Gerald Futschek, Jane Waite, Andrew Paul Csizmadia, Lina Vinikienė, Janne 

Fagerlund 

WG2: Developing Constructionism, or a New Learning Concept, across the Ages ............................... 838 
Don Passey, Loice Victorine Atieno, Wilfried Baumann, Valentina Dagienė, Arūnas Poviliūnas 

WG3: Creating and Looking at Art with Logo Eyes ................................................................................. 855 
Evgenia Sendova, Christos Chytas, Katarzyna Olędzka, Ralf Romeike, Wolfgang Slany 

WG4: The Constructive Strategies in Teaching Humanities with Films .................................................. 868 
Lilija Duoblienė, Jūratė Baranova, Luc Anckaert, Wilfried Baumann 

WG5: Constructionism in the Classroom: Creative Learning Activities on Computational Thinking ...... 884 
Michael Weigend, Zsuzsa Pluhár, Anita Juškevičienė, Jiří Vaníček, Kazunari Ito, Igor Pesek 

WG6: Learning to Program in a Constructionist Way.............................................................................. 901 
Mattia Monga, Michael Lodi, Dario Malchiodi, Anna Morpurgo, Bernadette Spieler 

WG7: Constructionism in Upper Secondary and Tertiary Levels ............................................................ 925 
Ana Isabel Sacristán, Lina Kaminskienė, Mihaela Sabin, Richard Akrofi Kwabena Baafi 

Teachers’ Day .......................................................................................................................... 940 

The beauty in science and the science in beauty or mathematics, informatics and science teaching as an 
eye-opener of the beauty of ideas ........................................................................................................... 941 

Evgenia Sendova 

Ateities švietimas:  naujos galimybės Lietuvai? ...................................................................................... 944 
Rimantas Želvys 



Constructionism 2018, Vilnius, Lithuania 

18 

 

WS1: Dynamic Teaching Ideas for teaching Music Theory .................................................................... 945 
Judith Bell 

WS2: Computer Science Unplugged for Teachers ................................................................................. 945 
Tim Bell 

WS3: Developing Algebraic Habits of Mind in Students ......................................................................... 945 
Paul Goldenberg, Cynthia J. Carter 

WS4: Puzzles & Programming to Develop Mathematical Habits of Mind in 6–10 year Olds ................. 946 
Paul Goldenberg, Cynthia J. Carter 

WS5: Powerful Ideas in Lower Primary Programming: High Time to Recognize Them ......................... 946 
Ivan Kalaš 

WS6: Snap! - Beauty & Joy of Computing (visually) ............................................................................... 947 
Witek Kranas 

WS7: ViLLE – E. Learning Path for Mathematics and Programming...................................................... 954 
Mikko-Jussi Laakso, Petra Enges-Pyykönen 

WS8: Constructionism in Action: Do we Need to Start from Scratch? .................................................... 954 
Evgenia Sendova, Nikolina Nikolova 

WS9: Teaching Coding and Physical Computing ................................................................................... 955 
Gary S. Stager 

WS10: The Essence of Programming at School – Logo in a Spiral Curriculum ..................................... 955 
Jacqueline Staub 

WS11: How to Create and Sustain a Progressive Pedagogy in a Traditional Setting (Roundtable 
Discussion) .............................................................................................................................................. 956 

Carol Sperrry Suziedelis 

WS12: Joyful Learning of Geometry in Cultural Context. Analysis and Construction of Geometric 
Ornaments ............................................................................................................................................... 956 

Igor Verner, Khayriah Massarwe, Daoud Bshouty 

  



Constructionism 2018, Vilnius, Lithuania 

19 

 

Opening / Plenaries 
  



Constructionism 2018, Vilnius, Lithuania 

20 

 

 

One Hundred Years of Educational Development in 
Lithuania 

Rimantas Želvys rimantas.zelvys@fsf.vu.lt 
Vilnius University, Lithuania 

Abstract 
This year we celebrate the 100th anniversary of declaring the independent Republic of Lithuania, and 
the main focus of our attention is the development of education since 1918, which can be divided into 
at least four different periods. 

1918-1940. The period of building. After declaration of the independence in February 1918, the Ministry 
of Education was established. After the devastating World War I the Ministry discovered in the territory 
of the newly founded state 8 functioning gymnasiums (upper secondary schools) and 11 
progymnasiums (lower secondary schools) with 360 teachers. Besides that, 1232 teachers worked in 
primary schools, so the whole teachings corps in the country was 1592 teachers. There were no 
institutions of higher education as the only university in the country – Vilnius University – was closed 
down in 1832. The system of education had to be built practically from nothing. Lithuanian university 
was re-established in 1922. Compulsory primary education – four years – was introduced during the 
period of 1928-1931. In two decades of intense work the fully-functioning system of education was 
created and the illiteracy rate in 1940 dropped down to 2 percent.  

1940-1944. The period of destruction. The Soviet occupation in 1940 and the World War II had an 
enormous destructive effect on our educational system. Just in a single day – June 14, 1941 – 11 
percent of all Lithuanian teachers were deported to Siberia. Many of the teachers died during the war, 
perished in exile or fled to the West in fear of repressions when the Red Army was approaching. In 1943 
the Nazi German authorities closed down Vilnius University as an act of revenge for non-cooperating 
with the occupational administration. The system of education met the end of the World War II with 
demolished schools and few remaining teachers. 

1944-1990. The period of adaptation. After the war the country had to adapt to the imposed Soviet 
model of education. Mass education was one of the essential elements of the model. In 1949 
compulsory seven-year education, and in 1958 – compulsory eight-year education was introduced. In 
1986 the eleven-year long general secondary education was extended to twelve-year long general 
secondary education. Massification of general secondary schooling was accompanied by the 
centralization, monopolization, unification, and, most important, strong ideologization of education. 

1990-2018. The period of transformation. There are many challenges facing our education. We have to 
deal with an ideological challenge – what will substitute the previously imposed communist ideology? 
Do we accept the new “global ideology“ – neoliberalism – or shall we look for something else? We face 
a strategic challenge – what are the long-term goals and mission of our education? Do we accept the 
prevailing outlook that education is a service which has to supply the global labour market with a 
necessary workforce, or is it something else? We face a structural challenge – due to demographic 
reasons is shrinking instead of expansion. We came to the understanding that closing down schools is 
more difficult than building the new ones. We face the challenge of economical efficiency – how to 
achieve the desired level of quality and equity in education at the costs which are both available and 
acceptable to our society? We acknowledge that the current state of our education is far from perfect 
and that there are still many questions to be answered and many solutions to be found. However, when 
we look back at the starting position we had one hundred years ago, there is no doubt that we can be 
really proud with what we have achieved.  



Constructionism 2018, Vilnius, Lithuania 

21 

 

CS Unplugged and Computational thinking 

Tim Bell, tim.bell@canterbury.ac.nz 
University of Canterbury, New Zealand 

Abstract 
The CS Unplugged activities (csunplugged.org) provide a scaffolding for a constructivist approach to 
introducing topics in computer science, without the need to learn programming first. It has been widely 
used to support Computational Thinking in school curricula. This paper discusses the connection 
between CS Unplugged activities and one of the (many!) definitions of Computational Thinking, and 
discusses how it should be used in this context based on research into using the Unplugged approach 
effectively in education. In addition to considering the value of an Unplugged approach for teaching 
students, we will look at broader applications, including supporting teachers who are new to the subject, 
and using it in integrated learning where computational thinking is exercised as part of other curriculum 
areas. 

Keywords  
CS Unplugged; computational thinking; teacher PLD; integrated learning 

Introduction  

Computer Science Unplugged (CSUnplugged.org) was originally intended as an outreach tool to explain 
computer science to young students, without the overhead of having to learn programming first. 
However, it is now used in a variety of contexts, and with the recent adoption of elements of computer 
science into school curricula around the world (Heintz et al., 2016), the Unplugged approach has often 
found a role in the classroom. The new curricula are commonly based around the idea of Computational 
Thinking, an idea that came to prominence after the publication of a paper by Jeanette Wing in 2006 
(Wing, 2006), although the term was used by Papert as early as 1980 in his widely read “Mindstorms” 
book (Papert, 1980), and the general concept predates Papert’s work (Tedre and Denning 2016). 

Here we look at what Computational Thinking is, how it relates to Computer Science Unplugged 
activities, and how this connects to previous research on the use of CS Unplugged for teachers and 
students. 

Computational Thinking 

The heading of “Computational Thinking” (CT) is commonly used in the context of introducing computer 
science into primary and high school education. There are varied views on what Computational Thinking 
is actually about, and its broad value outside of teaching computer programming, although there is 
general agreement that it relates to the kind of thinking students need to develop in order to effectively 
be able to program digital devices, that there are particular skills that are relevant, and that it has an 
enormous impact on the world. 

To understand CT, it is helpful to focus on what computation is. The notion of computation and 
computability has been explored in depth over the years, with fundamental ideas being based on 
Turing’s work in the 1930s about what he called an “automatic machine” (Turing, 1937), which is now 
commonly referred to as a Turing machine. The limitations of a Turing machine still define the 
boundaries of digital computation today (with the possible exception of the new developments in 
quantum computing), so both the power and limitations of computing are reflected in any Turing-
complete programming language, which includes many widely used educational languages such as 
Scratch and Python. From this point of view, it could be argued that CT is centred around learning to 
use such languages to their full extent (Denning, 2017), since the machines dictate exactly what can 
and can’t be done in computation. It is reasonable to be concerned that analogies to computation (such 
as cooking recipes) are imperfect and might even teach against some of the deeper principles, but we 



Constructionism 2018, Vilnius, Lithuania 

22 

 

need to acknowledge that beginners in any subject are often given simplified models to help scaffold 
their learning (such as the Rutherford-Bohr model of the atom, Newtonian physics, or the division of 
history into discrete periods).  

However, it is also possible to enforce computationally authentic elements of computing without using 
a digital device. For example, the CS Unplugged resources (Bell et al., 2009; Bell, Rosamond and Casey 
2012) have an activity on sorting algorithms (https://csunplugged.org/sorting-algorithms), which puts a 
simple rule in place that only two values can be compared at once using a balance scale, and the 
comparison is done by a third party so that there is no memory of previous comparisons other than 
placement of the weights. This forces students to explore the same kinds of algorithms that a digital 
device would have to use when sorting by comparison, so it isn’t just an analogy, but an alternative 
physical implementation of the kind of computation that is possible if one could program a digital device. 
It has the advantage that students don’t need to learn about programming first before engaging with the 
algorithm, although ultimately a computer program is needed to see all of the limitations encountered 
when implementing the algorithm. 

Broader definitions of Computational Thinking have been derived based on the general skills needed to 
reason about computation. For example, Wing (2010) uses the definition of Computational Thinking as 
“… the thought processes involved in formulating problems and their solutions so that the solutions are 
represented in a form that can be effectively carried out by an information-processing agent.” This leads 
to a more general view of programming, where CT includes knowing how to: 

 describe a problem, 
 identify the important details needed to solve this problem, 
 break the problem down into small, logical steps, 
 use these steps to create a process (algorithm) that solves the problem, 
 and then evaluate this process. 

The underlying skills needed to achieve these steps have been presented in various forms, but common 
elements generally include some sort of variation on a list such as algorithmic thinking, abstraction, 
decomposition, generalization, evaluation and logic. Such lists have been produced by national 
organisations supporting new curricula, including Computing at School in England (Csizmadia et al, 
2015) and the CSTA (CSTA, 2011). 

Denning (2017) warns against overgeneralising such underlying skills; for example, decomposition can 
be applied to many situations, such as breaking down a large (non-computer) project into components, 
but in a computational context such an activity has constraints imposed by the nature of a computing 
environment, as well as good practice (such as decomposing a large program into modules with 
meaningful functions). Here we focus on applying these concepts in the context of computer science, 
which helps us to connect the general ideas with what they mean in a computational context. 

Figure 1 shows the skill list that we have chosen to use to connect CS Unplugged to CT. They are based 
on a combination of lists commonly found in the literature mentioned above. 

Rather than try to define these here, we will illustrate them with examples from CS Unplugged activities.  

 

 Figure 1. Computational Thinking skills 

 



Constructionism 2018, Vilnius, Lithuania 

23 

 

Computational Thinking and CS Unplugged 

The CS Unplugged material was developed from around 1992 (Bell, Rosamond and Casey, 2012), 
while the concept of Computational Thinking became widely promoted after Wing’s work around 2006; 
since CS Unplugged was intended to convey ideas from computer science, and CT has been described 
as “thinking like a Computer Scientist” (Wing, 2006), matching Unplugged activities with CT ideas serves 
as a way to show how they are both serving a similar purpose. 

Here we will use three contrasting activities: the binary numbers demonstration (about data), searching 
(about algorithms), and sorting networks (applying a parallel algorithm to data). Note that the Unplugged 
activities are intended to be used in a constructivist manner, so that students are discovering patterns 
and rules for themselves based on a very short description of a challenge, rather than being told the 
rules and then applying them. This means that they are exercising the CT skills themselves as they 
solve the challenges that they are given. 

In the binary representation activity, students manipulate cards that represent the powers of two (Figure 
2). They follow the simple rule that the dots on a card may either be completely visible or not, and are 
given exercises around finding ways to display a given number of dots, counting, and exploring patterns 
in the representation, always with the constraint that a card is entirely visible or not (this is enforcing a 
constraint that a physical computing device would have). The constructivist approach means that the 
students are given little more instruction that the rule that each card is either visible or not; even the 
number of dots on each card is deduced by the students after being shown the first three. 

 

Figure 2. The CS Unplugged binary representation activity 

This activity is exercising the CT skills as follows; note that it could also be used to evaluate how well a 
student is applying the skills. 

 Algorithmic thinking: Although this activity is about data, students are applying algorithms to the 
bits. Working out the representation of a decimal value can be done using a greedy algorithm 
working from left to right (“Do you want to include the 16-dot card?” etc.) Initially students may take 
a haphazard approach, but by scaffolding the idea of working from left to right, it becomes clear 
that the decisions are easy. Other algorithms that come up are incrementing by one (students can 
be scaffolded to find the pattern that this can be done by flipping cards from right to left until a 
white card comes up), doubling a value (shift left), and determining if a number is odd or even 
(simply check the right hand bit!) 

 Abstraction: Although binary representations are commonly said to be made of zeroes and ones, 
there are no such physical digits on a computer, only abstract representations. Students can 
experiment with a variety of abstraction; we commonly start with “yes” and “no” for each card, but 
can then ask the students to be creative with other binary symbols, such as using two different 
musical pitches, dance moves, or even animal sounds. 

 Decomposition: the problem of working out a number representation can be overwhelming at 
first, but when decomposed into a left-to-right algorithm (“do you want this card?”), it becomes a 
lot simpler to comprehend. 

 Generalising and patterns: There are many patterns to be explored here; the first generalisation 
is working out the number of dots on the nth card, but students can also discover many other 
patterns, for example, that the maximum value that can be represented with k bits is one less than 



Constructionism 2018, Vilnius, Lithuania 

24 

 

the value of bit k+1, or that when counting, each card is being flipped with half the frequency of 
the one to its right. 

 Logic: There are several rules that students can deduce using logic. One useful one is the 
uniqueness of a binary representation. For example, suppose they have found the representation 
01001 for the number 9. The students can then be asked “is it possible to have a representation 
of 9 where the first bit is 1?” They will argue that it’s not possible because you would have 16 dots 
– too many. The first bit must be 0. Then ask if the second bit could be a 0. Students will soon 
realise that there are only 7 dots left in that case, and can argue themselves that the second bit 
must be 1. This reasoning can be applied to all the bits of any binary representation, and students 
will have created an informal proof that a particular value has a unique representation. 

 Evaluation: Being able to convert between decimal and binary numbers isn’t a widely used skill, 
but being able to evaluate the limits of a representation is. For example, students can evaluate the 
largest number possible with, say, 5 bits, and then with 6 bits, and with scaffolding, realise that 
each extra bit doubles the range of possibilities. This can lead to reasoning about the effectiveness 
of, say, a 256-bit security key vs. a 512-bit key; or an 8-bit character representation vs. 16-bit. In 
both cases the increase in representation is considerably more than the factor of 2 that might 
appear on the surface. 

In the searching algorithms activity, students are given hidden values to search in several contexts: it 
could be hidden “treasure chests” held by a friend who will reveal the contents only one chest at a time 
(Figure 3), or cups that have values hidden under them, which can only be turned over one at a time. 
In both cases, the goal is to find a value without looking at more items than necessary. At first the values 
are unsorted, but students are later given a series of values that are sorted, which they can 
constructively use to apply a form of binary search to avoid frustratingly long searches. 

 

Figure 3. The CS Unplugged treasure hunt searching activity 

Computational thinking appears in the searching activities as follows. 

 Algorithmic thinking: Students constructively discover a (variation of) the binary search algorithm 
motivated by minimising the cost to them of finding a given object or value. 

 Abstraction: The values being searched (keys) are usually an abstraction of some item that needs 
to be found, such as a person’s name being searched to find some information associated with 
them. Working with the search key is sufficient to understand the algorithm. 

 Decomposition: Each key comparison is decomposing the solution space into smaller parts; in 
the case of a sequential search it is a small gain (the solution space is reduced one by one), but 
students can explore the power of divide-and-conquer through binary search, where a half of the 
problem space is eliminated in one step. 

 Generalising and patterns: The different guises of searching (treasure chests, cups, envelopes 
and so on) are all the same problem with the same possible solutions, but presented in different 
ways. This enables students to recognise what the general algorithm is, rather than just a specific 
application of it. 



Constructionism 2018, Vilnius, Lithuania 

25 

 

 Logic: There are a number of ideas that can be reasoned about here: for example, that binary 
search can only work on a sorted list, and that binary search is guaranteed to find what the student 
is looking for even though many items are never inspected. 

 Evaluation: This is a key reason for students to explore algorithms; sequential and binary search 
have quite different performance, and although students may not use mathematical language like 
“logarithms”, they can appreciate that even billons of items can be searched in a very small time 
with binary search, and that sequential search becomes arbitrarily worse than binary search as 
the size of the list increases. 

In the sorting network activity, students traverse a network drawn on the ground, making a simple 
comparison of values at each node and taking the left or right exit based on the comparison (Figure 4). 
Again, the instructions given are very simple (compare values and go left or right), but the activity allows 
the students to construct a range of understandings based on their experience.  

 

Figure 4. The CS Unplugged sorting network activity 

 Algorithmic thinking: The students are physically engaging with a parallel algorithm, and seeing 
how a complex outcome (sorting) can be achieved by the combination of many simple steps (in 
this case, comparisons of pairs of values). They also have the opportunity to design their own 
parallel algorithms for smaller sorting networks. 

 Abstraction: The sorting network is a physical representation of what happens inside a computer. 
The values being compared (keys) are also an abstraction of some item that is being sorted, which 
may have more data than just the sort key. 

 Decomposition: A key aspect of this activity is that the complex task is decomposed into a very 
simply described task. When comparing words or large numbers, that is further decomposed into 
a character-by-character comparison to determine which value comes first. 

 Generalising and patterns: The sorting network can be used to sort any values that can be 
compared for order; numbers are in order of increasing value, while words are in alphabetical 
order, but the comparisons can also used for other types of data, such as musical notes (higher 
and lower), and stories (which plot element comes before another?) 

 Logic: Students are able to reason about the correctness of the configuration by applying logic 
(an exhaustive test would take n! time). A first step is to apply logic to reason that the smallest item 
must end up in the correct place, regardless of where it starts. A full proof of correctness is likely 
beyond students, but for small sorting networks there is a lot of opportunity to reason about what 
will happen. 

 Evaluation: A sorting network can be evaluated in terms of the number of nodes required (three 
at a time in the case of a 6-way network), but also in terms of the number of parallel steps required 
(the length of the network, and therefore time required). Two different networks for the same 
number of inputs can be compared based on these metrics. 

These activities have been used as examples; on the CS Unplugged website these CT skills are made 
explicit for every activity to help teachers see the bigger picture of why a particular activity is relevant, 
and also to appreciate which finer details of an activity are important to fully engage students in CT. 



Constructionism 2018, Vilnius, Lithuania 

26 

 

Integrated learning 

Computer science isn’t an end in itself, and is used in many practical contexts. When taught in schools 
it can be used effectively in integrated contexts, where the concept is applied to other subjects to support 
learning in both at the same time, even with an Unplugged approach. 

For example, the binary representation activity includes the possibility of threading beads of two colours 
into bracelets, necklaces or bag-tags. Making up chains of beads gives students the chance to think 
about language, and what they would like to communicate with the beads; it also happens to exercises 
fine motor skills. More generally, the activity can be extended to art, where two symbols or images are 
used to embed information in a picture; or music, where the two values can be used as note pitches or 
lengths. Both of these can be used to introduce the idea of steganography, where a message is 
communicated in plain sight through an artefact that appears to have a different purpose. Topics like 
binary numbers can also be integrated with history and writing – where did the idea come from, and 
how have people communicated in the past over distance? Looking into representations like Braille and 
Morse code can reveal how communication has influenced history, but also how it is natural for humans 
to develop codes for communication over distance or for efficient storage. Students can construct their 
own codes based on their new understanding, and this provides a richer experience than simply learning 
standard codes (such as ASCII and Unicode), as they will face the questions that arise for themselves, 
such as special characters, using digits as text, and so on. 

Sorting networks can be integrated naturally with other curriculum topics, and might be used to compare 
dates in history, words in alphabetical order, note pitches in music, or numbers written in a foreign 
language. They provide motivation for students to repeatedly compare the values that they are learning, 
and to see them in situations other than the sequence normally presented. At the same time, they are 
becoming familiar with a computational model. 

Searching algorithms can also be explored in terms of history – how did people look up information in 
pre-computer times, and who had access to such information? Who are the people who developed 
these computer algorithms, and what motivated them? There is also the possibility of acting out such 
algorithms; and a binary search can even be used to compare an unknown pitch with the notes on the 
piano to determine what it is. 

Applying CS Unplugged 

An important element of this style of teaching is to give minimal instructions, and allow students to 
construct the knowledge for themselves. Once they have done this, it is important to then relate what 
they have done to the broader context of computing, and what happens on physical devices. Two early 
studies discovered that without this connection “the program [based on CS Unplugged] had no 
statistically significant impact on student attitudes toward computer science or perceived content 
understanding” (Feaster et al., 2011) and that “the students’ attitudes and intentions regarding CS did 
not change in the desired direction” (Taub et al., 2012). In terms of conveying knowledge using this 
approach compared with a more conventional approaches, Thies and Vahrenhold (2013) found that “… 
it is indeed possible to weave Computer Science Unplugged activities into lower secondary Computer 
science classes without a negative effect on factual, procedural, or conceptual knowledge”, and that it 
could have some benefit in that “the Computer Science Unplugged materials can prove helpful for ability 
grouping within a class, since, on average, more students are enabled to reach a higher operational 
stage.”  

Gains from using CS Unplugged were reported by Hermans and Aivaloglou (2017), who combined it 
with teaching programming for one group, while having a second group spend the same total amount 
of time learning only programming; they found that “…the group taught using CS Unplugged material 
showed higher self-efficacy and used a wider vocabulary of Scratch blocks.” 

Looking at these different contexts, we see that CS Unplugged is best used in combination with “plugged 
in” work. This is not surprising, given that getting a program to work correctly is an excellent way for a 
student to show that they have understood the computational concepts they are working with, since the 
computational agent (the computer running the program) will do exactly what the program says to do. 



Constructionism 2018, Vilnius, Lithuania 

27 

 

Based on this, the CS Unplugged website now offers a range of “Plugging it in” exercises to provide 
follow-up activities that allow students to link their Unplugged learning with computation on a digital 
device. 

An Unplugged approach seems to have promise for helping student learning if used effectively, but 
another important value of it is for teachers. It is important for teachers to be confident in a topic so that 
they can build student confidence, and given that the new computing curricula appearing around the 
world are often taught be people new to the subject, ways to build teacher confidence will be important 
(Gutiérrez and Sanders, 2009). CS Unplugged has been used in a variety of teacher professional 
learning and development (PLD) initiatives, and the research available on this is reporting positive 
outcomes. For example, Curzon et al. (2014) report on teacher professional development that had a 
substantial “Unplugged” component, and noted that it was “inspiring, confidence building and gave [the 
teachers] a greater understanding of the concepts involved.” An important feature of the constructivist 
approach of Unplugged activities is that they allow very quick wins, where teachers can understand a 
new concept (such as binary numbers) very quickly, without the overhead of having to learn to program 
first. Smith et al. (2015) reported that teachers who were training other teachers (thought the UK Master 
teachers system) commonly included CS Unplugged when providing professional development for 
colleagues, and both Morreale and Joiner (2011) and Sentance and Csizmadia (2017) found that after 
attending their workshop, CS Unplugged was widely adopted by teachers. 

Conclusion  

Computer Science Unplugged activities support computational thinking, although for this to be effective 
they should be used in a context where they will be linked to implementation on a digital device. By 
using Unplugged early to introduce concepts, both students and teachers new to the subject can have 
early success without the overhead of becoming proficient enough at programming to engage properly 
with ideas that can have an impact in our digital world. This then provides a useful platform to motivate 
learning the skill of programming, but also a way to connect computer science with other subjects. 

References 

Bell, T., Alexander, J., Freeman, I., and Grimley, M. (2009). Computer science unplugged: school 
students doing real Computing without computers. New Zealand Journal of Applied Computing and 
Information Technology, 13(1), 20-29. 

Bell, T., Rosamond, F., and Casey, N. (2012). Computer Science Unplugged and related projects in 
math and computer science popularization. In H. L. Bodlaender, R. Downey, F. V Fomin, and D. Marx 
(Eds.), The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows 
on the Occasion of His 60th Birthday, LNCS 7370, pp. 398–456. Springer-Verlag. 

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., and Woollard, J. (2015). 
Computational thinking: a guide for teachers. Available from 
 http://computingatschool.org.uk/computationalthinking. 

CSTA. Operational Definition of Computational Thinking. 2011; 
 https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf 

Curzon, P., McOwan, P. W., Plant, N., and Meagher, L. R. (2014). Introducing teachers to computational 
thinking using unplugged storytelling. Proceedings of the 9th Workshop in Primary and Secondary 
Computing Education –  WiPSCE ’14, 89–92. 

Denning, P. (2017) Remaining trouble spots with computational thinking, Communications of the ACM. 
60(6): 33-39, June. 

Feaster, Y., Segars, L., Wahba, S. K., and Hallstrom, J. O. (2011). Teaching CS unplugged in the high 
school (with limited success). In G. Rößling, T. L. Naps, and C. Spannagel (Eds.), Proceedings of the 
16th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, 
ITiCSE 2011, Darmstadt, Germany, June 27-29, 2011 (pp. 248–252). ACM.  



Constructionism 2018, Vilnius, Lithuania 

28 

 

Papert, S. (1980) Mindstorms: Children, Computers and Powerful ideas. Basic Books. 

Gutiérrez, J. M., and Sanders, I. D. (2009). Computer Science education in Perú: a new kind of monster? 
ACM SIGCSE Bulletin, 41(2), 86–89. 

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of models for introducing computational thinking, 
computer science and computing in K-12 education. In Proceedings – Frontiers in Education 
Conference (FIE) (pp. 1–9).  

Hermans, F., and Aivaloglou, E. (2017). To Scratch or Not to Scratch?: A Controlled Experiment 
Comparing Plugged First and Unplugged First Programming Lessons. In Proceedings of the 12th 
Workshop on Primary and Secondary Computing Education (pp. 49–56). New York, NY, USA: ACM. 
http://doi.org/10.1145/3137065.3137072 

Morreale, P., and Joiner, D. (2011). Reaching future computer scientists. Communications of the ACM, 
54(4), 121.  

Sentance, S., and Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from 
a teacher’s perspective. Education and Information Technologies, 22(2), 469–495. 
http://doi.org/10.1007/s10639-016-9482-0 

Smith, N., Allsop, Y., Caldwell, H., Hill, D., Dimitriadi, Y., and Csizmadia, A. P. (2015). Master teachers 
in computing: What have we achieved? In Proceedings of the Workshop in Primary and Secondary 
Computing Education (pp. 21–24).  

Taub, R., Armoni, M., and Ben-Ari, M. (2012). CS Unplugged and Middle-School Students’ Views, 
Attitudes, and Intentions Regarding CS. Trans. Comput. Educ., 12(2), 8:1–8:29. 
http://doi.org/10.1145/2160547.2160551 

Tedre, M., and Denning, P. J. (2016). The Long Quest for Computational Thinking. In Proceedings of 
the 16th Koli Calling Conference on Computing Education Research, pp. 120–129. 

Thies, R., and Vahrenhold, J. (2013). On Plugging “Unplugged’’ into CS Classes. In SIGCSE ’13: 
Proceedings of the 44th ACM technical symposium on Computer Science Education (pp. 365–370). 

Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem. 
Proceedings of the London mathematical society, 2(1), 230-265. 

Wing, J., (2006) Computational Thinking, Communications of the ACM. 49 (3)  

Wing, J. M. (2010). Computational Thinking: What and Why? 
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.  



Constructionism 2018, Vilnius, Lithuania 

29 

 

Constructionism Won, Now What? The Role of 
Constructionist Research in the Age of Ubiquitous 
Computing 

Paulo Blikstein, paulob@stanford.edu  
Stanford University, USA 

Abstract 
Logo was created almost exactly 50 years ago. It might be the right time to take stock on the 
accomplishments of the last five decades, and the possible directions for the future. The Constructionist 
community, having rebelliousness in its DNA, has grown used to say that “the revolution has not come 
yet.” We are still far from realizing Papert’s vision, but in the last 20 years there has been impressive 
change in schools and in the discourse around educational innovation. 

The first change is on computing itself. Several high-profile initiatives have brought coding into the 
mainstream of education, with several cities and countries advocating and implementing programming 
as a mandatory topic in pre-college education. The scale of these initiatives is impressive, and even 
though they are still in early stages, they represent a clear recognition that coding has finally been 
accepted as a school topic at the highest levels of policy making. 

Makerspaces and fab labs are a second phenomenon that has reached surprising popularity in schools 
in just a few years. Thousands of schools already have well-equipped makerspaces, and even though 
access is not equitable in many of them, their mere presence in schools point to a crucial recognition of 
the value of constructionist pedagogies, creativity, student agency, and construction. 

Third, even traditional disciplines and national standards are being “infected” by the constructionist virus: 
many science and math curricula around the world now employ constructionist-inspired pedagogies and 
principles, and some go as far as incorporating tools such as computational modeling and sensing to 
science classes. And this is also happening at the national level: for example, in the United States, the 
Next Generation Science Standards made engineering and design mandatory in basic education. And 
finally, Constructionist tools such as Scratch, NetLogo, Lego Robotics, GoGo Boards, and the Lilypad, 
have become much more robust and been use by millions of children worldwide. 

Given all the good news, what is the right reaction from this community? Claim “mission accomplished” 
or double down our efforts? It seems that the main challenge for the next 50 years will not anymore 
convincing schools that many of these technologies and approaches are useful and effective but will be 
concentrated in two clusters: (a) Making sure that those new learning opportunities are offered to 
students with equity, and (b) Battling the forces of trivialization, that for economic or ideological reasons, 
often try to overly simplify the technologies and methods of Constructionism. To overcome these 
challenges in the next 50 years, we will have to find innovative forms of doing research in learning, new 
avenues for public advocacy, and novel ways to reach students. 

Keywords 

Logo; constructionism; computing education; maker education.  



Constructionism 2018, Vilnius, Lithuania 

30 

 

Look Closely, Watch What Happens: Visual 
Modelling and Constructionism 

James Clayson, james@clayson.org  
American University of Paris, France 
 

Abstract 
The core activity in my approach to visual modelling is a series of exercises that encourage students to 
embark on individual computational explorations of shape, placement, color and texture themes by 
looking closely at physical objects meaningful to them. In this paper, I will describe the journey that led 
me to designing and teaching courses around this central notion and how such modelling works, 
encouraging students to integrate a wide range of technical and non-technical skills into their work. I will 
talk about why I think this activity is important for students in all disciplines, including the liberal arts. I 
will talk specifically about the effects visual modelling has had on my students and I will also describe 
how the teaching and practice of visual modelling have informed my own development and learning 
over the past 40 years.  

My reasons for integrating greater visual imagery into computational activities are summarized in the 
form of 13 arguments.  

Keywords  

constructionism; transformational objects; visual modelling; visual thinking; computational tools; 

liberal arts; Logo; Python 

      
  

Example: Look, record, see what happens 

Look closely, watch what happens: visual modelling and 
constructionism 

I believe that the image is the great instrument of instruction. What a child gets out of any 
subject presented to him is simply the images which he himself forms with regard to it. 

I believe that if nine tenths of the energy at present directed towards making the child learn 
certain things, were spent in seeing to it that the child was forming proper images, the work 
of instruction would be indefinitely facilitated. 



Constructionism 2018, Vilnius, Lithuania 

31 

 

I believe that much of the time and attention now given to the preparation and presentation 
of lessons might be more wisely and profitably expended in training the child’s power of 
imagery and in seeing to it that he was continually forming definite, vivid, and growing 
images of the various subjects with which he comes in contact in his experience. 

John Dewey 

... concreteness is not a property of an object but rather a property of a person’s relationship 
to an object.  …  The more connections we make between an object and other objects, the 
more concrete it becomes for us. The richer the set of representations of the object, the 
more ways we have of interacting with it, the more concrete it is for us. 

Uri Wilensky 

My personal visual modelling journey 

After graduate school I worked in industry for ten years as a manager of operations research (OR). 
Then I moved to France where I discovered both teaching and the power of imagery and visual literacy 
for constructionist learning. I managed an art school in the south of France for five summers. There, I 
took many of the foundation studio courses in art and design which eventually informed my whole 
teaching approach and led to a radical reexamination of pedagogical styles and cognition. I was already 
in my early forties when I was hired by the American University of Paris (AUP) to teach OR.  

I found my AUP students to be highly motivated, extremely verbal in several languages, and street wise. 
But they had great trouble identifying appropriate ways for exploring large and messy problems whose 
parts and relationships were not precisely knowable. Of course, this wasn’t too surprising. My operations 
research students – who were economics, business and computer science majors - had taken scores 
of separate courses but few truly interdisciplinary ones. They had difficulty integrating the quantitative 
with the qualitative and breaking large problems down into the smaller parts that could provide a starting 
point for coming to grips with the whole. They didn’t know how to diagram relationships since they had 
no visual vocabularies. Few of them had ever taken a studio arts class. They weren’t yet in possession 
of personal repertoires of problem-solving techniques. They didn’t know the value of speaking with 
others to help clarify ambiguous tasks and, when this did happen, they didn’t yet appreciate the 
importance of recording verbal clips of shared insight. They were totally unaware that just talking could 
become a starting point for figuring out difficult problems and that often they didn’t need new tools to do 
so. 

One day I was speaking to my colleague, Roger Shepheard, who was director of Parsons School of Art 
in Paris. Roger taught painting and drawing. Unlike my students, he said, his students had no trouble in 
talking about ambiguity and multiple viewpoints. They all kept journals in which they recorded talk, ideas, 
diagrams, sketches … their work process. They loved deconstructing and reconstructing, cutting and 
pasting. But, he said, they were distrustful of and resistant to the idea that conforming to a more 
structured plan could be useful to their work. For them everything seemed open for further exploration. 
But Roger wanted these art students to see some closure, to produce more individual pieces of work 
that were, if not “finished”, then at least a summary of their author’s current state. Many of these art 
students did have some math experience but felt ill at ease with it. And they would often, almost 
ideologically, reject using whatever math they did know.  

That’s when Roger and I had the fun idea to put our students together and watch what happened! We 
paired my economics, business and computer science majors with Roger’s art students. We called our 
experimental course, Problems in Visual Thinking. The central constructionist twist and ideological 
engine for this course was model building with Logo. The class went on for 5 years and was the basis 
of my book on problems in visual thinking (Clayson 1988). After this stimulating initial experience, I later 
revised and extended my visual modelling ideas for a team-taught course with AUP colleague and artist, 
Ralph Petty, that would be open to AUP students from any discipline. Our collaboration lasted 10 years 
from 2000 through 2009. (Clayson 2007, 2008).  

Most recently I translated all my Logo materials from these earlier years into Python and I wrote a new 
text for a course I gave at Deep Springs College in California where I was a visiting scholar in 2015. 



Constructionism 2018, Vilnius, Lithuania 

32 

 

(Clayson 2015). I built, with the help of colleagues from Comenius University (Slovakia), a number of 
Python modules that let me be “Pythonic” in my own visual and constructionist style. The translation 
from Logo to Python was a fascinating and thought-provoking exercise that I hope to describe 
elsewhere.  

A closer look at what happened and what I learned 
For thirty-five years I encouraged students to look more closely at favored objects in their lives and to 
record what happened and what they felt when they did this. Computational methods were the 
necessary catalysts for this visual activity, but they were not sufficient. In the end, it was the critical 
mixture of qualitative, visual and quantitative methods that lead to students’ seeing more clearly. Seeing 
clearly provided them an intense emotional and intellectual satisfaction that lasted long after the course 
was over. 

Having kept my own teaching journal throughout these years, I have been able to distill my experience 
into 13 arguments for adopting this visual approach to modelling. In the constructionist spirit of putting 
ideas into the public space, I now share them with you. I hope my personal journey as a constructionist 
teacher with visual affinities might inspire others to look more closely at nearby objects and carefully 
watch what happens. 

Arguments for doing visual modelling 
1. The aesthetic argument. When we model an object in order to bring it down to a size that we can 
hold, to view it from all sides, this can give us enormous aesthetic pleasure. Whether the model is a 
miniature flashing Eiffel tower, a ship model, an embroidered flower or a stage set, we can sense its 
wholeness, its complexity, without dwelling on individual parts. The model, of course, will be an 
abstraction, a simplification of the whole. Model authenticity can be measured in the pleasure it gives 
us. The simplicity of our model illustrates a restructuring of the modelled thing; we can feel it. Levi-
Strauss talks about turning physical dimensions into “intelligible dimensions”. (1966). We could also call 
them meaningful dimensions. Seeing one object more meaningfully through our interaction with it is a 
skill that can easily be transferred to other objects. (Bateson 1972) 

2. The design literacy argument. Two-dimensional graphic design explores the aesthetic, emotional 
and communication inherent in compositions of lines, shapes, typography, signs, symbols, color, texture 
and depth cues placed on a canvas, page or website. Typically, basic design courses introduce design 
theory through a structured set of exercises resembling my own constructionist approach (Wilde 1991). 
Unfortunately, most university students do not have the opportunity to learn anything about art or design 
concepts, nor to gain insight into how design might be useful if applied to other fields. Visual modelling 
offers a crash course introduction to the language and tools of design.  

3. The situated computational thinking argument. There is a public domain book called “How to 
Think Like a Computer Scientist” (Wentworth 2018) that is considered to be a handy introduction to 
Python programming. The question is, handy for whom? It is useful to me because I trained as an 
engineer, have studied computer science, have learned to program in many different languages and 
have taught applied mathematics. In other words, it is useful because I already know how to think like 
a computer scientist. This is not the case, however, with most of my visual modelling students. This 
book, while useful to me, is therefore totally useless and inappropriate for most liberal arts 
undergraduates. My students already have a personal epistemology. They want to find and use tools 
that they feel comfortable with that can immediately help them to get on with their own idiosyncratic 
modes of inquiry (Minsky 1988, Kelly 1955). They don’t want to have to become someone else first. 
And why should they? 

What are some of the simpler more accessible computational tools these students might find useful? 
Design manipulations like deconstruction/reconstruction, replication, scaling, generating random 
components, perspective and color operations cry out for computational constructs and I introduce these 
in class via my solutions to specific design problems. Each suggested computer construct is situated 
within a series of structured visual tasks. Afterwards, some students may be intrigued enough to look 
at the programming text mentioned. But for most, reading a text of new material can be extremely hard-



Constructionism 2018, Vilnius, Lithuania 

33 

 

going unless they already have some familiarity with the content. Guide books, as we all know, generally 
make more sense after the trip than before. 

Over the years I have found that recursion, for example, appeals greatly to some non-technical students, 
especially artists, who want to immediately play with it. Recursion seems to strike at something they 
feel emotionally at ease with. Linking design and illustration tasks with computer constructs that 
operationalize these tasks extends the meanings of both design and computational tools. New tools can 
suggest new design approaches. 

There is one big idea from computer science that does stand out in my mind as being personally 
empowering for most students: simulation. Simulation is the act of turning ideas into computer code that 
can be manipulated and experimented on. Students can actually watch what happens when they do 
this and are therefore motivated to continue their explorations. I have found that working in an 
environment of visualization makes simulation even more potent. Students see what a program, what 
an idea means by watching what it does. And they don’t have to be computer experts to do so. 

Proponents of computational thinking often talk about the “power of abstraction” that is implicit in 
computer programming. I have found that this powerful idea resonates best when abstractions from one 
medium are compared with those from another. The sketch of an object, or a poem based on it, after 
all, are abstractions. But it is the comparison between the drawn and the spoken and the programmed 
abstraction that is the essence of visual modelling.  

4. The body syntonicity argument. The word syntonicity was coined in the 1800s to describe 
alternative musical tuning systems. When two instruments were heard to be in harmony with each other, 
they were judged to be syntonic. This meaning was later extended to describe individuals whose 
emotions were in tune with their environment. Freud extended syntonicity’s use to his system: a person’s 
manner was ego-syntonic if it supported the needs and desires of their egos.  

Papert’s notion of body-syntonicity (1982) assumes that all people have a number of separate areas for 
rational, psychological and physical reasoning. Parts of the body have, in effect, their own reasoning, 
knowledge and skills to which the mind in the head may or may not have access. Papert’s incorporation 
of turtle graphics into his Logo language was intended to open young programmers to affordances in 
tune with their body languages.  

Papert hoped that turtle geometry would radicalize the way geometry is taught. This has not happened. 
Nevertheless, I have found that basing my visual modelling classes on turtle geometry does radicalize 
the way geometry is remembered and rethought for use in physical tasks. The real value added seems 
to be the pleasure of being able to do this, to remember, to rethink and use something only vaguely 
remembered. To make known what was not yet known. 

There are, of course, other body sources of knowledge that Papert did not seem much interested in: the 
eye, ear, hand and voice (Arnheim 1969). In visual modelling these resources all have a role to play, 
and all must be called upon in order to look closely. 

5. The meaning-making bricolage argument. The anthropologist Levi-Strauss used the term 
“bricolage” to describe a direct approach to problem solving, repair work and thinking (1966). Levi-
Strauss studied pre-modern societies, but his ideas are remarkably contemporary. The bricoleur acts 
quickly using notions, improvisations and tools that are already at hand. Speed is often important. We 
can think of the bricoleur as a repair person who carries around a bag of tools that can be used on the 
spot. The repair plan often emerges from the doing itself, through iteration.  

Visual modelling uses bricolage tools often overlooked in higher education: learning to talk and write 
rapidly about what we see, making quick diagrams of the structures we observe and the ideas we have 
about them. I discovered that when students act like the bricoleur, and have to improvise quickly, pieces 
of remembered algebra, geometry and trigonometry often pop out. They will test if and how these 
mathematical notions might help in solving some visual task. Often this means relearning the half-
remembered math. Often it means learning the math for the first time, but in a context more meaningful 
to the student. 



Constructionism 2018, Vilnius, Lithuania 

34 

 

6. The thinking journal argument. Papert has warned us that the phrase “thinking about thinking” is 
not very useful. Rather, he advises, we should think about a specific person thinking about specific 
tasks. In this regard, constructionists suggest not only that teachers should focus on individual learners, 
but that students, in turn, should focus on their own thinking processes in specific contexts. How 
students learn to do this, to watch themselves in the act of meaning-making, is a critical part of the 
constructionist project.  

Unless meaning-makers can watch themselves in action, see how they dialogue with themselves, view 
how they share their own meaning-making activities with others, how can they study themselves 
formally? Visual modelling requires that modellers keep a journal of their modelling activities: the words, 
sketches, codes, code play/code change. Journaling then is the trace of these activities, a trace of 
thinking. We need to catch and record these acts of thinking so that we and others are able to reflect 
upon them later. (Clayson 2015) 

7. The extreme graphical distinguishability of visual modelling as a constructionist tool 
argument. Perhaps the most obvious feature of visual modelling – the sheer physicality of the target 
subject – is not fully appreciated. The target is viewable; the modelling methods are viewable; the 
images generated by the modelling process are viewable. Visual comparisons between the target 
subject and the model are easy to make without a lot of abstract analysis. This viewability is not so true 
in more abstract math courses. Tangibility encourages fuller emotional and intellectual participation from 
students having different skills and interests 

8. The not-like-other courses argument. Papert warned about the difficulties of inserting Logo 
philosophy into traditional academic courses, especially math ones. He knew how hard it is to change 
educational institutions and therefore advocated for doing something totally new instead. In the early 
1980s when I first taught formal computational modelling, I deliberately refrained from labelling it either 
a math or a computer science course. Instead I focused on the design aspect of visual modelling, a 
non-traditional academic approach. I structured and marketed these courses to appeal to a variety of 
different student majors and interests: from studio arts, though humanities to the social sciences and 
physical sciences.  

9. The emotionally comfortable vocational argument. Visual modelling is a multidimensional 
introduction to design theory, computational programming, formal reflection on thinking, careful and 
clear observational techniques, and effective journaling. I think It is important to note that a visual 
modelling approach also seems to help many students who have suffered unhappy experiences with 
math courses in the past. With visual modelling they gain math agency because they are able to use 
mathematical notions to see and find new meaning in their own physical worlds. The freedom and ease 
of mixing personal math knowledge with other disciplines is an extremely useful vocational outcome. 

10.The power of computational explorations of patterns seen in concrete objects argument. It is 
obvious that turtle graphics cannot depict objects like a photo would. All media have this limitation and 
the “modern” development of abstraction thrives on it. Different media facilitate the showing of different 
aspects, different themes seen in objects, as well as indicating how the modeller feels about looking at 
those assemblages of themes.  

Visual modelling introduces the notion of looking closely at works of art, as well as other objects around 
us, by modelling their themes algorithmically. But finding characteristic themes requires learning a new 
vocabulary appropriate for describing and interpreting art. In my classes we show each other specific 
examples, often using museum postcards, from different abstractionist schools of painting and learn to 
describe them. Various methods for deconstructing or reconfiguring objects into themes are portrayed 
and discussed. Alternative approaches to modelling similar objects taken by different artists are 
examined. Using cubist, impressionist, fauvist, pointillist, supremacist or abstract expressionist 
techniques can suggest different and surprising ways to configure and display even the most mundane 
of objects as well as seeing the surprising complexity of all shapes. (Clayson 1985, 2007, 2008, 2013). 
I argue that looking closely at works of art, both abstract and realistic, can affect how we look at and 
relate to objects around us. The reverse is also true. 

11. The tricking the ego argument. We see what we expect to see and usually that is what we have 
already seen before. We scan fields of things, but often do not look closely at individual items, especially 



Constructionism 2018, Vilnius, Lithuania 

35 

 

if they are thought to be already familiar. We may hesitate from taking a visual arts class because we 
think “I can’t draw” because we have never learned how to slow down enough to look at things closely 
and carefully. Yet everybody is capable of drawing, so why are we so hesitant? It’s because we hear 
the little voice of our ego warning us that the experience might be embarrassing.   

Visual modelling offers an alternative and tricky means of settling down and looking at concrete things 
that is not like other visual arts. Paradoxically, it shows us that in order to slow down we have to work 
faster. We are drawn-in to the object-subject without realizing it: by talking very quickly about what we 
see, writing about it, sketching, coding and playing with that code. Fast, without reflection. Something 
surprising always happens during this experience. Ironically, using such a simple and limited medium 
as turtle graphics, actually gives us a freedom and willingness to draw that more sophisticated tools 
often inhibit. It is exciting and empowering, like the child’s uninhibited use of crayons on blank paper. 
The slowing down trick is accomplished by working fast with what we have at hand. Sketch fast, talk 
fast; then code it; not the reverse. The trick is to break the pattern of seeing only what we anticipate 
seeing. Visual modelling is full of tricks and surprises, so the results cannot be anticipated. It’s fun. 

12. The looking for new transformational objects argument. In his book “Mindstorms”, Papert 
concentrated on telling us about his own transformational experiences with model car gears and how 
he used Logo to seek out other transformational occasions. But he didn’t say why it might be important 
for each of us to recall our own transformative events and how we also might draw energy from them. 
(1982) Christopher Bollas (1987,1992) argues convincingly that people are designed to continue 
searching for transformative objects over their entire lifetime. Unfortunately, the frenzy of our adult lives 
inhibits us from coming upon them naturally. Visual modelling helps restore students’ ability to find and 
exploit transformative objects in their local surroundings for personal pleasure and development. 

Sherry Turkle is another person who has documented the primal importance of transformative moments 
in human existence. She has assembled several collections of evocative personal narratives about 
transformative objects that all constructionists should read (2007, 2011).  

13. The different modes and different points of view argument. Good problem solvers know how to 
structure and then restructure situations in alternative ways. Statisticians know that multiple approaches 
each based on unique methods is the creative way to explore a data set. Art students know to move 
around a figure or still life, sketching and evaluating the model at each location before they settle down 
to work in more detail. But then they go back, change position, and look at other possibilities; nothing is 
really definitive, and each perspective offers its own rewards. Using different drawing tools – pencil, 
pen, chalk, charcoal – helps expand their ability to reconceptualize. So can art students’ weird and non-
conventional formulations.  They paint it yellow; turn it upside down; push the arguments beyond the 
realistic; put a cloth over their subject and draw that; change the music; turn off the lights, use a flashlight 
… and watch what happens!   

Meta-texts versus texts  
Constructionists talk a lot about how we learn: is knowledge transmitted or is it constructed? Most of the 
constructionists I know favor a far more nuanced approach to this discussion. Whatever knowledge 
building/acquisition is, it is certainly not explainable in binary terms. Such reductionism just doesn’t suit 
human diversity. Thus, a variety of learning modes is always preferable.  Throughout my teaching career 
I have found that a combination of instructionist and constructionist approaches works best. This seems 
natural to me but is not always natural to my students – especially because of the dominance of 
instructionist education in the world and resulting aversion to ambiguity and risk. To address this student 
anxiety, I try to show by example why and how different approaches to a single problem may all be 
useful, each in its own way. For every course I teach, I write what I call a meta-text – as opposed to a 
standardized text.  My meta-text is designed to show how I have gone about learning the material in our 
course and suggests that students use it as a starting point to create and record their own experiences 
too. 

The most important text in many subjects is the one written by the students themselves in their own 
language and style. As a constructionist I know that agency is best gained by having formally 
constructed a written document so that it can be read and modified over time. The student as author is 



Constructionism 2018, Vilnius, Lithuania 

36 

 

free to make additions and changes to their own text, and in my classes, they are required to share this 
record with others who are also writing their own texts.  

This record keeping is what I mean by “journaling”. But how do students get started with such a 
journaling exercise? Not, I think, by following a fixed set of rules, but rather through examples in the 
context of the course material being explored. We talk in class about the different ways of doing this, 
and we check in throughout the semester to compare notes. Therefore, my meta-texts include my own 
journal entries of how I explored the same task that I set for my students, along with illustrations of other 
approaches that may also represent student work.  

Conclusion 

This paper has described my own approach to constructionist practice in the classroom in the form of 
thirteen arguments. The approach and lessons learned have emerged over 40 years of teaching. The 
introduction of visual thinking and journaling as essential elements of learning may make me a bit of an 
outlier here in a community mostly addressing math and science teachers, not those in the humanities 
and liberal arts.  It seems only right, therefore, that I propose some assessment of my radical project 
and its outcomes. 

I offer four criteria: 

1) Carry-over agency: the students who had taken my visual modelling class were far more 
effective in my traditional applied mathematics courses than those who had not done so. 

2) Student testimonies: students have written to me years later to say they identify my visual 
modelling course as a major learning event in their undergraduate life.  

3) Student feedback: I won many teaching awards for my work. 
4) My own thinking process: I look at the world far differently because of the work done in 

visual modelling. I can actually see the changes in the journals that I have kept for those many 
years. 

Looking back, I see that my journey has been surprising, taking unexpected turns and new directions. I 
certainly wasn’t planning to become a teacher. At each new juncture there was a transformative event 
or object – teacher, book, conversation or conference – that pointed the way forward. And always, it 
seems, there was a constructionist thread: a need to explore, to learn, to model and to build a common 
project along with my students. The relationship has been reciprocal: we have all learned from one 
another, but each in our own way. 

In today’s world there is a tendency to look without seeing. We are too busy, moving too fast, too 
overstimulated by digital interfaces and gadgets. This is such a pity. Seeing is not only one of life’s great 
pleasures, but also a powerful instrument for learning and understanding. We need to remind ourselves 
that in human evolution, the eye, the hand and the brain developed together. This paper has proposed 
one way that visual literacy can inform, augment and enrich the constructionist enterprise. If you take 
the trouble to look closely you’ll be amazed at what you see. It’s magic! 

References  

Arnheim, R. (1969). Visual thinking, University of California Press, London. 13-36 

Bateson, G. (1972).  Deuterolearning, Steps to an ecology of mind, U. of Chicago Press, London. 

Bollas, C. (1987). The shadow of the object: psychoanalysis of the unthought known, Free Association 
Books, London, 15ff 

Bollas, C. (1992). Being a character: psychoanalysis and self-experience, Hill & Wang, New York. 

Clayson, J. (1985), Visual modelling with Logo: a structured approach to seeing, MIT Press, Cambridge.  

Clayson, J. (2007), Radical bricolage: making the liberal arts coherent, Plenary, EuroLogo, 2007, 
Bratislava. 



Constructionism 2018, Vilnius, Lithuania 

37 

 

Clayson, J. (2008), Radical bricolage: building coherence in the liberal arts using art, modelling and 
language, International Journal of Education through Art, 4:2, 141-161 

Clayson, J. (2013), Talking statistics/talking ourselves: some constructionist lessons from the work of 
George Kelly, Technology, Knowledge and Learning. 18, 181-199 

Clayson, J. (2015), A computational eye: visual modelling with Python, Deep Springs College. Bishop, 
California. 

Dewey, J. (1897), My pedagogic creed, The School Journal, Volume LIV, Number 3, 77-80 

Kelly, G. (1955) The psychology of personal constructs. Vol. I, II. Norton, New York.  

Levi-Strauss, C. (1966), The savage mind, Weidenfeld and Nicholson, London. 1-33. 

Papert, S. (1982), Mindstorms: Children, Computers and Powerful Ideas, Perseus Books, Jackson. 

Minsky, M. (1988). Chapter 10: Papert’s principle, The Society of Mind, Simon & Schuster, New York. 
98–107. (Some of the most crucial steps in mental growth are based not simply on acquiring new skills, 
but on acquiring new administrative ways to use what one already knows). 

Turkle, S. (2007). Evocative objects: things we think with, MIT Press, London. 

Turkle, S. (2011). Falling for science: objects in mind, MIT Press, London 

Wentworth, P., Elkner, J., Downey, A., Meyers, C. (2018), How to think like a computer scientist, 
https://media.readthedocs.org/pdf/howtothink/latest/howtothink.pdf  

Wilde, J. and Wilde, R. (1991). Visual literacy, Watson-Guptil, New York 

  

https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Simon_%26_Schuster
https://en.wikipedia.org/wiki/Theory_of_cognitive_development


Constructionism 2018, Vilnius, Lithuania 

38 

 

Computational Thinking and Creativity 

Gerald Futschek, gerald.futschek@tuwien.ac.at 
Vienna University of Technology, Austria 

Abstract 
Creativity is one of the characteristics in constructionist learning. Creativity is frequently connected to 
learning by doing and needs a high amount of freedom in choice of activities and learning steps. 
Basically, Computational Thinking denotes thinking processes that are related to problem solving known 
from computer science. Computational Thinking does not only involve algorithmic thinking skills that are 
useful in programming and algorithm design but also integrates skills like abstraction, decomposition, 
generalization and evaluation that are used in problem definition, system modelling and system 
evaluation. 
Since Computational Thinking has become part of informatics school curricula in many countries, the 
paradigm of competence orientation has led to very detailed curricula that describe a large variety of 
detailed competences. The high amount of details can lead to a kaleidoscopic teaching practice. 
Although, from a constructionist viewpoint it seems more promising to learn with learning settings that 
allow creativity, fun and sense of achievement. The role of creativity in Computational Thinking Learning 
is not only in creating a creative output but also in finding new ways of thinking to find solutions to 
problems. 
We show several examples of learning settings and didactic projects that allow creativity, fun and sense 
of achievement in learning Computational Thinking. 

 

 Students creating a new game 
for Computational Thinking Learning 

Keywords 
computational thinking education; problem solving; creativity  



Constructionism 2018, Vilnius, Lithuania 

39 

 

Teaching Children to be Problem Posers and Puzzle 
Creators in Mathematics1 

Paul Goldenberg, pgoldenberg@edc.org 
Education Development Center (EDC), Waltham, MA, USA 

Abstract 
Seymour Papert’s 1972 paper “Teaching Children to be Mathematicians Versus Teaching About 
Mathematics” started with the summary statement “The important difference between the work of a child 
in an elementary mathematics class and that of a mathematician is not in the subject matter…but in the 
fact that the mathematician is creatively engaged….” Along with “creative,” a key term Papert kept using 
is project rather than the common notion of problem. A project is not simply a very large problem. It 
centrally includes a focus on sustained and active engagement. The projects in his illustrations were 
essentially research projects, not just multi-step, fully-prescribed, build-a-thing tasks, no matter how 
nice the end product might be. A mathematical playground with enough attractive destinations in it draws 
children naturally to pose their own tasks and projects—as they universally do in their other personal 
and group playgrounds—and to learn to act and think like mathematicians. They even acquire 
conventionally taught content through that play. Physical construction was always available, and 
appealed to such thinkers as Dewey, but for Papert computer programming, newly available to school, 
suggested a more flexible medium and a model for an ideal playground. 

 

         

 Figure 1.  Two puzzles that introduce algebra’s logic and then its notation. Children can invent their own. 

A fact about playgrounds is that children choose challenge. In working and playing with children I’ve 
seen that puzzles tap some of the same personally chosen challenge that a programming-centric 
playground offers. Children are naturally drawn to intellectual challenges of riddles and puzzles (ones 
they learn and ones they invent); and adults are so lured by puzzles that even supermarkets sell books 
of them. So how do real puzzles and school problems differ? What’s useful about creating a puzzle or 
posing a problem? How might puzzles and problem posing support mathematical learning? And what’s 
constructionist about this? This plenary will try to respond to these questions, invite some of your own 
responses, let you solve and create some puzzles, and explore how problem posing in programming 
and puzzling can support mathematics even in an age of rigid content constraints. 

Keywords 
Problem posing; puzzles; mathematics; algebra 

                                                
1 Funding for doing and reporting the work described in this paper was provided in part by the National Science Foundation, grants 1441075, 
1543136 and 1741792. Views expressed here are those of the author and do not necessarily reflect the views of the Foundation 



Constructionism 2018, Vilnius, Lithuania 

40 

 

Teaching children to be problem posers and puzzle creators in 
mathematics 

Papert’s early work and the origin of constructionism largely were outside of the school setting. The 
current school environment is even more rigidly constrained than it used to be. The question is “Is there 
any hope for this kind of constructionist thinking and teaching in a school setting, not as a pull-out for 
well-resourced schools and with the best of their students, but as part of the regular program?” I want 
to share some ideas that, to me, exhibit the essential elements of constructionism and could easily be 
core to even moderately conservative school practice. 

I, too, love playing with kids outside the classroom. There’s more freedom and it’s easier. But we all 
know that if we really want to touch many children’s lives, we need to find a way to find them where they 
are. They are in school. I think it’s possible. 

Children choose challenge 
Not all children; not all the time; but mostly. Children are often pretty adventurous on the playground. 
Tiny ones climb the monkey bars higher than their parents are totally happy with. When climbing gets 
too easy, they hang upside down. Children walk on five-inch-wide retaining walls two to three feet above 
sidewalk level when the get a chance; they hop across the street on one foot; when bicycle riding feels 
easy, they try letting go of the handlebars. Even with games, they up the ante if the game feels too easy, 
changing rules fluidly to add extra challenge.  

For a toddler, there’s enough challenge fitting the boat-shaped piece into the boat-shaped hole and the 
moon-shaped piece into the moon-shaped hole, but when that’s no longer a challenge, kids seek more. 
Kindergarteners like fitting together the two-dozen jigsaw puzzle pieces of a large picture of a dinosaur. 
And when that gets too easy, some try putting the pieces together face down, some try jigsaw puzzles 
with smaller and more numerous pieces, and some just move on to totally different activities. 

Children also put effort into figuring out how things work. Schulz & Bonawitz (2007) showed pre-
schoolers a box with two levers and two different toys that popped up when the levers were pressed. 
One group of children were shown that each lever caused one toy to pop up. The other group saw only 
that when both levers were pressed simultaneously, both toys popped up. The first group’s information 
was complete and unambiguous, with nothing left to figure out. The second group’s information was 
incomplete: either lever might have controlled both toys, with the other doing the same, or nothing, or 
raising just one toy if pressed by itself. Or the two levers might be totally independent, one for each toy. 
When the children were then given the toy to play with (or ignore) on their own, children in that second 
group played longer, spontaneously exploring to puzzle out the cause and effect relationship. It’s 
tempting to relate the first group’s experience to the situation children often experience in school 
mathematics, where common pedagogy (at least in the U.S. and UK) shows exactly how each thing is 
done, leaving no evidence that there is anything to figure out, and taking little advantage of children’s 
built-in curiosity. 

Kids also love riddles, challenges to logic, interpretation or perception. And just as they spontaneously 
add challenge to their playground activities or jigsaw puzzles, they’ll add to the repertoire of riddles by 
making up their own, sometimes creations that they, at their age, find funny (illogical) because the 
challenge “works” for them, and that we adults find simply ludicrous (illogical) because the challenge no 
longer works.  

The point is the challenge. When it’s not there, children are bored. When they’re bored, they invent 
challenge. In school, that inventiveness can be to the dismay of their teachers, whose response may 
dismay the children, but that won’t stop the drive for the challenge. 

Why puzzles?  
Kittens stalk and pounce to make their hunting skills sharp and they scratch to keep their claws sharp; 
that’s because sharp claws and hunting skills are among the particular adaptations that make their 
species successful. Our species’ special adaptation is not sharp claws and pouncing but a mind that 
lets us adapt to nearly any environment, which is how we wound up populating city and farm, blazing 



Constructionism 2018, Vilnius, Lithuania 

41 

 

heat and frigid cold, arid and tropical jungle. Keeping our minds sharp is what makes our species 
successful.  

That has implications for learning. In our species, it is adaptive for the young to be a bit distractible and 
not to focus too narrowly. Because we live in such varied environments we cannot have “built in 
knowledge” about which features will matter most for survival. As children, we watch social behaviour 
(whom should we copy, whom should we stay close to, whom should we stay away from?), animals 
(food or danger?), artefacts (how do they work?), math lessons (who knows?, maybe they’re important) 
and everything else. 

Some distractibility and lack of focus are assets to a child, but less so for adults who must earn their 
living, whether by blow-darting the rabbit (while avoiding the tiger) or by generating research papers or 
by teaching children. But adults still have to keep their minds sharp. Adults argue the merits of ideas—
politics, religion, co-workers—even when the practical value of the argument is near zero. It’s a mental 
exercise. Puzzle books for adults are sold not just in academic bookstores but also in supermarkets; 
puzzles appear in newspapers and in airplane magazines. Boredom is painful; enforced boredom is 
torture. 

Puzzles and surprise in mathematics learning 
In 1964, Sawyer (2003) seeded the ideas for a wonderful textbook series for primary school 
mathematics (Wirtz, et al., 1964) and for our own curriculum materials (see, e.g., Goldenberg, et al., 
2008). He took a very algebraic approach to teaching elementary arithmetic, with a major emphasis on 
play and surprise. On the surface, the content was exactly what one expects for the grade level but with 
a twist that included research, puzzles for children to figure out, all foreshadowing the algebra that 
children would learn later.  

For example, as a way to give seven-year olds practice with addition and subtraction they start 

with a piece of mathematical research. A child is asked to suggest some 
addition equation like 4 + 1 = 5 or 1 + 1 = 2, and the teacher would write 
it at the board. Another child is asked to suggest a new equation, which 
the teacher carefully lines up directly underneath the first. Then the 
teacher has the children add vertically, displaying the results like this.  

Do these three new numbers make a true addition equation? The teacher 

completes the bottom row of numbers to read 5 + 4  9. Surprise! Will this 

always happen, or did they just get lucky? Children are given the 
challenge of finding a pair of addition sentences that don’t work. Seven-
year-olds are sure they can find some and set off busily, getting lots of 
practice. 

 

Of course, they will find some (they think) and report them excitedly, but the preponderance of cases 
that do work will get even seven-year-olds to doubt the counterexamples and check to see if they’ve 
made a mistake. This research is hardly a project in Papert’s sense. The problem may not even last 
more than one classroom period or so. But it does generate curiosity, the creative engagement that 
Papert referred to as the experience of the mathematician. 

Their research convinces them of a result, but if we don’t leave it as magic and instead help expose the 
logic inside the puzzle, children get even more excited. They have a tool they can and do use, first to 
figure out for themselves why the puzzle works and then to invent new  

puzzles for themselves and their friends! Exposing the logic involves 
reminding children of reasoning they developed in Kindergarten and first 
grade. Given a collection of buttons differing by two attributes, colour and 
size, kindergarten children naturally sort, though sometimes their sorting is 
idiosyncratic—two large buttons and a small one, for example, to make a 
“family.” They learn to respond to “show me a small button” and “how many 
small buttons do you have?” And they can learn to respond to “show me a 

 
large

small



Constructionism 2018, Vilnius, Lithuania 

42 

 

large grey button” and “how many small blue buttons do you have?” After 
sorting by a single attribute, they can learn to sort by two attributes.  

 

Now, when we ask how many small buttons and how 
many large, we are summarizing the rows, and we can 
write that summary.  

We can similarly summarize the number of buttons by 
colour (columns). 

 

     

Once children really have and can use cardinality, it is clear that the number of blue and grey must be 
the same as the number of large and small—either way, it’s all the buttons. Second grade students 
comfortably replace buttons with numbers and then use that structure as part of their reasoning. 

              

Figure 2a, 2b. Actual buttons replaced by the number of buttons. 

Reading across, children see 4 + 2 = 6 and 3 + 1 = 4; adding down the columns, they get 7, 3, and 10, 
which must make a true addition statement.  

Subtracting down isn’t always possible for 7 year olds—depending on the situation, it might  
require negative numbers, and the meaning changes, too (it doesn’t yet 
make sense to subtract the number of large buttons from the number of 
small ones)—but with numbers that they can subtract (as is the case in Fig. 
2b), the arithmetic still works and produces a true addition statement. 
Subtracting to see how many more small buttons than large, we get 
1 = 2 – 1, and that exact same logic will be essential in algebra a few years 
later! 

 

The format isn’t just a trick, or a school artefact; it’s the structure of any 
spreadsheet that subtotals the columns and rows and has a grand total. 
Wirtz, et al. (1964) used this format as a puzzle (right), and as a route into 
multi-digit addition and subtraction (fig. 3).  

 

Which cell might 
you fill in first? 

large

small

blue gray

large

small 6

4

blue gray

7 3

large

small

blue gray

7 3

6

4

10

large

small

blue gray

7 3

6

4

10

4 2

3 1

6 11

18

3



Constructionism 2018, Vilnius, Lithuania 

43 

 

                   

Figure 3. The same arithmetic presented in 3a as an addition puzzle 45 + 37, with the grey square as the sum, 
and in 3b as a subtraction puzzle 82 – 37, with the grey square as the difference. 

For 9- or 10-year olds, this structure also models the multiplication algorithm. Instead of colour and size 
labels, we label the width and height of the columns and rows, and imagine cells filled with unit squares 
instead of buttons. How many squares are in the four regions? In the most concrete image, everything 
is to scale (fig. 4a).  

With a smaller array, say 3  4, we can see why multiplication gives the answer and we can count to 

check. But with numbers like 37  26, we certainly don’t want to count! Instead, we use an abstraction 
(fig. 4b), ignoring scale, but maintaining a sense of the logic of multi-digit multiplication, not a set of 
memorized steps that often wind up feeling arbitrary. Of course, the steps involved in this logical model 
map perfectly onto the abbreviated notation often taught in school, and fully explain that notation. In 
fact, it is worth delaying the abbreviated notation until children are so secure in the logic of the array 
model that they can easily extend it to three-digit multiplication, because exactly this method—four 
separate multiplications and only then a possible summing up—will be required when the students study 
algebra. 

                                 

Figure 4.  An array model of multiplication true to scale (left, figure 4a) and abstracted (right, figure 4b). 

Sawyer suggested other ways that even very elementary content like addition and subtraction of small 
numbers could be learned or practiced in a puzzle-like context that both builds curiosity and 
foreshadows later ideas and methods. Figure 5, for example, shows what a standard worksheet might 
present as 16 unrelated addition/subtraction practice exercises for 7-year olds, but structured in a way 
adds a bit of intellectual challenge—how-do-I-do-this?—and foreshadows systems of equations that the 
children will meet several years later. 

 

Figure 5. A practice exercise for 2nd grade, foreshadowing systems of equations. (Wirtz, et al., 1964) 

Again, it’s not a “project” in Papert’s sense, and not “creative” in the most familiarly used sense of that 
word, but especially the last two columns pull for children to be mathematically creative. 

37

5

7

45

37

82

40

7

600

180

140

42

20

6

30 7

600 14020

6

30 7

180



Constructionism 2018, Vilnius, Lithuania 

44 

 

One of the most powerful introductions to algebra that I’ve seen is Think-of-a-number tricks, also from 
Wirtz, et al. (1964): Think of a number. (Yes, you! Please think of a number.) Add 3. Double the result. 
Subtract 4. Cut that result in half. Subtract your original number. Aha! I can read your mind! You got 1 
at the end!!! 

For 9- or 10-year-olds, this is wonderful magic. They want to do it over and over, but also want to know 
how it works. I say that I picture the secret number as that many marbles or whatever, tucked in a bag 

 or bucket  where we can’t see them—only the secret keeper knows the number inside. When I 

give the instruction “add 3,” I know about those grapes, so I draw them outside the bag. I ask the children 
what the next instruction is (they almost always remember) and what the picture should be like (they 
almost always say “two bags and six marbles”). Then I continue, each time asking the children to 
describe the next picture. At the end, “subtract your original number” gets rid of the bag. So the number 
of grapes in it doesn’t matter! There’s one grape left, and we can see it! 

Even after the usual huge smile and the cry “I get it!!,” seeing it once isn’t enough. The understanding 
evaporates until children see the generality, not just the way this particular trick worked. To create that 
abstraction for themselves, children need research time: practice drawing pictures to match instructions, 
applying instructions to specific numbers, and variations on the trick from which to generalize and learn 
to invent their own tricks.  

They also need chances to study the trick inside out and backwards, starting, for example, with the 16 
that Suri had in mind after the instruction “double that” and figuring out what secret number she must 
have started with. To do that, a child might note that the picture corresponding to Suri’s 16 shows six 
grapes, so ten grapes must be hidden in the two bags. Suri’s secret number—the grapes in one bag—
must have been 5. 

 

Figure 6. Using bags and grapes to introduce 3rd graders to algebraic notation and solving equations. (Problem 
from Wirtz, et al., 1964, reworked for 3rd grade based on Mark, et al., 2014.) 

I’ve recently been introducing a new crop of 8- and 9-year olds to algebra this way and told them that 
they’d soon know how to invent new tricks of their own. After two days of playing with the puzzle, Lucy 
said “I really get it, but I still don’t know how to make up my own.” So we played. I said “OK, I’ve thought 

of a number” and I drew . “Just make up one instruction, anything you like, and I’ll draw the next 

picture.” She said “add 5?” I said “OK,” drew , and asked “What next?” She said “double 

that?,” still with the question in her voice. I said “whatever you’d like me to do… Is that what you want 



Constructionism 2018, Vilnius, Lithuania 

45 

 

me to do?” She nodded and I said “you draw the picture.” She drew two buckets and 10 dots. She then 
told me to subtract 2 (no question in her voice, and she drew the picture), then subtract 7 (she drew the 
picture). That change in tone—no question in her voice—was because she now understood something 
new, not about the mathematics of this trick but about mathematics, itself. She could just make up a 
rule, any rule, and it was then up to her to figure out its implications. That is so like watching a child 
program, see the effect, decide whether that effect is desired or not, and then decide what to do next. 

I asked, “OK, what can you do in order to know my number?” Long pause. Then Lucy commanded 
“subtract your original number” (and drew the picture). After another pause, she said “Oh!! Subtract your 
original number again!” Her smug smile showed clearly that she knew what she had done but I wanted 
to check, so I prompted her to “read my mind.” Instantly, but with excitement and what also sounded 
like surprise in her voice, she said “Oh! One! You got one!” as if understanding the trick for the first time 
all over again. The joy of “getting it” is far more magical than any grade, praise or prize could be. 

These are five to fifteen minute events. By the end of a week of them, instead of drawing the pictures 
that the children describe, we write the words with which they describe the pictures. “Two bags and six 
marbles” is a lot to write, so we abbreviate it: 2 b + 6. No discussion of variables; no explaining about 
letters standing for numbers; 2 b + 6 is brief, but the language the children themselves used, and they 
fully understand it. For now, that’s enough. Later, when they formalize algebra, the bag or bucket image 
is useful to return to: a variable is a container for a value.  

Containing a value (or being a pointer to it) is the programmer’s image; representing a value is the 
mathematician’s image. The underlying idea common to both images is that a value can be referred to 
by a name and that this abstraction is useful. In practice, nearly all children love the think-of-a-number 
tricks, so they become a natural, appealing and compelling way to acquire that value-naming idea. Part 
of the power of the “trick” is that it is faithful to the mathematics, even though it is limited.2 But part of its 
power, I’m sure, is what Schulz & Bonawitz (2007) saw: children play longer and more curiously when 
there’s something they don’t understand and they believe that they can figure it out.3  

This was not a classroom assignment. The children didn’t have to do this and wouldn’t be tested on it. 
But they put effort and attention into the think-of-a-number trick because they want to know how it works. 
The intensity of Lucy’s interest, even readily admitting what she couldn’t yet do and asking for help 
doing it, was because there was a genuine mystery left to solve—one that she saw as hard—but she 
was so tantalizingly close that she was convinced she could reach that goal. 

Why have students invent puzzles? 
Four reasons come immediately to mind; perhaps there are more.  

First, the construction of a workable puzzle is a creative act, making the student a creator and not just 
a consumer of mathematics. We who call ourselves constructionists easily accept making as a good 
thing, but it’s useful to say why. What you make is yours; creating gives ownership. Mathematics is often 
perceived—except by mathematicians—as the antithesis of creativity, a subject in which rules rule and 
we obey. It’s very possible to learn mathematical content that way, and some people like that order and 
simplicity. But mathematical thinking can’t work that way because genuinely new problems could then 
never be solved. For new problems, one must create new ideas and approaches. Young students’ 
mathematical creativity can’t be at the leading edge of mathematics, but it can be at their leading edge. 
Puzzles are not the only opportunities for students to be creative in mathematics but they’re good ones, 
especially for younger students. 

                                                
2 This imagery doesn’t represent “divide by 2” well unless the numbers of bags and marbles are both even. The imagery is adaptable to 
“negative grapes,” but frankly awkward. So we need to be clear that the imagery is not the goal, not a “new method” for algebra. But it’s an 
extremely effective entry to algebra. 
3 This qualification is important. Nobody—no corporation, no person—puts time/money/effort into an endeavor that they believe has no chance 
of success. Students who have been convinced they are “no good at math” often don’t put effort into study that we believe would make them 
better. But they don’t share that belief, so from their perspective, it is wiser to aim their efforts in a direction that seems more likely to pay off. 
That is an adaptive, economical choice. That is why it is so important to show (not tell) them that they are capable by hooking their interest on 
something they perceive as hard but attainable. 



Constructionism 2018, Vilnius, Lithuania 

46 

 

Second, constructing a good sharable puzzle is a balancing act—easy enough to be solvable and hard 
enough to be fun. To be solvable, a puzzle must also be well specified—enough clues to derive a unique 
solution (or a limited class of solutions)—without having so many clues that only the arithmetic is left. 
Determining when one has given enough clues to derive a solution is quite a challenge.4  

That challenge, and also the act of being a creator, may be part of why construction of a sharable puzzle 
appeals to kids, but the appeal is yet another reason to have kids create. 

And fourth, construction of a sharable object helps reveal the child’s thinking to both the child and 
teacher, supporting refinement of that thinking, and discussion and analysis.  

SolveMe.edc.org is a puzzle world with three kinds of puzzles aimed at developing algebraic reasoning. 
Each puzzle type also lets students create their own puzzles and share them on line. The Mobiles app 
collection begins with relatively elementary puzzles like the ones in figure 7, and even simpler ones for 
real beginners.  

          

Figure 7. Two relatively simple mobile puzzles. 

The mobile’s total weight might be given (above, left) and players must figure out how much the blue 
red objects must weigh in order for this mobile to balance. Or (above, right), no total weight might be 
given, but the weight of one of the hanging objects might be specified. Again, the player must puzzle 
out the weights of the other objects. 

Players often just work these out in their heads, but the app offers them other options: 
they can scrawl annotations on the screen, like this. → 

They can also create equations by dragging off a copy of a horizontal beam , 

or the entire mobile , and substitute these into other equations (or the 

mobile) to derive new information, like . The app also lets them factor 2 out of 

equations like  to derive new  
 

equations  and to drag a common element out of both sides of an equation like 
—to see

 
—and to get . Otten, et al. (2017) describe 

how 11-year-olds used explicitly algebraic correct reasoning in the context of informal notation and 
manipulations of a physical hanging mobile. 

The mobile puzzles are essentially systems of equations. Some students are intrigued by the fact that 
they can get those equations and see what those equations mean. In class, that is an advantage, but 
informally, even the students who like the fact that they can get equations mostly don’t work with the 
equations, instead inventing informal methods equivalent to the formal manipulations that algebra 
classes teach and name. They also see, early on, that the “weights” can be fractional and even negative. 

Some of the puzzles are quite challenging, like the ones in figure 8a, without being required to, students 
really persevere because they’re sure they can solve the puzzles if they keep at it. 

                                                
4 This is especially true in creating a good MysteryGrid puzzle or Who Am I puzzle, not described here, but part of the SolveMe suite of puzzles 
mentioned below. 

http://solveme.edc.org/


Constructionism 2018, Vilnius, Lithuania 

47 

 

                   

Figure 8a. Two mobile puzzles at a more advanced level. 

As I’d said, we felt it important to provide a tool with which students could create their own puzzles and 
even share them with friends or with the entire SolveMe community. The sheer variety of users’ 
contributions is fascinating. Some are genuine puzzles, like those shown above. Others seem to be 
intended more as works of art, like these. 

      

Figure 8b. Two mobile “puzzles” invented by users, apparently intended only as art. 

Manousaridis (2018) regularly encourages students in grades 2 and 3 to create their own puzzles as 
posters after solving some on line. Part of her goal is, of course, the ownership that comes from building 
a puzzle. But it is also clear that the task naturally leads children to work at the frontier of their ability, 
partly because they take special pride in pushing (and displaying) what they can do. 

The 9-year-old who created the puzzles shown in figure 9 was clearly proud of the arithmetic she did 
but especially proud of having created a puzzle that required such fancy arithmetic. The puzzle, not just 
the artwork on the poster, is a highly personal and creative act. This child is what Papert (1972) 
described as “the mathematician… creatively engaged.” 

      

Figure 9. A mobile puzzle invented by a nine-year-old to challenge her classmates to use fractions. 

Programming in mathematics 
The examples and contexts described above have been very far from the programming-centric proposal 
that Papert made in (1972) but, as I’ve tried to show, well in line with the mathematical creativity, 
exploration, and research projects that he regarded as doing mathematics rather than learning about 
it—creating and solving one’s own problems versus learning mathematical facts and solving problems 



Constructionism 2018, Vilnius, Lithuania 

48 

 

created by others. While nobody would claim that programming is the only (or even always best) venue 
for creative expression and exploration in mathematics, I and others believe it can be an enormous help 
if it can become a natural part of learning mathematics. For it to be “a natural part,” it would need to be 
learned along with the mathematics, growing over time just as the mathematics does, and used in ways 
that support the mathematics and don’t compete with it by seeming to be a separate venture—fun stuff 
but disconnected—or by creating excessive overhead or distraction. If that can be achieved, then the 
flexibility and expressive ability of programming can give it a central role in children’s mathematical 
learning and creativity.  

Noss & Hoyles (2018) focused especially on that expressive ability:  

Maths is difficult in part because of the language in which it is expressed. Can we find a 
different language—and set of ideas and approaches—that is more open, more accessible 
and more learnable. And can we find it without sacrificing what makes mathematics work? 
Our tentative answer is “yes”—the language of programming might, if we design it right, be 
just such a language. 

Mathematics really needs three languages. Two are already used universally in school: natural 
language for semantics (context, explanation, and some of the logic) and conventional 
arithmetic/algebraic notation. Unfortunately, if used inappropriately, both can also get in the way. In 
particular, mathematical notation is too often used as the entry point to new ideas rather than a concise 
way to record ideas that are already well understood. Consider that the third graders knew intuitively 

that doubling  produced , and six-year-olds, when asked verbally (not 

in writing) what five eighths plus five eighths might be, are happy to respond “ten ayfs,” then ask what 
an ayf is. They never answer ten sixteenths. The distributive property is built in to our logic early. But 
when the word “distributive property” is introduced in third grade, it is often taught with a written string 

like 8  7 = 8  (5 + 2) = (8  5) + (8  2) = 40 + 16 = 56 that is opaque and daunting to a beginner. 
Despite your mathematical literacy and knowledge, probably even you zipped past the string of symbols 
without reading closely enough to see if it was correctly typed. Processing such a string of symbols 
takes focus and effort, and therefore can’t be the optimal way to introduce the distributive property to 
an eight-year-old. Too much cognitive space is taken up just decoding the long string; not enough is left 
for thinking about the idea. 

And neither natural language nor mathematical notation is particularly good at expressing process or 
algorithm. That’s what a good programming language can provide. Also, unlike a string of symbols or 
words that sits on paper—correct or incorrect—and gives no feedback without the reader (re)reading 
and (re)processing it mentally, a programming language is a notation that can be run and gives direct 
feedback on what it does. 

ScratchMaths (Noss & Hoyles, 2018) is one beautiful example of infusing programming directly into 
grade-level-required mathematics for 9- to 11-year olds. At EDC, we are building a full-year 
mathematics+programming curriculum for 7- to 8-year olds as a stepping stone to doing the same for 
all of the first six grades of school, using the playful and puzzle-centric ideas of Sawyer (2003) and 
Wirtz, et al. (1964) as redeveloped in our Think Math curriculum (Goldenberg & Shteingold, 2007a and 
2007b). First programming experiences for young children can be quite open—moving a robot around, 
or just code-streams of interesting effects—but if we are explicitly intending to show 7-year-olds how 
they can use programming as a language to experiment with and express the mathematics they are 
currently learning, the first coding experiences need to be rather simple while, at the same time, leaving 
plenty of room for puzzling and exploring.  

Here is one environment EDC is currently exploring with children. The computer displays a number line, 
optionally settable for any range, with only one number labeled. The ticks just mark regular intervals, 
but interval size is completely settable (consecutive integers, consecutive eighths, skip counting by any 
amount, starting at any arbitrary number). For the youngest children, the ticks indicate consecutive 
integers, with only 0 labeled (and intentionally chosen not to be the leftmost mark on the line). The 7-

year-olds are given a palette of tools from which they can draw. For example, they may have , 
, ,  and, later, a repeat block. 



Constructionism 2018, Vilnius, Lithuania 

49 

 

 

Figure 10. A simple number line with ticks representing consecutive integers. 

Clicking a tool performs the indicated arithmetic, shows the corresponding movement on the line, and 
labels the result. For example, if the sprite is at 3, clicking the +5 block moves the sprite 5 spaces right 
(arc optional) and marks 8 there (figure 11).  

  

Figure 11. A move of  from 3 to 8. 

Children explore the tools with very open puzzles like “Try to label all the numbers 0 to 10.” When they 
have learned how blocks can be snapped together to create a script, they get more focused puzzles of 
increasing challenge that require experimenting, planning, mental arithmetic, and prediction of results. 
Two puzzles are shown in figure 12, as they might appear to children.  

              

Figure 12. Two programming puzzles. 

More challenging problems can follow: Create two different scripts that…. Children can also be asked 
in class discussion to analyze and explain. For example “explain why this script moves from 
0 to 1. If you start at 4, where will this script move you? Is there a way to move from 0 to 1 in 
exactly 2 moves? What’s the shortest script that…?”   

Because activities like this “have legs” mathematically, they can grow with the child and be used in later 
grades. At the simplest, the very same activity can be used on a 
“zoomed in” view of the number line, to explore fractions. The 

children’s tools now include
 

,
 

, etc.; similar tasks would 

challenge them to mark 1/4, 2/4, etc. Still other variants—like changing the tools to ±6 and ±9 and 
challenging children to label all the numbers they can—show how versatile this format is, capable of 
addressing later grade-level standards (e.g., factors, multiples, common factors, analyzing patterns, 
building fluency with multiplication facts) and foreshadowing in grade-appropriate ways ideas children 
will make explicit later. Other elementary school projects involve functions (e.g.,

 
) 

and let students build and compose their own. And creating code that generates squares from repeated 
moves, rows from repeated squares, and arrays from repeated rows—and the similarities of the 
algorithms inside draw row and draw array—illustrates the meaning and value of “abstraction.” 
Abstraction includes both generality, and “hiding complexity”—suppressing details or identifying the 
important characteristics for a particular purpose—by creating a single new command/function to 
replace a longer collection of instructions that would otherwise have to appear in several places. This 
example also shows how the activity directly supports mathematical content mandated for schools. The 
draw array block depends on two parameters, the dimensions of the array. A draw rectangle block is 
a further (though simpler) abstraction, using the same two inputs but drawing only the border of the 
array. For either of these, children might invent a playful quiz, having their program draw a random-



Constructionism 2018, Vilnius, Lithuania 

50 

 

sized array and ask about area (how many tiles it has) or perimeter, using their own reasoning about 
those inputs in order to teach the program how to calculate the correct answer. 

And, at the high school level, programming allows students to build the mathematical objects and 
processes that they are studying: relatively easily, they can build functions that manipulate polynomials, 
transform points with matrices, render a set of points in space in a convincing projection on the screen 
(Lewis, 1990), and study algebraic structures (Cuoco, 1990). And tools such as Geometer’s Sketchpad 
or Cabri—not programming in the usual sense, but construction with the computer rather than just use 
of the computer to manipulate pre-designed models—allow students studying geometry to build models 
of mathematical objects and ideas, and to explore the consequences of manipulations of those models. 

Programming in general 
Secondary students, too, need places to be mathematically creative. The mission of Beauty and Joy of 
Computing (BJC, 2017) is broadening participation in computer science with a focus on letting students 
see not just the joy of creation and beauty in the objects they can produce through programming, but 
also beauty in the programs themselves. With this as one goal, it introduces the elegance of recursion 
and higher order functions. It manages to make these reputedly “difficult” topics accessible by virtue of 
the lucid visual imagery of the Snap! visual 
programming language, a block-based language 
that is reasonably characterized as essentially 
Scheme disguised as Scratch. Two BJC excerpts 
involving recursion were used in a computer 
science elective with sixth graders. They wrote 
recursive code to draw a complex tree, and here 
they and their teacher are giggling at the result of a 
gossip-producing program with a randomly invoked 
recursive step that, in this case, generated quite a 
long sentence. Other students in this elective 
created a program to conjugate Spanish verbs 
properly so that they could generate sentences in 
Spanish.  

They tested the work of their programs by using map, a higher order function, to apply their conjugation 

block to a list of verbs. 

Initial funding for BJC required it to be an Advanced Placement course with a framework dictated by the 
College Board. Even so, except as constrained by AP requirements, BJC is largely project based with 
experience before formality; the explorations through which programming is learned include projects set 
in contexts like art and graphics, linguistics, mathematics, and games. While BJC is not a math course, 
its activities naturally touch—and help teach—many conventional mathematical content topics, and our 
approach to programming is consistently focused on mathematical/computational thinking.  

The point of introducing various contexts—the arts, linguistics, etc.—is partly to meet the varied interests 
of students, but much more to show how broadly they can allow themselves to wander, how much they 
can tailor their independent projects, for which even the AP framework allocates time, in their own 
personal direction.  

Playgrounds 
Giving even very young students a way to think algebraically using bags and grapes lets them invent 
mathematical tricks they love. It prepares them for algebra but more importantly, it lets them feel smart 
and pose problems and play with their own algebraic ideas. More broadly, treating mathematics as 
serious intellectual play, puzzling things out by searching and researching, and gaining the intellectual 
tools for posing one’s own challenges teaches children to be mathematicians. Papert suggested 
programming as a medium for that, but the essential ingredient remains the promotion of serious 
intellectual play. Programming taught just as a skill or to meet new standards may well not serve that 
purpose. But if a programming environment lets students explore and create, provides good tools for 



Constructionism 2018, Vilnius, Lithuania 

51 

 

doing that, and gives students the “third language of mathematics” so that as their ideas and thinking 
grow in sophistication they have a language for expressing and honing those ideas, such an 
environment does add a new playground consistent with Papert’s vision of children being creatively 
engaged as mathematical thinkers. 

A question, based on wild final thoughts, pure opinion that I might disown 
tomorrow  
A few states, including Massachusetts (the one that I live in) have begun to develop frameworks for 
computational thinking (CT) across the grades (DESE, 2016). CT is variously defined but always 
includes elements like abstraction, algorithm, modelling and simulation, programming, and data (with 
an implication, not reflected in all implementations, that “data” means big data). Not surprisingly, there 
has also been a proliferation of on-computer and “unplugged” activities, not involving programming, to 
help develop this thinking.5 The difficulty of adding anything else to an already jam-packed school day 
has led to a lot of talk about integrating CT activities into the existing content areas, particularly science 
and mathematics (e.g., EDC STEM+CT, 2018), but also language. In my opinion, some of the 
suggestions are shallow, but that should be no surprise at a time when the whole effort is so new.6 Still 
it got me to thinking about why my own inclination has been toward programming, not away, and toward 
abstraction, and algorithm rather than modelling and simulation, whenever the aim is explicitly to 
integrate with other subjects.  

I think it’s largely bias. I tend to think more about elementary and middle school, and more about 
mathematics than about science. At the elementary school level, modelling and simulation are easier 
to integrate with science than with mathematics; programming, along with abstraction and algorithm, is 
easier to integrate with mathematics than with science. 

Modelling, for example, is something that mathematics (and mathematicians) can do, and since 
mathematics can build models of mathematical ideas, modelling is also something that mathematics 
uses. But, at least as far as I see at the elementary school level (especially in the early grades) modelling 
with mathematics—creating mathematical models of phenomena—is very limited. And fairly abstruse, 
in the following sense. While every mathematical statement (like “there are seven cows”) is an example 
of an abstraction (the cowness is reduced to irrelevancy) and just a model of the reality, no kid in the 
known universe thinks of such a statement as an abstraction or a model. That level of abstraction is so 
normal to them that it is totally “invisible”—it’s just what language does. By contrast, modelling is a 
natural place to focus in science—the core of experimentation and the form of many scientific claims—
and simulation (at least as generally used) is an automation/extension/elaboration of modelling. 

Programming is exactly the opposite, easier to integrate into (early) mathematics than into science. (Of 
course, take this with a cup of salt, as I’ve not given scientific programming nearly as much thought. As 
I advertised, these are wild final thoughts that I might disown tomorrow.) That may be partly because 
the kinds of statements one makes in early mathematics tend to be about relationships and about simple 
processes. “Writing a program” that enacts a function, like doubling its input or adding 10 to its input, is 
easy programming. In fact, it’s easier to write in a general way as a program (a Snap! block) than as a 
paper-pencil scrawl, because a program is an active notation; it will enact the action and give feedback, 
which paper-pencil scrawl do not. It is also a structured notation, imposing a bit of order on what young 
students typically scatter over a page in a way that, even if totally correct, does not reveal their logic. 
Similarly, writing a program that pairs elements of two sets, writing a program that draws simple shapes, 
or creates arrays or paths to study, is mathematically on task and easy programming. By contrast, most 
scientific phenomena are too complex for young children to model by writing a program (often pretty 
complex even for adults).  

                                                
5 Just as I was completing this paper, I received a copy of Bebras (Dagiené, et al., nd), a set of activities, many puzzle-like, that I found quite 
appealing, all designed to develop various elements of computational thinking in students. 

6 And, clearly I, myself, am being a bit shallow in using the vague quantifier “some suggestions.” Of course, in any situation, some suggestions 
will be shallow. 



Constructionism 2018, Vilnius, Lithuania 

52 

 

I’d love to get reaction to this last, very spur-of-the-moment rumination. What genuine programming 
activities, at the elementary school level, can be really well integrated with science?  And what modelling 
or simulation activities, again at the elementary school level, can be really well integrated with 
mathematics?  

Acknowledgments 

Funding for doing and reporting the work described in this paper was provided in part by the 
National Science Foundation, grants 1441075, 1543136 and 1741792. Views expressed here 
are those of the author and do not necessarily reflect the views of the Foundation.  

References 

BJC. (2017) The Beauty and Joy of Computing. http://bjc.edc.org 

Cuoco, A. (1990) Investigations in Algebra. Cambridge, MA: MIT Press. 

Dagiené, V., Stupuriné, G., Vinikiené, L., and V. Kincius. Bebras. Creative Commons Attribution-
ShareAlike 3.0 Unported License (CCC BY-SA 3.0). http://www.bebras.lt 

DESE. (2016) Massachusetts Department of Elementary and Secondary Education. 2016 
Massachusetts Digital Literacy and Computer Science (DLCS) Curriculum Framework. Accessed at 
http://www.doe.mass.edu/frameworks/dlcs.pdf, 16 September 2016. 

EDC STEM+CT. (2018) http://go.edc.org/elementary-ct The Broadening Participation of Elementary 
Students and Teachers in Computer Science project is directed by Joyce Malyn-Smith. Accessed March 
29, 2018. 

Goldenberg, E.P., Mark, J., Kang, J., Fries, M., Carter, C. and Cordner, T. (2015) Making Sense of 
Algebra: Developing Students’ Mathematical Habits of Mind. Heinemann: Portsmouth, NH, USA. 

Goldenberg. E.P. and Shteingold, N. (2007a) Early Algebra: The MW Perspective. In Algebra in the 
Early Grades, Kaput, J.J., Carraher, D.W. and Blanton, M.L., Eds. Erlbaum: Hillsdale, NJ, USA. 

Goldenberg. E.P. and Shteingold, N. (2007b) The case of Think Math!. In Perspectives on the Design 
and Development of School Mathematics Curricula, Hirsch, C., Ed. NCTM: Reston, VA, USA. 

Lewis, P. (1990) Approaching Precalculus Mathematics Discretely. Cambridge, MA: MIT Press. 

Manousaridis, T. (2018), personal communication. 

Mark, J., Goldenberg, E.P., Kang, J., Fries, M. and Cordner, T. (2014) Transition to Algebra. 
Heinemann: Portsmouth, NH, USA. 

Noss, R. and Hoyles, C. (2018) The ScratchMaths project is directed by Richard Noss and Celia Hoyles, 
with Ivan Kalaš, Laura Benton, Alison Clark Wilson, & Piers Saunders. See 
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths. Accessed March 29, 2018.  

Otten, M., van den Heuvel-Panhuizen, M, Veldhuis, M., Heinze, A. and Goldenberg, P. (2017) Eliciting 
algebraic reasoning with hanging mobiles. Australian Primary Mathematics Classroom, Vol. 22, No. 3, 
pp. 14–19. 

Papert, S. (1972) Teaching Children to be Mathematicians Versus Teaching About Mathematics, Int. J. 
Math Ed in Science and Tech., Vol. 3, No. 3, pp. 249–262. 

Sawyer, W.W. (2003) Vision in Elementary Mathematics. Dover: New York, NY, USA. 

Schulz, L.E. and Bonawitz, E. B. (2007) Serious Fun: Preschoolers engage in more exploratory play 
when evidence is confounded. Developmental Psychology, Vol. 43, No. 4, pp. 1045–1050. 

Wirtz, R., Botel, M., Beberman, M. and Sawyer, W.W. (1964) Math Workshop. Encyclopaedia Britannica 
Press: Chicago, IL, USA.  

http://bjc.edc.org/
http://www.bebras.lt/
http://www.doe.mass.edu/frameworks/dlcs.pdf
http://go.edc.org/elementary-ct
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths
https://www.nsf.gov/images/logos/NSF_4-Color_bitmap_Logo.tif


Constructionism 2018, Vilnius, Lithuania 

53 

 

May I Teach an Algorithm? 

Brain Harvey, bh@berkeley.edu 
University of California, Berkeley, USA 

May I Teach an Algorithm? 
BRIAN HARVEY, bh@berkeley.edu 
University of California, Berkeley 

Abstract 
After all these years, I'm still not sure what Constructionism entails.  Here's an example taken from our 
work on the Beauty and Joy of Computing curriculum: We have a yearlong Tic-Tac-Toe project.  Early 
in the year, students draw the board and use mouse clicks on the board to let two human players 
alternate moves.  A month later, they start building data structures that will let the program analyze the 
board.  At that time, they check whether either player has won, or whether the game is tied.  Two months 
after that, they return to the project, letting the program be one of the players, and determining the 
program's move with rules such as "if I can win on this move, do it."  A Tic-Tac-Toe program is an 
obvious project, one of the things many learners do spontaneously.  But I had an ulterior motive in the 
design of the project:  I want students to practice using higher order functions (MAP, KEEP, COMBINE). 
The data structures in the program are built to accommodate that. 

 

We provide the overall structure of the strategy procedure. 

The question is, because I have this motive and I impose this design, am I being hopelessly 
instructionist?  Is it my project rather than the kid's project?  How much flexibility is required for the kid 
to "own" the project?  And, is the kid owning the project what makes it Constructionist? 

Keywords 
curriculum; ownership; constructionism; instructionism 

What does “Constructionism” mean? 

About 10 years later, I was working with Sherry Turkle and John Berlow at the 
Lamplighter School in Dallas, TX, the first elementary school where there were enough 
computers for children to have almost free access to them. The first space shuttle was 
about to go up, and the tension of waiting for it appeared in many representations on 
screens all over the school. "Even the girls are making space ships," one girl told us. 
But we noticed that although everyone had space ships they did not make them the 
same way. Some programmed their space ships as if they had read a book on 
"structured programming," in the top-down style of work that proceeds through careful 



Constructionism 2018, Vilnius, Lithuania 

54 

 

planning to organize the work and by making subprocedures for every part under the 
hierarchical control of a superprocedure. Others seemed to work more like a painter 
than like this classical model of an engineer's way of doing things. The painter-
programmer would put a red blob on the screen and call over her friends (for it was more 
often, though not always, a girl) to admire the shuttle. After a while someone might say: 
"But it’s red, the shuttle is white." "Well, that's the fire!"—came the reply—"Now I'll make 
the white body." And so the shuttle would grow, taking shape through a kind of 
negotiation between the programmer and the work in progress. 

—Seymour Papert and Idit Harel, “Situating Constructionism,” in Constructionism (Ablex 
Publishing Corporation, 1991) 

The first thing to notice about this story is that no teacher assigned the project of making a space ship.  
Teachers did give assignments at Lamplighter, but there was also time for kids to do what they wanted.  
The outside stimulus of the Space Shuttle led to Seymour being able to compare student-initiated 
projects that happened to be depictions of the same thing in two different styles.  My question is, which 
of the different characteristics of this anecdote make it constructionist? 

 If a teacher had assigned drawing a spaceship, would that matter? 
 How about if the teacher had said “make it as realistic as you can”? 
 What if the common stimulus had been something abstract rather than a physical thing? 
 The kids in this story were already familiar with Logo.  What happened in the first week of school?  

Could a constructionist teacher start with the usual “Draw a square”?  Or must we just sit the kids 
down in front of Logo and have them explore?  (That would have been hard with Logo, really.  But 
it can definitely be done with Scratch.) 

 What if this week’s class topic had been subprocedures, and the teacher had said “make whatever 
project you want, but try to use subprocedures”?  Still constructionist? 

The minimal definition of constructionism is that people learn best by making something, preferably a 
physical thing, that is available for public critique.  But most people who call themselves constructionists, 
including Papert, connect the approach with the broader progressive education movement, in which 
locus of control is a crucial issue.  That’s why these questions don’t have obvious answers. 

I wasn’t at Lamplighter to ask these questions.  But somewhat analogous questions have come up for 
me in the development of the Beauty and Joy of Computing secondary school curriculum (BJC). 

The Beauty and Joy of Computing 

About a decade ago was the beginning of an ongoing campaign in the United States to increase the 
number of women and minorities studying computer science.  The National Science Foundation (NSF) 
made a strategic decision to concentrate on high school (ages 14-18) students, reasoning that it’s in 
those years that young people make career choices.  My colleague Daniel Garcia and I decided to 
redesign our CS breadth course for non-majors, with the idea that the same course would serve as a 
high school course for all students.  A pilot version of the course was offered in 2008; since 2009 it has 
been offered to more than 300 students every semester. 

The United States doesn’t have a central education authority; curriculum decisions are made by each 
state or by local school districts.  It’s very difficult, therefore, to introduce a new topic to the high school 
curriculum.  But there is a non-governmental de facto national curriculum organization: the College 
Board, a consortium of colleges and universities7 that creates standardized tests that students take as 
part of the college application process.  One project of the College Board is a set of 38 Advanced 
Placement exams in college-level curricula.  The first 37 AP curricula were set by surveying freshman 
courses actually taught at colleges and universities, but the NSF partnered with the College Board to 
create a new course, “AP Computer Science Principles,” in a subject that was, at the time, taught at 

                                                
7 In the United States, a “university” is an institution that conducts research as well as teaching undergraduates (ages 18-22) and graduate 
students (over 22).  A “college” is an institution that primarily teaches undergraduates, although there is no hard rule separating the two 
categories.  



Constructionism 2018, Vilnius, Lithuania 

55 

 

very few colleges.  (There was already an “AP Computer Science A” exam, a traditional introductory 
programming course.8)  AP courses are typically one semester long (about five months) at a college or 
university, but take a full school year at the high school, so that students are not deterred from AP 
courses by the density of college-level work. 

Because CS Principles wasn’t a well-established college course, the College Board couldn’t use its 
usual approach of surveying colleges to determine what topics should be tested.  Instead, they set up 
a committee of university and college faculty to invent ab initio a curriculum framework for a computer 
science course appropriate for non-majors. (College Board 2017) 

Berkeley’s course, The Beauty and Joy of Computing (BJC), was initially designed before the CS 
Principles framework was written; we designed the course that we thought would best serve Berkeley 
undergraduates.  One consideration was that the course should prepare students for our first course for 
CS majors, based on the brilliant text Structure and Interpretation of Computer Programs by Hal Abelson 
and Gerald J. Sussman. (Abelson 1996)  At the same time, BJC was one of the pilot projects for CS 
Principles, and once the framework was written, we added content to BJC to satisfy it. 

In the early years of BJC, we partnered with individual high school teachers who heard about the 
curriculum and wanted to try it.  These early adopters tended to be either at private schools or in wealthy 
suburban school districts.  But in 2014 the NSF solicited proposals for partnership grants proposed 
jointly by partnerships including a university and a secondary school district, and we decided it was time 
to jump into the deep end: New York City, a majority-minority school district (that is, most of its students 
are nonwhite) with 500 high schools.  In New York, many students are learning English as a second 
language, and even some of the native speakers have below-grade-level reading skills.  We made the 
crucial decision to include in the partnership an NGO, Education Development Center (EDC), with long 
experience developing curricula for K-12 education, to rewrite the curriculum specifically for high school.  
The EDC team for this project is headed by Paul Goldenberg and June Mark.  Our partnership was 
funded for four years starting in January, 2015. 

Tic-Tac-Toe 

A program to play tic-tac-toe is a classic programming project.  We decided to use this example as an 
ongoing project throughout the year, starting early in the curriculum, when students have written 
graphics programs but have no experience with data structures; this first part of the project was a 
program to draw the tic-tac-toe board and then display moves by two human players.  A month later, 
when students have experience with list processing, they add code to detect and announce wins and 
ties.  Two months later, they take the big step of writing a strategy procedure so that the computer can 
be one of the players. 

We are now at the point where the connection with Seymour’s story from the Lamplighter School should 
be clear.  We are, I guess, constructionists; but we are writing a project into a curriculum, with specific 
milestones based on specific programming techniques that we want students to practice.  The students 
are making an artifact: a game program.  Is this Constructionism? 

That question was not just of theoretical interest to us.  As it turned out, each step in the project design 
involved some disagreement among the curriculum team (six people at EDC, and me, spending half of 
each year at EDC, in Massachusetts, and the other half at home in California but working with EDC 
remotely).  At each of these points of disagreement, we had to make a decision. 

Drawing the board 
The first point of disagreement came right at the beginning, with the drawing of the board.  One of our 
team members, who had extensive Logo experience, wanted students to use their square procedure 

repeatedly, but instead of building a fixed 3x3 board into the code, parameterize the number of squares 
so that the same code could be used to draw a chess board or a sudoku board.  Another team member, 

                                                
8 CS A is taught using Java, probably the hardest programming language to learn because of its Byzantine syntax.  That’s one reason a new 
course was needed to encourage non-geeks. 



Constructionism 2018, Vilnius, Lithuania 

56 

 

with prolific experience creating Scratch projects, wanted to give a sprite a square costume (three 
costumes, actually: an empty square, a square with an X inside, and a square with an O inside) and 
clone it nine times. 

Each of these proposals was good in one way and less good in another way.  Drawing the squares 
programmatically was a better fit with the rest of what was happening at that point in the curriculum, 
and in particular gave an opportunity for students to practice the use of Cartesian coordinates to position 
the squares.  But using sprites made the next step, detecting users’ moves in the form of mouse clicks 
inside a square, much easier, because the click would be captured by one of the nine sprites.  If the 
squares were just lines drawn on the stage, students would have to use nested if commands or do 

complicated arithmetic on coordinates to determine the square into which the user wants to move. 

The use of layered abstraction and modular arithmetic was part of the original intent of the project, but 
we learned visiting classes that students were having much more trouble figuring out how to handle the 
mouse coordinates than we’d anticipated.  (See Figures 1–3.)  We then had two choices:  Debug our 
project instructions by treating only the 3x3 case and adding enough scaffolding so that students could 
complete the task, or abandon the original curricular goals by using the “when I am clicked” feature of 
Snap! to solve the coordinate problem below an abstraction barrier.  (The silver lining would be adding 
something new, parallel processing, to the curriculum.) 

Perhaps the most constructionist solution would have been for us to describe the desired result without 
making any suggestion at all about the algorithm to use.  But students had never cloned a sprite at this 
point in the curriculum, so they would be unlikely to discover that solution (see Figure 4); and we already 
knew that the Logo-like “draw nine squares” solution made capturing mouse clicks too hard for many 
New York high school students without scaffolding. 

 

Figure 1.  Teaching abstraction was a goal of the original version. 

 



Constructionism 2018, Vilnius, Lithuania 

57 

 

 

Figure 2.  So was teaching Cartesian coordinates and conditionals. 

 

Figure 3.  We had to provide a lot of hints about converting mouse coordinates to board position. 

 

Figure 4.  We had to teach what cloning means and how to do it. 



Constructionism 2018, Vilnius, Lithuania 

58 

 

We first attempted to solve the dilemma by compromising: We wrote two versions of the project 
instructions and let students (or teachers) choose which to use.  This had the virtue that nobody on the 
team felt rejected, but it turned out to have few other virtues.  In particular, the choice in this first part of 
the project affected later work, so that we would have to maintain two versions of the project throughout 
its stages.  (Consider the problem of determining whether a player has won the game.  The “draw nine 
squares” solution is structured as one program, with a single flow of control, and full access to the history 
of moves.  The “nine sprites” solution, however, has this information distributed among the nine sprites, 
so the programmer must make extra effort in the second part of the project to communicate the moves 
to a central database.  See Figure 5.) 

So we all agreed that we had to make a choice.  I preferred the computer science ideas in the “draw 
nine squares” version, which fit better (as they were designed to) with the overall story line of the 
curriculum.  But I finally changed my vote, breaking a tie, when I convinced myself that many of our 
students will have used Scratch in elementary school, and will therefore have the same expectation as 
our Scratch-using colleague that clicks are to be caught by sprites.  They would reasonably ask why we 
are asking them to do it with a much harder technique.  We did edit the “nine sprites” curriculum page 
to call attention to its computer science ideas, although they’re not the ones we had been planning for.  
(See Figure 6.) 

Detecting wins 
There are only eight ways to win a tic-tac-toe game: three horizontal, three vertical, and two diagonal.  
This is a small enough number that it wouldn’t be too painful for students to check for a winning move 
with eight if commands, each checking explicitly for three squares with the same player in them, using 

square numbers built into the code.  (See Figure 7.)  This is certainly the solution that most students 
would invent, left to themselves. 

But I had a curricular motive for this project that I was not willing to give up: teaching the use of higher 
order functions (map, keep, combine).  BJC is my third time using this project for this purpose; I’ve 

done it before in Logo (Harvey 1997) and in Scheme (Harvey 1999).  The fundamental idea is to keep 
the information about eight ways to win in a list of lists (Figure 8).  Then detecting a win is just mapping 
the actual board position over this list of wins, and looking for a list of three Xs or three Os in the result.  
This can be done in a one-liner (Figure 9), but for pedagogic reasons we break the nested map calls 

into separate functions (Figure 10).  The resulting curriculum page is shown in Figure 11. 



Constructionism 2018, Vilnius, Lithuania 

59 

 

 

Figure 5.  Creating global board knowledge from distributed-computing sprites. 

 

Figure 6.  If life gives you lemons, make lemonade. 



Constructionism 2018, Vilnius, Lithuania 

60 

 

 

Figure 7.  Detecting wins the “obvious” or “natural” way. 

 

Figure 8. Moving the knowledge of eight wins from the code into data. 

  

Figure 9.  The one-liner version with nested map calls. 

 

 

 

Figure 10.  Checking for a win using map. 



Constructionism 2018, Vilnius, Lithuania 

61 

 

 

Figure 11.  Guiding students through the code. 

Using this approach was controversial in the curriculum team.  Higher order functions are exotic to 
people who’ve learned to program in conventional languages, such as Python, Java, or Scratch.  It’s 
only people who learned in functional languages (mainly Lisp dialects such as Logo, Scheme, or Snap!) 
who find this approach more natural.  Also, there’s nothing about higher order functions in the CS 
Principles framework; we’re not required to teach it, and the biggest complaint teachers have made 
about BJC is that they don’t have enough time to cram it all into the year.  But at Berkeley, higher order 
functions and recursion are the two most important ideas that make BJC special.  (A third is that we 
spend much more time on the social implications of computing than the framework requires.) 

The central idea in computer science is abstraction, and the CS Principles framework reflects that.  
Higher order functions form a potent abstraction over lists; instead of the conventional loop over list 
items, with an index variable holding the position of the current item in the list, higher order functions 
allow the programmer to deal with the list as a single entity, without singling out individual items. The 
TicTacToe wins list is best understood not as a list of lists, and certainly not as a two-dimensional 

array, but rather as a list of triples, where “triple” is an abstract data type consisting of three square 
numbers in the range 1-9.  So TicTacToe wins is an eight-item list of all the winning triples.  Status 

of triple takes a triple as input, reporting a new triple in which the square numbers have been 

replaced by the player who owns each square.  Status of winning triples maps status of 

triple over the eight winning possibilities, reporting a new list of triples.  Then we’re almost done; we 

ask whether that new list contains the list {X, X, X} or {O, O, O} depending on who moved last.  
Contains is a primitive block that answers that question. 

We seem now to be very far from the space ships at Lamplighter.  The project (tic-tac-toe) is assigned 
by the curriculum writers; students are told to use a particular method that even some of the curriculum 
team view as “unnatural.”  It’s in a good cause, furthering abstraction, and I can testify that after a while 
it becomes natural.  (I learned to program in Fortran, but the solution in Figure 9 is truly the first thing 
that occurred to me while working on this project.)  And the code is beautiful; we have “Beauty” in the 
name of our curriculum and we take that seriously. 

And kids do need to learn skills.  Even in maker spaces, the current paradigmatic example of “Do It 
Yourself” learning, they don’t leave kids to discover for themselves how to use a soldering iron or a table 
saw safely. 



Constructionism 2018, Vilnius, Lithuania 

62 

 

Again, it was proposed that we offer students two ways to write this procedure.  But why?  If we ask 
students to pick one, they have no basis for choice until they’ve tried both.  So we’d have to have them 
do it both ways.  And, if we’re going to have them do it in the way we want, how does it help to have 
them also do it a different way?  I think that proposal was more about trying to avoid conflict among the 
team than about the needs of students. 

But what’s important for our story is how much weight the word “project” carries in a curriculum.  If 
something is an “exercise” then everyone easily keeps in mind what purpose the exercise is supposed 
to satisfy in the overall curriculum.  But once something is a “project,” completing the project becomes 
a purpose in itself, and the needs of the curriculum are easily seen as getting in the way of that. 

And really, tic-tac-toe in our curriculum barely deserves the name “project.”  We want students to do it 
a particular way, for particular reasons, and we carefully guide them along that way.  (Review Figures 
5 and 11 if you need a reminder of what I mean by that.)  At the end of each unit is a collection of about 
half a dozen optional projects, and those really are projects:  We don’t care how the student does them, 
or even whether the student does them, because they do not bear the weight of teaching the curriculum.  
They’re for the student who finishes early and wants more to do.  We try to pick projects that are 
somewhat relevant to the unit in which they appear, but even that isn’t really important.  They just have 
to be beautiful and/or joyous. 

Tic-tac-toe strategy 
The final stage of the project is allowing a person to play against the computer.  This requires a strategy 
procedure to generate the computer’s moves.  But once we have status of winning triples 

showing what’s where on the board organized by winning triples, this is pretty much just a matter of 
pattern matching. 

We start by asking students to discuss in small groups how they play tic-tac-toe.  (Figure 12.)  (A slight 
digression:  The CS Principles framework asks us to teach about “pseudocode.”  I don’t believe that any 
programmer really thinks in pseudocode—certainly not the ones who have an expressive programming 
language to work with.  What students do in this exercise may look like what the framework authors 
have in mind, but it’s very different.  The students are not thinking about a computer program in 
handwavy English.  They’re thinking about themselves, for which English is an appropriate language.  
People think in English; computers think in programming languages.  Nobody thinks in pseudocode.) 

By the way, the claim that people play tic-tac-toe using rules was controversial in our group, as was the 
claim that the first two rules are the same for all people.  Some of us worried that students who had a 
different way to think about tic-tac-toe might feel excluded.  So, take a minute to think about how you 
play tic-tac-toe (or how you played it as a child; you’ve probably graduated to Sudoku and its variants 
now).  If you use rules, think about what your second rule is.  (We give the first rule in Figure 12.) 

The first rule is, “If you can win on this move, do so.”  If the computer can win on this move, it must be 
by filling one of the eight winning triples.  What must be true of a triple for the computer (which is playing 
O) to be able to win using it on this move?  The triple must contain two Os, and no Xs.  (The third square 
of the triple will be empty, which is represented by the square number.)  Figure 13 shows an excerpt 
from the curriculum in which students are asked to answer that question, and then use the answer to 
write the strategy procedure.  Here is an excerpt from the program:   



Constructionism 2018, Vilnius, Lithuania 

63 

 

“find first item (of the list of triples) such that the number of Os is 2 and the number of Xs 

is 0.”  Even if you aren’t familiar with the notation for higher order functions (and the students are, by 
this point in the curriculum), you can see how the structure of the code matches the structure of the 
problem you’re trying to solve. 

Note that this is not the same as saying that the language is “like English.”  It isn’t, except in the sense 
that all programming languages are like English: the names of primitives are meant to suggest what 
they do.  But the arrangement of those primitives—the syntax of the language—is quite different from 
English, as it should be.  Rather, the point is that the higher order functions, like all abstractions, let you 
talk in terms of the problem you want to solve (triples, Xs, Os) rather than in terms of computer hardware 
(index variables, looping, memory addresses). 

Figure 13 shows the excerpt from the curriculum in which students are asked to express the first rule in 
terms of triples, and then use that to guide writing the code.  Figure 14 shows the complete solution, 
apart from a couple of helper procedures. 

Figure 12.  How do human beings play tic-tac-toe? 

 



Constructionism 2018, Vilnius, Lithuania 

64 

 

 

Figure 13.  Guiding the student to convert a rule to a program. 

 

Figure 14.  The complete strategy procedure. 



Constructionism 2018, Vilnius, Lithuania 

65 

 

Efficiency 
Note that in our solution, can __ win now? calls winning square for __, and so next move 

for computer ends up calling winning square for __ twice for a rule that succeeds.  Of course 

we could use a local variable to save the value from the first call and avoid the second, but we are 
adamant that in a first course that aims to attract nontraditional students to computer science, efficiency 
doesn’t matter.  What matters is promoting abstraction all the time. 

Differentiated instruction 
The directions we give students are narrow, because we have specific purposes in mind and also 
because we are under pressure from teachers to ensure that even ill-prepared students succeed in the 
activities.  We do have “Take It Further” activities, for more advanced students, with much less 
scaffolding.  (Figure 15.) 

 

Figure 15.  Enrichment activities. 

We stole the twisty-road signs from Donald Knuth’s TEXBook (Knuth 1984).  A double-twisty-road 

exercise could be a month of hard work. 

In the other direction, we provide for students who need even more handholding than we expect with 
the “click for a hint” links. 

What does “Constructionism” mean? (reprise) 

Or, getting to the heart of the matter, am I a constructionist? 

The most pessimistic answer would be that I crossed the line as soon as I decided to be a curriculum 
writer instead of directly working with kids.  Actually, I’m less worried about violating Seymour’s 
philosophy than that of Martin Buber, who writes about the human relationship between student and 
teacher as the most important part of education.  I guess a more positive way to say this is that teachers 



Constructionism 2018, Vilnius, Lithuania 

66 

 

and curriculum writers are both important, and curriculum writers do have a big influence, but I shouldn’t 
be surprised that the front lines in education are in classrooms and not in curriculum team meetings. 

But that’s not a very good answer, because it lets me off the hook.  It means that I can write any old 
curriculum, without worrying about whether it’s progressive or not, artifact-creating or not, just whether 
it contains the right ideas and information. 

Another answer that appeals to me is that the duty of a constructionist curriculum writer is not to hold 
students’ hands, but rather to leave space for them to create something new.  I fear that we haven’t 
done that enough.  The original Berkeley version of BJC, aimed at college students, was better about 
this.  If our purpose is to improve access and equity in computer science, we have to succeed with all, 
or at least most, of real high school teachers and students, in classes in real schools, not all of which 
will be progressive, let alone constructionist. 

A big part of our problem is that we are constrained by a standardized test that we didn’t write.  Teachers 
are terrified of getting to the exam in May with unprepared students.  To avoid that, students not only 
have to succeed at our lessons; they have to do it quickly.  When I was a high school teacher, I had no 
authority to answer to, no standardized test, and so I could be relaxed about how fast students worked.  
We have been considering a version of BJC that would not be labelled as an AP CS Principles course.  
This would let us leave out many things in the framework that aren’t part of the BJC story line, so, 
ironically, it could end up having more and deeper computer science than the CS Principles version.  
But most importantly, teachers could teach their classes at whatever pace seems right for that particular 
group of students.  That would let us leave out some of the scaffolding, or at least bury more of it under 
click-for-hint links. 

By the way, a student’s AP score is based not only on the sit-down exam in May, but also partly on a 
programming project that the student does in class and submits to the College Board for grading.  
(Teachers are required to set aside 12 hours of class time for this project; it can’t just be homework 
because some students don’t have computers at home.  If a class period is 45 minutes, that’s three 
weeks of instructional time gone—one more reason the teachers feel rushed.  There is also an 8-class-
hour “computational artifact” addressing the social implications of computing.)  The required 
programming project makes this class at least slightly constructionist:  There’s one artifact created 
entirely by the student. 

As I write this, I am leaning toward not feeling guilty about wanting students to build programs in specific 
ways.  Ideally, I think, there would be more variety about this in the curriculum; sometimes we’d insist 
on them doing it our way, but other times we’d let them work without guidance and then have groups of 
students compare their solutions, and then show them our solution.  But we are deterred by time 
pressure from doing this. 

There’s a lot more curriculum I want to write.  I’ve mentioned the non-AP BJC.  Some schools have 
asked for a semester-long subset of BJC.  The project that most excites me, although maybe nobody 
would actually use it, is “BJC year 2,” a course that would introduce object oriented programming, dive 
deeper into functional programming, and perhaps write an interpreter for a programming language.  
We’ve also talked about mix-and-match modules for schools that have robots, 3D printers, and other 
programmable toys. 

On the other hand, I really miss teaching kids! 

Acknowledgments 

This work was funded by the National Science Foundation under grant number 
1441075.  Any opinions, findings, and conclusions  or recommendations expressed in 
this material are those of the author and do not necessarily reflect the views of the 
National Science Foundation. 



Constructionism 2018, Vilnius, Lithuania 

67 

 

References 

Abelson, H. and Sussman, G. J. (1996) Structure and Interpretation of Computer Programs 2/e.  MIT 
Press, Cambridge. 

College Board (2017)  AP Computer Science Principles: Course and Exam Description. College Board, 
New York. 

Harvey, B. (1997)  Computer Science Logo Style 2/e.  MIT Press, Cambridge. 

Harvey, B. and Wright, M. (1999) Simply Scheme: Introducing Computer Science 2/e. MIT Press, 
Cambridge. 

Knuth, D. E. (1984) The TEXBook.  Addison-Wesley, Menlo Park. 

Papert, S. and Harel, I. (1991) Situating Constructionism.  In Constructionism. Edited by I. Harel and S. 
Papert.  Ablex Publishing Corporation, Norwood, NJ.  



Constructionism 2018, Vilnius, Lithuania 

68 

 

Social Gears – a Constructionist Approach to Social 
Studies 

Arthur Hjorth, arthur.hjorth@u.northwestern.edu 
The Center for Connected Learning and Computer-Based Modeling, Northwestern University, USA 

Abstract 
The Gears of Seymour Papert’s childhood have been a persistent analogy for our work in the 
Constructionist community for decades. It is a productive analogy that has helped concretize many 
central themes in Constructionism: It frames our view of knowledge as understanding the inner workings 
of a system; it forefronts the existence of an external representation of some domain knowledge; and it 
emphasizes that learning happens through the manipulation of this external representation by alignment 
of an internal, mental model with an external, physical model. Gears are powerful, maybe because their 
cause-and-effect is simple: one cog moves another cog which moves another cog which moves another 
cog. Always at the same ratio, and at a rate pre-determined by whichever cog we apply torque to. 
Importantly to our work as an educational research community, it makes studying thinking about cogs 
relatively straight forward. 

But what if the gears were social? What if they have inner lives, mood swings, wants and desires, and 
work under the constraints of social pressures and modern family life that they must negotiate, 
collectively and individually, in order to organize their turn ratios? Does it change how we should design 
Constructionist learning environments and activities? Does it change how we should study students’ 
thinking? I will not claim that the deterministic nature of the Gears-analogy caused Constructionism to 
focus on deterministic subjects.  But maybe the focus on STEM and programming have led us to not 
explore and interrogate potential shortcomings of the analogy?  

 

   Students reasoning with different representations of Urban Planning 

I address these questions based on my experience with designing, implementing, and studying 
Constructionist learning in social studies classrooms at the high school level. I present “Complex Social 
Systems Thinking” (CSST) as a guiding framework for designing learning activities and for studying 
students’ thinking. I then present a set of Constructionist learning activities that I have designed on 
Urban Planning, and present data to exemplify what CSST looks like “in the wild”. Finally, I discuss the 
relationship between Constructionism and CSST and present my hopes for the future of 
Constructionism in social sciences education. 

Keywords  
complex systems thinking; social studies; design; qualitative analysis  



Constructionism 2018, Vilnius, Lithuania 

69 

 

Scratchmaths: a Positive Outcome for 
Constructionism at Scale  

Richard Noss , r.noss@ucl.ac.uk  
University College London, UK  

Celia Hoyles, c.hoyles@ucl.ac.uk 
University College London, UK 

Abstract 
From September 2014, all primary schools in England have been required to teach the national 
computing curriculum, which includes designing and building programs.  This presentation will discuss 
some of the challenges in implementation as part of describing the two-year ScratchMaths (SM) project. 
SM designed a comprehensive curriculum for Year 5 and 6 pupils (aged 9-11 years) that maps directly 
to the computing curriculum, seeks to develop pupils’ programming skills as well as exploit these skills 
to explore key mathematical concepts. The SM curriculum comprises detailed student activities for 
about 20 hours per year over two years, with teacher support materials and professional development 
days. SM has been implemented in over 100 schools across England. The project was evaluated 
qualitatively through design, survey and observational research. In addition, SM was evaluated by an 
independent research team employing a randomised control trial. 

We will report a surprising result on the constructionist path from the RCT, namely that:  

ScratchMaths led to a small increase in computational thinking as measured by the test 
used at the end of the first year of the trial. (The independent report on SM project). 

This is surely good news for the constructionist community, not least as it was shown that this increase 
was significantly greater among ‘disadvantaged students’ as measured by their eligibility for free school 
meals (a standard proxy measure in UK).   We will have plenty to say about the substantive issues 
concerning this finding and the quantitative methods employed. While it is relatively straightforward to 
identify performance in clearly pre-defined skills, it is much more difficult to do the same for necessarily 
open questions: How does programming (in Scratch) engage students in ways that supports them see 
learning as worthwhile?  How do learners express themselves using Scratch? What can a Scratch-
aware learner do that he/she couldn’t have done without Scratch?’. And of course, what was meant by 
computational thinking. 

We will also report the second major finding of the SM project, namely that: 

…even though a positive correlation was found between computational thinking and 
mathematics, ScratchMaths did not increase mathematics attainment during the trial 
period, as measured by Key Stage 2 tests. (The independent report on SM project) 

Again, there is much to say to seek to explain this outcome: it raises questions again of the validity of 
the measures, but also of teacher confidence and the ‘fidelity’ of the intervention as implemented in the 
second year. this is a problem for researchers in the scientific as well as social domains. For example, 
medicine – routinely regarded as the arena in which the most rigorous research is carried out, the ‘gold 
standard’ for research methodology – is facing much the same challenge. For example, the Medical 
Research Council in the UK, acknowledges  that when dealing with complex interventions, one must be 
aware that complex interventions are built up from a number of components, which may act both 
independently and inter-dependently. The components usually include behaviours, parameters of 
behaviours (e.g. frequency, timing), and methods of organising and delivering those behaviours (e.g. 
type(s) of practitioner, setting and location). It is not easy precisely to define the “active ingredients” of 
a complex intervention. (Medical Research Council, UK April 2000.) 

Educational interventions are certainly no less complex than this. So even before we reach the problem 
of knowledge and change, we have to admit that it is difficult to be clear what are the key components 



Constructionism 2018, Vilnius, Lithuania 

70 

 

of a given complex intervention. In conclusion, we admit to be quite surprised at the above outcomes, 
they give us all we think food for thought and we note we would have missed them if we had closed the 
door on methodologies that have, up to now, been relatively taboo in constructionist circles.  

Keywords 
Scratch; computational thinking; mathematics; methodology; randomised control trial 

References 

Benton, L. Hoyles, C., Kalas, I & Noss, R. (2017) Bridging Primary Programming and Mathematics: 
preliminary findings of design research in England   Digital Experiences in Mathematics Education, pp 
1- 24  

Benton, L. Kalas, I; Saunders, P; Hoyles, C; Noss, R. (in press)  Beyond Jam Sandwiches and Cups of 
Tea: An Exploration of Primary Pupils’ Algorithm-Evaluation Strategies" J of Computer Assisted 
Learning  

  



Constructionism 2018, Vilnius, Lithuania 

71 

 

Programming in Lower Primary Years: Design 
Principles and Powerful Ideas 

Ivan Kalaš, kalas@fmph.uniba.sk 
Comenius University, Bratislava, Slovakia  

Abstract 

Latest national computing education strategies – often installing the beginning of the new mandatory 
subject into the lowest years of primary education – embrace programming as a key instrument of 
computational thinking. National curricula usually set ambitious requirements for primary computing 
education, listing essential computational constructs and practices to be mastered by primary pupils 
(e.g. use sequence, selection, and repetition in programs; or design, write and debug programs that 
accomplish specific goals...). While the research findings within our recent ScratchMaths project 
suggest that the intervention which we developed is a viable strategy to meet the expectations of 
national curricula in years 5 and 6, the question remains how to implement them in years 1 to 4 (i.e. 
with the age group of around 5 to 10, depending on educational system). 

There are numerous portals and on-line resources claiming to have the answer to that question. Our 
main concern, however, is that those resources and the expertise behind them often originate from 
after-school experience, secondary or higher education practise or individualised home “edutainment” 
– focusing on isolated flashes of learning, often neglecting complexity of important basic computational 
constructs and practices, plus failing of advantages of primary education. 

In our on-going research and development, we strive to better understand what distinguishes after-
school programming environments and approaches (in the code.org style) from systematic and 
appropriate pedagogies for lower primary computing. In my plenary I will present our emerging approach 
for transforming so called “basic” computational constructs into thoroughly constructed and iteratively 
verified gradation of short units of tasks which the pairs of pupils – and then the entire class – try to 
explore and solve, envisage and discuss, compare, share and explain, exploiting the 5Es pedagogical 
framework of the ScratchMaths project. I will give reasons for our decision to develop new set of 
programming environments and I will formulate our key design principles and explain which powerful 
ideas we want pupils to experience and explore so that they get the opportunity to gradually build deep 
understanding of essential computational constructs and practices in appropriate progression. 

Keywords 

primary programming; programming environments for primary pupils; developmental appropriateness 

1 Background 

Latest national computing education strategies – often installing the beginning of new mandatory subject 
into the lowest years of primary stages9 – embrace programming as a key instrument of computational 
thinking. Renewed national curricula usually set ambitious requirements for primary computing 
education, listing essential computational concepts, procedures and processes to be mastered by 
primary pupils (e.g. understand the concept of abstraction, logic, algorithms and data representation…, 
use sequence, selection, and repetition in programs;… design, write and debug programs that 
accomplish specific goals... etc.). Besides that, new national strategies also emphasise building 
productive connections between computing and other subjects, mathematics in particular. Naturally, 
new situation increases demand for new learning content and interventions – systematic, complex and 
consistent, and new programming tools – inspiring and powerful yet developmentally appropriate for 

                                                
9 in some countries starting at the age of 6 or 7, in some others at 5 or even 4 



Constructionism 2018, Vilnius, Lithuania 

72 

 

pupils and the needs of formal education. For years 5 and 610, Scratch (Maloney et al., 2010) is 
considered to be such environment, with functionality and affordances which inspire educators, 
researchers and developers to exploit it as a new means for cultivating computational thinking and 
contributing to the development of mathematical thinking as well. 

This is exactly the trajectory we have recently followed in the UCL IoE ScratchMaths project, however, 
while our research findings in the ScratchMaths project (see Benton et al, 2016; 2017, 2018a; 2018b; 
Kalaš, Benton, 2017) suggest that the intervention we developed might be a viable answer to meet the 
requirements of national curricula for years 5 and 6, the question remains open how to implement these 
requirements in years 1 to 4 (i.e. approximately with the age group of 5 to 10, depending on different 
educational systems). 

2 Analysis 

Indeed, years 1 to 4 of the primary education are a real challenge for researchers and educators in the 
field of computing. While there are numerous portals and on-line resources addressing that challenge, 
our main concern is that those resources – and the expertise behind them – often originate from after-
school experience, secondary or higher education practise or individualised home “edutainment”, 
focusing on isolated flashes of learning, exploring bits and pieces of computer science essentials in 
unspecified order, often neglecting complexity of important basic computational constructs, failing most 
of advantages of primary learning environment and lacking consistent curriculum design and complex 
pedagogical framework. 

That is why we have recently focused on lower primary years and set out for studying cognitive 
difficulties of computational constructs11 which are traditionally considered essential, easy, and thus 
appropriate for that age group. In doing so we are encouraged by the authorities of 70s, 80s and 90s, 
referring here e.g. to Papert (1980), Pea (1985) or Perlman (1976) who observed ... children becoming 
overwhelmed when introduced to multiple new concepts… through her Tortis Slot Machine system. 
Inspired by those observations she started considering the cognitive difficulties behind some aspects of 
programming (see Morgado et al., 2006, p. 4). More recent research literature – if focused at the lower 
primary age group – often studies the potential of programming in the context of teaching mathematics 
(see e.g. Clements, 2002; or Lewis and Shah, 2012). Those that explicitely study the development of 
programming and computational thinking in the lower primary age group, like (Futschek and Moschitz, 
2011), (Touloupaki et al., 2018), (Wilson et al., 2013) or our own earlier research (Moravčík and Kalaš, 
2012), are still very rare. 

Let us note however that it is not possible to study cognitive demand and appropriateness of any 
computational constructs without selecting a programming tool or designing and developing one, and 
in paralel with studying the constructs also study the relevance of that tool for the age group of our 
interest. Therefore we conducted an analysis of existing programming tools and environments12 in which 
we decided to identify and exclude from the consideration: 

 tools which we regard as ‘closed programming quizzes and puzzles’13, 

 tools which support computational constructs that we a priori consider too complex or 
inconsistent for the lower primary age group, 

                                                
10 that is, for pupils of the age group around 9 to 11 – in some countries last years of primary (ISCED 1), in others first years of lower secondary 
(ISCED 2) 
11 As explained in (Kalas, Benton, 2018), we prefer to think about computational constructs rather than computational concepts. In our 
understanding, computational constructs comprise computational concepts (like procedural abstraction, variable or iteration) and 
computational procedures associated with exploiting that concept, for example interpreting a sequence of commands, modifying it, 
transforming it by reducing some of its steps etc. 
12 we will report on that aspect of our work in depth elsewhere 
13 as aptly nicknamed in (Grizioti, Kynigos, 2018) 



Constructionism 2018, Vilnius, Lithuania 

73 

 

 tools which do not accommodate with our conception of appropriate constructivist pedagogy of 
programming14 for the lower primary years, nor allow to serve the whole and systematic learning 
process, 

 tools which do not comply with our technical requirements15. 

As this selection process excluded all tools presently known to us, we decided to design and develop a 
new programming enviroment (in fact, a compound interface with several closely connected 
environments or microworlds arranged in a gradation) for primary years 3 and 4 (i.e. for the age group 
of app. 8 to 10). 

3 Method 

In summer 2017 we started the development of Emil, a virtual robot-like character, positioning the 
intervention into the ‘middle‘ of the lower primary years – to win more flexibility for later possible 
alterations and fine-tuning. At present (summer 2018) we have completed the development of the 
content and programming tools for year 3. It is designed for about 12 lessons; however, several activities 
may easily be expanded, based on the learning goals, erudition and experience of the teacher16. Also, 
we have already launched parallel development for all other years of lower primary computing education 
– addressing pupils aged 5 to 10. 

The interventions for years 1, 2 and 3 are being inspired by our previous development of Thomas the 
Clown, see Moravčík, Kalaš (2012), enriched with our recent experience from ScratchMaths project, 
Emil development and all other valuable experience gained in the recent years. The plan is to develop 
and support around 10+ programming lessons per year, supported by three or four new programming 
environments (to be designed and developed by our team in the next 18 months). All lessons (and 
programming environments) will acknowledge our understanding of the role of programming as an 
instrument for learning by exploring and solving problems. Thus, the whole intervention will offer rich 
connections (bridges) to other subjects and areas. 

In parallel with this we continue the development of Emil for year 4: The plan is to build year 4 (i.e. pre-
Scratch) programming intervention of 16 to 20 lessons, where most of the lessons will address multiple 
components of the new computing curricula17. In Emil year 4 intervention we plan to create more 
opportunities for open constructionist learning by designing one of the environments as open (although 
restricted) programming tool. 

Emil intervention for year 3 includes: 

 three programming applications or microworlds, 

 gradations of thoroughly designed units of tasks, sometimes with one solution, with no solution 
or several ‘possibly good’ solutions – so that important discussions are being ignited to consider 
arguments for or against pupils’ strategies. All tasks themselves are open for informed content 
developer and thus may be either rebuilt or redesigned18 to fit the specific needs, 

 a workbook for pupils with series of worksheets to use in the lesson and other tasks to solve as 
extra activities or as homework, 

 teacher materials of (a) basic and (b) advanced levels (where basic materials are designed for 
teachers implementing our interventions for the first time), 

                                                
14 for example, with the possibility to first build the need for a computational construct, and then discover it by oneself, thus constructing its 
understanding 
15 which are multi-platform application, with offline and/or online versions 
16 Recently one of our design teachers commented one of the tasks as being rich enough to be extended to a full lesson – of mathematics – 
by itself. This matches our plans and we expect teachers to make similar transformations by themselves – into mathematics, traffic education, 
art and design, technology etc. We also want to stimulate natural and self-motivated extensions to after school activities and explorations at 
home.  
17 speaking from the broad international point of view, see e.g. Webb et al. (2018) 
18 although we do not expect teachers to develop their own tasks or modify the ones we designed and trialed for them 



Constructionism 2018, Vilnius, Lithuania 

74 

 

 strategy and content for the professional development, and 

 some supplement tools and materials to support additional activities. 

In the project we apply the design research strategy (as presented e.g. in Nieveen, Folmer, E. 2013), 
proceeding in numerous short iterations. We closely collaborate with three design schools and five of 
their classes. These schools represent wide range of schools in Slovakia, including a modern big state 
school in a small town, a school belonging to a network of schools governed by a church, and a small 
and new private modern constructivist school. Regular visits to the classes inform our development by 
(a) observations – after several initial months when each lesson was conducted by a member of our 
team we completely handed the teaching process over to the generalist class teachers themselves, (b) 
talking to pupils (in the lesson) and teachers (after the lesson), and (c) by collecting and analysing pupils’ 
worksheets – as we use one or two worksheets in every lesson as we want pupils to: 

(I) record their work, sometimes developing their own notations for that, 

(II) read the assignments from the paper (sometimes these are given in the screen, sometimes only 
in the worksheets), 

(III) design and share similar tasks for their classmates etc. 

We also use some extra worksheets to be solved by the pupils after the lesson to assess their 
achievement. Figure 1 illustrates a task from such worksheet. The scene on the left shows the situation 
and a plan (a program) for Emil’s next journey. He will fly over the coins and buttons, on his way 
collecting everything into a box (as if he was ‘buying’ buttons). Pupils are to choose one of three possible 
outcomes of that journey. Note that solving this problem means reading a plan and interpreting it, 
considering dynamically changing situation in the scene: when flying from position marked with 3 to 4 
Emil will collect two coins and only two buttons as one of the three in the line will have been collected 
already. 

In our visits to schools we pay special attention to the wording of the assignments, as we often observe 
that pupils are not sure what to do even if we think we managed to post the task in a very simple and 
straightforward way. 

Pupils are always working in pairs, which for the most of our schools is rather uncommon scheme of 
work. Traditional „lecturing“ is still a frequent form of teaching – even in primary school, therefore 
teachers were – at the beginning of our collaboration – often uncertain about the pedagogy, in which 
there is no space for lecturing, pupils work in pairs (but in parallel individually fill in their worksheets) 
and every now and then are invited to meet on the carpet with the worksheets in their hands to discuss 
the tasks (at least once for each unit of tasks). The focus of our teacher materials is on what to discuss 
with the pupils and when. These common discussions play several important roles in our interventions: 

 pupils learn from each other by explaining and comparing their solutions, and listening to others, 

 pupils discover by themselves how important the worksheets are and the way they have 
recorded their solutions as they later use those histories to argue and discuss their results and 
strategies19, 

 by asking the questions and organizing the discussion with demonstrations (usually by the pupils 
themselves) using the teacher laptop projected on the screen, teacher has important opportunity 
to assess the group and everyone’s achievement. 

                                                
19 They started writing down the movements (commands) of Emil even before we proceeded from the direct drive style of control to 
computational control (programming). We study different level of control in (Kalaš, Blaho, Moravčík, 2018). 



Constructionism 2018, Vilnius, Lithuania 

75 

 

  

Figure 1. Emil is going to ‘buy’ buttons again. Check the box to show which shopping Emil 

will get if he follows the plan as indicated on the left? 

Note that our programming environments do not give any feedback to pupils – a big surprise for them 
and their teachers at the beginning. Instead, we encourage the pairs – and then the whole group – to 
discuss each solution and decide whether they deem their solution correct. Note also that some of the 
tasks have several solutions, sometimes disputable ‘could be solutions’, sometimes no solution at all – 
situations which are surprising and very rare in our schools. Our observations prove however that after 
one or two lessons this approach is smoothly accepted both by the pupils and the teachers. 

4 Findings so far 

The strategy of short and frequent iterations in our design research has helped us move from mostly 
experience- and intuition-based development to more systematic design and better understanding of 
what the basics of primary programming comprise. While we agreed on several design principles from 
the beginning of the development for year 3, some others have appeared and crystallised later in the 
process. At present we can briefly formulate our design principles as follows:  

i. the intervention must be an opportunity and formative experience for every pupil in the class, 
clearly illustrating the perception of programming as an instrument for exploring the world, 
experiencing powerful ideas20, and controlling an agent, in harmony with what Ackermann (2012) 
identified as the most appealing role of programming for very young children, 

ii. the learning process must be structured into gradations of units of a small number of tasks (4 to 
6, as we see it now). The lead principle of this organisation must be a coherent arrangement of 
computational constructs structured by the increasing cognitive demand (as advocated e.g. by 
Perlman, 1976). These steps of increasing complexity must be small and intuitive21,  

iii. the tasks should exploit natural intrinsic motivation of pupils, the tasks and programming tools 
must be developmentally appropriate, 

iv. the pupils work in pairs, but individually fill in their worksheets, 

v. there is no space for lecturing, the whole learning process is implemented by pairs of pupils 
collaboratively solving the tasks, then the whole group discussions (explaining, reading, 
demonstrating, arguing, listening…) about the solutions and problems22 – scaffolded by the 
teacher, 

                                                
20 For the origin of the concept of powerful ideas in learning, see (Papert, 1980) but consider also Kay’s recent definition from the Thinking 
about Thinking about Seymour symposium in 2017: An idea is powerful if it changes the context in which we think. 
21 not requesting any additional explanations 
22 Beside our own observations of this principle in the design schools, we are also supported by literature: Harel and Papert (1990) highlight 
the cognitive benefit of generating verbal explanations, which helps to clarify ideas. Noss and Hoyles (1996) assume that the process of 
reflection and explicit articulation required to generate these explanations is a key part of the constructionist learning. 



Constructionism 2018, Vilnius, Lithuania 

76 

 

vi. the programming environments give no explicit feedback other than – in the computational 
control stage of the work – running the program and showing each step of Emil in the screen, 
thus displaying the final state of the process23, 

vii. the intervention should be delivered by the generalist class teacher, rather than engaging a 
computing specialist. Why is this principle so important for us in the primary education? We 
believe that the intervention must be accepted by the teacher and integrated in the whole 
learning process of the pupils, making explicit connections and bridges to all other subjects 
whenever possible and productive. We find this – at this stage of school – more important than 
having a formal computing education.  

Recent revisions of several national curricula set ambitious requirements for primary computing 
education, listing essential constructs and practices to be mastered by primary pupils. Whether those 
practices and constructs are developmentally appropriate for lower primary years, how to interpret them 
and how to arrange the intervention so that it helps pupils ‘discover’ them by themselves in a true 
constructivist way remains the hardest and most crucial question. 

 

a 

b 

 
c 

 

 

 

Figure 2. When pupils directly control Emil in the scene to solve a problem (the task here is: Light all 
houses and come to the blooming cherry tree) by clicking or touching the commands, a record of the 

steps is automatically collected in the panel above the scene (illustrated by a). However, the panel has 
limited number of positions thus the length is a real issue. Later in the succession, identical cards are 

cumulated into ‘piles’ (see b above), thus “saving” more positions in the panel. Then pupils start to 
notice repeating pairs of cards and start connecting and cumulating them up into piles of ‘double cards’ 

or ‘triple cards’ (see c above). 

In our experience, the complexity of so called ‘basic’ computational constructs24 is often trivialised, or 
even not recognized nor properly understood. That is the reason why the most important design 
principle for us is to discover and respect their complexity and identify possible gradations of ‘micro 
steps’ leading to their deep and sustainable understanding. In Emil year 3 intervention we mostly focus 
on three such constructs, namely sequence (or more broadly, order), pre-constructs25 of repetition and 
pre-constructs of abstraction. Figure 2 illustrates (in a simplistic way) some of the steps leading to 
discovering the construct of simple repetition (note however that the process of full understanding and 
adopting of this construct will continue into higher years of primary and lower secondary education). 

Beside the design principles we are also constantly trying to clarify and reformulate the powerful ideas 
of computing which pupils are experiencing while solving the tasks. Towards the end of the first year of 
our iterative design and assessment of the environments in the design schools we identify the key 
powerful ideas of the Emil year 3 intervention as follows: 

                                                
23 explicit feedback, however, would mean that the application itself evaluated the final state and communicated to the user whether the solution 
was correct or not 
24 i.e. concepts and related procedures 
25 by pre-concepts or pre-constructs, we mean thoroughly identified simple ideas or an ‘atomic’ operation which in small steps cumulatively 
and gradually lead to deep understanding of the concept or the procedure connected with that concept 



Constructionism 2018, Vilnius, Lithuania 

77 

 

Experiencing order 

Pupils start discovering the order in things by collecting the items from the scene either into a box (i.e. 
a container with no internal order) or in a shelf (i.e. a container with explicit order from left to right) – by 
indirectly manipulating26 Emil. Later, when the level of control gets to higher levels, every command is 
recorded in the panel above the scene27. Thus, pupils start perceiving and discussing the order in steps 
(of a process) as well. The other form of order present in many tasks is the inherent order of the items 
themselves, as with numbers or letters. Throughout the whole year 3 intervention we then cultivate the 
sense of order by recognizing, building, reading and discussing different patterns in data and in 
programs, i.e. in external records of steps or in external plans for future steps. 

Coping with constraints 

Pupils encounter several kinds of constraints, static and dynamic, implicit and explicit, such as (a) 
constraints in driving Emil – where to click, which command can be applied, how many clicks or 
commands can be run etc.; (b) constraints in the stage where objects serve as static or dynamic 
obstacles28 (collect all coins but nothing else…) or later in the succession when one position cannot be 
clicked twice; (c) constraints in the box (collect only …, how many buttons will Emil get if he runs a given 
program etc.); (d) constraints in the shelf where some positions have predefined content, or when the 
order of items to be collected is bound by a rule (collect some ‘good’ words…, collect a repeating pattern 
of apples and pears…); or (e) constraints in the panel with program when pupils are limited by a 
restricted number of steps (or piles of steps as illustrated in Figure 2). 

Learning to control 

In (Kalas, 2016) we referred to three levels of control in educational primary programming: direct 
manipulation, direct control and computational control (i.e. when the steps to be taken by an actor are 
all planned in advance), in a way related to increasing “distance” between an actor to be controlled and 
a pupil to control it. In our current design research, however, we have identified one more level – indirect 
manipulation, sitting between direct manipulation and direct control in the hierarchy. Pupils exploit this 
level of control when they cannot drag or click Emil but can click somewhere else in the scene to make 
him move there – if such move is possible.  

Besides, we have also realized that the levels of control must be studied in relation with the way the 
record of these steps or the plan of the steps is represented, see Figure 3. This two-dimensional 
categorisation of control provides more complex instrument for designing and analysing tasks and 
progressions of pupils. We discuss these aspects of control in more detail in (Kalas, Blaho, Moravčík, 
2018). 

Learning to think with program, learning to think about program 

Programs – first as records of the steps being taken, later also as plans for future steps (future 
behaviours) – become the objects to think with and think about in the course of Emil year 3 intervention. 
Pupils learn to read them, analyse and compare, modify, match and simplify, they learn to discuss and 
think about their properties and structure – in activities of Emil, in common discussions or in the 
unplugged tasks in the workbook. Our goal is to build pupils’ (and teachers’) perception of a program 
as an object which represents certain process and is an interesting object to work with, an instrument 
to explore a problem, experience and share an idea, or create a product. 

Learning to create and abstract 

In Emil the Artist, the last of the three environments in year 3 intervention, pupils create different visual 
patterns, repeating textile motifs or other regular geometric structures. It serves as an opportunity for 
them to build several elementary compositions, then abstract from the details and plan massive 

                                                
26 the reader will find the explanation of this category of control later in this paper 
27 see a, b and c in Figure 2 
28 Think of pupils interpreting (i.e. reading and envisaging) Emil’s move from mark 3 to 4 in Figurer 1: will the button in the middle column be 
still there? 



Constructionism 2018, Vilnius, Lithuania 

78 

 

repetitions and combinations of those bits. We consider this to be a workshop for preliminary steps that 
will later lead to the construct of user defined procedures and infinite and conditional iteration. 

  

Figure 3. The task on the left: For sleeping Emil plan a journey to collect all 0’s (and no 1’s) in no more 
than six clicks. Then wake Emil up to run your plan. (In the picture the solution – a plan – is already 
shown as well.) When this task is analysed within our two-dimensional categorisation of control we 
arrive at computational control where the program is represented as an internal plan (i.e. inside the 

scene, not externally as a sequence of explicit commands). 

5 Discussion and conclusion 

Increased interest in primary programming creates enormous need for better understanding primary 
programming as a complex phenomenon comprised of properly selected educational objectives, 
computational constructs (or sometimes pre-constructs) and practices, programming environment(s), 
and systematic learning content with properly developed pedagogies – suitably delivered to primary 
teachers. All of these must be studied in parallel as they are interconnected in multifold ways. 

As we decided in our project to contribute to deeper understanding of the complexity of elementary 
computational constructs at the level of lower primary, we need to be in possession of an adequate 
programming tool. As we failed to identify such tool we set out for designing and developing one. This 
demanding but productive constellation is giving us unique opportunity to get deeper in studying the 
computational constructs by designing and developing new programming environments and, in parallel, 
design and implement appropriate programming environments by studying the learning processes of 
pupils when building their understanding of the elementary computational constructs, exemplary 
citcumstances for adopting design research strategy. We believe that this situation provides us also 
with valuable opportunity to design modern computing programme of study for lower primary education 
and thus support systematic and sustainable learning processes in primary programming29 – something 
rather new and much needed in the primary school. 

Our design and development is continuously informed by frequent small assessment probes composed 
of a selection of tasks. These are the tasks included in the learning gradation, but also some additional 
assessment tasks we prepare for teachers and pupils. The assessment task of Figure 1, for example, 
contains a program represented as an internal plan of moves (i.e. moves indicated inside the scene). 
Pupils were asked (working individually this time) to identify the box of buttons and coins which will 
result from Emil running given program. In the class of 21, four pupils wrongly marked the third 
alternative, probably failing to notice that the button in the second row, third column will have already 
been collected when Emil later moves from mark 3 to 4. All other 17 pupils correctly identified the first 
alternative as the correct result. Such small probes – regularly inserted into our design and assessment 

                                                
29 inspired e.g. by complexity and consistency of the mathematics programmes of study 



Constructionism 2018, Vilnius, Lithuania 

79 

 

iterations – help us observe and understand the progression of each pupil in the group and about the 
developmental appropriateness of the units of tasks as well. 

Naturally, this is the point where deeper research must start. We believe that programming 
environments which are already resulting from the project, will provide interesting instrument for a follow-
up systematic research of the complexity of primary programming. 

Acknowledgements 

First, I would like to thank other core members of our Emil project team, Andrej Blaho and Milan 
Moravčík. I am also grateful to Indicia, npo. for funding this work. Finally, I want to thank the pupils and 
teachers from our Slovak design schools for their dedication, hard work, enthusiasm for programming 
with Emil and continued engagement with our team throughout the project. 

References 

Ackermann, E. K. (2012) Programming for the natives: What is it? What’s in it for the kids? Child 
Research Net, Japan 

Benton, L., Hoyles, C., Noss, R., Kalas, I. (2016) Building Mathematical Knowledge with programming: 
Insights from the ScratchMaths project. In: Proceedings of the Constructionism in Action: 
Constructionism, 2016. Suksapattana Foundation, Bangkok, pp. 26-33 

Benton, L., Hoyles, C., Kalas, I., Noss, R. (2017) Bridging primary programming and mathematics: 
Some Findings of Design Research in England. Digital Experiences in Mathematics Education, August 
2017, Vol 3(2), doi: 10.1007/s40751-017-0028-x, pp. 115-138 

Benton, L., Saunders, P., Kalas, I., Hoyles, C., Noss, R. (2018a) Designing for learning mathematics 
through programming: A case study of pupils engaging with place value. Int. J. of Child-Computer 
Interaction. Vol 16, June 2018, doi: 10.1016/j.ijcci.2017.12.004, pp. 68-76  

Benton, L., Kalas, I., Saunders, P., Hoyles, C., Noss, R. (2018b) Beyond Jam Sandwiches and Cups of 
Tea: An Exploration of Primary Pupils’ Algorithm-Evaluation Strategies. Journal of Computer Assisted 
Learning. doi: 10.1111/jcal.12266. 

Blackwell, A. F. (2002) What is Programming? In 14th Workshop of the Psychology of Programming 
Interest Group, pp. 204-218 

Clements, D. H. (2002) Computers in early childhood mathematics. Contemporary issues in early 
childhood, 3, 2 (2002), pp. 160-181 

Futschek, G., Moschitz, J. (2011) Learning Algorithmic Thinking with Tangible Objects Eases Transition 
to Computer Programming. In: Kalaš I., Mittermeir R.T. (eds) Informatics in Schools. Contributing to 
21st Century Education. ISSEP 2011. Lecture Notes in Computer Science, vol 7013. Springer, Berlin, 
Heidelberg, pp. 155-164. 

Grizioti,M., Kynigos, Ch. (2018) Programming approaches to computational thinking: Integrating turtle 
geometry, dynamic manipulation and 3D space. In: Proceedings of the Constructionism 2018. Vilnius 

Harel, I., Papert, S. (1990) Software design as a learning environment. Interactive Learning 
Environments, 1, pp. 132 

Kalaš, I. (2016) On the road to sustainable primary programming. In: Proceedings of the 
Constructionism in Action: Constructionism, 2016. Suksapattana Foundation, Bangkok, pp. 184-191 

Kalaš I., Benton L. (2017) Defining Procedures in Early Computing Education. In: Tatnall A., Webb 
M. (eds) Tomorrow's Learning: Involving Everyone. Learning with and about Technologies and 
Computing. WCCE 2017. IFIP Advances in Information and Communication Technology, vol 515. 
Springer, Cham. doi: 10.1007/978-3-319-74310-3_57 

Kalaš, I., Blaho, A., Moravčík, M. (2018) Exploring Control in Early Computing Education. Submitted to 
ISSEP 2018, Saint-Petersburg 



Constructionism 2018, Vilnius, Lithuania 

80 

 

Lewis, C. M., Shah, N. (2012) Building upon and enriching grade four mathematics standards with 
programming curriculum. In: Proceedings of the 43rd ACM technical symposium on Computer Science 
Education, ACM, Releigh, North Carolina 

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010) The Scratch Programming 
Language and Environment. ACM Trans. Comput. Educ. 10(4)(2010), pp. 137-146 

Meerbaum-Salant, O., Armoni, M., Ben-Ari, M. M. (2013) Learning computer science cocepts with 
Scratch. Computer Science Education, Vol 23 (3), pp. 239-264 

Moravčík, M., Kalaš, I. (2012) Developing software for early childhood education. In Addressing 
educational challenges: the role of ICT. IFIP Working Conference, Manchester, MMU, 12 p. [CD-ROM] 

Morgado, L., Cruz, M., Kahn, K. (2006) Radia Perlman – A pioneer of young children computer 
programming. Current Developments in Technology-Assisted Education. Formatex, pp.1903-1908. 

Nieveen, N., Folmer, E. (2013) Formative Evaluation in Educational Design Research. In: Plomp, T., 
Nieveen, N.: Educational design research. SLO – Netherlands institute for curriculum development: pp. 
152-169 

Noss, R., Hoyles, C. (1996) Windows on Mathematical Meanings: Learning Cultures and Computers. 
Kluwer Academic Publishers, 275 p 

Pea, R.D. et al. (1985). Logo and the Development of Thinking Skills. In M. Chen and W. Paisley (Eds.) 
Children and Microcomputers: Research on the Newest Medium. Sage, pp. 193-212. 

Papert, S. (1980). Mindstorms. Children, Computers, and Powerful Ideas. Basic Books, New York, 230 
p 

Perlman, R. (1976). Using Computer Technology To Provide A Creative Learning Environment For 
Preschool Children. AI Memo 360, MIT, 32 p 

Touloupaki, S., Baron, G.-L., Komis, V. (2018). Un apprentissage de la programmation des l’ecole 
primaire: le concept de message sur ScratchJr. In Parriaux, G., Pellet, J.-P., Baron, G.-L., Komis, V. 
(eds.): De 0 a 1 ou l’informatique a l’ecole. Actes du colloque Didapro 7 – DidaSTIC, Lausanne 2018. 
Peter Lang, Bern, pp. 303-323 

Webb, M. E., Bell, T., Davis, N., Katz, Y. J., Fluck, A., Sysło, M. M., Kalaš, I., Cox, M., Angeli, C., Malyn-
Smith, J., Brinda, T., Micheuz, P., Brodnik, A. (2018). Tensions in specifying computing curricula for K-
12: Towards a principled approach for objectives. IT – Information Technology, Vol 60 (2), pp. 59-68, 
doi: 10.1515/itit-2017-0017 

Wilson, A., Hainey, T., Connoly, T.M. (2013) Using Scratch with Primary School Children: An Evaluation 
of Games Constructed to Gauge Understanding of Programming Concepts. Int J of Game-Based 
Learning, Vol 3(1), doi: 10.4018/ijgbl.2013010107 

  



Constructionism 2018, Vilnius, Lithuania 

81 

 

In Support of Integrated Approaches to 
Constructionist Designs and Interventions: The 
Case of ChoiCo and MaLT 

Chronis Kynigos, Kynigos@ppp.uoa.gr  
National and Kapodistrian University of Athens, Educational Technology Lab School of Philosophy, 
P.P.P. Dept, Greece 

Abstract 
Constructionism is now a 50 year-old theory of learning, a theory of educational design and a framework 
for pedagogical action. In this time, society, educational challenges and the abundance of digital media 
have brought a diversity of frames, focal points, viewpoints and interventions. In many places silo 
constructionist perspectives are seen as obsolete or at best ultimate frames for meaning-making 
through individual and social bricolage. In my talk I will argue for perspectives integrating 
constructionism in a wider landscape of educational paradigms, theories, affordances and intervention 
strategies. I will do this by showing what students and teachers have built with two web-based 
constructionist expressive media, one very different to the other,  MaLT – turtle sphere and 'Choices 
with consequences' games (ChoiCo). In my context these are proving to be powerful means for a 
proximal approach to infusing constructionist perspectives in wide scale initiatives.  

      

 

MALT2 - programming, 3D, Dynamic Manipulation, http://etl.ppp.uoa.gr/malt2. ChoiCo: GIS, Programming, BD, 
http://etl.ppp.uoa.gr/choico 

MALT is a Logo programmable 3D simulator including Turtle Graphics and most importantly dynamic 
manipulation of variable values with DGS - like effects on the graphical output from variable procedures. 
ChoiCo is a tool for game modding, supporting a socio-scientific paradigm of diverse consequences 
games involving complex issues like dietary choices or environmental issues and embedding powerful 
ideas in various ways. The examples will show how avenues for powerful ideas uniquely made available 
and embedded in multifaceted issues present exciting challenges for design.  

Keywords 
Integrations; affordances; educational paradigms; programming  

http://etl.ppp.uoa.gr/malt2


Constructionism 2018, Vilnius, Lithuania 

82 

 

 Bones, Gears and Witchcraft 

Jens Mönig, jens@moenig.org 
Principle Investigator SAP, Germany 

Abstract 
Who doesn't like a good story? I never get tired playing with stories kids animate with Scratch or Snap! 
To me, storytelling is at the heart of the current digital literacy movement. But it's not just about kids. 
I've been surprised by the culture of storytelling nurtured in big industrial companies. Designing the right 
story can be crucial for a project, a program or a promotion. The opposite is also true: The wrong story 
has the ability to compromise funding and even thwart a career. And then there are stories that convince 
for all the wrong reasons, and success that feels like defeat. 

I will share a few of my stories for children, corporate management and government officials. Among 
them, how Katharina Kepler's witchcraft trial has been a turning point for computing, and how machine 
learning can be used to illustrate a business proposal, before examining a particular terrible instance of 
constructionism gone wrong in the German state of Baden-Württemberg. Expecting this to spark some 
controversy I will close by opening up a discussion with the audience about favorite stories, inviting 
examples of "good" and " bad" specimens.. 

Keywords 
Scratch; Snap!; ldigital literacy 

  



Constructionism 2018, Vilnius, Lithuania 

83 

 

Constructionist Experiences for Mathematics 
Across Educational Levels 

Ana Isabel Sacristán, asacrist@cinvestav.mx 
Centre for Research and Advanced Studies, Cinvestav, Mexico 

Abstract  
Constructionism, in the research literature, is seen predominately in contexts where it is used as a 
paradigm for promoting learning at K-12 levels. However, it can apply at all levels, as well as connect 
levels. In this paper I deal with the issue of classroom implementations for mathematical learning of 
constructionist experiences at different educational levels, but with particular focus on higher education 
implementations. I begin by revisiting some of the fundamental principles of constructionism. Then, I 
look briefly at how constructionism can provide early access to powerful ideas; that is, where younger 
learners can access mathematical ideas perceived as more advanced. For that, I mention my work in 
the design of two different microworlds that enabled young students to explore and engage with 
mathematical infinity-related ideas. 

I then share  some of my experiences in several attempts of constructionist implementations and 
microworlds for mathematical learning at university level. I present two examples that involved building 
and exploring computer models and simulations of real phenomena: the first in a distance-learning 
course conducted as a virtual mathematics laboratory; the second, of videogame construction by 
engineering students (see figure below). A third example is of computer programming R-based tasks 
for the learning of statistics in environmental science students. I finish by presenting a fourth example 
from a university in Canada where mathematics university students are required to program digital 
mathematical exploratory objects or microworlds. In all the examples presented, students engage in 
constructing models or programs, and in doing so, engage in doing mathematics. 

 

 

 

A students’ videogame (left), with his table of physical characteristics of the objects involved (top-right) that he 
would need to program into the game engine (bottom-right). 

Keywords 
Constructionism; computer programming and expressive media; collaborative learning; modelling; 
higher education.  

Introduction 

Since the 1980s, there have been many projects attempting to implement the constructionist paradigm 
in schools, in order to enhance mathematical learning. Most of the first ones were based on Logo 



Constructionism 2018, Vilnius, Lithuania 

84 

 

programming, and were at primary or middle-school levels. There have been, however, fewer 
constructionist implementations for mathematical learning at university level reported in the literature, 
relative to those reported at the K-12 levels, despite: several excellent proposals for college of quite 
advanced mathematical discovery ideas with Logo –e.g. as in Abelson & diSessa’s (1986), Turtle 
Geometry–; some of the work of members of the Center for Connected Learning and Computer-Based 
Modeling (http://ccl.northwestern.edu), particularly related to concepts such as proof or probability (e.g. 
Wilensky, 1993 & 1995) or for STEM learning using NetLogo; and some advocates for rethinking 
university education through technology-enhanced learning and collaboration (e.g. Laurillard, 2002). 
Why the lack of constructionist implementations in higher education, is beyond the scope of this paper, 
although it is clear that implementing constructionist exploratory learning environments in school 
cultures has been problematic and complex, as has been discussed elsewhere (e.g. by Laurillard, 
2002). 

In this paper, I would like to present some examples of constructionist experiences and implementations 
in which I have been involved. The first examples are meant to illustrate how constructionism can help 
bridge educational levels, by giving younger learners access to powerful and advanced mathematical 
ideas. In the second part, I focus on examples of constructionist implementations for mathematical 
learning in higher education. 

But first, I would like to begin by revisiting some of the main ideas of constructionism. 

Some fundamental ideas of constructionism, and the value of computer-based 
expressive activities 
The fundamental premise of the constructionist paradigm, as stated by Papert and Harel (1991), is that 
it shares “constructivism's connotation of learning as ‘building knowledge structures’ […] then [adds] the 
idea that this happens especially felicitously in a context where the learner is consciously engaged in 
constructing a public entity” (p. 1), that is, something shareable.  

In Papert’s (1980) vision, one particularly valuable means of achieving the above is in programming the 
computer because, in doing that, the student “establishes an intimate contact with some of the deepest 
ideas from science, from mathematics, and from the art of intellectual model building” (p. 5); and “in 
teaching the computer how to think, [students] embark on an exploration about how they themselves 
think” (p.19). Computer programming also involves debugging and, as Papert (1980) explained, errors 
are of benefit because they lead to the need to understand what went wrong, and through that 
understanding, to fix them.  

Papert’s theories of computer programming as a way for learners to engage in “Mathland”, was 
confirmed in a relatively recent study by Rich, Bly and Leatham (2014) which showed that programming 
and solving programming problems, can: provide a context for many abstract concepts; illustrate the 
distinction between understanding the application of mathematics in a specific situation, and the 
execution of a procedure; help divide complex problems into more manageable tasks; provide 
motivation and eliminate apprehension; and give context, application, structure and motivation for the 
study of mathematics. In fact, programming can be an engaging problem-solving activity where students 
can explore mathematics in different representations and generate and articulate mathematical 
relationships. Nevertheless, as has been learned, these programming activities need to be carefully 
designed and structured within a learning environment.  

In terms of learning environments, Papert (1980) first proposed that with the versatility of computers, 
one could create microworlds: “self-contained world[s], […] each with its own set of assumptions and 
constraints”, where learners “get to know what it is like to explore the properties of a chosen microworld 
undisturbed by extraneous questions [… and] learn to transfer habits of exploration from their personal 
lives to the formal domain of scientific theory construction” (p.117). He called these incubators for 
knowledge and powerful ideas; “places” where these ideas (including certain kinds of mathematical 
thinking) can easily hatch and grow. Moreover, Papert (1980) placed emphasis on the entire learning 
culture (a different kind of culture) conceiving educators as support for learners to build their own 
intellectual structures; creating conditions for construction and invention (rather than providing ready-
made knowledge), giving students objects-to-think and materials drawn from the surrounding culture, 

http://ccl.northwestern.edu/


Constructionism 2018, Vilnius, Lithuania 

85 

 

including “emotionally supportive working conditions [that] encourage them to keep going despite 
mathematical reticence” (p. 197), with students having creative and personally defined end-products 
that they can genuinely be excited about. Hoyles and Noss (1987) considered that microworlds had to 
be designed taking into account the characteristics of the specific learners; having a careful pedagogical 
design with materials (e.g. worksheets) and appropriate teacher interventions; and a social environment 
fostering collaboration and where products can be shared and discussed in small and whole groups.  

A way to summarise a constructionist learning environment (where the italicised words describe most 
of the main elements of constructionism) could be as: student-centred learning situations where 
students consciously engage in constructing (e.g., program) shareable, tangible objects,  through 
creative personally meaningful projects (e.g. computer-based) where they have objects-to-think-with, 
access/develop powerful ideas, and have opportunities for explorations, and thinking about their own 
thinking (analysing) through debugging (fixing).  

I consider that constructionist implementations ideally should have the following characteristics:  

 There has to be a medium (e.g. digital tools) for an exploratory and expressive activity (such as 
computer programming/coding, or building/describing models or structures using an expressive 
medium or software).  

 Students need to be actively involved and mostly in charge of their constructions and explorations.  
 Activities should take place within a structured microworld and collaborative learning environment 

with the characteristics described above. 
 

In the following sections, I present examples of projects in which I have been involved, that have fulfilled 
those characteristics. 

Constructionism across educational levels: Early access to 
powerful ideas 

Although my main focus, in this paper, is on tertiary educational level constructionist experiences, in the 
title of the paper I refer to experiences across educational levels because an important aspect of the 
constructionist philosophy is that the experiences and learning can transcend pre-established 
(institutional) and assumed educational hierarchies and categories, by enabling learners to access 
and/or develop powerful ideas. So I would like, therefore, to delve briefly into the idea of how learners 
can have early access to powerful ideas.  

Connectedness and webbing for enhancing mathematical meaning-making  

There are many examples of how, through constructionist approaches, advanced mathematical and 
scientific ideas can be made accessible to younger learners. As described above, Papert talked in terms 
of microworlds as incubators for powerful ideas. For example, many of the mathematical ideas 
presented in Abelson and diSessa’s (1986) Turtle Geometry book, although some are very advanced, 
are powerful ideas that become more accessible through their Logo-based explorations.  

Wilensky (1993) talked of “connected mathematics” where mathematical meanings are enriched by 
connecting ideas and representations; thus mathematical knowledge becomes more concrete (i.e. 
accessible) through the built relationships. His ideas were precursors to what Noss and Hoyles (1996) 
later called “webbing” where, from webs of familiar connections, further connections are built outwards 
along lines of one’s own interests, with “the presence of a structure that learners can draw upon and 
reconstruct for support – in ways that they choose as appropriate for their struggle to construct meaning 
for some mathematics” (p.108). It is through that scaffolding of microworlds or constructionist digital 
environments, that learners can more readily build connections and access powerful and advanced 
ideas. It is worth noting that Wilensky later expanded the “connected mathematics” to “connected 
learning”, in order to include all disciplines and, as I understand it, more forms of connectedness, such 
as connecting people in collaborative learning and through collaborative and networking technologies.  

In my past work, I have been involved in several projects where constructionism was used for early 
access to powerful ideas. Some were related to trigonometry and called the Painless Trigonometry 



Constructionism 2018, Vilnius, Lithuania 

86 

 

Projects, where students explored and used trigonometry in personally meaningful year-long school 
projects, in grades below those where most of the trigonometric ideas they used are first formally 
introduced (see Sacristán & Jiménez-Molotla (2012). Others projects, which I present next, related to 
mathematical infinity.  

Programming-based microworlds for creating meanings of the infinite 

The examples that I present here involve a couple of microworlds designed to make mathematical 
infinity-related ideas accessible to younger students. The first example is a Logo-based microworld (see 
Sacristán & Noss, 2008), that enabled students to explore and develop concepts of infinite processes 
and objects. In this microworld, students of different ages (some as young as 14), by programming in 
Logo, constructed and investigated graphical models of infinite sequences of the type {1/kn} (such as 
spirals and bar-graphs), as well as fractal figures (such as the Koch curve), conceived as "limit-objects" 
of infinite graphical sequences. Students gave meaning to the processes under study by coordinating 
the visual and numeric outputs with the symbolic code contained in the procedures that they themselves 
had written. In this way, the microworld supported students in the coordination of hitherto unconnected 
or conflicting intuitions concerning infinity, based on a constructive articulation of the different 
representations.  

Another example was the design and implementation of computer programming activities using the 
innovative ToonTalk infrastructure (http://www.toontalk.com), aimed at introducing young students (9–
13 years old) to the idea of infinity, and in particular, to the cardinality of infinite sets (see Kahn, Sendova, 
Sacristán & Noss, 2011). Via carefully designed computational explorations within an appropriately 
constructed medium, students in several European countries built computational models and programs 
(for example, through programming robots in the ToonTalk animated world – see 0), which they shared 
and discussed through distance communication (through web reports): students in each country 
challenged the constructions of the others, thus fostering deep mathematical inquiry and introducing the 
real spirit of mathematics to school classrooms. In this way infinity was approached in a learnable way 
without sacrificing the rigour necessary for mathematical understanding of the concept. 

 

Figure 1. Part of a student’s web report showing ToonTalk robots generating the set of integer numbers   

Constructionist implementations for mathematics in higher 
education 

In terms of higher education, I have been involved in several constructionist projects where university 
students engage in computer programming and/or expressive activities for mathematical exploration or 
learning. I present some of these below. These follow the constructionist principles outlined in the first 
part of this paper, including providing students with objects-to-think and materials from the real world or 
surrounding culture; as well as having students building shareable objects, discussing and collaborating. 
In that sense, I follow Laurillard (2002) who advocates for constructionist and collaborative technology-
based learning environments in higher education and considers that “the aim of university teaching is 
to make student learning possible […] not simply impart decontextualised knowledge, but must emulate 
the success of everyday learning by situating knowledge in real-world activity” (p. 42) helping students 
reflect on their experience of the world and ways of representing it. Thus, in all the projects presented 
below, students were or are involved with topics and data related to real-life phenomena and that can 
be meaningful for their area of study.    

 

 

http://www.toontalk.com/


Constructionism 2018, Vilnius, Lithuania 

87 

 

A distance-learning virtual mathematics laboratory 

A first project (see Olivera, Sacristán & Pretelín-Ricárdez, 2013) involved a distance-learning 
environment (a virtual laboratory) where university students (mostly adults pursuing continuing 
education) engaged in exploratory modelling activities of various types of real-life mathematical 
problems (e.g. related to linear motion; gravity and free-fall; population growth; cryptography; and 
involving statistical analysis). This project used Lesh’s et al. (2000) idea of model-eliciting activities 
(MEAs), where tasks centre on building models, cycling through models and sharing these. MEAs share 
some of the conceptions of constructionism in that “the  products  that  students  produce  […] involve  
sharable,  manipulatable,  modifiable,  and  reusable  conceptual  tools  (e.g.,  models)  for  constructing,  
describing,  explaining,  manipulating,  predicting,  or  controlling  mathematically  significant  systems” 
(Lesh and Doerr, 2003, p. 3). 

In our virtual laboratory, the tasks required exploring the proposed situations; building models through 
collaboration; sharing, discussing and reflecting; and proposing new explorations. Some of the most 
interesting activities involved the analysis of videos (which led to extensive discussions on determining 
the scale of the videos), developing models to reproduce the behaviours and phenomena shown on the 
video, and analysing and discussing which proposed models best fit the real data (see 0 further below).  

The explorations, modelling and collaborations were carried out through various digital means and 
interactive tools for learning through exploration (following the definition of a virtual laboratory proposed 
by Jeschke, Richter & Seiler, 2005). The various digital tools included different materials (e.g. real-life 
videos) and complementary expressive software, such as: frame-by-frame video analysis software; a 
virtual ruler for on-screen measurements (JR Screen Ruler, 
http://www.spadixbd.com/freetools/jruler.htm); tools for finding mathematical equations to fit the data, 
such as spreadsheets or CurveExpert (http://www.curveexpert.net); and modelling software (Modellus, 
http://modellus.pt) for building mathematical models and comparing them to the real data. Since 
students were at a distance, they needed to collaborate and share their conjectures and findings online; 
for this, we mainly used a web-based discussion forum. The online exchanges constituted additional 
means for learning, since they forced students to express their ideas, constructions and conjectures as 
clearly as possible to others in written form (aided by screen captures and even photos of their 
handwritten work), thus helping them clarify their own understandings (while at the same time acting as 
windows, for teachers and researchers, into their meaning-making, as described by Noss & Hoyles, 
1996). 

In most activities, as explained above, students collectively worked on a problem (or part of it), and later 
proposed new problems. For example, one activity involved analysing and modelling free-falling 
dropping objects on Earth; after the initial explorations, some students proposed analysing the gravity 
on the Moon by analysing a NASA video of an astronaut jumping on the Moon (0). Because that video 
is not of a free-falling object, it generated discussions on what kind of movement it is (with students 
concluding it is a type of parabolic shoot with a nearly vertical angle). They then proposed mathematical 
equations that they implemented in Modellus and compared the resulting model to their real data (0). 
The construction of models and simulations helped students identify and discern the important 
mathematical elements in the situation under study and that help model it. Furthermore, as described 
above, the construction of meanings was also supported by the social structure created by the online 
community. 

http://www.spadixbd.com/freetools/jruler.htm
http://www.curveexpert.net/
http://modellus.pt/


Constructionism 2018, Vilnius, Lithuania 

88 

 

 

Figure 2. A student proposes, in the online forum, to analyse the gravity on the Moon through the video of an 
astronaut jumping on the Moon. 

 

Figure 3. The student shares her comparison of the real data video (left), with the model she constructed using 
Modellus (right), where the astronaut is represented by the green dot (centre). 

Videogame construction by engineering students 
Another higher educational constructionist project in which I was involved in recent years, was one 
where senior university engineering students created videogames (see https://tesis-
apretelinr.blogspot.mx/) which required using and adapting physico-mathematical models. This was a 
project inspired by the work of Kafai (1995). The programming of videogames is a motivating activity 
that engages students in producing working models of certain real-life behaviours but in a context that 
is meaningful to them. Some of the videogame topics involved: physical phenomena (e.g. modelling 
and simulating water behaviour; see Pretelín-Ricárdez & Sacristán, 2015; or bouncing objects, e.g. 
balls, such as in basketball or tennis games – see 0 and 0); virtual robots navigating mazes (which 
required using and designing digital systems, i.e. combinational logic circuits; see Sacristán & Pretelín-
Ricárdez, 2017); or simulated mechanical systems (e.g. robotic arms). One of the aims of this project 
was for students to develop know-how for their future profession as engineers on how to apply 
mathematical knowledge and modelling.  

The videogame constructions (using GameMaker Studio – http://www.yoyogames.com) were structured 
through sequences of model-building tasks that involved several stages combining or alternating paper-
and-pencil work; individual and/or collaborative programming work; and whole class discussions. As in 
the project described above, this project used Lesh et al.’s (2000) Model-Eliciting Activities (MEAs) 
theory; in particular, the design of the model-building tasks took into consideration the six principles of 
MEAs: reality, model construction, model documentation, self evaluation, model generalisation, and 
simple prototype.  

https://tesis-apretelinr.blogspot.mx/
https://tesis-apretelinr.blogspot.mx/
http://www.yoyogames.com/


Constructionism 2018, Vilnius, Lithuania 

89 

 

Having to build models of phenomena and then program these models into the GameMaker videogame 
engine, helped students gain a deep understanding of all the elements involved in each model (e.g. see 
the Figure in the abstract; and 0 and 0, which show some of the elements that needed to be programmed 
into each videogame depicted in the figures). For example, for the videogames involving water-
behaviour (Pretelín-Ricárdez & Sacristán, 2015), students needed to produce first a mathematical 
model for that behaviour: they usually came up with complex models of fluid mechanics, addressing the 
water model either as a molecular model or as a continuous model. They then realised that these models 
could not be programmed as such into the videogame engine, so they were forced to analyse and 
discern the most important elements present, in order to produce, and program, simplified models into 
the videogame engine. They did this through collaboration and discussion.  

     

Figure 4. A couple of students’ Tennis videogame (left). In order to program the ball’s  
movement (see 0) the students’ analysed, and mathematically depicted its behaviour, such as its up-and-down 

movement when hit from the right, through a diagram (right). 

 

Figure 5. Script of the tennis ball’s up-and-down movement when hit from the right. 

 



Constructionism 2018, Vilnius, Lithuania 

90 

 

As recognised by the students, the videogame construction activities provided an opportunity to apply 
their theoretical knowledge in real-life projects and for experiencing how such real-life projects could be 
carried out. In this way, students gained insights and expertise on how to apply their knowledge in 
different realistic projects of contexts related to their engineering profession. 

Another important result, is that students appropriated the proposed videogame construction tasks as 
their own, turning them into meaningful personal projects, which motivated them highly. This was 
evidenced by the deep commitment that they manifested in the way they integrated the physics and 
mathematical models with game-playing mechanics and aesthetic aspects (such sprites, backgrounds 
and sounds), thus turning the games unto attractive ones (e.g. 0). 

 R-based tasks for the learning of statistics by environmental sciences students 

In another project (see Mascaró, Sacristán & Rufino, 2014, 2016), directly inspired by Logo 
programming microworlds, we have designed sequences of constructionist and collaborative, computer-
programming tasks in the R programming language (see the R Project for Statistical Computing – 
http://www.r-project.org) for the learning of probability, statistics and experimental analysis concepts. 
These tasks are the core content of courses for college and graduate environmental sciences and 
biology students –who tend to have strong aversions to mathematics and statistics. The aim is for 
students to develop statistical reasoning, rather than applying blindly statistical tests; build statistical 
models for research; apply and understand statistical computing software (in this case, R) to carry out 
calculations in experiments; and learn how to interpret the results given by the software. All the tasks 
are presented through R-code “worksheets” with instructions, guidelines, examples (using data adapted 
from real research situations), programming tasks, questions for reflection and comments (see 0).  

 

Figure 6. Part of an R-based task, including on the left-hand side some worksheet questions, with typed 
commands for generating graphs (i.e. the histograms presented at the right). 

The understanding of statistical models is facilitated by creating objects in R, to represent them (e.g. 
graphs, lists of data, statistical values, etc.). Tasks are carried out through collaborative work leading to 
reflective interactions, explanations and evaluations. By typing R-commands, students draw and 
interpret graphs (i.e. visualise models) relating numerical data to graphical representations, as well as 
to mathematical formulae. They need to predict what a change in the programming code would produce. 
In this way, students go back and forth in the analysis of the data, and suggest changes for obtaining 
different representations. In this way, they can develop deeper understandings of how statistical 
functions and graphical representations can help create richer meanings for the data.  

Over the course of eight years of design research and iterative processes, we have refined the R-based 
tasks, and implemented these in over a dozen courses at university and post-graduate levels, More 

http://www.r-project.org/


Constructionism 2018, Vilnius, Lithuania 

91 

 

recently (Mascaró & Sacristán, 2018, in these conference proceedings), we have also developed 
constructionist-compatible ways to assess students’ learning, in order to grade them for the university 
courses in which they are enrolled. Through both course observations and assessments, we have 
obtained encouraging results, particularly in the affective dimension (see Mascaró, Sacristán & Rufino, 
2016): many students lose their fear of statistics, with most of them actively engaging in the activities; 
furthermore, several students have appropriated themselves of the software (e.g. building their own R 
scripts) for their own research with an apparent clearer understanding of statistical concepts.  

Brock University’s MICA program 

A final example of a higher education constructionist implementations that is worth mentioning, is the 
MICA (Mathematics Integrated with Computers and Applications) program at Brock University in 
Canada (Muller, Buteau, & Sacristán, 2015; Buteau, Sacristán & Muller, 2018). That program was 
promoted by Eric Muller, who was a participant and author of the very first ICMI study held in 1985, 
researching the influence of computers and informatics on mathematics and its teaching (see Cornu & 
Ralston, 1992). The MICA program stands out as a complete curricular implementation that has been 
functioning since 2001 –rather than being just a limited-scope project– and that integrates computer 
programming activities in the pure and applied mathematics syllabi: In the MICA program, first- and 
second-year university students, in addition to traditional mathematics courses, have non-traditional 
courses where they engage in programming their own interactive mathematical digital environments or 
microworlds, also called Exploratory Objects (or EOs). (The roles of the MICA instructors are also non-
traditional, as well as demanding, as discussed in Buteau, Sacristán and Muller, 2018; in these 
conference proceedings.) Through the construction of their EOs, students explore their own stated 
mathematical conjectures, theorems, or real-world situations, and need to engage in a combination of 
modelling, simulation, optimization and visualization of the mathematical ideas they explore and 
program. As such, they learn mathematics by doing and creating mathematics. The premise of the 
program is that students’ abilities and potential to do mathematics are both enhanced as they program 
their own interactive computer environments (Muller, Buteau, & Sacristán, 2015).  Although I was not 
involved in its design nor implementation, I have been fortunate to collaborate for the past 4 years with 
Muller and some of his colleagues at Brock University in researching the impact of that program on 
students’ learning and appropriation of computational thinking and programming.  

Concluding remarks 

In this paper I have summarised what I consider the main characteristics of constructionism. I then 
presented examples of either microworlds that helped bridge educational levels by giving young learners 
access to advanced mathematics; or examples of an area that is scarce in the research literature: that 
of constructionist implementations for mathematical learning, in higher education.  

Some of the higher education projects were experimental, while others are programs implemented in 
real courses: The virtual laboratory, although implemented in experimental courses during several 
years, could not be continued due to the differences with the established curricula (confirming the 
complexity of implementing constructionist approaches in institutional settings). It is an example of how 
implementing such projects in a sustained and non-experimental way, is challenging. In contrast, the 
videogame project was so successful that it is now being considered as a regular course in the 
engineering program where it was first given as an experimental course. The statistics program has 
been integrated into regular courses for several years, with much success, even though, in those 
courses, students are initially more guided than in other constructionist implementations. And the MICA 
program has been held and implemented successfully for over 15 years.  

In any case, the latter examples illustrate the possibilities for integrating constructionism in higher 
education. All of those projects meet the constructionism characteristics that I outlined at the beginning 
of the paper: at the core of each project are tasks that give students a central active role for exploration 
and construction, where they have to engage in some type of expressive activity (programming and/or 
modelling) using technology; and most also involve collaborative work and group discussions, where 
products are shared and analysed. I consider the latter social aspects to be fundamental for reflecting 
on the knowledge put into practice, and generating more stable meanings for that knowledge.   



Constructionism 2018, Vilnius, Lithuania 

92 

 

Acknowledgements 

I would like to thank and acknowledge the work of all my co-authors in the projects described in this 
paper. I also acknowledge the financing from DGAPA-UNAM with the PAPIME PE204614 and 
PE207416 grants for developing the tasks in the statistics project. 
I note, also, that parts of this paper were previously published in Sacristán (2017). 

References  

Abelson, H., & diSessa, A. (1986). Turtle Geometry: The Computer as a Medium for Exploring 
Mathematics. Cambridge, MA: MIT Press.  

Buteau, Sacristán & Muller (2018). Teaching in a Sustained Post-Secondary Constructionist 
Implementation of Computational Thinking for Mathematics. In Proceedings Constructionism 2018, 
Vilnius, Lithuania. 

Cornu, B., & Ralston, A. (1992). The Influence of Computers and Informatics on Mathematics and Its 
Teaching (2nd ed.). Science and Technology Education Series, 44. Paris: UNESCO. Retrieved from 
https://eric.ed.gov/?id=ED359073 

Hoyles, C., & Noss, R. (1987). Synthesizing mathematical conceptions and their formalization through 

the construction of a Logo‐based school mathematics curriculum. International Journal of Mathematical 
Education in Science and Technology, 18, 581–595. doi:10.1080/0020739870180411 

Jeschke, S., Richter, T. & Seiler, R. (2005). VIDEOEASEL: Architecture of virtual laboratories on 
mathematics and natural sciences. Proc. 3rd International Conference on Multimedia and ICTs in 
Education (pp. 874-878). Caceres/Badajos: FORMATEX. 

Kafai, Y.B. (1995). Minds in play. Computer game design as a context for children’s learning. Lawrence 
Erlbaum Associates, Hilsdale, New Jersey. 

Kahn, K., Sendova, E., Sacristán, A. I., & Noss, R. (2011). Young Students Exploring Cardinality by 
Constructing Infinite Processes. Technology, Knowledge and Learning, 16(1), 3–34. 
doi:10.1007/s10758-011-9175-0 

Laurillard, D. (2002). Rethinking university teaching: A conversational framework for the effective use 
of learning technologies. 2nd Edition. Routledge.  

Lesh, R., & Doerr, R.H. (2003) Foundations of a models and modelling perspective on mathematics 
teaching, learning, and problem solving. In: Lesh, R., Doerr, R.H. (Eds.), Beyond constructivism. Models 
and modelling perspectives on math. problem solving, learning and teaching. Lawrence Erlbaum 
Associates, Mahwah, New Jersey, 3-33. 

Lesh, R., Hoover, M., Hole, B., Kelly, A., Post, T. (2000) Principles for Developing Thought-Revealing 
Activities for Students and Teachers. In A. Kelly, R. Lesh (Eds.), Research Design in Mathematics and 
Science Education. (pp. 591-646). Lawrence Erlbaum Associates, Mahwah, New Jersey.  

Mascaró, M., Sacristán, A. I. & Rufino M. (2014). Teaching and learning statistics and experimental 
analysis for environmental science students, through programming activities in R. In G. Futschek & C. 
Kynigos (Eds.), Constructionism and Creativity - Proceedings 3rd Intl. Constructionism Conf. 2014 (pp. 
407-416). Vienna, Austria: OCG. 

Mascaró, M., Sacristán, A. I., & Rufino, M. M. (2016). For the love of statistics: appreciating and learning 
to apply experimental analysis and statistics through computer programming activities. Teaching 
Mathematics and Its Applications, 35(2), 74–87. doi:10.1093/teamat/hrw006 

Mascaró, M. & Sacristán, A. I., (2018). Assessing learning through exploratory projects in constructionist 
R based statistics courses for environmental science students. In Proceedings Constructionism 2018, 
Vilnius, Lithuania. 

Muller, E., Buteau, C., & Sacristán, A. I. (2015). Through the Looking-Glass: Programming Interactive 
Environments for Advanced Mathematics. Mathematics Today, 51(6), 212–217. 

https://doi.org/10.1080/0020739870180411
https://doi.org/10.1007/s10758-011-9175-0


Constructionism 2018, Vilnius, Lithuania 

93 

 

Noss, R. & Hoyles, C. (1996) Windows on mathematical meanings. Learning cultures and computers. 
Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Olivera, M.A., Sacristán, A.I. & Pretelín-Ricárdez, A. (2013). Mathematical learning derived from virtual 
collaboration, exploration and discussion of free-fall videos, amongst continuing education students. In 
E. Faggiano & A. Montone (Eds), Proceedings of the 11th International Conference on Technology in 
Mathematics Teaching (ICTMT11) (pp. 232-237). Bari, Italia: University of Bari. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. NY: Basic Books. 

Papert, S. & Harel, I. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism. 
Norwood, NJ: Ablex. Retrieved from http://www.papert.org/articles/SituatingConstructionism.html 

Pretelín-Ricárdez, A. & Sacristán, A.I. (2015). Videogame Construction by Engineering Students for 
Understanding Modelling Processes: The Case of Simulating Water Behaviour. Informatics in 
Education, 14(2): 265–277. DOI: 10.15388/infedu.2015.15 

Rich, P.J., Bly, N. & Leatham, K.R. (2014). Beyond Cognitive Increase: Investigating the Influence of 
Computer Programming on Perception and Application of Mathematical skills. Journal of Computers in 
Mathematics and Science Teaching, 33(1), 103-128. 

Sacristán, A. I. & Jiménez-Molotla, J. (2012) The Continuing Story of the Painless Trigonometry 
Projects: Eratosthenes’ method and the Parthenon. In C. Kynigos, J. Clayson & N. Yiannoutsou (Eds). 
Constructionism: Theory, Practice and Impact. Constructionism 2012 Conference Proceedings (pp. 
126-135). Athens, Greece: ETL, National and Kapodistrian Univ. of Athens. 

Sacristán, A. I., & Noss, R. (2008). Computational Construction as a Means to Coordinate 
Representations of Infinity. International Journal of Computers for Mathematical Learning, 13(1), 47–
70. doi:10.1007/s10758-008-9127-5 

Sacristán, A. I., & Pretelín-Ricárdez, A. (2017). Gaining modelling and mathematical experience by 
constructing virtual sensory systems in maze-videogames. Teaching Mathematics and Its Applications: 
An International Journal of the IMA, 36(3), 151–166. doi:10.1093/teamat/hrw019 

Sacristán, A. I. (2017). Constructionist computer programming for the teaching and learning of 
mathematical ideas at university level. In Göller, R., Biehler, R., Hochmuth, R., Rück, H.- G. Didactics 
of Mathematics in Higher Education as a Scientific Discipline. khdm-Report 17-05 (pp. 124–131). 
Kassel, Germany: Universitätsbibliothek Kassel.  

Wilensky, U. J. (1993). Connected Mathematics: Building Concrete Relationships with Mathematical 
Knowledge (Doctoral dissertation). Massachusetts Institute of Technology. Retrieved from 
http://ccl.northwestern.edu/1997_prior/Wilensky-thesis.pdf 

Wilensky, U. (1995). Learning Probability Through Building Computational Models. In L. Meira & D. 
Carraher (Eds.), Proceedings of the 19th Annual PME Conference (Vol. 3, pp. 152–159). Recife, Brazil: 
International Group for the Psychology of Mathematics Education. Retrieved from 
https://ccl.northwestern.edu/papers/pme19 

  

http://www.papert.org/articles/SituatingConstructionism.html
https://doi.org/10.1007/s10758-008-9127-5
https://doi.org/10.1093/teamat/hrw019
http://ccl.northwestern.edu/1997_prior/Wilensky-thesis.pdf
https://ccl.northwestern.edu/papers/pme19


Constructionism 2018, Vilnius, Lithuania 

94 

 

Back 100 000(2)  

Evgenia Sendova, jenny.sendova@gmail.com  
Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences, Bulgaria 

Abstract  
I am sharing memories of the first conference Children in Information Age, held in Varna (Bulgaria) 32 
years ago – both personal as well as extracted from the proceedings and two documentaries featuring 
the vision of eminent scientists and educators on computers in education from different continents. 
Based on discussions with researchers, teachers, parents, representatives of industry, discussed herein 
are their questions and visions in today’s context. Below are some of the questions posed then, still 
relevant today: 

In what way should the students be trained as to the future problems of rational use of computers? How 
can we make the best use of the computer in the future? 

 Shall we use computers to make the educational process more technical or more human? 
 What does “computer literacy” mean in fact? How should we define literacy? 
 Which statements made today would be obsolete in a few years, if not months? 
 Should the computer be seen as an attraction in itself holding a child indoors with its artificial 

simulations, however realistic they might be? 
 What are the new roles of the educators? 
 What might we really like to see? 

After considering the views of the pioneers of the information age I am sharing some concerns based 
on a recent experience in observing uses of technology dictated mainly by the market models in the 
educational institutions. 

The views of representatives of various stakeholders of education are presented as shared in a recent 
panel discussion on the future education we would like to see happen. 

After considering some finding and recommendation published in a document of the European 
Parliament on the teaching and learning in the Digital era I conclude with an optimistic perspective 
based on the work with teachers and students in the frames of national and European educational 
projects in which I have been involved. 

Keywords  
teaching and learning in the information age; digital era 

Introduction – How close is 32 years ago?  
This paper reflects some of the ups and downs of my professional life, the length of which as far as my 
involvement in education is concerned, coincides with the number in the title.  

In 2017 we celebrated 32 years of the first issue of Children in Information Age – a series of 3 
international conferences held in Bulgaria (Varna – 1985, Sofia, 1987 and 1989) dealing with the 
problems of introducing computers in education. (The number 32 is more impressive in binary system, 
hence the title of the paper.) The subtitle of the Varna conference was Tomorrow’s Problems Today. 

The foremost objective of the Conference was to enable an exchange of opinions and concrete results 
from research and applied work of scientists and experts in using computers in the education of children 
at school, in extracurricular activities and at home. In order to outline a more complete picture of the 
problems to be faced by the teachers, psychologists, programmers and hardware designers, as well as 
by the strategists of educational policies, the organizers invited both supporters and specialists with 
reservations about the massive introduction of computers from the earliest years of education (Sendov, 
Stanchev, 1986, v). 



Constructionism 2018, Vilnius, Lithuania 

95 

 

The large number of outstanding researchers and specialists from the East and West (350 participants 
from 40 countries and representatives of UNESCO, IIASA, WHO, IFIP and UNICEF) contributed to 
summarizing the experience of the most advanced countries in implementing computers in education 
and taking into account the positive and negative effects when planning the future work. 

I would slightly rephrase a remark of André Gide: Everything has been said before but since people 
prefer to start from scratch we have to keep re-reading what the pioneers were wondering about…  

In this case I decided to browse through the proceedings of the first two issues of Children in Information 
Age and was surprised and at the same time not very surprised to find wonderfully formulated ideas 
and questions which appear to be still relevant and challenging for the educators and the policy makers. 
Let me share some of them with you and challenge you to think which of them have already been solved 
and which (if any) sound obsolete. (During the late 40s it was considered that the first computers 
designed exclusively for high speed calculations, because of their price and difficulty to use, had no 
commercial future and their potential use was only for a few large military or industrial laboratories.) To 
speak of educating children with computers at the time would have been pure nonsense (Hebenstreit, 
1986, p. 29). Even the first implementation of Logo was on a machine that, in today’s terms, cost about 
$1,000,000, and many thought the project would never be brought to any practical consequences 
(diSessa, 1986, p. 97). 

Tomorrow’s Problems Today (as seen in 1985)  

A general question considered by most of the speakers was as follows: 

• In what way should the students be trained as to the future problems of rational use of 
computers?  

In his plenary talk (Velikhov, 1986) the speaker (then Vice-president of the Academy of Sciences of the 
Soviet Union) shared the idea of introducing computers on a large-scale basis gained from the 
experience of the Siberian Department of the Academy of Sciences of the Soviet Union, headed by 
Academician Ershov. He argued that the training of the student should be based on the principle of unity 
in model building for the task to be solved, creating of algorithm for its solution and coding this algorithm 
for a computer. Thus – he claimed - it is necessary to teach not only hardware and programming 
languages, but also techniques for the practical problem solving…. This process embraces three 
stages: (i) comprehension stage (covering the age of 7-11), during which the children conceive the 
computers as a new assistant and a new friend. A Logo-type language (called by Ershov ROBIK) can 
be used for about 2-3 hours weekly; (ii) second stage (covering the age 11-14), during which the 
students get acquainted with more professional use of the computer and learn: creating the model of 
the problem, the problem solving algorithm and finally, the program itself; (iii) third stage (the last two 
grades) – using the computers for productive work, based on  acquainting the students with application 
program packages, so that they could use them in typical practical situations. 

Related to this question is how to make the best use of the computer in the future. Richardson suggests 
that as this attractive, useful and co-operative machine improves while the child grows, so must his 
attitude about how to use it be guided by his parents, teachers and his playmates (Richardson, 1985). 

A variation on the same question is considered in (Hebenstreit, 1985): 

 Which scenario of introducing computers in education is the most promising: (i) 
computer awareness/literacy; (ii) computer as an intelligence amplifier, or (iii) computer 
assisted activities? 

Sub-questions he reflects on include: Which aspects of programming could be useful in education? In 
what programming language (if at all) should we train the children today when in 10 years we might 
program in natural language and it might be Japanese? Does the concept of problem solving have 
semantic content and if so, is it a method? 

Hebenstreit claims that the general act of problem solving cannot be reduced to the specific task of 
automating procedures and the teaching of programming and/or algorithms is thus of no use except to 
specialists in informatics. The real challenge for the educators according to him should be to prepare 
the children to solve problems which we don’t even know today, firstly by developing insight, intuition 



Constructionism 2018, Vilnius, Lithuania 

96 

 

and imagination based on a solid understanding of the basic paradigm of science, and secondly – by 
helping them to identify which part of the problem requires their own intellectual effort and which part 
can be assigned to the computer as an assistant. 

One of the most interesting open questions he poses (open till today to the best of my knowledge) are 
the following: 

 What is the impact of a text-processing package on the speed of learning to write and speak? 

 According to Piaget the child becomes progressively conscious that s/he is a performer 
compared to the outside objects. A computer with a program can become a performer while still 
being an object. Does this change the way a child understands the outside world and his/her 
relationship to the world? If it does, what does it change? 

 How are we going to change our whole system of education to take into account the existence 
of tools, so powerful that they would have been unthinkable 10 or 20 years ago? Furthermore, 
how are we going to integrate these in a new set of coherent curricula at all levels, so as to 
educate everyone from elementary school through university to make the most efficient use of 
these tools? 

The ultimate purpose of computing as formulated by Hebenstreit should not be to turn people into 
servants of the computer but to develop in people those qualities which are unique in men, i.e. to help 
people to become more human (ibid, p. 45) – a wonderful paraphrase of Richard Hamming’s 
statement that the purpose of computing is insight and not numbers. 

Talking about becoming more human let me bring an interesting analysis of the impact of the emerging 
technologies on the educational system in Japan as presented in (Shiba, 1985). The author of this 
analysis claims that the real problem in introducing computers in school does not lie in the hardware or 
the software but in what is called the human ware and heart ware, since the human element requires a 
long period of time to accept any recognizable changes. Shiba expresses his concerns about the 
competition among the children founded on intellectual ability, student violence both at school and at 
home, bullying among students. His pessimistic view at the time concerning a rapid progress in the 
Japanese educational system was due to the increasing number of teachers who regard the work simply 
as a means of earning money in exchange for a given number of hours’ work. An essential reason for 
the lack of vitality in the Japanese educational system according to him had been the limited freedom 
of teachers to change the content of what is taught influenced by the emphasis on assessing both 
schools and students by means of standard deviation. 

Shiba concludes that for the use of computers to be truly effective it is necessary (i) to create a new 
type of educational institution outside of the scope of the traditional schools, and (ii) employ a new 
management system which will enliven this new type of institution and promote the educational reforms 
necessary for the coming society.  

The need of educational reforms expressed by practically all the participants in the Conference comes 
along with the need of answering the question: 

 How should we define literacy? 

The limited interpretation of literacy as the condition of being literate, i.e. able to read and write should 
be broadened to the condition of being educated (closer but not too precise). 

It was at the IFIP congress in 1981 when A. P. Ershov talked about programming as the second literacy 
but serious reservations existed even then as to whether the content of the new literacy should be based 
solely on a knowledge of programming (Ershov, 1981).  

The discussion about what literacy will be needed in future society and what cultural change would have 
to be the consequence of this need was reflected in a number of papers in both – the 1985- and 1987- 
issues of Children in Information Age. 

Several speakers in the first one shared the opinion that the definition of computer literacy is still not 
clear and that in the US “computer literacy” could mean anything – from learning to use the keyboard, 
to a short lecture on the history of computers, to an introduction into a programming language such as 
Basic… (White, 1986, p. 48). Sylvia Charp notes in her paper (Charp, 1986, p. 189) certain trends 



Constructionism 2018, Vilnius, Lithuania 

97 

 

though, viz. Programming is becoming decreasingly important. The emphasis is how to best use 
computers in a variety of applications…Though courses in Computer Literacy are still being given across 
the US, questions are being asked: What happens after Computer Literacy? What technological and 
conceptual tools are needed to process a continuing flow of new information? 

The metaphor of computer literacy as second literacy and the analogy with printing was used in 
(Sendov, 1986, p. 197) to give an idea of the level of the information technology at the time and how it 
stood in relation to the printed word. As Bl. Sendov had seen it, these were the times of Gutenberg.  

The theme of defining literacy was continued by Kurt Kreith (Kreith, 1987), who related the search for 
new meaning of literacy to problem solving. His concerns are that mathematics, improperly applied, can 
serve to distort or interfere with rational thought. Thus, in the future, mathematical skills and knowledge 
may be needed not only to search for societal problems, but also to protect our civilization against 
inappropriate attempts to represent it in mathematical terms.  

Interesting questions concerning the new literacy are raised by Pamela Fiddy in (Fiddy, 1987). How do 
we recognize the New Literacy and the New Non-literacy? What is the difference between New literacy 
for children, and New literacy for their teachers, parents and other adults? What New Literacy skills do 
adults need? What are the implications for the development of New Literacy Skills in schools? Her 
interpretation of literacy was that people who have achieved New Literacy use IT with confidence, 
appropriately and effectively and realize the potential of IT to apply it in innovative and creative ways. 

The software designers were mainly concerned with the principles behind an integrated computational 
environment for education relevant to the needs of Tomorrow’s society. The main question considered 
in (diSessa,1986) is formulated as follows: 

 What should we do beyond Logo and other present educational uses of computers with 
the increment of power that will come affordable within the next 5 years or so? 

Although aware that it is difficult to deal with disruption of the routine and expected practice diSessa 
shares the importance of experiencing the having of a wonderful idea of your very own during the 
learning process. His message is that feelings of achievement and personal satisfaction of the learner 
(even when they flow from rare events) can influence the whole educational process. But designing 
such events in the educational system is exceedingly hard (ibid, 1986, p. 98).  

One of the most important questions considered at the Conference was: 

 What are the new roles of the educators? 

A pilot study in Egypt (Owais, 1985) brings the attention to some related questions which had been 
overlooked concerning the use of computers in education: (i) What is the objective of training pupils – 
to prepare them as future producers or to help them increase their knowledge; (ii) what is the objective 
of training teachers – to ease their job  or to help them to become more innovative and creative; (iii) to 
make the teacher able to contribute to the adaptation of packages written in foreign languages or to get 
him able to design and perform programs to alleviate the illiteracy… 

The need of a more relevant teacher education was expressed in (Wibe, 1985, p. 856) who states that 
during the last years a lot of teachers have been qualified to teach informatics but very few have learned 
how to use it as an educational tool in the different school subjects.  

There was a general consensus (Sendov, 1986) that (i) no computer can replace a teacher; (ii) the 
computer is only a tool; (iii) students should be taught how to learn and teachers should encourage and 
develop the desire and the need for continuing study. 

Are we passing the Constructionism torch smoothly to the next 
generations of educators? 
A number of recent events dealing with demonstrations of new educational software and hardware 
provoke disturbing feelings not only for the constructionism community.  



Constructionism 2018, Vilnius, Lithuania 

98 

 

At an international exhibition marketing innovations in education technology attended by more than 40 
thousand visitors there were (to me at least) more examples of how NOT to use technology than of how 
to use it. 

A program generating a sentence of randomly chosen words was called “Poet”. Similarly, a program 
generating a sequence of randomly chosen notes was called “Composer”. The authors had not 
implemented any concepts related to the structure of a poem or a musical composition. Not surprisingly, 
they had not heard of books such as Exploring Language with Logo (Goldenberg, Feurzeig, 1987). 

At a very recent conference embracing researchers, educators and teachers (held in Bulgaria) there 
was a workshop led by young representatives of firms promoting programming courses for young 
children. They were demonstrating a couple of robots moving in a maze on the floor. After showing the 
commands needed to move the robots (not RIGHT and FORWARD as you might expect) a mother from 
the audience asked: What would you do after a child who has already learned these commands gets 
bored? The answer was: No, problem at all! We have five other programming environments to offer… 

There are teachers who believe that just because something is modern and attractive (e.g. the computer 
video games), we should try to implement it in the classroom without being sure about the effect, about 
what we gain as teachers/learners… 

In a chapter on Virtual reality in education, I had to review a project on Dante for 4th-graders in which 
the authors claimed that a simplified and filtered text has been adapted for the use of kids in primary 
school, allowing a better and clearer understanding of Dante's Inferno. To the best of my knowledge the 
mysterious tercet of Dante in his Inferno 9, 61-63 urges the reader to consider the doctrine concealed 
under these strange verses (Fowlie, 1981). The video-clip demonstrating the class atmosphere showed 
kids reading, nobody was looking at the screen showing a fire (possibly to represent the hell). The 
authors of the proposed Chapter did not discuss what the kids had gained in terms of knowledge which 
would not be doable without a virtual reality. What if they were just drawing their ideas about the hell, 
discussing the pictures of Gustave Dore (who was not even mentioned), and if they would have just 
organized a play themselves instead of using an avatar with the name of Dante on his back… 

Just for a comparison with much older “new technology” I reread a paper (Tabov, Muirhead and 
Vassileva, 1999) in which the authors present a course for interdisciplinary and integrated education 
dealing with Dante and his world. In particular, the birth and death dates of one of Dante’s ancestors is 
calculated by means of the Geomland software. Astronomy, mathematics, history, and literature 
(including the difficulties of translating Dante) were highlighted in teaching. Finally, it is suggested that 
the dates normally presented by editors of Dante's Divine Comedy may be incorrect. The authors 
discuss the problems and questions relevant to this sort of education and especially those involved 
when teaching mathematics and the humanities together.  

Today, it is troubling to see how often educational software designers and producers trivialize the notion 
of creativity by claiming that children can easily become composers, poets, artists, filmmakers - just by 
using their fantasy and rearranging the elements of a story, a poem, a famous painting or the bars of a 
musical piece. 

In a nutshell, when I hear people telling me: O-o-oh, Logo, the little turtle drawing squares… But isn’t it 
old fashioned? or even worse: Constructionism? How many papers dealing with this notion have you 
read recently which are not part of conference proceedings? I feel bitterness. This is not people’s fault 
though. We owe to the educators, teachers and children the powerful educational ideas we have been 
nurtured with thanks to the constructionism and we should not remain indifferent if these ideas are often 
darkened by shiny new technology used per se.  

And to quote the pioneer of constructionism, Papert, this claim is not based on an arrogant belief that 
the inventors of this educational philosophy are smarter than the rest. It is based on the belief that the 
constructionism was not invented at all, that it is rather the expression of liberation lf learning from the 
artificial constraints of pre-digital knowledge technologies (Papert, 1999). 



Constructionism 2018, Vilnius, Lithuania 

99 

 

What education do we need for the future (seen as of today)? 
In a recent panel discussion on what education we need for the future (I had the honor to moderate) the 
panelists were colleagues and former students of mine representing various stakeholders of education. 
What follows are fragments of their statements transcribed from an audio recording. 

M.B. (parent): Todays culture in a number of schools is for the children to stay quiet, not to touch 
anything so as to avoid damages, to be disciplined. It is difficult for the teachers to cultivate and develop 
the soft skills of their students since they follow the model by which they themselves have been 
educated. A modern pre-service education should include learning to learn so that it could be 
demonstrated later in class setting. 

V.T. (teacher): Teachers motivation is crucial. It is not sufficient though for a school to have a single 
teacher ready to spark the curiosity for science, the love for knowledge. Communities of teachers who 
act like researchers are needed. 

D.P. (teacher) – Few teachers are ready to leave their comfort zone. We are time-poor and even when 
I manage to achieve an enthusiastic atmosphere I feel like single swallow. The need of more time and 
efforts discourage even teachers who have been hooked at the beginning. 

T.A. (teacher) I was professional programmer and musician. My goal is to participate in the foundation 
of schools of new type. Today’s economy does not need just STEM specialists; people who are built 
personalities are needed. The style of teaching should be constructionism, but the key question is how 
to prepare teachers who act as masters, designers of experience. 

S.H. (researcher and mentor) The main problem of today’s society is the lack of patience – people 
want immediate results. And the innovations require time and risk-taking with no guarantee for ultimate 
results. The IBL in its highest level, open inquiry, is very important idea to be implemented in school. 
Experiments, observations, explorations should be in the core of education so that the students feel 
they are participating in the creation of something new. The students’ mentors at that level are rarely 
among the teachers – there is gap between the traditional teacher education at the university and what 
the modern teaching strategies require. A lot of competences could be acquired in any subject provided 
the students are active participants in the learning process.  

T.K. (software company founder): We have to learn to work not for the others but with the others, to 
build connections and become stronger. We have to have the will of formulating our goals – no matter 
how powerful, the machine cannot set the direction. We have to become very good in setting goals. 
Dreyfus Model of Skill Acquisition could be used in any profession. The role of the teacher should be 
the one of the master: I’ll teach you how to become master vs. I’ll show to you what master I am. As 
mentors we can help students raise their intuition, learn how to learn. Recently I used my high school 
mentee to teach me about block-chain technology – by teaching me he became better. 

K. D. (researcher, involved in gifted education) Since we can’t predict the future professions, we are 
talking about key competences and transfer of knowledge. In its kernel the education should be oriented 
to wide range fields. The competence of selecting and analyzing information is crucial. 

O.K. (University Professor) The more important skills required in the workplace will increasingly be 
communication skills. I do not think computer training can make much of an improvement in personal 
communication skills. If it is in the form of training with games - yes, it would evolve thinking towards 
empathy. On the other hand, analytical skills can be acquired through computerized learning. Perhaps 
the "truth" is in the balance. In the near future, the notion of "computer literacy" will disappear completely. 
It is already out of use - today we are talking about "digital competences", which includes communication 
and basic problem solving in all aspects of life. It is believed that digital skills today help to master other 
key competences such as communicative, language skills or basic math and science skills. The future 
role of the educators will be increasingly in the aspect of mentoring and supervising. 

B.S. (researcher involved in educational reforms) The real question for me is not so much what 
education but rather what upbringing we need for the democratic society. Education, especially in the 
public schools and universities, must be engaged with the formation (upbringing) of responsible and 
loyal citizens… We could declare that the digital technology is an excellent tool for education; the 



Constructionism 2018, Vilnius, Lithuania 

100 

 

problem is how to use this tool for the upbringing of the pupils… This problem is especially difficult in 
the so called new democracies. The use of market models in the educational institutes is not a 
consequence of the democracy but rather the result of the weakness of the democracy and the 
aggression of the market. After decades of successful use of digital technology for education, it is clear 
that the quality of education depends mostly of the quality of the teacher. All teachers have to be 
potential researchers. 

Finally, the panelists agreed that we all as teachers have to be guides for our students’ development, 
but at the same time we have to be ready to learn with them and learn from them 

What to do (and not to do) in education in the digital era 

Let us cast a glance at a recent document dealing with the education in digital era (Lonka, Cho, 2015), 
which states that so far the digital revolution has not transformed most schools or most teaching and 
learning process in classrooms. The research of the authors indicates that the students with the best 
skills in technology are also the ones who are most bored and disengaged at school. Thus finding 
meaningful ways of using technology not only for learning but also for collaborative knowledge creation 
is needed. 

Some of their key findings and recommendations include: (i) It is important to base our conclusions on 
perceiving learning as knowledge creation, rather than emphasizing mere knowledge acquisition; (ii) 
Well-being and Social and Emotional Learning (SEL) are at least as important as other 21st century 
skills (such as media literacy, cultural awareness, and complex problem solving); (iii) Instead of 
computer-supported learning, it would be advisable to talk about new forms of Socio-Digital Participation 
(including media literacy, such as using social media and search engines); (iv) Systematic development 
of flipped and inquiry-based learning programs with meaningful use of technologies would be advisable; 
(v) We need constant reforms in schools and teacher education so as to follow the important 
developments of society. Perhaps too much time has been spent looking at test results, such as PISA. 

A recent Call to Action concerning (i) students and learning with ICT; (ii) professional development of 
integrating technology, and (iii) educational system policies for infusing technologies, appeared as a 
result of the work within EDUsummIT 2017 Rethinking Learning in a Digital Age (Voogt, Knezek, Lai, 
2017, pp. 16-17). EDUsummIT (International Summit on ICT in Education) is a global knowledge 
building community of researchers, educational practitioners and policy makers committed to supporting 
the effective integration of research and practice in the field of ICT. Approximately 90 leading 
researchers, policy makers and practitioners spanning all continents, attended EDUsummIT in 
Borovets, Bulgaria, September 18-20, 2017 to discuss the research, policy, and practice challenges 
faced in 9 thematics groups and come up with recommendations for the researchers, teacher educators 
and policy makers. The summary report of the work of the thematic groups together with cross-analysis 
of their recommendations was prepared by Voogt, Knezek, and Lai (ibid). 

Instead of conclusion: So…what do we do now? 

Baring in mind the importance of the continuous professional development of teachers expected to 
implement inquiry based learning approach in their practice a research team at the Institute of 
Mathematics and Informatics at the Bulgarian Academy of Sciences took the initiative to provide 
scientific, methodological and technical support in inquiry based mathematics, informatics and IT 
education (IBMIE) at all levels and forms in a national context (Chehlarova, Kenderov, Sendova, 2017). 
This support is carried out by organising various types of PD courses and by developing open access 
learning environments that enhance IBMIE with a focus on the acquirement of key competences. 

The inquiry based learning supported and enhanced by digital technologies in my country has its roots 
in an experiment of the Research Group on Education (RGE) founded by the Bulgarian Academy of 
Sciences and the Ministry of Education) in 1978 (Sendov, 1987). 

RGE - a model for a technology-prompted curriculum 



Constructionism 2018, Vilnius, Lithuania 

101 

 

The guiding principles of RGE were learning by doing and making and integration of the school subjects 
(Nikolov, 1987). The educational resources developed for the 29 experimental schools included 
textbooks, teacher guide-books, and unified (Logo-based) computer microworlds tuned to specific 
subject domains. The newly developed curriculum enabled students to pass gradually from constructing 
controllable models, through various problem-oriented microworlds for explorations in natural 
languages, music and art to a fully programmable microworld for explorations in Euclidean geometry. 
The tasks dealing with modeling pieces of art, music, poetry, and writing programs to generate such 
works were meant to motivate students to learn about structures and use their programs as materialized 
hypotheses of their observations (Sendova, 2001). The experiment lasted for 12 years starting from 
1979. Although it did not lead to essential changes in the Bulgarian educational system as a whole, the 
RGE model set a good ground for a series of European educational projects involving ICT enhanced 
inquiry based mathematics and science education (e.g. DALEST, InnoMathEd, Math2Earth, DynaMAT, 
Fibonacci, Mascil, KeyCoMath, STEM PD Net, Scientix).  

Some recent promising educational practices in Bulgarian setting 

Thanks to the system for PD of teachers in mathematics, IT and informatics developed by IMI-BAS, a 
network of such teachers acting as multipliers of the IBL ideas has been established. The current 
activities of IMI-BAS include various types of PD courses and events, as well as open access learning 
environments related to STEAM (science, technology, engineering, arts and mathematics).  

• Professional development (PD) courses for teachers in mathematics and IT 

The main goal of the courses is in harmony with the most recent educational strategies for updating the 
math and science education in the EC countries: the development of key-competences by implementing 
the inquiry based learning in integration with the world of work.  These PD courses are based on a team 
work (of the lecturers and the participants alike) and implement educational models adaptable to various 
school settings. The teachers work on pedagogical problems related with: formulating their own math 
problems reflecting real-life situations, not solvable with the current math knowledge of the students but 
allowing for explorations leading to a good enough approximation of the solution; studying and 
proposing methods for tackling problems which are unstructured, or whose solutions are insufficient or 
redundant; solving “traditional problems” with “non-traditional” data, for which the use of a computing 
device is necessary; formulating more relevant evaluation criteria for the students’ achievements; 
assessment of learning resources in terms of formation and development of IBL skills; project-based 
work with presentation of the results (Zehetmeier, Piok, Holler et al., 2015). 

Professional development courses in which teachers and students work collaboratively on real-life 
problems have turned out to be especially fruitful. The format of such courses is typical for the Summer 
Research School organized annually by the High School Student Institute (HSSI) of Mathematics and 
Informatics one of the goals being to help teachers improve their mentoring skills (Sendova, 2014). 

• Learning scenarios in support of cross-curricular integration  

A good repository of digital resources is the Virtual School Mathematics Laboratory (VirMathLab) being 
developed by IMI-BAS (Kenderov, Chehlarova, Sendova, 2015 a), which contains about thousand 
scenarios with dynamic files transparent for the users (http://www.math.bas.bg/omi/cabinet). The design 
and the implementation of these scenarios is just an element of a more ambitious goal − we expect our 
students to look for manifestations of geometric congruences, discover them and use them in various 
activities, and thus – to be able to find patterns and relationships deepening their knowledge and 
understanding of the surrounding world. 

• New types of mathematics contests 

Mathematics with a computer and Theme of the month are new type of contests based on the 
VivaCognita computer platform (Kenderov, Chehlarova, Sendova, 2015 b; Chehlarova, Kenderov, 
2015; Kenderov, Chehlarova, 2016). Students (3-K12) are invited to work on a chain of problems in 
increasing difficulty. Some of the problems in both competitions are accompanied by GeoGebra files 
which facilitate the exploration of the mathematical essence of the problem. 

http://www.math.bas.bg/omi/cabinet/
http://www.math.bas.bg/omi/cabinet/


Constructionism 2018, Vilnius, Lithuania 

102 

 

Conclusions 

With all our efforts we are trying to help teachers create an atmosphere where the students would not 
tell themselves: I am a good student, because I got so many points on the test, I’ll take the exam, I’ll 
enter the university… But they would rather think about the excitements the genuine learning offers: 
How interesting, I wonder what will happen if… I feel like a real scientist! I am not afraid to try something 
nobody has tried before…And even to express certain disappointment that Archimedes had preceded 
them with his discoveries… (a genuine remark by a 6th grader in the context of constructing 
Archimedean solids by means of plastic straws). As for the teachers they should not feel embarrassed 
when they don’t know the answer but would demonstrate how they are looking for it (possibly together 
with their students). 

For such an attitude to education to be cultivated however the whole society should be adapted to the 
digital era and learn how to learn throughout life. This is the hope for the society to become even more 
human in the digital era… 

Can we agree now with Paul Valéry that the future is not what it used to be…? 

References  
Chehlarova, T., Kenderov, P., Sendova, E.(2017) A European network for professional development of 
teachers (and the role of IMI−BAS as a center for inquiry based mathematics and informatics education), 
In Proceedings: Mathematics and Education in Mathematics, 46th Spring Conference of the Union of 
Bulgarian Mathematicians, Borovets, 9-13 April, pp. 328-338 

Chehlarova T., Kenderov, P. (2015): Mathematics with a computer—a contest enhancing the digital and 
mathematical competences of the students. In: Kovatcheva, E., Sendova, E. (Eds.). UNESCO 
International Workshop: Quality of Education and Challenges in a Digitally Networked World. Za 
Bukvite, O’Pismeneh. Sofia, 50–62. 

Charp, S. (1986) Issues and Trends on the Use of Computers by Children in an Information Age. In 
Sendov, Bl., Stanchev, I. (Eds.): Children in an Information Age: Tomorrow’s Problems Today, Selected 
Papers from the International Conference, Varna, Bulgaria, 6-9 May, 1985,  Pergamon Press, pp. 189-
194 

diSessa, A. (1986) Principles for the Design of an Integrated Computational Environment for Education. 
In Sendov, Bl., Stanchev, I. (Eds.): Children in an Information Age: Tomorrow’s Problems Today, 
Selected Papers from the International Conference, Varna, Bulgaria, 6-9 May, 1985,  Pergamon Press, 
pp. 97-109 

Ershov, A. P. (1981) Programming, the second literacy. In Proceedings: 3rd IFIP World Conference on 
Computers in Education (WCCE81), Lausanne  

Fiddy, P. (1987) Welcoming people to the Age of Information Technology: Teaching experiences leading 
to a definition of New Literacy. In Preprints: Children in the Information Age: Opportunities for Creativity, 
Innovations and New Activities, Sofia, Bulgaria, 19-23 May, pp. 182-195 

Fowlie, W. (1981) A Reading of Dante's Inferno, University of Chicago Press  

Goldenberg, E. P., Feurzeig, W. (1987) Exploring Language with Logo. The MIT Press, Cambridge, MA 

Hebenstreit, H. (1986) Children and Computers. Myths and Limits. In Sendov, Bl., Stanchev, I. (Eds.): 
Children in an Information Age: Tomorrow’s Problems Today, Selected Papers from the International 
Conference, Varna, Bulgaria, 6-9 May, 1985, Pergamon Press, pp. 29-45 

Kenderov, P., Chehlarova, T. (2016): Extending the class of mathematical problems solvable in school, 
Serdica Journal of Computing, Volume 9, No. 3-4, 2015, pp. 191-206, ISSN 1312-6555 

Kenderov, P., Chehlarova, T., Sendova, E. (2015, a): A Virtual Math Laboratory in support of educating 
educators in IBL style, in: Maaß, K., Barzel, B., Törner, G., Wernisch, D., Schäfer, E., Reitz-
Koncebovski, K. (Eds.): International approaches to scaling-up professional development in 
mathematics and science education, pp. 167-176 

Kenderov, P., Chehlarova, T., Sendova, E. (2015, b): A Web-based Mathematical Theme of the Month, 
Mathematics Today, vol. 51, no. 6, pp. 305-309 ISSN 1361-2042 

http://ershov.iis.nsk.su/en/archive/subgroup?nid=763298&nid_1=763298
http://ershov.iis.nsk.su/en/archive/subgroup?nid=763298&nid_1=763298


Constructionism 2018, Vilnius, Lithuania 

103 

 

Kreith, K. 1987 Problem Solving and the search for a new meaning of literacy. In Preprints: Children in 
the Information Age: Opportunities for Creativity, Innovations and New Activities, Sofia, Bulgaria, 19-23 
May, pp. 370-386 

Lonka K., Cho, V. (2015) Report for EU Parliament 2015: Innovative Schools: Teaching & Learning in 
the Digital Era: Workshop Documentation, 
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/563389/IPOL_STU(2015)563389_EN.pd
f (April 5, 2018) 

Nikolov, R. (1987): Integrating Informatics into the Curriculum, in Education & Computing, North-
Holland, 1987, pp. 369-374 

Owais, A. (1985) Computers and Children’s Creativity in Egypt: A Pilot Study. In Proceedings: Children 
in an Information Age: Tomorrow’s Problems Today, 6-9 May, Varna, vol. II, pp. 630-657  

Papert, S. (1999) What is Logo? Who needs it? In Logo Philosophy and Implementation, LCSI, V—XVI, 
http://www.microworlds.com/support/ logo-philosophy-implementation.html (5.01.2018) 

Richardson, J. (1985) The computer: tool, helper and friend of young people. In Proceedings: Children 
in an Information Age: Tomorrow’s Problems Today, vol. II, Ministry of Education, Sofia, pp. 457 – 476 

Sendov, Bl., Stanchev, I. (1986) Forward of Children in an Information Age: Tomorrow’s Problems 
Today, Selected Papers from the International Conference, Varna, Bulgaria, 6-9 May, 1985, Pergamon 
Press, p. v-vi 

Sendov, Bl. (1986) Children in information age (a concluding talk). In Sendov, Bl., Stanchev, I. (Eds.): 
Children in an Information Age: Tomorrow’s Problems Today, Selected Papers from the International 
Conference, Varna, Bulgaria, 6-9 May, 1985,  Pergamon Press, pp. 195-200 

Sendov, Bl. (1987): Education for an Information Age, in Impact of Science on Society, v37, n2, pp.193-
201 

Sendova, E. (2001) Modeling Creative Processes in Abstract Art, Poetry and Music, International 
Journal Information on Theories and Applications, vol. 8, N 3, FOI-Commerce Sofia, pp. 122-132 

Sendova, E. (2014): You do – you understand, you explore – you invent: the fourth level of the inquiry-
based learning, in Futschek, G., Kynigos, C. (Eds.) Constructionism and Creativity, Proceedings of the 
3d International Constructionism Conference, August 19-23, Vienna, Austria, pp. 103 – 112 

Shiba, S. (1986) Information society and education. Past experiences and new Trends in Japan. In 
Sendov, Bl., Stanchev, I. (Eds.): Children in an Information Age: Tomorrow’s Problems Today, Selected 
Papers from the International Conference, Varna, Bulgaria, 6-9 May, 1985, Pergamon Press, pp. 11-28 

Tabov, J., Muirhead, J., Vassileva, A. (1999) Dante and the humanities. The Teaching of 
Mathematics.  Vol. II, 1, pp. 31- 40 http://elib.mi.sanu.ac.rs/files/journals/tm/2/tm212.pdf 

(April, 2018) 

Velikhov, E. P. (1986) On the Start-up Course in Informatics and Computer Technology in the 
Curriculum for Soviet Schools. In Sendov, Bl., Stanchev, I. (Eds.): Children in an Information Age: 
Tomorrow’s Problems Today, Selected Papers from the International Conference, Varna, Bulgaria, 6-9 
May, 1985,  Pergamon Press, pp. 5-10 

Voogt, J. Knezek, G., Lai, K.-W (Eds.) (2017) Rethinking Learning in a Digital Age, EDUsummIT 
Summary Reports (http://www.punyamishra.com/2017/11/30/edusummit-2017-summary-report-
released/, April 5, 2018) 

White, M. A. (1986) The future of Electronic Learning for Children. In Sendov, Bl., Stanchev, I. (Eds.): 
Children in an Information Age: Tomorrow’s Problems Today, Selected Papers from the International 
Conference, Varna, Bulgaria, 6-9 May, 1985,  Pergamon Press, pp. 47-56 

Wibe, J. (1985) Computer Technology in the Norwegian Educational System. In Proceedings: Children 
in an Information Age: Tomorrow’s Problems Today, vol. II, pp. 853 -. 871 

Zehetmeier, S., Piok, M., Holler, K., Kenderov, P., Chehlarova, T., Sendova, E., Gehring, C., Ulm, V. 
(2015) Concepts for In-Service Mathematics Teacher Education: Examples from Europe. In: Gehring, 
C., Ulm, F. (Eds.) Developing Key Competences by Mathematics Education. ISBN 978-3-00-051067-0 
University of Bayreuth, Germany pp. 23-33  

https://tuhat.helsinki.fi/portal/en/publications/report-for-eu-parli(93d75245-0211-4504-bb13-1ba6295fb443).html
https://tuhat.helsinki.fi/portal/en/publications/report-for-eu-parli(93d75245-0211-4504-bb13-1ba6295fb443).html
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/563389/IPOL_STU(2015)563389_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/563389/IPOL_STU(2015)563389_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2015/563389/IPOL_STU(2015)563389_EN.pdf
http://elib.mi.sanu.ac.rs/files/journals/tm/2/tm212.pdf
http://www.punyamishra.com/2017/11/30/edusummit-2017-summary-report-released/
http://www.punyamishra.com/2017/11/30/edusummit-2017-summary-report-released/


Constructionism 2018, Vilnius, Lithuania 

104 

 

Rock Bottom, the World, the Sky: Catrobat, an 
Extremely Large-scale and Long-term Visual Coding 
Project Relying Purely on Smartphones 

Wolfgang Slany, wolfgang.slany@tugraz.at 
Kirshan Kumar Luhana, kirshan.luhana@student.tugraz.at 
Matthias Mueller, mueller@ist.tugraz.at 
Christian Schindler, cschindler@ist.tugraz.at 
Bernadette Spieler, bernadette.spieler@ist.tugraz.at 
Institute of Software Technology, Graz University of Technology, Austria 

Abstract  
Most of the 700 million teenagers everywhere in the world already have their own smartphones, but 
comparatively few of them have access to PCs, laptops, OLPCs, Chromebooks, or tablets. The free 
open source non-profit project Catrobat allows users to create and publish their own apps using only 
their smartphones. Initiated in 2010, with first public versions of our free apps since 2014 and 47 
releases of the main coding app as of July 2018, Catrobat currently has more than 700,000 users from 
180 countries, is available in 50+ languages, and has been developed so far by almost 1,000 volunteers 
from around the world (“the world”). Catrobat is strongly inspired by Scratch and indeed allows to import 
most Scratch projects, thus giving access to more than 30 million projects on our users’ phones as of 
July 2018. Our apps are very intuitive (“rock bottom”), have many accessibility settings, e.g., for kids 
with visual or cognitive impairments, and there are tons of constructionist tutorials and courses in many 
languages. We also have created a plethora of extensions, e.g., for various educational robots, including 
Lego Mindstorms and flying Parrot quadcopters (“the sky”), as well as for controlling arbitrary external 
devices through Arduino or Raspberry Pi boards, going up to the stratosphere and even beyond to 
interplanetary space (“the sky”). A TurtleStitch extension allowing to code one's own embroidery 
patterns for clothes is currently being developed. Catrobat among others intensely focuses on including 
female teenagers. While a dedicated version for schools is being developed, our apps are meant to be 
primarily used outside of class rooms, anywhere and in particular outdoors (“rock bottom”, “the world”). 
Catrobat is discovered by our users through various app stores such as Google Play and via social 
media channels such as YouTube as well as via our presence on Code.org. Sharing, remixing, and 
collaboration is actively encouraged and supported. Catrobat has a very long term perspective in that it 
is independent of continuous funding and actively developed in a test-driven way by hundreds of pro-
bono volunteers from around the world. Our aim is to grow by a factor of thousand and reach a billion 
users by 2030. We warmly welcome new contributors in every imaginable field and way with open arms. 
Please join us and contact me via wolfgang@catrobat.org today!  

Keywords 
Pocket Code, Game Design, Gaming, Gender Inclusion, Coding, Mobile Learning, Social Inclusion, 

Constructionism, Girls, Teenagers, Apps, Smartphones, Tinkering 

Introduction: Background, mission, and history 

Knowledge in Computer Science (CS) is essential, and industries have increased their demand for 
professionals that have technical experience. The next generation of jobs will be characterized by new 
standards requiring employees with computational and problem solving skills in all areas, even if they 
are not actual technicians (Balanskat and Engelhardt, 2015). However, the number of young people, 
and women in particular, choosing to study and work in Information and Communication Technology 
(ICT) fields is decreasing dramatically (NCWIT, 2015; NCWIT, 2017; European Commission, 2016a). 
In the last decade, European technology employment has grown three times faster than all employment 

mailto:wolfgang.slany@tugraz.at
mailto:wolfgang@catrobat.org


Constructionism 2018, Vilnius, Lithuania 

105 

 

in total. The continuous improvements of technology and the numerous advancements in industrial 
p r o c e s s e s  m a d e  i t  p o s s i b l e  t o  d e v e l o p  a u t o n o m o u s 

 

Figure 1: Pocket Code's UI 

vehicles, robotics, 3D printing, genetic diagnostics, or Internet of Things (IoT) technologies. These 
technologies are already part of everyday life, and there is a corresponding growing worldwide need for 
qualified scientists, engineers, and technicians. For these reasons, society and governments have 
mandated that teenagers should acquire computing and coding skills (European Commission, 2016b), 
or even a new way of (critical) thinking and problem solving skills (Wing, 2006; Kahn, 2017; Tedre and 
Denning, 2016; Mannila et al., 2014). Presenting coding as a range of diverse skills which can be 
learned by adapting ideas from games is a generally applicable concept. Thus, a gamified and 
constructionist concept should hold teenagers’ focus to actively participate by activating intrinsic and 
extrinsic motivators (Ryan and Deci, 2000). Games can be played everywhere, including on 
smartphones, tablets, and other digital devices. Moreover, the mobile game market continues to grow 
faster than other game industries, e.g., the number of game apps on Google Play grew by 28% in 2017 
(Jingli, 2017; Takahashi, 2017). 

Catrobat’s approach is inspired by Piaget’s Constructivism theory 1948 (Piaget and Inhelder, 1967), 
starting with first computer programming courses at the MIT in 1962 (Greenberger, 1962), and refined 
with Papert's Constructionism concept in 1980 (Papert, 1985). Since then, different approaches were 
used to motivate kids for coding. With our free open source non-profit project Catrobat our goal is to 
provide computational thinking skills for everyone, especially teens from less developed areas where 
other computational devices such as PCs are almost non-existent.  

Catrobat’s apps and services have been immensely influenced by MIT’s Scratch30 project, and we 
consider Catrobat to be Scratch’s little sister project for smartphones. Scratch itself has been strongly 
shaped by Papert’s powerful ideas, and extends Papert’s “Low Floor” but “High Ceiling” for the Logo 
programming language for kids (i.e., easy to start, but allowing to develop more complex projects as 
well) by adding “Wide Walls”, emphasizing that Scratch supports a wide variety of projects as well as 
ways to learn and play, according to the needs and interests of its users (Resnick 2017). Going beyond 
Logo and Scratch’s metaphor of the room, Catrobat’s smartphone based approach allows to literally 
break down the walls of the room and move outdoors, thus inspiring Catrobat’s mission statement, 
which is “Rock Bottom, the World, the Sky”. “Rock Bottom” because on the one hand we aim at building 
upon and going beyond Scratch’s focus on making the first experiences in coding as easy and satisfying 
as absolutely possible for our teenage user group, e.g., through a physics engine that is much easier 
and intuitive to use that similar concepts in other game making environments. On the other hand, 
because of our reliance on smartphones, it also is meant to evocate that our users can and, to a large 
percentage, do leave the “room” to code outside or create outdoor projects, in some cases literally “on 
the rock”. Many of our users are indeed developing their projects while on the go, far from classrooms 
and their homes, and have developed apps that take advantage of the various sensors such as the 

                                                

30 Scratch MIT: https://scratch.mit.edu/ 



Constructionism 2018, Vilnius, Lithuania 

106 

 

cameras, GPS, compass, or acceleration sensors that are built into smartphones and that allow to 
create, e.g., augmented reality, geocaching, or dynamic outdoor sports games. Additionally, today’s 
teenagers all over the globe have, to an already very large degree and also increasingly, their own 
smartphones readily available and permanently connected to the Internet, even in rural areas in Africa 
and other regions in the world where there may be no central power supply at home and kids charge 
their phones via solar panels in a central community facility of their village. Catrobat also has begun to 
become available in languages that are not supported by the phones makers themselves, such as 
Swahili, Gujarati, or Sindhi. Catrobat thus strives at reaching out to all corners of “the World” in an 
effective and efficient way that is indefinitely sustainable. The reliance on already existing smartphones, 
as well as the free open source character of Catrobat, which lets it thrive with little to no funding, also 
are significant aspects that allow Catrobat to scale up by avoiding the high costs and logistics that have 
hampered the success of similarly motivated projects in the past. Regarding the third part of our mission 
statement, Catrobat allows already since 2017 to program drones flying autonomously in “the Sky” (in 
particular, the popular Parrot Augmented Reality Drone 2.0), with a real-time video being transmitted to 
Pocket Code’s screen, under full programming control by the user. While coding with Pocket Code has 
been done in airplanes, for the future we plan on going even higher. Because phones are small, 
lightweight, and portable, off-the-shelf Android phones have already been used to control balloons up 
to the stratosphere, and our extensions via Bluetooth and local WiFi connections to battery powered 
Arduino and Raspberry Pi allow to control any hardware of these flying computational systems, as long 
as the isolation keeps the harsh environment at bay and there’s enough energy. On a further note, 
PTScientists’ private enterprise Moon rover mission project31, scheduled to lift off in 2019 and sponsored 
by, among others, Vodafone, Nokia Bell, Audi, and Red Bull, has several experiments on-board that 
rely on regular Android phones to lower the costs of otherwise extremely expensive “rocket science” 
hardware, with Vodafone and Nokia Bell sponsoring the installation of a 4G data network based on 
standard phone transmission technology from the rovers to the base station on the Moon and from there 
back to Earth. One of our dreams is that we will empower kids to use Pocket Code to design experiments 
and to program autonomous robots on the Moon, on Mars, and possibly even farther away. There is a 
thriving worldwide PhoneSat32 community led by NASA that has launched a large number of 
nanosatellites based on 10x10x10cm cubesats using unmodified consumer-grade off-the-shelf Android 
smartphones and standard Arduino boards, which both would immediately work with Catrobat’s apps. 
The sky has no limit, both in the concrete as well as in the metaphorical sense. Regarding the latter, 
our goal is to allow every kid to create complex, high resolution, and high performance apps using our 
tools, which they will be able to offer to other users, even commercially. Indeed, we allow our users to 
compile their apps into real Android apps, sign them with their own developer key, optionally add ads 
via their own AdMobs account, and sell them on Google Play for real money, thus directly empowering 
them to leave the limitations of the metaphorical “room” and bring their creations to the outside world. 

On a historical note, one of the initial motivations for starting the Catrobat stems from Neal Stephenson's 
science fiction book “The Diamond Age: Or, A Young Lady's Illustrated Primer: a Propædeutic 
Enchiridion in which is told the tale of Princess Nell and her various friends, kin, associates, &c.”. In the 
book, human tutors are hired anonymously on demand by a very affluent industrialist and aristocrat, to 
remotely educate a young girl, initially a toddler, living under gruesome conditions, by mistaking her, 
because of circumstances described in the book, for a princess for whom the primer was actually 
created.  The illustrated primer, which is highly portable and has a voice- and touch sensitive interface 
that allows her to communicate with her tutors, accompanies Nell throughout her adolescence up to 
young adulthood, when she becomes a leading force and changes the fate of millions of the most 
underprivileged kids on Earth. One of the main story lines spanning a large part of the book is the 
acquisition of computational thinking skills by Nell through the Illustrated Primer. The book has won the 
Hugo and Locus science fiction awards, and was also cited by the developers of the One Note per Child 
Project as well as of Amazon’s Kindle as a motivational inspiration. In 2017, Catrobat won the “Closing 
the Gender Gap” prize for a new subproject called “Remote Mentor”, in which we have started to 
implement the necessary technical infrastructure and study the required social aspects to realize 

                                                

31 http://ptscientists.com/ 
32 https://www.nasa.gov/phonesat/ 



Constructionism 2018, Vilnius, Lithuania 

107 

 

Stephenson’s Illustrated Primer. We have partnered with sociology scientists focusing on gender 
aspects for the research part. In November 2017 we have begun to conduct initial remote mentoring 
experiments under real conditions, first with sponsoring from Google as a Google Code-in mentoring 
organization at the end of 2017, with several hundreds of teenagers from all over the world being 
remotely mentored by a pool of 38 Catrobat mentors over a period of seven weeks, followed by the 
“Remote Mentor” project itself, with initial funding from the Internet Foundation Austria until the end of 
2018. Because of Stephenson’s book, Catrobat has focused from its very beginnings to aim at 
empowering female teenagers in less affluent regions such as rural areas in India, Tanzania, or Brazil. 
Teens have reacted very positively to these first remote mentoring experiments, and we plan to 
eventually integrate the remote mentoring features into our tools and services so that mentors and 
mentees will be anonymously and automatically matched on demand, internationally in all languages, 
in a large scale, long term, and continuously further developed way.  

This paper is organized as follows: First, we emphasize two trends that have emerged in the last decade 
(both were important in developing our app Pocket Code): block-based and visual coding, and an 
increased use of mobile devices among our main target group (teenagers from 13 to 19 years). Second, 
the focus lies on the Catrobat project and the educational app Pocket Code. Third, we describe our 
planned next steps and subprojects that are being developed, followed by a summary and conclusion. 

Computational Thinking Skills for All 

Computational Thinking promotes the importance of coding and computer science activities, thus 
delivering concepts that are more applicable and highly essential to prepare teenagers for the future 
(Barnett et al., 2017; Tetre et.al. 2016). After 2006, there was a rapid increase in the number of published 
articles about learning to code (Wu and Wang, 2012). The ongoing movement of promoting coding 
through visual programming languages has its origin at that time.  

Trend 1: Block-based and Visual Coding 
In the last decade, a number of block-based visual programming tools, e.g., Scratch, have been 
introduced which should help teenagers to have an easier time when first practicing programming. 
These tools have all had very similar goals: they focus on younger learners, support novices in their first 
programming steps, they can be used in informal learning situations, and provide a visual/block-based 
programming language which allows teenagers to recognize blocks instead of recalling syntax (Tumlin, 
2017). Unlike traditional programming languages, which require code statements and complex syntax 
rules, here graphical programming blocks are used that automatically snap together like Lego blocks 
when they make syntactical sense (Ford, 2009).  

Another critical improvement of visual programming systems over classic text based programming 
languages is the fact that all elements of the programming environment and also the programming 
language itself, including the formula elements, are translated to the human language of the young 
users. Especially for human languages that are not written with the Latin alphabet, this is a huge 
advantage for users, as they are not used to think in English and very often have difficulties to even 
read Latin scripts. In case of developing countries, usually only a small percentage of the population 
understands English, in which most user interfaces are exclusively available, thus implicitly excluding a 
large part of the world’s population. Localization of a software can revolutionize E-learning, resulting in 
more educated workforce and improved economy (Ghuman, 2017). Pocket Code supports localization 
and internationalization on the application level. The app’s language and locale can be changed without 
changing the smartphone’s interface language on the system level. Languages such as Sindhi and 
Pashto, which are yet to be supported by operating systems, can thus be seamlessly used by our users 
(Awwad, 2017). Catrobat shares this feature, which improves accessibility and inclusiveness to users 
from all regions of the world, e.g., with Scratch and Snap!, and this certainly contributes in a major way 
to the positive worldwide reception of these visual programming environments. 

Thus, visual programming languages provide an easier start and a more engaging experience for 
teenagers. The ease of use, and simplicity of such programming environments enables young people 



Constructionism 2018, Vilnius, Lithuania 

108 

 

to become game makers, and by the seamless translation of their user interfaces, to collaborate with 
other users on a worldwide scale.  

Trend 2: Smartphone Usage 
With mobile games, more people can engage who were previously limited to use other platforms such 
as PCs or consoles. Further, children nowadays grow up with mobile devices and feel comfortable using 
them. Considering current prices, and the forecast of the user penetration of smartphones in Austria, 
France, Germany, and the United Kingdom from 2014 to 2021 (Statista Market Analytics, 2016), we can 
conclude that smartphones will be used significantly more by teenagers in the future than tablets, 
laptops, and desktop PCs. Smartphones and the use of apps are already a part of our culture and are 
changing the way in which many people, particularly teenagers, act in social situations. For most 
adolescents the smartphone performs several functions in their daily lives, and it contributes, e.g., to 
identity formation through self-presentation on the Internet. In addition, the smartphone is used a lot 
during spare time (most games are played in the evening (Verto Analytics, 2015)) or for just killing some 
time, e.g., when commuting. In addition, online games and mobile games play an important role in the 
daily lives of teenagers (Bevans, 2017). A recent study which examined American female players’ 
experiences found that 65% of the Android users who play mobile games are women (Google and 
NewZoo, 2017). 

Teenagers increasingly have mobile devices on their own, which enables them to creatively express 
themselves at any time and to use apps that bring their ideas and creations to life. With a more 
meaningful use of mobile devices, teenagers worldwide can acquire powerful knowledge that will make 
them into better problem solvers, thinkers, and learners. 

Catrobat and the Pocket Code App 

The Free Open Source Software (FOSS) non-profit project Catrobat33 was initiated 2010 in Austria at 
Graz University of Technology. The multidisciplinary team develops free educational apps for teenagers 
and programming novices. The aim is to introduce young people to the world of coding (Slany, 2014). 
With a playful approach, teenagers of all genders can be engaged, and game development can be 
promoted with a focus on design and creativity. A first public version of our free app was published in 
2014, with 47 releases of the main coding app as of July 2018. Our app currently has more than 700,000 
users in 180 countries, is natively available in 50+ languages (including several languages not directly 
supported by the underlying operating system), and has been developed so far by almost 1,000 
volunteers from around the world. 

These volunteers are implementing software, designing educational resources, translating the app, or 
provide other services that help to advance the project. The contributors work together in a cooperative 
way, having the chance to engage in a field they like and create something within a community that 
follows the same shared vision. Besides attracting students, educators, and other interested 
contributors from all over the world, Catrobat also benefited from being part of Google’s Summer of 
Code and Code-In initiatives. These initiatives promote open source worldwide and motivate teenagers 
and students to get involved in projects such as ours. Our openness towards international contributors 
helps us to represent different cultures, bring in various viewpoints, and generate new ideas how the 
project can further develop. Catrobat’s project management as well as development is done in an agile 
way, allowing our contributors to adopt new technologies, respond to user feedback, and embrace 
upcoming ideas quickly. An example where a feature request issued by users was implemented is our 
web based automatic APK (Android Package) generation. It is currently being extended for users to be 
able to sign their apps and add AdMobs based ads, so that they can publish their Catrobat projects on 
Google Play and other app stores and earn money with them. Another example is of technical nature 
and affects our deployment workflow, which was redesigned and fully automated to enable us to deploy 
to Google Play including the localized screenshots and app descriptions in 47 languages (not all our 
languages are supported on the Google Play store) with only two mouse clicks. All this helps to provide 

                                                

33 https://www.catrobat.org 



Constructionism 2018, Vilnius, Lithuania 

109 

 

a motivating user experience for our young target group, support them in their learning process, and 
foster collaboration. 

 

Figure 2: Pocket Code Alice themed program 

Pocket Code: Creating your own Games 
The app Pocket Code34 is an Android-based visual programming language environment that allows the 
creation of games, stories, animations, and many types of other apps directly on phones or tablets, 
thereby teaching fundamental programming skills. This app consists of a visual Integrated Development 
Environment (IDE) and a programming language interpreter for the visual Catrobat programming 
language. The IDE automatically translates the underlying code parsed by the XML file into visual brick 
elements and vice versa. With the use of simple graphic blocks, users can create their own game, 
colorful animations, or extensive stories directly on the mobile phone without prior knowledge.  

The drag and drop interface provides a variety of bricks that can be joined together to develop fully 
fledged programs. The app is freely available for Android on Google’s Play Store and soon will be 
available on Apple’s iTunes Store for iPhones. Figure 2 shows Pocket Codes’ UI and an example project 
with “Alice in Wonderland” characters. 

Pocket Code: the Mobile Integrated Coding Environment 
Projects in Pocket Code follow a similar syntax to the one used in Scratch and are created by snapping 
together command bricks. They are arranged in scripts that can run in parallel, thereby allowing 

                                                

34 https://catrob.at/pc 



Constructionism 2018, Vilnius, Lithuania 

110 

 

concurrent execution. To communicate between objects, to trigger execution of scripts, or scripts 
beyond objects, broadcast messages are used. By means of this mechanism, sequential or parallel 
execution of scripts is possible, either within the same object or over object boundaries. In addition to 
the basic control structures, Pocket Code offers event triggering building blocks for event-driven 
programming. Familiar concepts, such as variables, lists, or Boolean logic, are included as well.  

In addition to Scratch, Pocket Code has a 2D physics engine which enables the user to define certain 
physical features of objects and the stage (collision detection, velocity, gravity, mass, a bounce factor, 
and friction) to create from simple up to complex simulations of the real world. An example that 
showcases both the physics engine as well as the use of inclination sensors is a simulated wooden 
maze through which a metal ball needs to be navigated from a starting position towards the winning 
end position, all while avoiding a number of holes on the floor of the maze, by tilting one’s phone, as if 
it were a real, physical wooden maze. The wooden walls initially execute a physics brick named “Set 
motion type” with the pull-down option “others bounce off it”, and the ball executes the same “Set motion 
type” brick with the option “bouncing with gravity”. The movement of the ball by tilting the phone is 
realized by a “Set gravity for all objects to X: -3 x inclination_x  Y: -3 x inclination_y steps/second2” brick 
that is executed in a “Forever” loop. Voilà, that’s all that is needed. To increase the realism of the 
simulated maze, there is an additional “When physical collision with anything” brick followed by a 
“Vibrate for 0.02 seconds”. Even more, the ball’s metallic reflection sheen is oriented always in the same 
direction using the magnetic compass sensor of the phone, thus giving the impression that the light 
always comes from the same side. It would be easy to also influence the gravity vector using the 
acceleration sensors built into the phones, which would make the ball not only react to tilt, but also to 
shaking and quick moves in any direction. The rest of the scripts handles the animations when the ball 
“falls” into one of the holes, and also shows the amount of holes that have successfully been avoided 
so far in the top left corner. Note that all objects that execute one of the two variants of the “Set motion 
type” brick mentioned above, automatically have their convex hull computed for the physics collisions, 
based on the visible parts of their current look. No other game engine to our knowledge does this 
automatically: in other gaming frameworks, the bouncing box is either quadratic, or has to be manually 
specified by a professional developer. Catrobat’s use of convex contours makes it extremely intuitive 
and simple for the user to create complex games using the physics engine. Note that arbitrary 2D forms 
going beyond the convex hull, e.g., patterns of the form “U” or “8”, are much more complex to handle 
automatically, and it is probably easier for users to handle special cases on an individual basis, e.g., by 
forcing several objects to move in synchronicity. In contrast, for all practical purposes it is impossible to 
realize a physically correct collision and bouncing of objects from each other for arbitrary shapes in 
other visual programming languages such as Scratch. This aligns with the “rock bottom” metaphor of 
Catrobat corresponding to the “low floor” metaphor of Logo and Scratch, making complex games easy 
and intuitive to realize, with a very low entry threshold, with physics being a concept everyone is 
intimately familiar with. At the same time, the maze project also has a resolution of 1920 x 1080 of which 
every pixel is fully used, giving it a very high-resolution and also highly realistic look, on par with 
professionally created game apps. This exemplifies Catrobat’s “the sky” metaphor corresponding to the 
“high ceiling” of Logo and Scratch, since with Pocket Code, there literally is no upper limit in realism and 
performance of the created games: a project’s resolution is only limited by the capabilities of the phone 
on which it is created, so, e.g., a project with a 3840 x 2160 pixels resolution can be created using a 
Sony Xperia XZ Premium smartphone. Figure 3 shows the stage as well as some of the scripts 
mentioned above. The project can be found under the name “Tilt maze 1.0” on Catrobat’s sharing site 
from within Pocket Code.   

 



Constructionism 2018, Vilnius, Lithuania 

111 

 

Figure 3: Partial screenshots from “Tilt maze 1.0” that relies on Pocket Code’s physics engine, where the 
physical behaviour of objects is set through its “motion type”, e.g., “others bounce off it” for the wooden walls of 
the maze (middle script), and a short vibration when the ball touches a wall (script on the right). The movement 

of the ball by tilting the phone is realized by a “Set gravity for all objects to X: -3 x inclination_x  Y: -3 x 
inclination_y steps/second2” brick that is executed in a “Forever” loop (not shown here). Direct link to the “Tilt 

maze 1.0” project on the web version of Catrobat’s sharing site https://catrob.at/TiltMaze 

With Pocket Code’s intuitive merge functionality, the new parts of two projects can be seamlessly 
merged together into one larger project – parts of the two initial projects that exist in both are not 
duplicated. This makes programming cooperatively much easier. Modern smartphones are equipped 
with a large number of sensors, although most mobile games only use few or none of them (Kafai and 
Vasudevan, 2015). Within Pocket Code, users can create games using the device’s sensors, such as 
inclination, acceleration, loudness, face detection, GPS location, or the compass direction, which makes 
user input easy and engaging. With Pocket Code it is also possible to connect via Bluetooth to Lego® 
Mindstorms robots or Arduino™ boards. The following extensions are available: Lego Mindstorms 
NXT/EV3, Parrot AR.Drone 2.0 and Parrot Jumping Sumo Drone, Arduino, Raspberry Pi (via WiFi), 
NFC tags, Phiro robots35, and Chromecast. These kinds of computational construction kits make 
creating programmable hardware accessible to even novice designers and combines coding and 
crafting with a rich context for engaging teenagers (Kafai and Vasudevan, 2015). In the context of 
robots, being able to program a smartphone makes much more sense, as the smartphone can be 
mounted on the robots, thus allowing to give it a face, a voice and other sounds, and additional sensors 
such as acceleration, inclination, magnetic field, GPS, voice recognition, computer vision. Also, since 
only a smartphone is needed with Catrobat, the programming can be done on the spot, outside, e.g., 
when using one’s land-based robot or flying drone outdoors. With Catrobat no laptop or PC is necessary, 
thus, coding can take place anytime and anywhere, and in particular can be widely made available even 
in less affluent communities around the world. In addition, Catrobat released a Scratch Converter to 
allow the conversion of existing Scratch projects to the Catrobat language directly within the app, so 
there are, in fact, now more than 30 million projects available for remixing and inspiration to our users. 

The Pocket Code interface consists of several very distinct areas: First, the app itself with a main menu 
and the collection of downloaded or developed-by-oneself projects, second a community sharing36 
platform, which is integrated into the app as a web-view, and which serves as a learning, sharing, 
remixing, cooperation, and publishing place, third the “stage” where projects get executed on the phone, 
and additionally a sophisticated graphical editing program that allows to draw and edit the looks of all 
actors, objects, and backgrounds of one’s projects. This community website provides an online platform 
for users to download and upload programs, share them with other users, search for programs, and to 
provide feedback, e.g., write a comment to a project or rate a project. In addition, tutorials and starter 
projects are provided. In the community website’s project overview, users can execute the project 
directly in desktop browsers (HTML5 web player), download the project to the Pocket Code app, or 
download the project as a standalone Android app. In addition, the tool automatically creates statistics 
from Pocket Code projects and provides an online code overview. The project details page is illustrated 
in Figure 4. Figure 5 illustrates the options within the main menu. 

                                                
35 https://catrob.at/Phiro 
36 https://share.catrob.at 



Constructionism 2018, Vilnius, Lithuania 

112 

 

 

Figure 4: Pocket Code web share: project details page with code statistic and code view 

If the user starts first with a new and empty program, it initially only contains one empty background 
object. With the “+” sign users are able to add objects, looks, or sounds (depending on which activity 
he or she is in). The background object itself can be assigned to several backgrounds, which can be 
exchanged during runtime. The background can also have its own scripts. Every project can consist of 
multiple objects and at least one background (which is a special kind of object). Every object can hold 
a.) scripts that define the behavior of the object, b.) looks which can be changed and used, e.g., for 
object animation, and c.) sounds to make the object play music, other sounds, or recorded speech. 
Scripts can control the looks and sounds. Looks can be drawn and edited with Pocket Paint. Pocket 
Paint37 is a second app of Catrobat available on Google Play, which allows users to create their own 
objects with a pencil or different shapes (note that we currently work on integrating this second app 
completely in Pocket Code in order to simplify the installation for our users). Distinctive features of 
Pocket Paint include the ability to use transparency, to zoom in up to pixel level, to change the 
dimensions of the looks, and to use layers, the latter being particularly interesting to create consecutive 
looks from an animation series. In addition, users can add looks with their camera, from their phone’s 
memory, or use Catrobat’s Media Library with a collection of predefined graphics. To add a new sound 
the user can either record a sound directly in Pocket Code, add a sound from the Catrobat Media Library, 
or add a sound from the phone’s memory. This workflow is illustrated in Figure 6. 

                                                

37 https://catrob.at/PPoGP 



Constructionism 2018, Vilnius, Lithuania 

113 

 

 

Figure 5: Pocket Code main menu: within the settings menu you can find, e.g., the accessibility preferences or 
the Scratch Converter; 2) create a new project by starting with an example game or with an empty game; 3) 

project overview: tap on one to execute or modify it; 4) find help: videos, tutorials, step-by-step tutorials, 
education page for teachers and students or google groups forum; 5) download and play games from other 

users; 6) upload your game to the sharing platform. 

A script is a collection of code blocks that contain the logic of programming and define the operations 
of the object. Thus, it is possible to move the object and access its properties and change them. For 
adding scripts there are seven different brick categories (see Figure 7): a.) The Event category in dark 
orange that contains hat-bricks or broadcast bricks. Hat bricks are special kinds of bricks that, 
depending on certain circumstances such as a tap on an object, start the attached script; b.) The Control 
category in orange contains if-then-else bricks, loop-bricks to control the flow of the script, bricks to 
switch between scenes, clone bricks, etc; c.) The Motion category in blue color contains bricks to 
manipulate the object’s position, orientation, or movements; d.) The Sound category in purple contains 
bricks to start and stop sounds, manipulate the volume, or accept spoken input; e.) the Looks category 
in green contains bricks to change the graphical appearance of the object, e.g., set/change size, 
brightness, transparency or hide/show the object as well as set a certain look to animate the object, to 
show speech and think bubbles, or to ask for written user input; f.) The category Pen in dark green holds 
bricks for drawing lines (a pen that follows the object) and the option to leave stamped marks of the 
object on the background, g.) The Data category in red contains bricks to manipulate variables and lists, 
e.g., to set/change variables, maintain lists, add/insert/replace items, and show variable content on the 
stage. This color scheme makes is possible to understand scripts more easily through of the bricks’ 
color which supports readability. By activating extensions in the settings menu, additional categories 
appear for Lego (yellow), Drone (brown), Arduino, the Phiro robot (both in cyan), etc. 
 



Constructionism 2018, Vilnius, Lithuania 

114 

 

 

Figure 6: Pocket Code’s UI: add a look/object or add a sound with the “+” sign. 

In contrast to Scratch and Snap!, Pocket Code does not use bricks for formulas. Instead, there is a 
formula editor that looks like a calculator and allows the creation and execution of mathematical and 
logical formulas that can be used in bricks. In (Harzl et al. 2013) we compared of blocks-based (like in 
Scratch and Snap!), text-based (like with traditional programming languages such as Python), and 
hybrid ways (such as Pocket Code) to enter and edit formulas, and showed that teenagers can create 
and debug complex formulas using a hybrid editing mode faster and with less errors than with the 
blocks-based as well as purely text based approaches. All advantages of block-based interaction 
modes, such as easy discoverability of features, translation into many human languages, avoidance of 
syntax errors, and immediate feedback about current values (including dynamic sensor values), are not 
only present in Pocket Code’s formula editor, but are additionally enhanced by the familiarity of how 
formulas are written, changed, and read by users in other contexts, as well as by the familiar interface 
of an electronic pocket calculator (app). Pocket Code’s formula editor is shown in Figure 8. It consists 
of an input field to show and compose the formula, a keyboard, and a compute button to display the 
current result. On the keyboard, five categories for various values, functions, and operators are 
available. a) Object: a collection of values of the current object, e.g., values  for the X- and Y-coordinate, 
or the current speed, b) Functions, such as sin or cos, a random number generator, or list and string 
functions, c) Logic is used to compare values or to combine logical expressions, d) in Device there is 
information that the smartphone or tablet records, e.g., inclination, loudness, or GPS data, and e) Data 
stores created variables and lists and shows their last value. 

With a tap on the play button the program starts. The objects are shown on the stage and the scripts 
are executed. To stop or to pause the program, the user has to tap on the back button of the phone. A 
stage menu appears which can be seen in Figure 9. The stage is organized in a logical coordinate 



Constructionism 2018, Vilnius, Lithuania 

115 

 

system with an X- and Y-axis, which allows an exact positioning of the objects. This axis can be 
displayed in the stage menu (see Figure 9c). 

                  
 

                                  
 

 

Figure 9: Stage; a.) tap the play button to start the program, b.) tap the back button of the phone to pause the 
game, c.) in the stage menu the user has five options: 1. tap back again to stop the game and switch back to 

editing of project, 2. restart the game, 3. resume the game, 4. add a new preview picture to the project (this will 
be shown, e.g., on the sharing platform), and 5. display the x/y axes on the device screen. 

Projects and Further Work 

This new and forward-thinking approach to code on mobile devices received national and international 
recognition. The Catrobat project has won a number of awards, including 2016 two Lovie Awards ex 
aequo with Red Bull and Doctors without Borders, evaluating the best European digital projects in 
London, and the Reimagine Education Award for innovative educational projects at the Wharton 

Figure 7: Script categories: 
choose  bricks from the seven 

basic available categories. 

Figure 8: Formula editor: the value for the 
direction can be defined as a constant or, e.g., a 
sensor can be chosen by tapping on "Device". 



Constructionism 2018, Vilnius, Lithuania 

116 

 

Business School of Pennsylvania38. Additionally, in March 2017, Catrobat won the “Platinum Award” in 
Best Mobile App Awards Best Educational App category and 2016 the “Internet for Refugees”39 award 
for a Right-to-Left language implementation of Pocket Code, which supports several RTL languages, 
e.g., Arabic or Farsi, and particularly focuses on refugees and teenagers in crisis or development areas. 
A new project was started in January 2018 which promotes remote mentoring by connecting female role 
models with female programming beginners. This idea was awarded with the “Closing the Gender Gap” 
prize of the Austrian NetIdee in November 2017. During the European H2020 project “No One Left 
Behind” (NOLB), the team developed a special flavoured school version of the app with the name 
“Create@School”. This version compromises, e.g., the gathering of analytics data for visualization, the 
integration of accessibility preferences, and the development of pre-coded templates. Currently a new 
flavored version customized for female teenagers is in development. This version with the name 
“Luna&Cat” promotes special content for girls, like featured and user-contributed programs, media 
assets, and tutorial videos.  

 

Figure 10: “Stitched” patterns in Pocket Code. Picture on the right with kind permission from Andrea Mayr-
Stalder, www.TurtleStitch.org project. 

One new feature which is currently under development is an extension to program embroidery 
machines. Once available, self-created patterns and designs can be stitched on t-shirts, pants, or even 
bags or shoes. With Pocket Code, the embroidery machines will be programmable, similar to the 
existing TurtleStitch40 project, which realizes this concept on a PC (while with Pocket Code only a 
smartphone is needed). As a result, teenagers have something they can be proud of, something they 
can wear, and they can show to others. This feature has proven to be especially engaging for female 
teenagers and shows them new ways of expressing themselves creatively through coding. Figure 10 
shows an example of an embroidery pattern made with Pocket Code.  

Another new beta feature allows registered users to sign and release the Catrobat project as apps on 
Google Play. Users optionally also add mobile ads to earn money. In developing countries, mobile 
technologies are playing an important role in developing economies (Alderete, 2017). This is because 
mobile phones and the mobile internet require considerably fewer financial resources in comparison to 
a traditional desktops and laptops (Stork, 2013).  Due to lack of alternate employment opportunities in 

                                                
38 http://www.reimagine-education.com/awards/reimagine-education-2016-honours-list/ 
39 http://www.tugraz.at/en/tu-graz/services/news-stories/tu-graz-news/singleview/ 
article/preis-internet-for-refugees-fuer-programmier-app-der-tu-graz 
40 http://www.turtlestitch.org/ 



Constructionism 2018, Vilnius, Lithuania 

117 

 

developing countries, the low cost of investment is a critical enabling factor for new entrepreneurs 
(Alderete, 2017). The economic advantage of releasing an app on Google Play or integrating AdMob 
within apps can motivate many people to learn programming and solve issues digitally. This is especially 
beneficial for under-privileged user groups who have access to limited resources like computers and 
continuously available electricity. They can benefit by sharing their creativity with others and serve a 
global market with minimal resources such as a low-cost smartphone and mobile internet, which are 
increasingly available everywhere.  Figure 11 shows an example of apps with AdMob integration. 

 

Figure 11:  Android apps with AdMob banner advertisement created with Pocket Code. 

Conclusion and Discussion 

The aim of this paper was to provide an overview about the Catrobat project and the Pocket Code app 
as of July 2018. Pocket Code provides an easy way to start coding. It is not intended to allow the 
development of standard applications, but to promote understanding of the logic behind coding and 
foster computational thinking skills, thus following a constructionist approach in learning by doing and 
the creation of sharable artefacts. Creative and artistic talents can be recognized and learning can occur 
in a user-centered, project-based setting with the use of new media. Users of Pocket Code are mostly 
teenagers who can learn from each other and share their ideas to create new games and other apps 
together. The community sharing platform allows users to give and receive feedback, support, and 
assistance from others around the world, thus allowing our users to stand on the shoulders of their peers 
and learn from each other. They can try out new ideas and realize the projects they define for 
themselves, aided and inspired by likeminded others in a user-friendly and social environment. Catrobat 
fosters diversity and learning in a worldwide community. Our goal is to empower teenager all over the 
world to realize their potential and express themselves creatively with today’s and any future technology.  

References 

Alderete, M. V. (2017) Mobile Broadband: A Key Enabling Technology for Entrepreneurship? Journal 
of Small Business Management, 55(2), 254-269. 

Awwad, A. , Schindler, C., Luhana, K. K., Ali, Z., and Spieler, B. (2017) Improving Pocket Paint usability 
via material design compliance and internationalization & localization support on application level. In 
Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices 
and Services (ACM), p. 99:1-99:8.  



Constructionism 2018, Vilnius, Lithuania 

118 

 

Balanskat, A., and Engelhardt, K. (2015) Computing our future. Computer programming and coding 
Priorities, school curricula and initiatives across Europe. European Schoolnet (EUN Partnership AIBSL). 

Barnett, T., Lawless, B., Kim, H., and Vista A. (2017) Complementary strategies for teaching 
collaboration and critical thinking skills. Education Plus Development. [online] 
https://www.brookings.edu/blog/education-plus-development/2017/12/12/complementary-strategies-
for-teaching-collaboration-and-critical-thinking-skills/, accessed: 3.4.2018. 

Bevans, A. (2017) Who plays mobile games? [online] https://www.gamesindustry.biz/articles/2017-06-
14-who-plays-mobile-games, accessed: 6.4.2018. 

European Commission (2016a) Women in digital - a gap and an opportunity. [online]  
https://ec.europa.eu/digital-single-market/en/blog/Women-digital-gap-and-opportunity, accessed: 
8.4.2018. 

European Commission (2016b) A new skills agenda for Europe. Working together to strengthen human 
capital, employability and competitiveness, [online] http://ec.europa.eu/social/main.jsp?catId=1223, 
accessed: 1.3.2018. 

Ford J.L. (2009) Scratch programming for Teens. In Computer Science Books. 

Ghuman, A., Mahajan, J., Bhatia, S., Singh, J., & Kulkarni, M. D. (2017, August). Empowering e-learning 
with localization. In Proceedings of the 5th IEEE National Conference on E-Learning & E-Learning 
Technologies (ELELTECH), 2017, p. 1-6. 

Google and NewZoo (2017) Change the Game. THE WORLD OF WOMEN AND MOBILE GAMING. A 
White Paper. [online] http://services.google.com/fh/files/misc/changethegame_white_paper.pdf, 
accessed: 8.3.2018. 

Greenberger, M. (1962) Computers in the World of the Future. In Cambridge, MA: MIT Press. 

Harzl, A., Krnjic, V., Schreiner, F., and Slany, W. (2013) Comparing Purely Visual with Hybrid 
Visual/Textual Manipulation of Complex Formula on Smartphones. In Proceedings of the 19th 
International Conference on Distributed Multimedia Systems (DMS 2013), p. 198-201. 

Jingli, S. (2017) China’s mobile games market posts $15b revenue in 2017. [online] 
http://www.chinadaily.com.cn/a/201801/12/WS5a5851a0a3102c394518edcc.html, accessed: 
7.4.2018. 

Kafai, Y., and Vasudevan, V. (2015) Hi-Lo tech games: crafting, coding and collaboration of augmented 
board games by high school youth. In Proceedings of the 14th International Conference on Interaction 
Design and Children (IDC ’15), p. 130-139.  

Kahn, K. (2017) A half-century perspective on Computational Thinking. In technologias, sociedadee 
conhecimento, Vol. 4, No. 1. 

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., and Settle, A. (2014) 
Computational thinking in K-9 education. In Proceedings of the Working Group Reports of the 2014 on 
Innovation & Technology in Computer Science Education Conference, p. 1–29. 

National Center for Women Information Technology (2015) NCWIT Fact Sheet, [online] 
https://www.ncwit.org/ncwit-fact-sheet, accessed: 1.4.2018. 

National Center for Women Information Technology (2017) NCWIT’s Women in IT: By the Numbers 
presents the most compelling statistics on women’s participation in IT on a single page. [online] 
www.ncwit.org/bythenumbers, accessed: 1.4.2018. 

Papert, S. (1985) Mindstorms. Children, Computer, and Powerful Ideas. In Basic Books Inc. 

Piaget, J. and Inhelder, B. (1967) A Child’s Conception of Space (F. J. Langdon & J. L. Lunzer, Trans.). 
New York: Norton (Original work published 1948), p. 375-418. 

Resnick, M. (2017) Lifelong Kindergarten: Cultivating Creativity through Projects, Passion, Peers, and 
Play (MIT Press). 

http://services.google.com/fh/files/misc/changethegame_white_paper.pdf


Constructionism 2018, Vilnius, Lithuania 

119 

 

Ryan, R., and Deci, E. (2000) Intrinsic and extrinsic motivations: Classic definitions and new directions. 
In Contemporary Educational Psychology, Vol. 25, No. 1, p. 54-67. 

Slany, W. (2014) Tinkering with Pocket Code, a Scratch-like programming app for your smartphone. In 
Proceedings: Constructionism 2014, Vienna, August 2014. 

Statista Market Analytics (2016) Forecast of the smartphone user penetration rate in Austria, France, 
Germany, and United Kingdom (UK) from 2014 to 2021. [online] 
http://www.statista.com/statistics/567976/predicted-\discretionary{-}{}{}smartphone-user-penetration-
rate-in-austria  
http://www.statista.com/statistics/568093/predicted-smartphone-user-penetration-rate-in-france/ 
https://www.statista.com/statistics/568095/predicted-smartphone-user-penetration-rate-in-germany/ 
https://www.statista.com/statistics/553707/predicted-smartphone-user-penetration-rate-in-the-united-
kingdom-uk/, accessed: 8.4.2018. 

Stephenson, N. (1995) The Diamond Age: Or, A Young Lady's Illustrated Primer: a Propædeutic 
Enchiridion in which is told the tale of Princess Nell and her various friends, kin, associates, &c. (Bantam 
Spectra). 

Stork, C., Calandro, E., and Gillwald, A. (2013) Internet Going Mobile: Internet Access and Use in 11 
African Countries, Info 15(5), 34–51. 

Takahashi, D. (2017) Sensor Tower: Mobile game revenues grew 32% in Q2 as Asian titles surged. 
[online] https://venturebeat.com/2017/07/24/mobile-game-revenues-grew-32-in-q2-as-asian-titles-
surged/, accessed: 8.4.2018. 

Tedre, M., and Denning, P.J. (2016) The Long Quest for Computational Thinking. In Proceedings of the 
16th Koli Calling Conference on Computing Education Research, November, Koli, Finland, p. 120-129. 

Tumlin, N. (2017) Teacher Configurable Coding Challenges for Block Languages. In Proceedings of the 
2017 ACM SIGCSE Technical Symposium on Computer Science Education, p. 783-784. 

Verto Analytics (2015) Who Plays Mobile Games and When? [online] 
http://www.vertoanalytics.com/who-plays-mobile-games-and-when/, accessed: 7.4.2018. 

Wing, J. (2006) Computational thinking. In Communications of the ACM. Vol. 49, No. 3, p. 33–35. 

Wu, B., and Wang, A.I. (2012) A Guideline for Game Development-Based Learning: A Literature 
Review. In: International Journal of Computer Games Technology, Vol. 2012, No. 103710, 20 pages. 

  



Constructionism 2018, Vilnius, Lithuania 

120 

 

Making Constructionism Great Again 

Gary S. Stager, gary@stager.org 
Constructing Modern Knowledge, USA 

Abstract 

The Constructionism community is at a crossroads with the passing of Seymour Papert, the uncertain 
future of Logo, and the emergence of simpatico movements outside of the academy. This session will 
explore unfinished work in addition to the challenges and opportunities faced by the next generation of 
constructionists. What will it take to sustain its relevance and make constructionism great again? 

Topics explored include: 

 The Premature Death of Logo 

 Seeing the “Entire Elephant” 

 Piaget versus Popular Coding Curricula 

 Twenty Things to Do with a Computer Today 

 Agency and the Lost Art of Teaching 

 Know Who Your Friends Are 

 The Progressive Imperative 

 

Keywords 
Progressive education, constructionism, Logo, Seymour Papert, Scratch, physical computing, CS4All 

  

mailto:gary@stager.org


Constructionism 2018, Vilnius, Lithuania 

121 

 

Turning Theory into Practice – Spreading 
Constructionism 

Gary S. Stager, gary@stager.org 
Constructing Modern Knowledge, USA 

Sylvia Martinez, Sylvia@inventtolearn.com 
Constructing Modern Knowledge, USA 

Abstract 
In age marked by ascendant instructionism, the presenters have led two initiatives that introduced 
constructionism successfully to preschool – high school educators around the world. Without 
compromising the powerful ideas of Papert or his learning theory, the presenters have made 
constructionism accessible and resonant among practicing educators through publishing and 
professional development efforts. Countless educators have been inspired bring constructionism to life, 
often accompanied by the use of cutting-edge technology, without government, foundation, or academic 
support. 

Five years ago, the presenters published Invent To Learn: Making, Tinkering, and Engineering in the 
Classroom. This book is quite possibly the most popular text ever written about constructionism and 
has been translated into multiple languages. Invent To Learn sought to situate the emerging maker 
movement in a theoretical context of constructionism and historical context of progressive education 
while building a bridge between the informal learning movement outside of schools and sound 
classroom practice. Constructionism pervades the text explicitly and tacitly. The success of Invent To 
Learn led to the publication of ten other books by constructionist educators. During this plenary session, 
the authors will reflect upon lessons learned about learning-by-making, teaching, and school change 
since the time of publication. 

Nearly twenty years ago, Gary Stager and Seymour Papert engaged in multiple conversations about 
building a different bridge; one between our progressive education colleagues suspicious of modernity 
and an educational technology community that, in Papertian terms was increasingly “idea averse.” While 
Papert was never able to convene such a summit, Gary Stager created the annual Constructing Modern 
Knowledge summer educator institute. Over eleven years, Constructing Modern Knowledge has created 
an immersive learning environment  modeling constructionism and pedagogical strategies developed 
collaborative with Seymour Papert during their “prison project.” Papert’s unique emphasis on the 
competence of educators, the absence of coercion, computer as material, powerful ideas, technology 
as prosthetic, project-based learning, and the centrality of the learner – especially when the learner is a 
teacher  - create the conditions for countless educators to not only develop exceptional computational 
fluency, but construct personal lessons for creating productive contexts for learning in their personal 
school contexts. 

At the Constructionism 2018 Conference, we will share the unique structure of Constructing Modern 
Knowledge, along with learning stories and project vignettes supporting the efficacy of constructionism 
by and for educators willing to take off their teacher hats and put on their learner hats. 

Keywords 
Constructionism; Logo; Seymour Papert; maker movement; coding; fabrication; professional 
development; progressive education 

  

mailto:gary@stager.org
mailto:Sylvia@inventtolearn.com


Constructionism 2018, Vilnius, Lithuania 

122 

 

The Evolution of a Constructionist Teacher (with 
Some Reminders from Seymour) 

Carol Sperry Suziedelis 
Millersville University, USA 

Abstract 
Many teachers who are aligned with the organic, creative, and dynamic ideas of Constructionism find it 
difficult to navigate in traditional waters. The obstacles are many: rigid curriculum, excessive testing, 
lack of resources, few allies, inability to articulate philosophy to the satisfaction of the powers that be. It 
takes courage, and this paper attempts, through anecdote and narrative, to offer ways and means to 
develop a Constructionist mindset and the tools and attitudes to effect changes.  We hope to inspire 
discussion of topics such as what it means to learn, thinking about thinking, the importance of teacher 
engagement, relationships, relevancy, aesthetics, gender issues, and project-based learning. 

Along the way, we will remember Seymour Papert, his dedication to the possibilities of “learning as a 
dimension of life,” and resurrect some of the ideas” he used to inspire us. 

Keyword 
Constructionist teacher; dynamic 

  



Constructionism 2018, Vilnius, Lithuania 

123 

 

Reempowering Powerful Ideas  

Uri Wilensky, uri@northwestern.edu  
Northwestern University, Chicago, IL, USA  

Abstract  
In Mindstorms, Papert expressed many ideas foundational to Constructionism. Among these are how 
children programming can be transformative for learning, the empowerment children gain by creative 
expression with the computer, and powerful ideas of computation. In the nearly four decades since 
Mindstorms, there has been great progress in realizing these potentials. In particular, there has been 
wide recognition of the importance of coding and of computational thinking for all and many initiatives 
have arisen to galvanize these efforts. These new efforts are exciting for constructionists and we have 
seen public and academic vindication for these ideas.  

In this paper, I point out that, in addition to these ideas, there is a part of Papert’s vision in Mindstorms, 
that is more neglected. That is the more general notion of powerful ideas, not solely ideas inherent in 
computation such as variables, procedures and recursion, but also powerful ways of thinking from other 
disciplines that are made more powerful and accessible through computation. Mindstorms expounded 
on turtle geometry, making it accessible both through programming the turtle and engaging with turtle 
microworlds. In either mode, the turtle added to the Euclidean point one other property, that of a 
heading, and therefore angular velocity. This change results in a new definition of a circle, one that is 
intrinsic and so connects geometry to the powerful ideas of calculus. This change in the Euclidean point 
is a case of what Wilensky and Papert called a restructuration, a change in the representational 
infrastructure used to encode knowledge. Restructurations throughout history have increased the 
power, usability and learnability of formerly difficult knowledge. Classic examples are the 
restructurations of arithmetic from Roman to Hindu-Arabic representation and the restructuration of 
kinematics from natural language to algebra. Both of these dramatically democratized access to these 
powerful ideas. Wilensky & Papert argued that, like in turtle geometry, computational representations 
can serve as the basis for significant restructurations -- restructurations that increase the power and 
learnability of powerful ideas in science. Like the turtle, a powerful means of creating restructurations is 
to add agency to primitive elements. This can be achieved through agent-based computational 
approaches. In this paper, I’m going to show examples of the many different restructurations that 
members of the CCL lab have constructed in the past decade including NetLogo-based restructurations 
of powerful ideas of biology, materials science 
and economics -- and invite the constructionist 
community to increase its efforts in creating 
computational representations of powerful 
ideas. These ideas are accessed through 
multi-turtle programming and emergent 
systems microworlds. Agent-based 
representations provide “objects-to-think with” 
that facilitate powerful ideas of discrete 
mathematics, probability and network theory. 
As the world increases in complexity, citizens 
of a society increasingly require use of these 
powerful ideas to make sense of their natural 
and social worlds and to be empowered to make meaningful changes in society. 

Keywords 
powerful ideas; restructurations; agent-based modeling, NetLogo  

           

Agent-based models of a) artificial selection of 
sunflowers    b) predator-prey ecosystem 



Constructionism 2018, Vilnius, Lithuania 

124 

 

Research papers 
  



Constructionism 2018, Vilnius, Lithuania 

125 

 

Agent-based Construction (a-b-c) Interviews: A 
Generative Case Study 

Ümit Aslan, umitaslan@u.northwestern.edu 
Learning Sciences, Northwestern University, USA 

Uri Wilensky, uri@northwestern.edu 
Learning Sciences, Computer Science and Complex Systems, Northwestern University, USA 

Abstract 
We propose agent-based construction (a-b-c) interviews as a new research methodology specifically 
designed to expose patterns of reasoning about emergent phenomena and complex systems. In an a-
b-c interview, the researcher acts as an active mediator between the participant and an agent-based 
modeling environment. As the participant describes the model, the researcher tries to write the 
corresponding code and probes the participant about his or her reasoning. In this paper, we present a 
generative case study in which an adult participant constructs a NetLogo model of aging with the help 
of a researcher. We conduct a preliminary grounded analysis of this case study and trace the evolution 
of the participant’s model throughout the hour-long interview. Our findings show that the act of mediation 
between the participant and the agent-based modeling environment can potentially afford, at times even 
obligate, the researcher to continuously make on-the-fly hypotheses about the participant’s thinking, 
present these hypotheses through writing the model’s code, and get immediate feedback from the 
participant. Our findings also show that a-b-c interviews can potentially expose more fine-grained, 
spontaneous, and connected reasoning processes that cannot easily be studied through traditional task-
based or verbal clinical interviews. 

Keywords 
agent-based modelling; complex systems; emergence; knowledge; reasoning; research methodologies; 
clinical interviews 

Introduction 

Many of the world's pressing issues can be conceptualized as emergent phenomena. That is, they are 
macro level observable patterns emerging from micro level interactions between numerous individual 
entities (Johnson, 2006; Mitchell, 2009; Wilensky, 2001). Some examples are climate change, 
migration, and epidemics (United Nations, 2016). Research suggests that learning about complex 
systems and developing relevant reasoning skills would greatly benefit those who engage with the 
world's pressing issues in any formal or informal manner such as democratic participation, personal 
choices, or policy making (e.g., NRC, 2012; Sterman, 1994). However, studies have shown that it is 
difficult for most people to make sense of emergent phenomena, and the complex systems such 
phenomena arise from, because they are non-linear, non-deterministic, decentralized, and multi-leveled 
(e.g., Chi, 2005; Wilensky and Resnick, 1999). More importantly, even though lots of research has been 
done, there is controversy about the nature of reasoning processes that cause such difficulties (e.g., 
Chi and Roscoe, 2002; Jacobson, 2001; Hmelo-silver, Marathe and Liu, 2007; Levy and Wilensky, 2008; 
Penner, 2000; Sengupta and Wilensky, 2011). 

Almost all of the studies on reasoning about emergent phenomena and complex systems rely on clinical 
interviews focusing on relatively simple, well-understood emergent phenomena such as diffusion of 
liquids (Chi, 2005) or ants foraging for food (Jacobson, 2001). During a clinical interview, a participant 
is presented with tasks, cases, or verbal questions and is expected to produce verbal answers (Clement, 
2000; Ginsburg, 1997). We argue that the expectation of verbal articulation might be a limiting factor 
when it comes to emergent phenomena because it may be too difficult to form coherent on-the-fly 
explanations about phenomena or systems that include many actors, interactions, levels, and 



Constructionism 2018, Vilnius, Lithuania 

126 

 

stochasticity. It may be necessary to support participants with an infrastructure that helps offload some 
of the more difficult aspects such as randomness and hypothesis testing. 

We propose a new research methodology that emerged from our previous research on learning and 
thinking about emergent phenomena through agent-based modeling (Aslan and Wilensky, 2016a; 
2016b). We tentatively call this approach agent-based-construction (a-b-c) interviews. As 

the name suggests, a-b-c interviews ask for participants to construct an agent-based 
model of an emergent phenomenon. A-b-c interviews incorporate agent-based modeling 

because it has been shown to be a particularly powerful methodology in learning and reasoning about 
emergent phenomena (e.g., Klopfer, 2003; Wilensky, 2001; Wilensky and Reisman, 2006; Wilensky and 
Papert, 2010; Wilkerson-Jerde and Wilensky, 2015). We hypothesize that observing people's reasoning 
as they are trying to construct an emergent phenomenon through agent-based modeling can offer us 
insights that may otherwise not be possible through traditional clinical interviewing. We also hypothesize 
that a productive avenue would be for a researcher to act as an active mediator between the participant 

and the agent-based modeling environment. This way, it would be possible to work with participants 
who do not have any prior experience in computation or agent-based modeling. It would also enable 
the researcher to observe and model the participants’ reasoning on a moment-by-moment basis (Sherin, 
Krakowski and and Lee, 2012). 

In this paper, we attempt to formulate a working definition of a-b-c interviews through presenting a 

generative case study with an adult participant who constructed a model of aging with the help of a 
researcher over the course of an hour. We analyze the interaction between the participant, the 
researcher, and the agent-based modeling environment and reconstruct a timeline of the evolution of 
the participant’s model. We discuss the results of our analysis and determine main features, as well 
as major challenges, of a-b-c interviews.  

Theoretical underpinnings 

Our proposal of a-b-c interviews as a research methodology is founded on two paradigm shifts in 

the way we study knowledge and reasoning, and two paradigm shifts in the way we make sense of the 
world around us: (1) the theory of constructivism, (2) the methodology of clinical interviewing, (3) the 
field of complex systems, and (4) the practice of agent-based modeling. We hypothesize that a fruitful 
way to study people's ways of reasoning about the world could be through studying their reasoning 
about emergent phenomena and complex systems, so we propose a new research methodology 
specifically designed for the intersection of these four paradigm shifts. In this section, we review each 
of these topics briefly and explain our reasoning on why they are important for our proposal. 

We begin with the emergence of the theory of constructivism, which fundamentally changed our 
understanding of the nature of human knowledge and reasoning. Piaget (1972) and his colleagues 
successfully demonstrated that knowledge is not readily acquired from an outside source but is actively 
constructed by the learner. Underpinning our proposal are two specific theories that extend Piaget's 

theory of constructivism: (1) constructionism and (2) knowledge-in-pieces. Constructionism is a theory 
of learning that takes constructivism's connotations of "learning as building knowledge structures" and 
"to know an object is to act on it" (Piaget, 1972, p.20), and adds the idea that this "happens especially 
felicitously in a context where the learner is consciously engaged in constructing a public entity" (Papert, 
1980; Papert and Harel, 1991). Knowledge-in-pieces (KiP), on the other hand, is a constructivist theory 
that builds on artificial intelligence researchers’ attempts to model knowledge and learning (e.g., 
Anderson, 1983; Minsky, 1986; Newell and Simon, 1972). KiP challenges conventional notions of 
knowledge as monolithic self-contained structures and conceptualizes it as a loosely organized network 
of primitive elements that are activated spontaneously and continuously reconfigured as the reasoning 
process is happening (diSessa, 1993). 

The second paradigm shift is the methodology of clinical interviewing, which was invented by Piaget in 
the process of developing his theory of constructivism (Ginsburg, 1997). In contrast to standardized 
tests, which cannot go beyond behavioral manifestations of knowledge in pre-determined boundaries, 
clinical interviews give researchers the freedom to design object manipulation tasks, ask clarification 
questions, make on-the-spot hypotheses about subjects' reasoning, and test these hypotheses with 



Constructionism 2018, Vilnius, Lithuania 

127 

 

follow-up questions. Thanks to these strengths, clinical interviews provide opportunities to study more 
naturalistic forms of reasoning and to uncover hidden structures and processes (Clement, 2000; 
Ginsburg, 1997). Even though the original clinical interviews conducted by Piaget and his colleagues 
were mostly based on simple tasks for children, the methodology has evolved considerably over the 
years and became more reliant on verbal question-answer sequences. In addition, researchers have 
shown that participants’ reasoning about a subject may evolve and even develop further during the 
course of a clinical interview (Sherin, Krakowski and Lee, 2012). 

The third paradigm shift that we incorporate in our proposal is the emergence of the field of complex 
systems due to the way it dramatically changed our understanding of the world around us (Bar-Yam, 
2004; Mitchell, 2009; Waldrop, 1993; Wilensky, 2001). A complex system is defined as "a group or 
organization which is made up of many interacting parts" (Mitchell and Newman, 2001, p. 1). Our lives 
are embedded in many complex systems such as the internet, economies, the brain, ecosystems, the 
weather and the immune system. Within these systems, many simple entities — often called 
components or agents — organize themselves without any central controller and the interactions 
between them result in a "collective whole that creates patterns, uses information, and, in some cases, 
evolves and learns" (Mitchell, 2009, p.4). The macro-level patterns which arise out of micro-level 
interactions between the parts of complex systems are called emergent phenomena (Wilensky, 2001). 
As a result, many real-world phenomena are non-linear, non-deterministic, stochastic and multi-leveled 
(Mitchell, 2009; Wilensky, 2001; 2003). 

Lastly, agent-based modeling (Epstein, 2006; Wilensky & Rand, 2014) is a practice that emerged from 
the field of complex systems that "makes use of simple computational rules as the fundamental 
modeling elements" (Wilensky and Papert, 2010, p. 7) Hence, it is a paradigm shift from traditional 
aggregate-level models that are built using methods such as linear algebra or differential equations. 
The main reason that makes agent-based modeling compelling for our proposal is the fact that it offers 
a better epistemological match to our intuitive notions of parts that make up complex systems as distinct 
individuals or entities instead of aggregate populations (Wilensky and Papert, 2010). Thus, it is possible 
to teach the basics of agent-based modeling to a research participant and have them describe a real-
world phenomenon through characteristics of entities such as people, organizations, or objects. In our 
initial formulation of the a-b-c interviews, we use the NetLogo agent-based modeling environment 

(Wilensky, 1999) as the construction tool because is the most widely used agent-based modeling 
environment and it has its roots in both the field of complex systems and the field of learning sciences 
(Wilensky, 1999; 2001). It is a direct descendant of the Logo programming language (Papert, 1980) and 
it is designed to be a "low threshold, high ceiling" programming environment. Research has shown that 
students as young as in upper elementary school level can learn to develop models (e.g., Wilensky, 
2003), but it is also used by professional scientists in cutting edge research (e.g., Maroulis et al., 2010; 
Pumain and Reuillon, 2017). 

We argue that, much like the wood blocks used in Piagetian interviews on conservation of volume 
(Piaget, Inhelder and Szeminska, 1960), agent-based modeling offers material affordances that match 
well with real world phenomena. Actively constructing an agent-based model would require a participant 
to explicitly think about the constituents of an emergent phenomenon, making it possible to observe the 
participants’ reasoning processes at more fine-grained levels as they unfold over the course of an 
interview. Being an active mediator between the participant and the agent-based modeling environment 
enables researchers to work with non-programmer participants on complex phenomena through an 
active dialogue that involves making and testing on-the fly hypotheses about the participant’s reasoning. 

A generative case study 

In this section, we present a preliminary form of an a-b-c interview as a generative case study 

(Clement, 2000). The data presented here is taken from a previous study that was designed as an 
intervention to introduce the basics of agent-based modeling to adults with no prior experience in 
computational practices, and then help them develop a NetLogo model with the specific goal of exploring 
the effects of such an experience on their reasoning about stochastic phenomena. The intervention 
consisted of three one-on-one meetings with each participant. In the first meeting, the participant was 



Constructionism 2018, Vilnius, Lithuania 

128 

 

shown the basics of the NetLogo agent-based modeling environment. In the second and third meetings, 
a researcher helped each participant develop a model of a real-world issue of their choice. The 
participant described the model he or she wanted to develop and the researcher wrote the 
corresponding NetLogo code.  

As we were analyzing the video data from this study, we came to notice the rich interaction between the 
researcher and the participants during the model construction process and decided to recalibrate our 
focus on the ideas presented in this paper. The case study shared in this section is one such interview 
conducted with Karina (pseudonym), who works as a special education paraprofessional in a public 
school in a large city in the U.S. We chose this case because it captures a single-meeting that starts 
with Karina expressing her idea and ending with her being satisfied with the model she developed with 
the help of the researcher. 

Methodology 
The interview with Karina lasted 50 minutes and 7 seconds and it is recorded in video. We analyzed the 
video by watching it through a qualitative video analysis software and marking instances in the video 
during which the participant was actively talking. We discarded in-between instances during which the 
researcher either just worked on writing the NetLogo code or explained how the code works to the 
participant. After this initial round of data reduction, we ended up with 22 short episodes. Out of these 
22, we determined 9 of them as main episodes for the purposes of this paper. Then, we transcribed and 
analyzed each episode in detail by marking the parts of transcripts that highlighted Karina's reasoning. 
Finally, we built textual and visual representations of Karina's model for each episode (i.e., Sherin, 
Krakowski and Lee, 2012). We are going to present transcripts from these 9 episodes with visual 
snapshots of the NetLogo model, as well as our visual reconstruction of her model. 

The topic of the interview: population decline 
The emergent phenomenon presented in this section is chosen by the participant herself. Before the 
interview, she mentioned to the researcher that she read some news about declining populations in 
Japanese villages and she wanted to build a model of this issue. Population decline, or ageing, is listed 
as one of 18 global issues that "transcend national boundaries and cannot be resolved by any one 
country acting alone" by the United Nations (2016). It exhibits itself in many levels of the society and it 
is a constant headline in news, especially in developed countries, due to its implications for global 
economy in terms of workforce and health care systems (e.g., Anderson and Hussey, 2000; Rowe et 
al., 2016). It is a very suitable topic for the purposes of this paper because it is an emergent phenomenon 
embedded in greater complex systems in various levels such as local populations, global economies 
and healthcare systems. 

Karina’s model of population decline 
The interview starts with Karina telling the researcher that she wants to work on a completely new idea 
that she came up with after coming across a story about the issue of ageing in Japanese villages in the 
news. The researcher welcomes her decision and asks her to articulate her idea on the record (see 
Table 1). She briefly talks about her idea and stops. The NetLogo model shown in Table 1 only contains 

two conventional buttons, setup and go, but no code. 

Table 1. Karina's description of her original idea 

Screenshot Transcript Diagram model 

 

(K)arina: So, the idea is based on a fact, 
which is, in Japan 40% of the population is 
over 60 years old if I’m not mistaken. So, 
they are coming across, umm, they are 
experiencing, what, what’s my word? what 
did I say? I don’t, I can’t remember … 

 



Constructionism 2018, Vilnius, Lithuania 

129 

 

(R)esearcher: Deaths and child birth and 
aging … 

K: Well, that the population is, no-one there 
will be, the percentage of young people is 
less, therefore there is a lot less people 
procreating. So, in some instances villages 
are dying out because of the, umm, big 
number of elderly versus young people and 
so for example, umm, a village of 300 is 
now down to 30 because of such a high 
population of old people. 

After Karina's initial explanation, the researcher proceeds to create a simple model in which there are 
old people and young people. He stops before creating any people in the model and asks Karina about 
how to visualize people in her model. As seen in Table 2, this question prompts Karina on not only 

deciding how the people in the model should look like but also talk about actual agent behavior. She 
also briefly mentions how she wants to be able to manipulate this model. We update our visual and 
textual representation of her model accordingly. 

Table 2. Karina's first description of the agents 

Screenshot Transcript Diagram model 

 

R: So, the turtle shapes, which one do 
you prefer for people? 

K: The people, oh, the old people 
should be unhappy. 

R: Old people should be unhappy? 
OK. 

K: Yeah, just because they can’t, 
yeah, sad face. Just for the fun of it 
(laughs). 

R: Let’s start with the natural face, 
…,no no no, but they will get older 
maybe. Or are we gonna just put older 
people initially and leave it like that? 
Or do you wanna create people like 
young ages, get them older, make 
them reproduce? Stuff like that? 

K: My idea was, increase and 
decrease the number of old people 
and how that affects the 
population. 

R: Oh, I see. So, then people will be 
old and young, right? 

K: Yes. Well, old people will be 
considered people that can’t have 
kids, obviously. Or they are not 
reproducing. 

 

Once again, the researcher proceeds to write the code that, he thinks, will produce the model that 
reflects the model in Karina's mind. He adds a number-of-people slider to the interface that determines 

the size of the population's village and an elderly slider that determines what percentage of this village 

is elderly people. When the setup button is clicked, the people of the model are created. Each person 

is designated as either young or old and then they are placed on random locations in the model's two-



Constructionism 2018, Vilnius, Lithuania 

130 

 

dimensional world. Once he finishes writing this code, the researcher clicks the setup button and asks 

Karina what she wants to do next. Table 3 shows Karina's response to this question. 

Table 3. Karina's first description of agent behaviour 

Screenshot Transcript Diagram model 

 

R: OK. So, I have these people, they are in random 
places. They are the residents of this village. Umm, 
what’s next? What are these people gonna do? 

K: Well, I’m assuming, umm, that’s what I’m trying to 
wrap my head around. Umm. I guess if two people 
meet, they are gonna reproduce one person. And 
then, then now I’m thinking, yeah, we’ll start there. 

 

 

After hearing Karina's idea, the researcher starts writing the code so that each person continuously 
moves around randomly. When two young people touch each other, they produce a new young person. 
Once he writes this code and shows it to Karina, they run the model and notice that the number of young 
people grows exponentially in a very short time. In Table 4, Karina reacts to this outcome and notices 

that the model is not complete. She adds that she wants the parents to become immediately old when 
they make a baby. 

Table 4. Karina's update of agent behavior 

Screenshot Transcript Diagram model 

 

R: Let’s see if this works, … oh yeah … 

K: Wait, what about my old people? 

R: They are, they are in there but we are 
making so many babies randomly … 

K: (laughs) …  

R: Maybe we should like decrease the 
… 

K: So, my thing is now, now the green 
people, the parents should be old 
now! 

R: They should be gr, oh, wha? … 

K: When they make one baby, yeah, 
let’s just, yeah. 

 

Once the researcher modifies the code accordingly, they run the model and they see that the number 
of young people decrease very quickly but the number of elderly people keeps increasing. Here, Karina 
thinks the outcome is interesting but her reaction indicates that she is not content with her model yet. 
The researcher senses her hesitation and asks her to elaborate. She hesitantly deliberates on whether 
the old people in the model should eventually die and what would be the implications of such an addition 
on the size of the village 

 

 

 



Constructionism 2018, Vilnius, Lithuania 

131 

 

Table 5. Karina's further updates of agent behavior 

Screenshot Transcript Diagram model 

 

K: I think it is interesting still, to see … 

R: Yeah, almost everybody is old red, yeah … 

K: But …  

R: No, say it. 

K: I was just gonna say, not that it would affect 
our findings, but the old people have to 
[expletive] die … 

R: Wanna do that? 

K: But that doesn’t really matter, you know what I’m 
saying? 

R: Yeah! They just turn red and they cannot 
reproduce again. 

K: Right, exactly. But what does it tell about the 
size of the village? Do you know what I’m saying? 

R: Yeah! Do you wanna do that? 

K: (Nods approvingly). 

 

After this change, the researcher runs the model and Karina expresses excitement with the model 
because everyone dies. This point is marked as the completion of her initial model. 

Table 6. Karina's reaction to the first completed version 

Screenshot Transcript Diagram model 

 

R: Let’s see … So? 

K: [expletive]! Everyone’s [expletive] oh damn! Look 
at that! 

 

After the addition of the mechanism of death, they run the model again and Karina now displays 
excitement about her model. The researcher probes her about the model's outcomes. He also 
intervenes with his own ideas. He first suggests adding a plot that shows the number of all the people 
in the village and also the number of elderly over time. When they add this plot and run the model, they 
see that the percentage stays relatively stable even though the village continuously declines and 
eventually dies. The researcher probes her about this outcome. She asks to change the model in a way 
that young people may get old even if they never made babies. The researcher intervenes and suggests 
adding the possibility of making more than one baby, too. When the researcher asks this question, 
Karina decides that she wants each family to have between 1 to 3 kids. 

 

 

 

 

 

 



Constructionism 2018, Vilnius, Lithuania 

132 

 

Table 7. Researcher’s intervention with his ideas 

Screenshot Transcript Diagram model 

 

K: I think it is interesting still, to see … 

R: I don’t know what to make of this because the 
difference between the elderly and, didn’t change 
much. 

K:  Yeah. 

R: There was always similar proportion of elderly 
and young people. 

K: Hmm, but then the young people don’t stay, they 
can’t go on forever until they make a partner, until 
they meet a partner, right? Young people also die! 

R: Yeah. Young people, if they make just one baby 
they die out. 

K: Right. That’s the only reason why they die. They 
don’t die because of natural causes. 

R: (Nods) They turn to old and they die. I think we 
should also add the more than one baby thing here 
… 

K: Yeah, yeah, yeah. 

R: Because it’s like, of course this is gonna die because they don’t 
make more than one baby, so like they keep decreasing. 

K: Yeah, yeah, yeah. OK! 

 

The idea of having multiple babies in Episode 7 causes confusion between the researcher and Karina, 

probably due to the fact that the researcher introduced the idea himself. Episode 8 starts when the 

researcher implements a mechanism for multiple babies. Karina pushes back because she wants to 
know how this model works. Once the researcher explains how the current version of the model works, 
she realizes that the model does not do what was on her mind and explains exactly how she wants the 
model to work. Even more, she explains why she wants the model to work that way.  

Table 8. Karina's first implementation of the idea of fertility rate 

Screenshot Transcript Diagram model 

 

R: So, we, we give them some initial 
fertility. You know what that means? 

K: OK. But, but, how many babies can be 
made after the initial interaction? Is there a 
range or are they all automatic? OK there 
is a … 

R: Yeah. Right now, every single time I 
create a person, I give them a baby count. 
So, I have 3, you have 2, and after making 
2 babies you turn old, after making 3 
babies I turn old. 

K: Oh! I see. 

R: Minimum is 1, maximum is 3 and it’s 
random. 

K: OK. I see. But I guess, I guess what I’m 
saying is, from you with, you and I 

 



Constructionism 2018, Vilnius, Lithuania 

133 

 

reproduce, how many babies are we gonna 
have? 

R: Just one. Every single time … 

K: Oh! See, that’s where, that’s where I 
wasn’t wrapping my head. I wanted it to 
be where they can either make 1 baby to 
3 baby, the family size. 

R: Ah! That’s so much better!!! 

K: Yeah. Because I’m thinking 3, because 
3 is like the average in US. 

In the final episode of the interview, the researcher and Karina run the version of the model where each 
pair of parents procreate either 1 or 2 or 3 young people randomly and then turn to old people, as well 
as some young people eventually becoming old even if they cannot find a partner to make babies. When 
they run this version of the model, they notice that the population grows exponentially. Once again, 
Karina probes the researcher about the way the model works. She asks whether a couple can have 0 
babies. When she realizes that it is not the case, she tells the researcher that she actually wanted some 
couples to have 0 babies because there are "some sterile people". After this episode, Karina was 
satisfied with the model and the interview ended. 

Table 9. Karina's reaction to the first completed version 

Screenshot Transcript Diagram model 

 

Researcher: It goes crazy. 

Karina: And they can have 0 babies, 
right? 

Researcher: No! 

Karina: Yeah, they can have 0 babies, 
too! 

Researcher: Let’s make it … 

Karina: I thought that’s what we have 
said, Umit! [expletive]! …. 

Researcher: Let’s do … 

Karina: Because I mean there is some 
people that are sterile. 

Researcher: Yeah. So, …, this time the 
population died out. Let’s make it 200, 
maybe … Now it is like, interesting, …  

Karina: (yelling) I’m [expletive] smart!!! 
When am I gonna get accepted to U of C, 
(yelling) when? (laughs) 

 

Discussion 

Although it was an early form of a-b-c interviews, this case study provides us valuable insights to 

hypothesize about the main features of a-b-c interviews, as well as the major challenges in 

conducting such interviews systematically. We summarize our preliminary findings in two arguments: 
(1) the interaction between Karina, the researcher and the model afforded us to observe patterns in 
Karina's reasoning about this emergent phenomenon that may not have been possible through asking 
only verbal questions, (2) the interview highlighted a reasoning process that resembles models or mini 
theories that Karina constructed on the fly and continuously reconfigured drawing on many smaller 



Constructionism 2018, Vilnius, Lithuania 

134 

 

pieces of her knowledge from many different contexts and levels. We also discuss the researcher's 
moves as an interviewer in two arguments (1) the researcher's active participation ended up 
problematizing the validity of the findings but also provoked fruitful reasoning as seen in episodes 6 
through 8, (2) the researcher failed in taking full advantage of Karina's model in probing her to elaborate 
her reasoning in greater detail.  

Karina’s reasoning 
Episode 1 starts with Karina explaining the phenomenon she chose to model: the decline of the 
population in Japanese villages. Within itself, this episode resembles a short verbal interview with her. 
She mentions a positive feedback loop mechanism when she says "therefore there is a lot less people 
procreating", brings up two variables when she utters "the number of elderly versus young people", and 
finally speculates on the cause of this emergent phenomenon with her utterance "because of such a 
high population of old people". As the interview proceeds, we observe Karina develop a more and more 
sophisticated model. She first adds a mechanism for procreation and then adds a mechanism for aging, 
both through definitions of how young people behave and how old people behave. She also describes 
how she envisions using the model by "increasing and decreasing the number of old people and how 
that affects the population". Her reasoning goes beyond a simple causal relationship between the 
percentage of elderly people and her final model incorporates the idea of fertility rate as the major 

factor, although rather accidentally and implicitly. We argue that without the construction element of the 
interview, we would not have been able to observe her reasoning about the individuals that make up 
this complex system and we could have even concluded that she holds misconceptions (or naive 
theories) about the phenomenon of population decline such as assuming deterministic mechanisms 
(Wilensky and Resnick, 1999). 

Constructing an agent-based model with her enables exposition of her reasoning about an emergent 
phenomenon at a fine-grained level including some less salient ideas. For instance, we notice that 

she draws from a number of ideas from her personal knowledge about how people behave and 
how people procreate. Even though she is specifically thinking about the population of a Japanese 

village, she justifies her design decisions based on ideas from various resources in various levels such 
as making old people look like sad faces because "they can't" procreate, making families have up to 3 
babies because "it is the US average", and making it possible for some families to have no babies 
because "some people are sterile". Taken together, these episodes show us that she is not just throwing 
random ideas at the model. Quite the contrary, she has a specific explanation for each of her modeling 
decisions.  

Lastly, her modeling decisions expose a non-monolithic reasoning process about this emergent 
phenomenon. For example, she decides to make the model so that "two people produce only one baby 
and immediately get old" but with the caution that this is only where she wants to "start from". We see 
another such instance in Episode 4, when she hesitates whether the old people in the model should 
eventually die or not. In both cases, we see her bringing together many pieces of her knowledge 

about people, aging and procreation, but also having difficulty in figuring out how all these pieces fit 
together when it comes to population decline. This finding is consistent with diSessa’s (1993) 
knowledge-in-pieces theory, but we are cautious about such straightforward associations because we 
do not have any data that could highlight the exact nature of this process, and further research needs 
to be conducted. 

Researcher moves 
We notice a number of potentially problematic interventions from the researcher throughout the 
interview. This is mainly due to the fact that his goal was not to interview Karina but to help her create 
a NetLogo model. The first of these interventions come at the very beginning of the interview. When 
Karina asks the researcher to remind her of what she said about population decline, the researcher 
mentions "deaths and child birth and aging". We observe all these ideas in Karina's utterances in the 
following episodes. It seems like Karina does not immediately pick up these ideas and keeps talking 
about her original idea but it is still unclear whether the researcher's move implicitly impacted Karina's 
reasoning. Hence, a potential argument against the validity of our preliminary findings would be that 



Constructionism 2018, Vilnius, Lithuania 

135 

 

such moves might have led her towards specific ideas. We acknowledge that this is a major challenge 
in conducting a-b-c interviews; much attention must be paid to prevent the interview from turning 

into a teaching intervention. On the other hand, we argue that it is important to position the researcher 
as an active mediator not only because the participant is assumed to be a novice in agent-based 
modeling, but also because the researcher attempts to model the participant’s reasoning through writing 
the model’s code and gets immediate feedback from the participant. This is a direct extension of a major 
strength of clinical interviews; the researcher is expected to formulate on-the-fly hypotheses based on 
the participants’ responses and ask follow-up questions (Ginsburg, 1997).  

In this specific case study, the researcher's interventions also end up triggering fruitful episodes 

that, we argue, may not have happened otherwise. Such an intervention happens in Episode 6, when 
Karina brings up the idea to make young people old after some time. The researcher suggests adding 
an initial mechanism of "multiple babies" and she agrees. However, instead of probing Karina on how 
to implement this idea in the model, the researcher proceeds to implement his own mechanism, which 
ends up being quite different from what was in Karina's mind. She eventually catches the researcher's 
intervention and forces the researcher to correct the model. This episode affords us to notice that Karina 
wants to configure procreation in her model as a process that only happens in monogamous families. 
This observation may or may not reflect her actual reasoning but implies that she assumes other 

possibilities as negligible. Unfortunately, the researcher does not ask follow-up questions about such 
important points. This brings us to our last point that the researcher's moves fail in asking Karina 
questions that probe her to elaborate her ideas in greater detail. We end up not being able to certainly 
assert whether she actually changed her focus from the percentage of elderly to fertility rate. We also 
cannot know whether she left out some factors, such as polygamy, nutrition and migrations, deliberately 
or she did not think of those. 

Concluding Remarks 

It has been shown that people, young and old, struggle greatly in making sense of emergent phenomena 
(Chi, 2005; Wilensky and Resnick, 1999) although our lives are embedded in such phenomena in many 
levels (Mitchell, 2009; Wilensky, 2001). Agent-based modeling has been shown to be effective at 
progressing learners in their understanding about emergent phenomena (Wilensky, 2003; Wilensky and 
Reisman, 2006). We proposed a new research methodology, tentatively named agent-based 
construction (a-b-c) interviews, specifically to study people’s reasoning of emergent phenomena and 
complex systems. We situated our methodology at the intersection of four major paradigm shifts: (1) the 
theory of constructivism (Piaget, 1972), (2) the methodology of clinical interviews (Ginsburg, 1997), (3) 
the field of complex systems (Mitchell, 2009), and (4) the practice of agent-based modeling (Wilensky, 
2001). We then presented a generative case study, which was originally designed as an intervention, 
but offered a first glimpse on potential affordances and challenges of a-b-c interviews. In the case study, 
an adult participant, Karina, described a model of aging in a Japanese village and the researcher wrote 
the code for her. We argued that the interaction between Karina and the researcher exposed complex, 
spontaneous patterns of reasoning, which could not have been observed through verbal questions or 
simple tasks such as drawings. We also argued that the main challenge of a-b-c interviews is also the 
main strength of them. The act of mediating is simply the act of hypothesizing about the participant’s 
reasoning, much like traditional clinical interviews (Ginsburg, 1997), but testing these hypotheses 
through writing the code and getting feedback from the participant instead of only asking verbal 
questions. Yet, if not done carefully, this can easily evolve into intervening rather than mediating. We 
end this paper by offering a very first working definition: a-b-c interviews are a special class of clinical 
interviews that are conducted through an open-ended agent-based modeling task that is actively 
mediated by a researcher.  

References  

Anderson, J. R. (1983). Cognitive science series. The architecture of cognition. 

Anderson, G. F., & Hussey, P. S. (2000). Population aging: a comparison among industrialized 
countries. Health affairs, 19(3), 191-203. 



Constructionism 2018, Vilnius, Lithuania 

136 

 

Aslan, U., & Wilensky, U. (2016a). Restructuration in Practice: Challenging a Pop-Culture Evolutionary 
Theory through Agent Based Modeling. In Proceedings of the Constructionism 2016 Conference. 
Bangkok, Thailand. 

Aslan, U., & Wilensky, U. (2016b). Old Tricks Revisited: Studying Probabilistic Reasoning through 
Incorporating Computer Modeling into Piagetian Research. Paper presented at the Jean Piaget Society 
46th annual meeting. Chicago, IL, June 9 - 11. 

Bar-Yam, Y. (2004). Making things work: solving complex problems in a complex world. Knowledge 
Industry. 

Chi, M. T. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are 
robust. The journal of the learning sciences, 14(2), 161-199. 

Chi, M. T., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. 
In Reconsidering conceptual change: Issues in theory and practice (pp. 3-27). Springer, Dordrecht. 

Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. Handbook of 
research design in mathematics and science education, 547-589. 

DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and instruction, 10(2-3), 105-225. 

Epstein, J. M. (2006). Generative social science: Studies in agent-based computational modeling. 
Princeton University Press. 

Ginsburg, H. (1997). Entering the child's mind: The clinical interview in psychological research and 
practice. Cambridge University Press. 

Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice 
understanding of complex systems. The Journal of the Learning Sciences, 16(3), 307-331. 

Jacobson, M. J. (2001). Problem solving, cognition, and complex systems: Differences between experts 
and novices. Complexity, 6(3), 41-49. 

Johnson, C. W. (2006). Complexity in design and engineering. Reliability Engineering & System 
Safety, 91(12), 1475-1588. 

Klopfer, E. (2003). Technologies to support the creation of complex systems models—using StarLogo 
software with students. Biosystems, 71(1-2), 111-122. 

Levy, S. T., & Wilensky, U. (2008). Inventing a “mid-level” to make ends meet: Reasoning between the 
levels of complexity. Cognition and Instruction, 26(1), 1-47. 

Maroulis, S., Guimera, R., Petry, H., Stringer, M. J., Gomez, L. M., Amaral, L. A. N., & Wilensky, U. 
(2010). Complex systems view of educational policy research. Science, 330(6000), 38-39. 

Mitchell, M. (2009). Complexity: A guided tour. Oxford University Press. 

Mitchell, M., & Newman, M. (2002). Complex systems theory and evolution. Encyclopedia of Evolution, 
1-5. 

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting 
concepts, and core ideas. National Academies Press. 

Piaget, J. (1972). Development and learning. Readings on the development of children, 25-33. 

Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child's conception of geometry. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc. 

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11. 

Penner, D. E. (2000). Explaining systems: Investigating middle school students' understanding of 
emergent phenomena. Journal of Research in Science Teaching, 37(8), 784-806. 

Pumain, D., & Reuillon, R. (2017). Urban dynamics and simulation models. Springer International 
Publishing. 



Constructionism 2018, Vilnius, Lithuania 

137 

 

Rowe, J. W., Fulmer, T., & Fried, L. (2016). Preparing for better health and health care for an aging 
population. Jama, 316(16), 1643-1644. 

Sengupta, P., & Wilensky, U. (2011). Lowering the learning threshold: Multi-agent-based models and 
learning electricity. In Models and Modeling (pp. 141-171). Springer, Dordrecht. 

Sherin, B. L., Krakowski, M., & Lee, V. R. (2012). Some assembly required: How scientific explanations 
are constructed during clinical interviews. Journal of Research in Science Teaching, 49(2), 166-198. 

Sterman, J. D. (1994). Learning in and about complex systems. System Dynamics Review, 10(2‐3), 
291-330. 

United Nations (2016, November 10). Global Issues Overview. Retrieved from 
http://web.archive.org/web/20161110161502/http://www.un.org/en/sections/issues-depth/global-
issues-overview/. 

Waldrop, M. M. (1993). Complexity: The emerging science at the edge of order and chaos. Simon and 
Schuster. 

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and 
Computer-Based Modeling, Northwestern University, Evanston, IL. 

Wilensky, U. (2001) Modeling nature's emergent patterns with multi-agent languages. Proceedings of 
EuroLogo 2001. Linz, Austria 

Wilensky, U. (2003). Statistical mechanics for secondary school: The GasLab modeling toolkit. 
International Journal of Computers for Mathematical Learning, [Special Issue on agent-based 
modeling]. 8(1), 1-41. 

Wilensky, U., & Reisman, K. (2006). Thinking Like a Wolf, a Sheep or a Firefly: Learning Biology through 
Constructing and Testing Computational Theories -- an Embodied Modeling Approach (PDF). Cognition 
& Instruction, 24(2), pp. 171-209. 

Wilensky, U., & Resnick, M. (1999). Thinking in Levels: A Dynamic Systems Perspective to Making 
Sense of the World (html) (pdf). Journal of Science Education and Technology, 8(1). 

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulations of Knowledge Disciplines through 
new representational forms. In J. Clayson & I. Kalas (Eds.), Proceedings of the Constructionism 2010 
Conference. Paris, France, Aug 10-14. p. 97. 

Wilkerson-Jerde, M. H. & Wilensky, U. (2015). Patterns, probabilities, and people: Making sense of 
quantitative change in complex systems. Journal of the Learning Sciences, 24(2), 204-251. doi: 
10.1080/10508406.2014.976647 

  



Constructionism 2018, Vilnius, Lithuania 

138 

 

Active Learning of Computer Science Using a 
Hackathon-like Pedagogical Model 

Jake Rowan Byrne, jake.byrne@tcd.ie  
The Trinity Centre Research for IT in Education, School of Education and School of Computer Science 
& Statistics, Trinity College Dublin, the University of Dublin, Ireland 

Kevin Sullivan, kevin@bridge21.ie  
The Trinity Centre Research for IT in Education, School of Education and School of Computer Science 
& Statistics, Trinity College Dublin, the University of Dublin, Ireland 

Katriona O’Sullivan, Katriona.OSullivan@mu.ie  
Department of Adult and Community Education, Maynooth University, Kildare, Ireland 

Abstract  
Despite extensive literature on Computer Science (CS) education, there are few pragmatic pedagogical 
models that support active and project based learning. The new Irish CS course for post-primary schools 
advocates such an active learning approach through a series of “Applied Learning Tasks” (ALT). This 
paper explores the use of a constructivist/constructionist 21st Century pedagogical model, delivered as 
a weeklong “Hackathon-like” activity, targeting the learning outcomes for the embedded systems ALT 
from this new CS course. Twenty-one students participated in the workshop and completed pre and 
post surveys to assess their confidence in CS topics and their associated learning outcomes. Analysis 
revealed that students were more confident in almost all the learning outcomes surveyed. There were 
particularly significant increases in the embedded systems learning outcomes, which was the focus of 
the students’ projects. The findings suggest that the combination of a “Hackathon-like” event and a 
constructivist/constructionist learning model can be effective in increasing student motivation, 
confidence and learning of Computer Science concepts and skills at post-primary level. 

 

“Froasties”: Participants created an automated food processor, specializing in French toast.  

Keywords  
constructivism; constructionism; hackathon; computer science education; creativity; design thinking; 
problem solving; prototypes; teamwork 

Introduction 

This paper builds on prior work (Byrne, O’Sullivan, & Sullivan, 2017) that explored students aspirations 
for careers in Computer Science to examine how a similar intervention can be used to support Ireland’s 



Constructionism 2018, Vilnius, Lithuania 

139 

 

new Leaving Certificate examination in Computer Science (NCCA, 2017a). The Leaving Certificate (LC) 
is a specialized terminal exam for post-primary schools used to determine university admissions in 
Ireland. The LC in computer science is being introduced in September 2018, so there is a need to 
establish effective teaching methodologies which will lead to success for students preparing for the 
exam.  

This work outlines the rationale for the design and delivery of a 21st century learning experience 
modelled around a hackathon-like event. Reportedly, hackathon attendees go with the hope of 
“learning” something new (Briscoe & Mulligan, 2014). This is the most popular rationale for attendance, 
which implies that hackathons provide a viable context for learning. Additionally, the fact that hackathons 
are most commonly technology-oriented creates a persuasive argument for incorporating a hackathon-
like activity into the classroom to promote a “learning by doing” constructionist approach to learning 
(Kafai & Resnick, 1996).  

The Bridge21 model promotes project-based and “learning by doing” values inherent in constructionist 
learning (Kafai, Lee, et al., 2014). The model also emphasizes the importance of peer-to-peer learning 
through a social constructivist philosophy and technology mediated learning (Byrne et al., 2017; Lawlor, 
Conneely, Oldham, Marshall, & Tangney, 2018). All students attending the learning experience will have 
had prior experience with the Bridge21 model. 

Through their previous exposure, they learned to work in teams and to program with Blockly and 
Scratch. These skills will be called upon during the learning experience when the participants are divided 
into teams and guided in the creation of their product designs. They had four days to generate an idea 
in the realm of IoT and wearables, prototype it, and prepare a pitch to “sell” the product. They had 
Arduino, Python, Scratch and an assortment of sensors at their disposal throughout the process. The 
collaboration and creativity required is expected to enhance their confidence and abilities with these 
technologies.  

Background 

Introduction of Computer Science at post-primary level in Ireland  

The Irish government has recently announced the introduction of a new curriculum/specification for 
Computer Science as an optional subject as part of the Leaving Certificate (LC) at post-primary level 
(NCCA, 2017a). The Leaving Certificate is a high stakes set of exams which takes places at the end of 
a two year cycle, equivalent to 11th and 12th grades in K-12. Leaving Cert results are used to determine 
entrance to third level education. The new course hopes to develop traditional CS content knowledge 
as well as project and team management skills in the students, in line with the “broad, balanced” 
educational aims of the Leaving Certificate (NCCA, 2017b).  

There are three strands to the current draft specification (NCCA, 2017a): Practices and Principles, 
Cross-Cutting Concepts and Computer Science in Practice (Table 1).  

There are a total of 66 learning outcomes spreads across these three strands. The aim is to use strand 
3 projects to iterate through the learning outcomes from strands 1 and 2. This means not every learning 
outcome will be addressed in each project, but after the students have completed all five projects they 
will have covered all 66 learning outcomes. 

This is the first time that Computer Science has been introduced as a dedicated subject in Irish schools 
so potential teachers will have limited experience and practice in delivering such courses. This suggests 
a need to develop practices and activities that can both support the learning of traditional content while 
also supporting the development of team and project management skills. 

Approaches for Enhancing STEM Education 
There is a lot of discussion about various approaches to STEM education. This varies from approaches 
that explore STEM education as a general phenomenon (Johnson, Brown, Cummins, & Estrada, 2012; 
Sanders, 2009; J. Williams, 2011) to practical projects that explicitly describe STEM learning 
experiences (Barker, Melander, Grandgenett, & Nugent, 2015; Fee & Holland-Minkley, 2010; Nugent, 



Constructionism 2018, Vilnius, Lithuania 

140 

 

Barker, Grandgenett, & Welch, 2014; Tangney, Oldham, Conneely, Barrett, & Lawlor, 2010). Despite 
differing views on pedagogy, e.g. enquiry based, integrative or problem based learning, the need for 
more STEM graduates is generally agreed upon. 

Table 1. Leaving Certificate Computer Science Course Draft Specification 

Strand 1 

Practices and Principles 

Strand 2 

Cross-Cutting Concepts 

Strand 3 

Computer Science in Practice 

Computers & Society Abstraction User Centered Design 

 Computer Systems Information Systems 

Computational Thinking Data Analytics 

 Algorithms Modelling & Simulation 

Designing & Development Evaluation/Testing Embedded Systems 

 

Supporting the approach of the new Leaving Certificate course, Roberts (Roberts, 2012) suggests that 
both domain knowledge and 21st century “soft” skills such as, teamwork, creativity, problem solving and 
inquisitive thinking are all important in STEM education. Roberts also suggests that domain knowledge 
should be learnt through “authentic problem solving in rich social, cultural and functional contexts”. 
These approaches would provide students with the rich learning experience that the new curriculum is 
aspiring to promote. 

Hackathons 
A hackathon usually involves the prototyping of some digital artefact and pitching or presenting that 
prototype as part of a team-based “problem-focused computer programming” activity (Briscoe & 
Mulligan, 2014) over a 24-48 hour period. Hackathons generally aim to combine both team dynamics 
and the “authentic problem solving in rich social, cultural and functional contexts” that Roberts suggests. 
This is a common motivating element of hackathons, which tend to focus on some cultural or social 
issue that the participants can identify with.  

There have been some attempts to explore which pedagogical approaches are used in hackathon-like 
activities (Duhring, 2014; Nandi & Mandernach, 2016; Skirpan & Yeh, 2015). These studies fall short as 
they have limited practical and theoretical basis and are generally exploratory in nature. However, they 
do suggest that hackathon-like activities might be useful when considering the design of contextualized 
and practical learning experiences. 

Contextualizing STEM topics is seen as important in broadening participation so it is recommended to 
structure activities so that they emphasize creativity, design and problem solving while working on real 
world problems (Cooper & Heaverlo, 2013). Hackathon-like approaches include these elements and 
have been used with pre university students in STEM subjects (Kafai, Rusk, et al., 2014). This suggests 
that hackathons could make for a viable framework to develop effective and inclusive STEM activities 
but there is limited research on how to structure such a hackathon-like activity for learning. 

21st-Century Learning 
In addition to the introduction of Computer Science as its own subject there are efforts being made to 
integrate 21st century skills across the curriculum (Dede, 2010; NCCA, 2014; Rychen & Salganik, 2005). 
These involve the development of key skills such as effective communication, thinking critically and 
teamwork. The Bridge21 Model (Tangney et al., 2010) has been used to teach Computer Science using 
a social constructivist pedagogical approach (Byrne et al., 2017). This approach focuses on team based 
activities that are designed to develop both traditional content knowledge and 21st century skills. 



Constructionism 2018, Vilnius, Lithuania 

141 

 

Materials and Methods  

Bridge21 Pedagogy and Model 
The Bridge21 learning experience emphasizes teamwork, learning by doing and a technology-mediated 
approaches (Lawlor et al., 2018). The model has been adapted for use in a wide range of subjects such 
as history (O'Donovan, 2015), mathematics (Tangney & Bray, 2013) and computer science (Byrne et 
al., 2017; Tangney et al., 2010). It is a social constructivist approach that moves away from traditional 
teacher-led learning as it is designed to foster intrinsic student motivation and learning potential (Lawlor, 
Marshall, & Tangney, 2015). The teachers’ goal in this model is to facilitate the activities, by encouraging 
students to think for themselves and model problem-solving processes. In line with the literature on 
STEM and CS education, this approach promotes collaboration, discovery learning and problem 
solving. Vygotsky’s (Vygotsky, 1978) “more able other” informs the team formation and facilitation to 
promote peer learning and mentorship. Constructivist and constructionist approaches are increasingly 
being used to develop learning experiences especially when looking for students to be creative while 
working with computing technologies (Brady et al., 2017; Kafai & Resnick, 1996; Przybylla & Romeike, 
2014). 

Bridge21 Activity Model 
The Bridge21 activity model (Byrne, Fisher, & Tangney, 2015) follows 7 phases that can be 
implemented over the course of an hour, a day, a week or as needed depending upon the scope of the 
activity. The 7 phases are: Setup, Warm up, Investigate, Planning, Create, Present and Reflect. It 
incorporates many elements known to be conducive to teamwork; self-directedness, creativity, and 
positive self-driven experience. The activity model is a largely linear structure, with some iteration to 
cater to the personalized needs of the students, as well as the demands of a particular project. This 
method also mirrors the Agile model of software development (Kastl, Kiesmüller, & Romeike, 2016; Rico 
& Sayani, 2009; Romeike & Göttel, 2012). To maximize the educational outcomes, the structure of the 
hackathon follows the Bridge21 activity model.  

Before the “Hackathon” 
The attendees have previously taken part in introductory Bridge21 Computer Science workshops. From 
these experiences the students develop a working knowledge of relevant technologies. For example, 
they have been introduced to Scratch, Blockly, and LEGO Mindstorms through Bridge21. They’ve also 
learned computing essentials such as conditionals, looping, initialization, variable instantiation. This 
means that there is a consistent elevated baseline throughout all attendees and simulates a base level 
of experience, equivalent to rudimentary learning that might occurs in early projects as part of the 
Leaving Certificate coursework. The students, having volunteered for this programme, have expressed 
an interest in computer science, similar to the demographic who would choose to study CS as a subject 
at LC.  

Hackathon Challenge 
Internally the event is referred to as “Invent Week” and is adapted from the popular hackathon model 
already employed at levels ranging from hobbyist to professional settings. Traditionally, these 
hackathons are held over the course of a consecutive 24-72 hours during which the participants are 
nourished, housed, and free to work according to their own (often frantic) schedule in productive teams. 
This breakneck pace and high-pressure environment would be inappropriate for many of the students 
considering their age (15-17 years) and alternative commitments they may have. The same limitations 
would apply in any secondary school trying to implement our hackathon-like model. As a result, we’ve 
tailored the structure to be more accommodating. 

Rather than leaving all of Invent Week as a solid block of time over the course of 1-3 days, the in-class 
hackathon-like event is run as a 4-day project where the students work from 9:30 am to 3:00 pm each 
day. This allows them to tend to their other commitments, and maintain a healthy lifestyle without the 
restraints imposed by a typical hackathon. This helps to make the model replicable at other institutions. 



Constructionism 2018, Vilnius, Lithuania 

142 

 

Each of the 4 days will contain a specific focus as the project builds towards a final deadline at lunchtime 
on the fourth day. 

The goal of the week is to target one of the four Applied Learning Tasks (ALT) on the new LC CS course. 
The Embedded Systems ALT was chosen as it was well suited to a hackathon-like event. The learning 
outcomes from this project dealt with a number of topics: digital and analogue inputs, controlling digital 
outputs, storing analogue input data, automating processes and designing a program that utilizes all of 
these elements. Invent Week was designed to explore these topics experientially, rather than through 
traditional content delivery. 

Day one will correspond with the first 3 steps in the Bridge21 activity model, and partially the fourth. 
This day will consist of the teams coming together for the first time (set up) and performing some ice 
breakers including divergent thinking (warm up) about computers in everyday life. Students also learned 
about the technologies they used including Python, Arduino, and Raspberry Pi through the completion 
of a number of set tasks (investigate).  

The concept/idea planning phase should conclude early on day 2 as team members are assigned roles, 
then production begins. They will be loosely monitored as they progress, but a mainstay of social 
constructivist/constructionist education and the Bridge21 model is the experiential learning that comes 
from working through a process with peers using real world artefacts and programs. They will spend 
days 2, 3, and part of 4 completing their project (create) before concluding the week by presenting their 
project on day 4. 

Technical Infrastructure 
In terms of embedded systems hardware the teams were provided with a Raspberry Pi running 
Raspbian OS with an Apache webserver, PHP and Python; Arduino Uno boards; a motorized robotic 
chassis with Grove shield/hat adapter add-ons for Arduino and Raspberry Pi; and an array of input 
sensors (heart-rate detector, light detector, microphone etc.) and outputs (LEDs, servos, motors, etc.). 

Additionally each team had access to a video camera, sound recorder, open source software (Audacity, 
Scratch, etc.) and 2 PCs running Windows. Limiting the 4 person teams to 2 PCs is intended to 
encourage paired programming (L. Williams, Kessler, Cunningham, & Jeffries, 2000). The students 
were encouraged to think beyond the confines of the provided hardware and software, as approaches 
can be taken to simulate a desired outcome. They were supported by the mentors with help in finding 
such approaches. 

Mentoring and Facilitation 
The learning experience was facilitated by one lead coordinator and 4 mentors, proffering a 4:1 
student/staff ratio and a 1:1 team/staff ratio. The mentors were not assigned to specific teams. They 
moved from team to team, monitoring progress and stayed out of the way when not needed but were 
always open to query from any team. This was done intentionally to encourage the students to dissect 
their problems as thoroughly as they could before requesting external assistance. This reflects the real 
world practice of reaching out for expert advice from a technical consultant. 

The lead coordinator had a background in mechatronic engineering, while the mentors each had 
backgrounds in computer science. When called upon, the mentors would help the students to reach a 
solution, while taking care to not simply tell students the answer. This required a question-based or 
“Socratic” teaching approach where small but relevant bits of information are revealed until the student 
could form their own solution. The aim is for students to develop their computational thinking skills, 
which ideally helps them to grow in the LC learning outcome areas and become more independent 
problem solvers.   

Methodology 
Twenty-one students participated in Invent Week. Ten of the participants were female, and eleven were 
male providing a gender-balanced cohort. Ethical approval was sought from and granted by the School 
of Computer Science and Statistics at Trinity College Dublin. 



Constructionism 2018, Vilnius, Lithuania 

143 

 

The data collection consisted of a pre and post questionnaire design, each of which was completed at 
the students’ own discretion. None of the questions were mandatory, and the students were made aware 
that they could skip any part they did not feel like answering. Every question was personally evaluative, 
asking things such as “I feel confident in my ability to evaluate different solutions to one problem” or “I 
feel confident in my ability to describe what an algorithm is and give an example”. Every answer was 
based on a 5-point Likert scale (with 5 being strongly agree, and 1 being strongly disagree). The total 
of 63 questions were drawn from two sources. 

The first 34 questions came from a questionnaire used in previous instances of Invent Week (Byrne et 
al., 2017) These queries establish the student’s interest and knowledge about pursuing careers in 
computer science, through university and as a realistic future. This data is valuable for tracking what 
information is resonating with the students, even when it’s not necessarily the central focus of the week 
or this paper. The following 29 questions were drawn from the learning outcomes for the LC CS course 
(NCCA, 2017a). These address much more specific skills like confidence with embedded systems or 
I/O operations. It is very important that a student has these mastered in order to pass their exams at the 
end of secondary school.  

By providing a pre and post questionnaire oriented towards the learning experience, we assess the 
students’ self-perceived learning during Invent Week. The level of complexity and technical-knowledge 
behind the prototype creation also helped us to evaluate the learning occurring during the program. This 
did not provide quantitative data, but it helped us to tailor our lessons according to the students’ needs. 
This adaptability is replicable in a typical classroom setting. 

Results 

Research Questions 
Can a Bridge21 style Hackathon improve students’ motivation, confidence and learning of computer 
science concepts and skills, particularly in the area of embedded systems? 

Prototypes 
Each of the five teams participating in Invent Week created an embedded systems prototype in areas 
of Internet of Things, wearables, home automation, and robotics. A heavy emphasis was placed on 
incorporating internet connectivity into the devices, considering the increasing trend of “smart” 
technologies and the important skills gleaned from working with internet communication. Furthermore, 
every team created a website for their product and many went on to add social media pages and videos 
illustrating the needs addressed by their product. The artefacts and code related to each group has 
been compiled into folders and saved for later review. 

“Poc Doc” was a wearable medical device intended for use in cases ranging from minor injuries to life 
threatening situations. The product is worn on the arm and links to a medical API that can offer treatment 
suggestions based upon the symptoms it detects in the user. Detection is completed with an array of 
Arduino sensors which track heart rate, body temperature, and sudden changes in acceleration - 
indicating a fall or concussive force. The device will automatically call an ambulance to its location if the 
user doesn’t interact with it for a certain time period following a concussive event. This team also made 
attempts at calling a Google voice API to respond to medical queries. 

“Froasties” was an automated food processor, specializing in French toast. It is designed for industry 
use in hotels and restaurants. Users are given the option to log into a website and activate the machine 
with the press of a button. This was accomplished through a crossover of HTML, PHP, and Arduino 
scripts working through an embedded Raspberry Pi. The physical prototype was created with Lego 
Technic.  

“Benny the Bin Buddy” was a smart attachment that a user could attach to their bins for automatic sorting 
between recyclables and rubbish. This was accomplished by simulating a spectrometer with colored 
LEDs and an Arduino light sensor, in tandem with Arduino Servos that could dump the objects into the 
appropriate bin depending upon their colors. The detected colors were checked against a website before 



Constructionism 2018, Vilnius, Lithuania 

144 

 

selecting if it was recyclable or not. Further development would lead to linkage with a database that 
would be updated to successfully sort more object types over time. 

“iWindow” was an automated home technology and a smart window. It had internet connectivity, 
allowing a user to remotely open or close it or lock it with a button on their website. It was also outfitted 
with sensors that tested UV levels, air quality, and temperature both inside and outside the window. It 
then made the decision to automatically open or close the window with an Arduino Servos based upon 
the inputs.  

Lastly, “Emo-Tee” was a smart clothing device employing a wearable LCD and internet connectivity. It 
was a t-shirt with connectivity to a web-app which allowed the user to select which image, from a range 
of emoji, would appear on the front of the shirt. The images were preset by the team as a form of 
censorship, but it was theoretically possible to display any image on the clothing.  

Table 2. Statistically significant questions from the Invent Week survey. 

Question 
Number 

Question 

18 I am confident that I can program a computer to detect a button push and turn on an LED. 

21 I am confident that I can create a program to control outputs over the internet. 

23 I am certain that I can design a Wearable/IoT technology 

24 I am confident that I can effectively communicate a Wearable/IoT product 

25 I am confident that I can create/prototype a Wearable/IoT technology 

26 I use a step by step process to solve problems. 

30 In order to solve a complex problem, I break it down into smaller steps. 

37 I feel confident in my ability to evaluate different solutions to one problem. 

47 I feel confident in my ability to think about the technology design process. 

49 I feel confident in my ability to use data types that are common to procedural high-level 
languages: Boolean, integer, real, char, string, date. 

50 I feel confident in my ability to describe what an algorithm is and give an example. 

57 I feel confident in my ability to describe the difference between digital and analogue inputs. 

58 I feel confident in my ability to use and control digital inputs and outputs. 

59 I feel confident in my ability to measure and store data returned from an analogue input. 

60 I feel confident in my ability to develop a program that utilizes digital and analogue inputs. 

61 I feel confident in my ability to design automated applications. 

Pre- and Post-Workshop Comparison 
The students were administered one survey before the week began, and a follow-up survey after their 
presentations on the final day. All of the questions were the same, except that the follow-up asked the 
students for their group names and roles that they played within the groups. Apart from these short 
answers, all of the other questions were evaluated with a 5-point Likert Scale where 1 indicated a lower 
confidence on the given topic, and 5 indicated a higher confidence. There were a total of 63 questions. 
After conducting a t-test on the data, although all questions showed increases, only 16 of the questions 
showed a statistically significant improvement from the beginning to the end of the week, as displayed 
in Table 2. 

Questions 37 to 61 in Table 2 were drawn directly from the learning outcomes section for the Leaving 
Certificate Draft Specification (NCCA, 2017a). Of interest, questions 35 to 63 have statistically 
significant improvements for the students, which is 9 of the 29 questions that address those learning 



Constructionism 2018, Vilnius, Lithuania 

145 

 

outcomes. These are encouraging results, as this was the focus for Invent Week. Figure 1 illustrates 
the improvements.  

 

Figure 1. The statistically significant improvements in learning outcome areas for the Leaving Certificate. 

 

Figure 2. Displays the increases in the mean score of questions related to each Strand. 

Furthermore, the Leaving Certificate learning outcomes are broken into 3 sections, or “strands” which 
are intended to be intertwined throughout learning activities to form a metaphorical “rope” of 
interconnected skills and abilities. These strands are classified as follows: Strand 1 is “Overarching 
Practices and Principles”, Strand 2 is “Cross-Cutting Core Concepts”, and Strand 3 is “Computer 
Science in Practice”. Different learning outcomes are targeted in each strand. This strand includes four 
different and highly specific projects, such as information systems, analytics, modeling/simulation, and 
embedded systems. Invent Week focused on the embedded systems aspect of Strand 3 as it was a 
logical fit with the IoT theme. Questions 57-61 applied directly to this portion of strand 3, and accordingly 
every one of them showed a statistically significant improvement over Invent Week. Figure 2 illustrates 
the improvements within each of the strands as an aggregate.  

Most importantly, we found a statistical significance in the improvement within the aggregated Strand 
3. This was our target goal throughout the week. Additionally, we found a statistical significance in the 
improvements of Strand 1 (Practices and Principles). The entire statistical report is in Table 3. 

Table 3. The statistics behind each Leaving Certificate Outcome Strand over Invent Week. 

 Pre-Invent Week (M) Post-Invent Week (M) T value df P value 

Strand 1 3.6 4.1 -2.661 17 0.016 
Strand 2 
Strand 3 

3.2 
3.5 

3.7 
4.3 

-1.910 
-3.828 

14 
15 

0.077 
0.002 

2,5

3

3,5

4

4,5

5

Q37 Q47 Q49 Q50 Q57 Q58 Q59 Q60 Q61

Leaving Certificate Outcomes

Pre-Invent Week Post-Invent Week

2,5

3

3,5

4

4,5

5

Strand 1 Strand 2 Strand 3

R
at

in
g 

Sc
al

e

Strand Averages

Pre-Invent Week Post-Invent Week



Constructionism 2018, Vilnius, Lithuania 

146 

 

Lastly, Figure 3 depicts the increases of the Strand 3 outcomes individually. This is a significant chart 
because it displays the central topic of the week and has major implications for project impact on 
learning, and optimizations that teachers can make to target different skills. The dramatic improvements 
and significance of the relevant Strand 3 topics indicate that a similar learning experience can provide 
a massive learning opportunity for students in a given central topic.  

 

Figure 3. Displays the increases in topics related strictly to embedded systems and Internet of Things.  

Discussion 

The pre and post questionnaires indicated growth in all surveyed areas. These include self-efficacy, 
understanding of careers in computer science, 21st Century skills (team work, presenting etc.), inputs 
and outputs, embedded systems, coding, debugging and more. The largest and most critical area of 
growth was in embedded systems. The self-reported confidence levels of the students within these 
topics, coupled with the robust prototypes that they created serve as sufficient evidence for their 
knowledge, capability and learning. Furthermore, the differences from time one and two suggest a self-
perceived growth in confidence to practice CS from their participation in Invent Week. This growth in 
practical experience is a direct result of the “learning by doing” pedagogical design. 

The results from the surveys suggest that the students received a broad learning experience from the 
hackathon-like delivery method. This is evidenced by the fact that there were only increases in scores 
i.e. none of the averages decreased because of Invent Week. Beyond that, 16 of the questions returned 
statistically significant increases. Importantly, all of the targeted questions for the embedded systems 
ALT showed significant increases but, outside of those, 11 other questions also achieved significant 
improvement. The programme managed to encourage a wide array of skill sets, including 21st Century 
skills, even though those were not the primary objective of the learning experience. Those were rather 
a favourable consequence of the constructivist/constructionist pedagogical approach. 

Conclusions 

Limitations 
The small participation numbers is a limitation for our study, however it is comparable to a common 
classroom size. The high level of mentor involvement in the process makes the hackathon-like difficult 
to scale up beyond the size we’ve already achieved. Perhaps a classroom could call upon external 
technical help via remote mentoring with IT professionals.  

The elevated prowess of the students also posed a limitation for us. The pre-survey indicates that 
everyone involved had a decent-to-good understanding of all of the topics we surveyed before the 
programme commenced. Thus it is hard to track how Invent Week would assist a student with a lower 
level of knowledge at the beginning. The students were hand-picked based on their expressed interest 
and performance in prior Bridge21 activities, this may not be strictly comparable with a school setting. 

2,5

3

3,5

4

4,5

5

Q57 Q58 Q59 Q60 Q61

R
at

in
g 

Sc
al

e

Strand 3

Pre-Invent Week Post-Invent Week



Constructionism 2018, Vilnius, Lithuania 

147 

 

A second issue that arose from this hand-picking was the relative uniformity of the student skills. Not 
only were they all high at the beginning, many of them gravitated around the same level. This may not 
be representative of a post-primary school classroom either, considering that many different 
backgrounds could be better represented without the selection process. This could lend to greater 
diversity in other settings, however, as skills beyond computer science are helpful and constantly 
developed through this 21st Century learning method. 

Finally, we are operating under the assumption that high self-reporting on confidence translates into an 
elevated level of actual learning in a given area. The related literature supports this assumption, but 
further research must be conducted. 

Final remarks 
There has been only a limited amount of work done measuring the effects of hackathons as pedagogical 
approaches (Byrne et al., 2017; Duhring, 2014). There is a need to further this field of research as 
teaching methods move to accommodate a more technology and future oriented focus. Furthermore, 
Ireland’s introduction of Computer Science is an example of a global trend towards CS education for 
pre-university students, which means that exploring a variety of approaches to teaching the topic will be 
more important than ever. This paper addressed both of those problems by measuring the amount of 
self-perceived learning that occurred because of the learning activity, while also putting these 
measurements in terms of the new Irish Leaving Certificate learning outcomes.  

The outcomes of the pre and post questionnaires indicate that the students grew academically due to 
Invent week. They apparently left the week more prepared for the Leaving Certificate than they were 
when they entered it. It is encouraging to note the measurable success of Invent week, because this 
means that there is at least one proven method for project facilitation relevant to Irish Computer Science 
course. This model could be adapted to target learning outcomes at different levels and in different 
jurisdictions.  

It will be important to attempt a similar approach with other groups of students, more often, using 
different curriculum outcomes and hopefully with larger groups to confirm that this approach is reliably 
and globally applicable.  

Other research that should follow as a result of this would include tracking each individual’s role within 
the group and seeing how that impacted their specific areas of learning. Also, more methods of project 
facilitation such as Agile (Kastl et al., 2016; Rico & Sayani, 2009) or SCRUM (Scharf & Koch, 2013) 
should be considered and measured in order to discover new and effective pedagogical methods. 
Finally, methods currently in development (such as the hackathon-like activity) should be compared to 
more traditional approaches to evaluate the relative effectiveness.  

In conclusion, allowing students to be immersed in a scaffolded, but ultimately open-ended hands on 
project gave them a chance to develop their technical and domain knowledge along with their 
interpersonal and 21st Century skills.  

References 

Barker, B., Melander, J., Grandgenett, N., & Nugent, G. (2015). Utilizing Wearable Technologies as a 
Pathway to STEM. Paper presented at the Society for Information Technology & Teacher Education 
International Conference. 

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez, S., & Wilensky, U. (2017). All Roads Lead to 
Computing: Making, Participatory Simulations, and Social Computing as Pathways to Computer 
Science. IEEE Transactions on Education, 60(1), 59-66.  

Briscoe, G., & Mulligan, C. (2014). Digital Innovation: The Hackathon Phenomenon. Retrieved from 
http://www.creativeworkslondon.org.uk/wp-content/uploads/2013/11/Digital-Innovation-The-
Hackathon-Phenomenon1.pdf 

http://www.creativeworkslondon.org.uk/wp-content/uploads/2013/11/Digital-Innovation-The-Hackathon-Phenomenon1.pdf
http://www.creativeworkslondon.org.uk/wp-content/uploads/2013/11/Digital-Innovation-The-Hackathon-Phenomenon1.pdf


Constructionism 2018, Vilnius, Lithuania 

148 

 

Byrne, J. R., Fisher, L., & Tangney, B. (2015). Computer science teacher reactions towards raspberry 
Pi Continuing Professional Development (CPD) workshops using the Bridge21 model. Paper presented 
at the Computer Science & Education (ICCSE), 2015 10th International Conference on. 

Byrne, J. R., O’Sullivan, K., & Sullivan, K. (2017). An IoT and Wearable Technology Hackathon for 
Promoting Careers in Computer Science. IEEE Transactions on Education, 60(1), 50-58.  

Cooper, R., & Heaverlo, C. (2013). Problem Solving And Creativity And Design: What Influence Do 
They Have On Girls’ Interest In STEM Subject Areas? American Journal of Engineering Education 
(AJEE), 4(1), 27-38.  

Dede, C. (2010). Comparing frameworks for 21st century skills. 21st century skills: Rethinking how 
students learn, 20, 51-76.  

Duhring, J. (2014). PROJECT-BASED LEARNING KICKSTART TIPS: Hackathon Pedagogies as 
Educational Technology. Paper presented at the National Collegiate Inventors and Innovators Alliance. 
Proceedings of Open, the Annual Conference. 

Fee, S. B., & Holland-Minkley, A. M. (2010). Teaching Computer Science Through Problems, Not 
Solutions. Computer Science Education, 20(2), 129-144.  

Johnson, L., Brown, S., Cummins, M., & Estrada, V. (2012). The Technology Outlook for STEM+ 
Education 2012-2017: An NMC Horizon Report Sector Analysis.  

Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A crafts-oriented approach to 
computing in high school: Introducing computational concepts, practices, and perspectives with 
electronic textiles. ACM Transactions on Computing Education (TOCE), 14(1), 1.  

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a 
digital world: Routledge. 

Kafai, Y. B., Rusk, N., Burke, Q., Mote, C., Peppler, K., Fields, D., . . . Elinich, K. (2014). Motivating and 
Broadening Participation: Competitions, Contests, Challenges, and Circles for Supporting STEM 
Learning. Paper presented at the Proceedings of the 11th International Conference of the Learning 
Sciences: Learning and Becoming in Practice. 

Kastl, P., Kiesmüller, U., & Romeike, R. (2016). Starting out with Projects: Experiences with Agile 
Software Development in High Schools. Paper presented at the Proceedings of the 11th Workshop in 
Primary and Secondary Computing Education. 

Lawlor, J., Conneely, C., Oldham, E., Marshall, K., & Tangney, B. (2018). Bridge21: teamwork, 
technology and learning. A pragmatic model for effective twenty-first-century team-based learning. 
Technology, Pedagogy and Education, 1-22.  

Lawlor, J., Marshall, K., & Tangney, B. (2015). Bridge21–exploring the potential to foster intrinsic student 
motivation through a team-based, technology-mediated learning model. Technology, Pedagogy and 
Education, 1-20.  

Nandi, A., & Mandernach, M. (2016). Hackathons as an Informal Learning Platform. Paper presented 
at the Proceedings of the 47th ACM Technical Symposium on Computing Science Education. 

NCCA. (2014). Short Course - Coding Retrieved from http://www.curriculumonline.ie/Junior-
cycle/Short-Courses/Coding 

NCCA. (2017a). Draft Leaving Certificate Computer Science Specification.   Retrieved from 
https://www.ncca.ie/media/3184/lc-computerscience.pdf 

NCCA. (2017b). The Leaving Certificate (Established).   Retrieved from 
https://curriculumonline.ie/Senior-cycle/Senior-Cycle-Subjects/Computer-Science 

Nugent, G., Barker, B., Grandgenett, N., & Welch, G. (2014). Robotics camps, clubs, and competitions: 
Results from a US robotics project. Paper presented at the Proceedings of 4th International Workshop 
Teaching Robotics, Teaching with Robotics &5th International Conference Robotics in Education 
Padova (Italy) July. 

http://www.curriculumonline.ie/Junior-cycle/Short-Courses/Coding
http://www.curriculumonline.ie/Junior-cycle/Short-Courses/Coding


Constructionism 2018, Vilnius, Lithuania 

149 

 

O'Donovan, D. (2015). Enquiry Based Learning at Bridge21 Retrieved from 
https://sites.google.com/site/enquirybasedlearningatbridge21/home 

Przybylla, M., & Romeike, R. (2014). Physical computing and its scope-towards a constructionist 
computer science curriculum with physical computing. Informatics in Education, 13(2), 225.  

Rico, D. F., & Sayani, H. H. (2009). Use of agile methods in software engineering education. Paper 
presented at the Agile Conference, 2009. AGILE'09. 

Roberts, A. (2012). A justification for STEM education. Technology and Engineering Teacher.  

Romeike, R., & Göttel, T. (2012). Agile projects in high school computing education: emphasizing a 
learners' perspective. Paper presented at the Proceedings of the 7th Workshop in Primary and 
Secondary Computing Education. 

Rychen, D., & Salganik, L. (2005). The definition and selection of key competencies: Executive 
summary. OECD. 

Sanders, M. (2009). STEM, STEM Education, STEMmania. Technology Teacher, 68(4), 20-26.  

Scharf, A., & Koch, A. (2013). Scrum in a software engineering course: An in-depth praxis report. Paper 
presented at the Software Engineering Education and Training (CSEE&T), 2013 IEEE 26th Conference 
on. 

Skirpan, M., & Yeh, T. (2015). Beyond the Flipped Classroom: Learning by Doing Through Challenges 
and Hack-a-thons. Paper presented at the Proceedings of the 46th ACM Technical Symposium on 
Computer Science Education. 

Tangney, B., & Bray, A. (2013). Mobile Technology, Maths Education & 21C Learning. Paper presented 
at the QScience Proceedings.  

Tangney, B., Oldham, E., Conneely, C., Barrett, S., & Lawlor, J. (2010). Pedagogy and processes for a 
computer programming outreach workshop—The bridge to college model. Education, IEEE 
Transactions on, 53(1), 53-60.  

Vygotsky, L. S. (1978). Mind in society (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.): 
Cambridge, MA: Harvard University Press. 

Williams, J. (2011). STEM education: Proceed with caution. Design and Technology Education: An 
International Journal, 16(1).  

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair 
programming. IEEE software, 17(4), 19-25.  

  

  

https://sites.google.com/site/enquirybasedlearningatbridge21/home


Constructionism 2018, Vilnius, Lithuania 

150 

 

EduRobot Taxonomy and Papert’s Paradigm 

Dave Catlin, dave@valiant-technology.com  
Valiant Technology Ltd., UK 

Martin Kandlhofer, mkandlho@ist.tugraz.at  
Graz University of Technology. Austria 

Stephanie Holmquist, sh2@usf.edu 
University of South Florida, USA 

Andrew Paul Csizmadia, A.P.Csizmadia@staff.newman.ac.uk 
Newman College, UK 

Julian M. Angel-Fernandez , Angel-Fernandez@acin.tuwien.ac.at 
Technische Universität Wien, Austria 

John-John Cabibihan, john.cabibihan@qu.edu.qa 
Qatar University, Qatar 

Abstract 
Seymour Papert was the first person to suggest using robots in education.  And for nearly 50 years his 
constructionism principles guided their application in school.  Over the last few years, a multitude of new 
robots have become available.  Do they all meet Papert's Paradigm?  What of those that don't?  In this 
paper, we further develop the EduRobot Taxonomy which puts an ever-increasing number of education 
robots into order.  We’ll examine what they’ve got in common and how they differ: we’ll also see if they 
all comply with Papert’s ideas and what does it mean if they don’t.  

Keywords 
education robots; EduRobot taxonomy; build bots; use bots; social robots  

Introduction 

In 1969 Seymour Papert set Mike Paterson, a visiting graduate student from England, the task of writing 
a specification for a Turtle robot (Paterson, 1969).  Papert believed the robot enriched Logo, a computer 
language he’d invented a few years earlier.  He’d imagined the Turtle as a ‘transitional object’, a link 
between students the computer and some powerful idea.   

With the ‘birth’ of the Turtle in the early 1970s, Papert became the father of educational robots.  In the 
following years a few commercial Turtles became available and the odd non-Turtle education robot, 
like, Hero found their way into schools.  Piaget’s constructionist theories underpinned Logo and the 
Turtle.  By 1993 Papert had gradually created constructionism, a variation on Piaget’s ideas where 
students gain knowledge of the world by making ‘stuff’ for it.  As part of this progression he’d looked 
beyond Turtles and started to explore cybernetic machines by using Lego to build robots (Papert, The 
Children's Machine, 1993).  Eventually, this led to his collaboration with the Lego Company, the 
intelligent brick and Lego Mindstorms. 

So Papert had created two types of education robots: those ‘out-of-the-box-ready’ to explore ideas and 
those you learn through building them.  Both these types of robot shifted the focus from teachers 
teaching to students learning.  Both captured the spirit of intellectual adventure: children learnt to think, 
to examine ideas – not simply remember what teachers told them.  In a review of education robots in 
special needs education, Catlin and Blamires (In Press) realised that Papert had created a Paradigm in 
the sense of Kuhn’s Paradigm Shifts and scientific revolutions (Kuhn, 1996).  Everything about 
education robots since 1970 embraced what Papert called the ‘Spirit of Logo’ – effectively Papert’s 
Paradigm. 

mailto:mkandlho@ist.tugraz.at
mailto:sh2@usf.edu
mailto:A.P.Csizmadia@staff.newman.ac.uk
mailto:Angel-Fernandez@acin.tuwien.ac.at
mailto:john.cabibihan@qu.edu.qa


Constructionism 2018, Vilnius, Lithuania 

151 

 

Catlin and Blamires reviewed work which reported negatively on Papert’s efforts.  Unlike Popper’s 
falsification theory of science (Popper, 2002), where a single conflicting result is enough to destroy a 
scientific proposition, Kuhn’s Paradigm supports a theory based on probability.   More importantly, a 
Kuhnian Paradigm is a theory, like Newton’s Laws or Einstein’s Relativity, which changes the way we 
view the world. Papert’s work on robotics and education did this. This paper finds new robots in 
education which don’t comply with Papert’s ideas.  However, this new perspective can coexist with 
Papert’s propositions in some ways but clashes with them in others.   

Until roughly about 2010, a few small companies and Lego supplied the education space with robots.  
Since then a host of robots have appeared: for example, in January 2010 ten new robots appeared at 
London’s BETT Show.  Catlin and colleagues realised a schema grouping similar robots together would 
help our understanding of their use in education.  So they presented an provisional schema called 
EduRobot Taxonomy version 1.03 at the Robotics in Education (RiE) Conference (Catlin, Kandlhofer, 
& Holmquist, 2018).    

This paper has two objectives.  The first is to develop the EduRobot classification further and the second 
is to draw attention to the paradigm issues mentioned above.  We’ll start by presenting our methodology 
and then introduce EduRobot version 1.03.  Then we’ll look at issues with this version and solutions 
which lead to EduRobot version 2.01.  We’ll conclude with a short discussion and conclusions on the 
work done so far and the next steps. 

Method 

EduRobot version 1.03 resulted from the expert experience of its authors whom between them have 
worked with education robots for over 50 years.  We chose a team from Europe and the USA to ensure 
a broad viewpoint.  We presented the paper and a poster at the RiE (Robotics in Education) Conference 
held in Malta, April 2018.  Delegates to the conference included about 40 experts from Europe, North 
America, the Middle East and the Far East.  

Following the presentation, half the attendees completed a questionnaire which assessed approval, 
tested EduRobot, elicited suggestions, and highlighted confusions.  This paper incorporates the 
information from the survey and the direct input from a further three co-authors from Europe and the 
Middle East.  How easily we and the Malta attendees’ classified robots tested the effectiveness of 
provisional schema.  For the Malta Conference, we classified 30 robots – enough to show an example 
of each class.  The issues raised by conference delegates and a new analysis from the team questioned 
some of the original decisions and enables us to present EduRobot version 2.01.  This we’ve tested by 
classifying a further 30 robots (including those classified by the Malta delegates).  

EduRobot Taxonomy 

What is an Educational Robot? 
We define an education robot with a combination of three of the ten Educational Robotic Application 
(ERA) Principles:  The ‘embodiment, Intelligence and Interactive principles’ (Catlin & Blamires, 2010).  
We can summarise these by saying that an education robot is a physical robot, in the same space as 
the student.  It has an intelligence that can support learning tasks and students learn by interacting with 
it through suitable semiotic systems.   

We haven’t included virtual robots since they do not offer the same experience as tangible robots in the 
same space and time as the learner.  Sylvia Weir, who’d started working with Papert’s Logo team during 
the early days, pointed out the original developers didn’t see a difference between the physical and 
virtual robots.  But, she went on to say – the children did (Weir, 1987).  We’re not saying that virtual 
robots have no educational value, but that it’s different to physical robots and would need a different 
classification approach. 



Constructionism 2018, Vilnius, Lithuania 

152 

 

What is EduRobot’s Focus? 
EduRobot focuses on the robot’s construction and not its applications or educational value.  The ERA 
Principles deals with these issues.  We note you can use a certain class of robot in many ways: you can 
also use different classes of robots to do tasks of similar educational nature and value.  If you try and 
include these traits in the schema you’ll find it hard to distinguish one robot from another.  

Why an Education robot Taxonomy? 
Given EduRobot doesn’t say anything about the education value of robots, what is its purpose.  We cite 
three reasons for EduRobot: 

1. It means you can apply research results from one robot to all members of the same class. 

2. It gives teachers a way of reviewing and comparing the technicality of different robots available. 

3. It provides a way for the web to organise information about education robots.  

EduRobot Version 1.03 

Figure 1 shows the basic structure of EduRobot. 
Type: We identified two basic types of education robots. These align with Papert’s ideas as robots you 
build (Build Bots) and robots you use (Use Bots). 
Class: This refers to robots like Turtles, Robot Arms 
and Robot Kits and so on. 
Subclass: It is acceptable to subdivide some classes 
into distinct subclasses. 
Brand: A specific robot product from a supplier. 

Characteristics: This is the novelty of EduRobot: 
animal taxonomies continue with a tiered structure, 
trying to do this with education robots becomes 
complicated. Characteristics define a robot’s nature and key details that don’t change.  If a designer 
adds new features, it enriches the robot, but, usually, it doesn’t change its type, class or subclass. You 

Figure 1 EduRobot Taxonomic Structure. 

Figure 2 Examples of Build Bot and Use Bot 
Classifications. 



Constructionism 2018, Vilnius, Lithuania 

153 

 

can think of characteristics as a set of tags that list the robot’s important features. The classification 
allows for a picture and 30-word technical description (See Figure 2).  

One point that’s not so obvious: a robot can only have one classification.  Discovering the platypus 
caused scientists great consternation.  It was a mammal with reptilian characteristics like laying eggs.  
It took 85 years to agree a classification: it was an egg-laying mammal. The higher taxonomic rank 
makes the decision. You can build a Turtle out of Lego Mindstorms, but this does not change its nature: 
it’s still a Build Bot. Similarly, you can build and transform a Roamer Turtle into a social robot, but it’s 
still a Use Bot. 

 

Figure 3 EduRobot Taxonomy version 1.03 Presented to the 2018 Robots in Education Conference in Malta. 

Summary of RiE Questions 

We received 13 Responses from the 40 delegates.  Because several delegates attended from the same 
institutions this represented about 50% response.    

1. Out of the responses 23% strongly agreed with the approach, 38% agreed, 38% felt undecided 
and 1% disagreed. 

2. To the question, “Is two Types of robot enough?” 72% felt we had enough the rest did not 
answer. 

3. Did we need more Classes? 85% said no - one of these felt EduRobot was already too 
complicated for teachers.  Another thought we might need more in the future. 

4. Did we need more characteristics? 77% said no and 23% said yes. 

Because of the small sample size, these results do no more than encourage us to continue.  The 
richness of the survey comes from the comments.  They helped us understand the respondent’s 
misunderstandings. For example, the person who disagreed with the approach recanted in conversation 
when we clarified some of his concerns.  Although people said they were happy with the Types, Classes 
and Characteristics their comments inspired positive changes.  We’ve referenced these in the next 
section. 

Issues with Version 1.03 

Social Robots 
Seymour Papert once asked the rhetorical question, “Will computers program children, or will children 
program computers” (Blikstein, 2013) (Papert & Solomon, 1972).   With robots that comply with Papert’s 
Paradigm, students use the robot as a tool to express themselves and explore ideas.  Students act and 
the robot responds. With social robots, it’s the other way.  Autonomous social robots respond to students 
in pre-set ways: normally the learner cannot change the response.  Social robot research records 
children’s reactions to different stimuli.  Designer’s use this data to make the robot recognise and 



Constructionism 2018, Vilnius, Lithuania 

154 

 

respond in apt social and cultural ways.  We wondered whether we should classify Social Robots as a 
“Type Bot”.  The answer became clear when we tried to classify social robots as Build or Use Bots.  The 
RiE Poster for version 1.03 showed we could but, it felt forced.  Once we gave Social Bots the status of 
‘Type’ it allowed us to create a more fitting set of characteristics – which focus on Human-Robot 
Interactions (HRI). 

Social Bot Ontology 
In education, Social Bots are autonomous robots that interact and communicate with students using 
HRI technologies.  The interactions aim to embody accepted social and cultural norms (Li, Cabibihan, 
& Kee Tan, 2011).  

Normally social robots can interact with their environment, each other and people, but in an educational 
context, our main interest is in the student robot rapport. We can classify many of the robots as "social" 
because of the physical and behavioural ‘affordances’ they display. For example, when students switch 
on Nao its eyes and ears light up, it stands upright and turns its head towards the user. Table 1 defines 
the Social Bot Classes for EduRobot version 2.01.   

Marvin Minsky described Telepresence as “instruments that will allow us to work remotely” (Minsky, 
1980) (Minsky, 2010).  His definition included robots in the next room or the Mars Rover.  While in 
principle explorer and bomb disposal robots meet this definition, in education we normally use the noun 
Telepresence for students projecting themselves into remote social locations.  We’ll reserve the class 
for robots of this definition.  

People have used these robots to allow children confined to hospitals to go to school in their place.  
They control the robot to take part in the lesson.  Classmates treat the robots as if it was their friend and 
the socialisation has a positive effect on the patients’ health (Mills & Laughlin, 2018). 

Table 1  Definition of Social Bot Classes 

Humanoid Social robots that look like mechanical people: Example Nao.  

Human-Like Social robots trying to resemble humans: example Kaspar. 

Toys Smart toys with social robot characteristics: example Furby 

Animal-Like Social robots that resemble animals: example Paro 

Creatures Social robots without a form template: example Tega  

Telepresence Robots that students can use to represent themselves in social circumstances: example 

Pebbles.   

Social Bot Characteristics 
Table 2 lists the characteristics applicable to social robots.  We consider this table an initial effort to 
characterise the Human-Robot Interaction (HRI) spectrum.  The extensive literature highlights the 
complexity problem.  For example, the studies of Fernando Alonso-Martín and colleagues classified 
human touches into tap, pat, push, stroke, scratch and slap (Alonso-Martín, Gamboa-Montero, Castillo, 
Castro-González, & Ángel Salichs, 2017).  Their work focuses on the human touching the skin of the 
robot.  This forms one part of ‘Recognition’ and one aspect of ‘Gestures’.  If you try and define the detail 
of the characteristics you run into complexity issues which defeat the purpose of the EduRobot 
enterprise.  If necessary we can expand these definitions later after we’ve more experience classifying 
social robots. 

Table 2 Characteristics of Social Bots. 

Recognition The robot detects the presence of a human through its senses. 

Acknowledgement The robot acknowledges the human presence. 
Motion  The robot detects and responds to movement. 

Gestures The robot notices and reacts to gestures. 

Emotions The robot senses human emotions and reacts to them.  

Conversation The robot and child communicate through sound.   



Constructionism 2018, Vilnius, Lithuania 

155 

 

Programming Characteristics 
Our review EduRobot version 1.03 decided we could improve the programming characteristic ontology. 

We can program education robots in a variety of ways that meet Papert’s aim of “low floor and high 
ceiling” (Papert, 1993) later refined to “low floor, high ceiling and wide walls” (Resnik & Silverman, 2005). 
These provide students with easy entry points, but great exploration possibilities.  Robots allow teachers 
to create environments which reflect Bruner’s Spiral Curriculum (Bruner, 1960).  Young children start 
with tasks like Roamer’s Incy Wincy Spider where all they do is put symbols in the right order, but as 
their experience and interest grows they can end up coding in professional programming languages. 
Several robots provide rich educational environments by offering different ways for students to program 
them.  Table 3 lists the characteristics of programming languages used with education robots.  

Malta Feedback 
David Miller from the KISS Institute raised the issue of Mechanical computing in his historical 
presentation which featured the robot ‘Scarecrow’.  We’ve changed Mechanical to Mechatronics which 
embraces programming by arranging mechanical, electrical and electronic parts.  This made us rethink 
the 14-in-1 Solar Robot shown on the EduRobot version 1.03 Poster; we’d decided it failed to qualify as 
an education robot because it didn’t meet the ERA Intelligence Principle.  The Mechatronic characteristic 
revises this decision because you ‘program’ it by rearranging the parts.  You can’t do this with toy kit 
robots, for example, Owi’s Solar Wild Boar Robot doesn’t qualify because you can only build it one way. 

Robot Architecture 
Reflective analysis showed the characteristic we called ‘Architecture’ in version 1.03 needed 
improvement; the original effort was too detailed.  EduRobot needs to find a balance between providing 
detail and giving a clear understanding of the robot’s nature.  

Table 3 Programming Characteristics for EduRobot version 2.01 

Programming  This characteristic explains the different forms of software used to tell robots what to do and 
how to behave.  

Icon Symbols represent robot actions like move-forward.  They’re often used on keyboards mounted 
on the robot allowing students to program the robot directly.  Example software: RoamerWorld 
Graphics and example robot: Roamer. 

Tile-based This approach shows instructions as tiles, each with an image to depicting and instruction.  
Learners create programs by putting the tiles in order and in a horizontal line. Example software: 
Edware and example robot: Edison. 

Block-based ‘Jigsaw’ like blocks fit together in ways that create programs and reduces the chances of code 
bugs.  Example software: Scratch and Blockly and example robot: We Do Robot Kit. 

Text-based Traditional text-based programming languages. Software examples: Java, Python.  Example 
robot: Cozmo 

Graphical The program is a graphical representation showing actions in sequence for example flow 
diagrams and Finite State Machines.  Examples: Flowol Software (Flow Diagrams) with Vex IQ 
robots, and Finite State Machines with TI-RSLK robots. 

Mechatronics Students create programs by organising mechanical, electrical and electronic parts in different 
arrangements.  Early examples include Babbage’s Machines and Braitenberg robots.  Example 
robot: Scarecrow. 

Tangible This involves students arranging objects in a physical environment.  The robot gets instructions 
from those objects.  Example robot: Cubetto 

Teaching The learner shows the robot how to do the task.  The robot remembers the movement and 
reproduces it.  Example robot: Little Robot Arm 

Robot architecture manages complex tasks in different environments based on a software approach.  It 
comprises of Artificial Intelligence (AI) and software engineering.  AI include problem abstraction, 
knowledge representation, decision making and behaviour execution.  Software engineering includes 
programming, interfaces, data organization and transfer.  Based on three ingredients (sense, plan and 
act) various authors propose three architectures (Figure 4): reactive, deliberative and hybrid (Siciliano 
& Khatib) (Murphy, 2000). 



Constructionism 2018, Vilnius, Lithuania 

156 

 

 

Figure 4 Robotic Architectures 

Architecture defines a technical strategy used by the robot to perform its tasks.  However, we can look 
at the issue from an educational perspective.  In EduRobot version 1.03 we address the issue: can you 
call a machine a robot only if it has sensors?  While insisting it must, may have merit in a technical 
debate, it’s not essential for an effective education tool.  Robotics is a subset of control engineering and 
in that discipline, you draw a boundary around the system under consideration and study what happens 
within its confines.  If you draw the boundary to encompass machine and learner, you have a system 
which involves Papert’s key ideas behind the Turtle robot.  The child sets goals plans and fulfils the plan 
by programming the robot.  The child sees the mistakes and debugs the program.  ‘Playing Turtle’ is 
the second part of Papert’s thinking: the child works out what the robot needs to do by imaging 
themselves to be the robot.  We’ll call this a direct architecture. 

Table 4 Characteristics: Robot Architectures 

Architecture  The strategies the robot uses for AI tasks like problem abstraction, knowledge representation, 
decision making and behaviour execution, and software engineering like programming, data 
organisation and interfaces. 

Direct A robot where the learner is responsible for the world model, goals and plans.  Example robot: 
Bee-Bot. 

Reactive A direct connection between the robot’s sensors and its actuators lacking an internal model of 
the world.  For example the subsumption architecture (Brooks, 1986). 

Deliberative The robot contains planning and reasoning parts with its memory containing a model of the world.  
This model receives sensor data and decides what action to take and tells the action module to 
perform them.  The model understands and accounts for the robot’s long-term and short-term 
goals.  Example robot Shakey (Nilsson, 1984). 

Hybrid A combination of the reactive and the deliberative methods which can preserve different levels 
of abstraction. A common hybrid architecture is the three-tier robot architecture (Bonasso, 1999). 

What Else is New in EduRobot Version 2.01? 

Status 
Many of the presentations in Malta and similar conferences present robots created by the University for 
their teaching: schools cannot buy these robots.  We, therefore, propose a new characteristic called 
status (Table 5) which will incorporate the historical characteristic of EduRobot version 1.03. 

Table 5 Status Characteristic 

Status  Status explains whether schools can get the robot.  The status of a robot will change overtime. 

Historic Education robots no longer available. 

Academic Education robots used for teaching within a University and specific to that institution.  



Constructionism 2018, Vilnius, Lithuania 

157 

 

Commercial Robots currently available to schools and teaching institutions. 

Robot Versions 
Over the years Lego issued a few updates to their 
Mindstorms product.  As a rule, brand development doesn’t 
change type, class or subclass – if it does change any of 
these it’s a new brand with its own classification.   

We should always classify the latest brand but list the 
previous versions as an extra to the 30 word description 
(Figure 6).  

Changing Build Bot: Maker Bots – Printed 
Parts 
The Malta survey revealed two robots made using 
machined and laser cut parts.  Rather than inventing a new 
subclass, we felt it better to broaden the ontology of the 
Printed Parts subclass. The new definition is: Robots 
where students make the parts using various methods, for 
example, 3D Printed Parts, machined and laser cut parts.   

One Time Builds 
You can only build some robots once, but it is clear building it is a technical experience aimed at 
developing student skills (example Pololu 3pi).  You can also buy some Use Bots built or in a kit form.  
However, you get the impression the motive for the kit version is to reduce the sales price: the build is 
too complicated for the age range of the students (example Oh-Bot).  The classifier needs to judge from 
available details. 

Marine Robots 
The 2018 European Conference on Educational Robotics (ECER)41 ran in parallel with RiE.  It included 
a Botball competition and challenges staged by the PRIA (Practical Robotics Institute Austria).  This 
includes a submarine challenge.  At first, we thought this needed a new class of robot.  However, the 
Shark robot classifies as a Build Bot: Maker Bot – Made Parts.  However, we can anticipate a User Bot 
version one day when we’ll add a new User Bot Class. 

                                                

41 An international scientific conference for students (aged 10 – 18 years old) to present their research. 

Figure 5 Lego Robot Classification EduRobot 
Version 2.01 



Constructionism 2018, Vilnius, Lithuania 

158 

 

EduRobot Taxonomy Version 2.01 

 

Figure 6 EduRobot version 2.01 

Discussion and Conclusions 

We feel EduRbot is developing satisfactorily.  The response at RiE was positive and supportive and 
confirmed the need.  However, a few issues still seem tentative and the true test of the proposal will 
come when people try and use it to classify new robots or find the classifications of robots they know. 

Following the request of several people at the RiE Conference, we’ve set up a site for the EduRobot 
(www.about-educational-robots.com).  This will include the latest brands.  Once the site is live we plan 
to contact education robot makers and ask them to classify their products.  We expect to adjust 
EduRobot during this phase. 

Papert’s work has so successfully justified the role of robots in education, it’s a shock to find the social 
robots do not live up to expectation.  This discovery highlights the need for a more detailed study.  Can 
we find an underlying justification for this technology, or can we find a way of using the technology that 
helps the robots comply with Papert?  This is the subject of a future investigation. 

References 

Alonso-Martín, F., Gamboa-Montero, J. J., Castillo, J. C., Castro-González, A., & Ángel Salichs, M. 
(2017, May 16). Detecting and Classifying Human Touches in a Social Robot Through Acoustic Sensing 
and Machine Learning. (Xiaoning Jiang, & Chao Zhang, Eds.) Sensors. Retrieved May 11, 2018, from 
http://www.mdpi.com/1424-8220/17/5/1138/htm 

Blikstein, P. (2013). Seymour Papert’s Legacy: Thinking About Learning, and Learning About Thinking. 
(Staford Graduate School of Education) Retrieved May 15, 2018, from Transformative Learning 
Technologies Lab: goo.gl/Kw4NkY 

Bonasso, P. (1999). Issues in providing adjustable autonomy in the 3T architecture. Proceedings of the 
AAAI Spring Symposium on Agents with Adjustable Autonomy. 

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE journal on robotics and 
automation, 2(1), 14-23. 

Bruner, J. (1960). The Process of Education. Cambrige, Ma: Harvard Univerity Press. 

Catlin, D., & Blamires, M. (2010). The Principles of Educational Robotic Applications (ERA):A framework 
for understanding and developing educational robots and their activities. Constructionism 2010. Paris: 
Proceedings of Constructionism 2010. Retrieved May 15, 2018, from goo.gl/N7z84k 

Catlin, D., & Blamires, M. (In Press). Designing Robots for Special Needs Education. In L. Daniela, & 
M. D. Lytras (Eds.), Technology, Knowledge and Learning Special Issue on Education Robotics for 
Inclusive Education. Springer. 

http://www.about-educational-robots.com/


Constructionism 2018, Vilnius, Lithuania 

159 

 

Catlin, D., Kandlhofer, M., & Holmquist, S. (2018). EduRobot Taxonomy:: A Provisional Schema for 
Classifying Educational Robots. Robots in Education. Malta. Retrieved May 14, 2018, from 
goo.gl/2tdGTh 

Kuhn, T. S. (1996). The Structure of Scientific Revolutions (3rd ed.). Chicago: University of Chicago 
Press. 

Li, H., Cabibihan, J., & Kee Tan, Y. (2011, November 9). Towards an Effective Design of Social Robots. 
International Journal of Social Robots, pp. 333-335. Retrieved May 15, 2018, from goo.gl/dfn8ys 

Mills, J., & Laughlin, E. (2018). In the beginning.... Retrieved May 15, 2018, from Telepresence 
Robots.com: https://telepresencerobots.com/beginning 

Minsky, M. (1980, June). Telepresence. Omni magazine, June. Omni Magazine. 

Minsky, M. (2010, September). Telepresence: a manifesto.,. Spectrum. 

Murphy, R. (2000). Introduction to AI robotics. (R. (. Murphy, Ed.) MIT Press. 

Nilsson, N. J. (1984). Shakey the Robot. Retrieved May 15, 2018, from SRI International's Artificial 
Intelligence Center: http://www.ai.sri.com/shakey/ 

Papert, S. (1993). The Children's Machine. New York: Basic Books. 

Papert, S., & Solomon, C. (1972, April). Twenty Things to Do with a Computer. Educational Technology. 
Retrieved May 15, 2018, from goo.gl/xsrWDG 

Paterson, M. (1969, August 3). LOGO Ambulatory Executor – Turtle Robot. Retrieved May 1, 2018, 
from goo.gl/VK2DMv 

Popper, K. (2002). The Logic of Scientific Discovery (2nd ed.). New York: Routledge. 

Resnik, M., & Silverman, B. (2005). Some Reflections on Designing Construction Kits for Kids. Retrieved 
May 15, 2018, from https://web.media.mit.edu/~mres/papers/IDC-2005.pdf 

Siciliano, B., & Khatib, O. (Eds.). (n.d.). Springer Handbook of Robotics. Springere Science and 
Business Media. 

Weir, S. (1987). Cultivating Minds: A Logo Case Book. New York: Harper Row. 

 

  



Constructionism 2018, Vilnius, Lithuania 

160 

 

Analysis of Constructive and Cognitive Activities of 
Participants in Online Competitions in Computer 
Science 

Anton Chukhnov, septembreange@gmail.com  
Saint Petersburg Electrotechnical University “LETI”, Russia 

Sergei Pozdniakov, pozdnkov@gmail.com  
Saint Petersburg Electrotechnical University “LETI”, Russia 

Ilya Posov, iposov@gmail.com  
Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg State University, Russia 

Athit Maytarattanakhon, seaay2499@gmail.com  
Saint Petersburg Electrotechnical University “LETI”, Russia 

Abstract 
The paper discusses a certain type of competitions based on distance interaction of a participant with 
simulation models of concepts from discrete mathematics and computer science. The “Construct, Test, 
Explore” competition, developed by the authors, is chosen to be a representative of such competitions. 
One of the features of this competition is that all its tasks are accompanied not only with simulation 
models and tools to manipulate the model’s objects, but also with a hierarchical criteria system, that 
defines an objective function to be optimized while solving a task. The presence of such a criteria system 
allows for treating a task’s subject as a set of several tasks of different complexity (2–4 tasks). Each 
criterion has means to asses partial solutions, that provide permanent feedback for a participant. The 
transition of a participant from optimizing one criterion to optimizing the next one, means that he or she 
has already fully understood an idea corresponding to a former criterion. The work is supported by the 
Russian Foundation for Basic Research (Project No. 18-013-01130). 

Keywords 
olympiad; computer science; discrete mathematics; electronic manipulator; CS competition; 
mathematical thinking 

Background and theory 

One of the important issues in arranging for mental activity in online (distance) competitions is to 
automate an analysis of mental actions, that are performed by participants while they solve tasks. Some 
information about the characteristics of mental actions may be obtained by analyzing competitions 
based on multiple choice questions (Yagunova, 2016). But this information is not enough to draw 
conclusions about the degree of understanding, because the correct answer could be selected 
accidentally, or by means of indirect reasoning that have nothing to do with an idea presented in a task. 
Moreover, the very form of a task with a multiple choice question is very limiting. Authors think, that 
much more information about mental processes may be gained by analyzing solutions of constructive 
tasks. Constructive tasks are convenient because they may be automated in a straightforward way. 
They may be stated inside an informational environment, built on computer tools and simulation models. 
Computer tools and simulation models allow for analyzing constructive solutions of participants. These 
solutions are very diverse and provide interesting information about how strongly have participants 
formed understanding of concepts, on which the task is based. 

Also, while a participant work with a tool, rich information about his or her actions may be collected. 
However, the problem of actions logs analysis aimed to get mental acts is quite complicated and does 
not have full solution by now (Gibson, etc., 2016). So we do not consider logs analysis in this work. At 
the same time, the experience of working with imitation models has been gained (Honey, etc., 2010; 

mailto:pozdnkov@gmail.com


Constructionism 2018, Vilnius, Lithuania 

161 

 

Potkonjaka, 2016), their important role in tasks solving has been demonstrated (Baker, etc., 2008). It 
has been proved that the work with black-box models aids in better conceptualization of concepts: the 
work (Hosein, etc, 2008) demonstrates that “students using the black-box did better on the constructive 
tasks because of their increased explorations”. This work also shows that “students with low maths 
confidence resorted to using real-life explanations when answering tasks that were application related”. 
For this reason, this paper investigates subjects that have clear real-life sense and allow for transition 
to serious theoretical problems starting from understandable tasks that can be solved by participants 
only by common sense. 

The work (Mislevy, 2011) demonstrates that it is important for concepts interpretations chosen for tasks 
statements to be obvious and natural. This approach corresponds to the idea of engineering design 
developed in the project WISEngineering (Chiu, 2013). 

The type of feedback is important. The article (Attali, 2015) explores several feedback types: no 
feedback (NF), immediate knowledge of the correct response (KCR), multiple-try feedback with 
knowledge of the correct response (MTC), or multiple-try feedback with hints after an initial incorrect 
response (MTH), and determines that the latter is the most efficient. That is why this paper attaches 
great importance to the analysis of partial solutions and the automation of responding to them. 

Not without interest is a study and development of such types of educational activities, that combine 
learning of new scientific and technical ideas with an ability to assess results of learners’ mental activities 
without specially set up additional assesments of obtained knowledge and skills. Such steps were taken 
in works (Pozdniakov, 2012, 2013; Posov, 2013; Yagunova etc., 2016; Akimushkin etc., 2015). This 
paper proceeds with a study of these means and abilities. 

Methodology 

We use a method of software supported subject tasks (Pozdniakov et al., 2013). By subject task we 
mean a task with some understandable real-world statement that does not need any specific knowledge 
to understand it and to make at least first steps in the solution. By software supported we mean that a 
task is accompanied with a computer tool, that demonstrates the statement and allows for searching for 
a solution (Honey et al., 2010, Hosein et al., 2008). Thus, such tasks have to be constructive, and a tool 
exposes their constructive nature. 

The approach presented in this paper is connected with the study of possible feedback for partial 
solutions of subject tasks. To provide a feedback, a system should have access to information about 
students actions. Mental actions of a student are accompanied with actions performed with the tool, and 
a potential ability to analyze and to control the solution search activity of a student arises [8]. 

To use the information about a work of a student within a computer tool we propose a method of a 
criteria system [9]. These criteria assess partial solutions. The hierarchy of criteria is built in the way 
that every progress of a student is somehow evaluated with a usually numerical value. It allows for 
comparison of partial solution based on how close are these solutions to the full solution of the task. 
Criteria of higher levels are intended to reveal harder aspects of a subject. Thus, subject tasks may be 
considered both as quite simple (over the lower level criteria) and as olympiad (over higher level criteria). 
Subject tasks usually either implicitly or explicitly require to find the optimal solution. 

Let us look into a technique of designing software supported subject tasks on the example of the graph 
theory with the visual metaphor based on the idea of constellations. Such interpretation allows for 
decreasing of an introductory part of a statement because participants must have already been 
acquainted with the concept of constellations. 

The idea of constellations comes from the need to orient oneself in the space quickly. This can be 
achieved using stars in the sky. One should split the set of bright points-stars into groups, each of which 
is considered to be a single object. For that purpose people invented an idea of figures called 
constellations. Each constellation is obtained by connecting several points with segments. After that, 
the laws of human perception make a human quickly restore segments which are absent on the sky. He 
or she perceives a sky as a graph, consisting of several connectivity components. Thus, the task to 



Constructionism 2018, Vilnius, Lithuania 

162 

 

introduce new constellations can be described in mathematical concepts as a construction of a non-
connected undirected graph. 

If the first stage is to come up with a metaphor, the second stage is to highlight a goal, that may be 
effectively supported by a computer tool. Such goal is to split stars into constellations. This task is natural 
from the context point of view, and thus the explanation of the “split” concept is not needed (see fig. 1). 

 

 Figure 1. the user interface of the “constellations” task 

To measure the progress of students in achieving of the goal one needs to define criteria, that will assess 
the solution. 

Criteria should not contradict the context of the problem, they should be natural inside this context, while 
leading a student to master a new idea, a concept or an algorithm. These requirements are satisfied by 
a splitting of stars, firstly, into different constellations, secondly, into constellations consisting of a fixed 
or upper-bounded number of stars. The requirement for the constellations to be different is described 
on the graph theory as a requirement for connectivity components not to be isomorphic. Thus, the 
important mathematical concept has a natural interpretation inside the chosen metaphor (context). The 
upper bound on the number of start is also natural, because a human can perceive a group of 5–7 
objects as a unit, and he subconsciously splits the greater number of objects into subgroups with less 
number of elements. 

Formalized task statement and conditions of the experiment 

The participants of a competition were presented with a task. It was accompanied with a tool that allowed 
for building configurations of constellations and evaluated numerical values of criteria for each 
configuration. Here is the problem statement: 

This problem asks you to define constellations on a starry sky, connecting stars with segments using 
your mouse. Segments must not intersect. A constellation should contain at least 2 (4, 5 for other levels) 
stars and not more than one cycle (a closed poly-line). 

The more different constellations you build, the better. How to tell whether two constellations are equal? 
The stars of equal constellations can be numbered in the way that if a pair of stars is connected in one 
constellation, then in the other constellation stars with the same numbers are  also connected (see fig. 
2). 



Constructionism 2018, Vilnius, Lithuania 

163 

 

 

Figure 2. Isomorphic constellation 

If you do not succeed to create a new form of a constellation, then the more constellations you have 
(including same), the better is the result. 

Two solutions with the same number of different constellations and the same total number of 
constellations are compared over the total length of all the segments. A better solution has a smaller 
sum. 

The proposed subject is an example of subjects proposed annually in the “Construct, Test, Explore” 
competition.  Each year schoolchildren get access to three software supported subject tasks. Now they 
are implemented as web applications, until two years ago they we implemented in Flash. So, 
participants use their browser to work with tasks. Solutions, that are best for a participant according to 
the criteria of the task, are saved automatically. Participants may also save any other partial solutions 
they want, and they can return to saved solutions any time on any browser on any computer. 

The work on tasks usually starts in a class and continues at home. The competition lasts for one week, 
and the time to solve tasks is not bounded during this week. 

All participants solutions have a log of actions made during the search for the solution. After the 
competition week, the best solutions of each participant are processed and compared between each 
other according to the same criteria, that were used for a single participant to obtain his or her best 
solution. So, each participant gets a rank for each task. The rank is a number demonstrating how many 
better solutions were found by other participants. The lower a rank is, the better is a solution. The 
participants are split into three groups according to their age, statements for each task for higher ages 
is more complicated. The ages split is: 0th level: 1–4 grades, 1st level: 5–8 grades, 2nd level: 9–11 grades. 

Results and discussion 

The qualitative analysis was done by viewing the best solutions of all participants in the order from the 
first rank to the last. Solutions sometimes contain mistakes that give evidence about not understanding 
by a participant of some corresponding mathematical concept. The bounds between solutions with and 
without such mistakes were found. Typical and bounding solutions are demonstrated on figures 3 and 
4. This is the qualitative analysis of solutions for the “constellations” problem for the 1st level (5–8 
grades). There were 666 solutions in total. 

Fig. 3(f) is the last solution with the maximal number of non-isomorphic graphs. 

Fig. 4(a) has 8 different graphs, and no isomorphic. 

Fig. 4(b) has 6 different graphs, and no isomorphic. 

Fig. 4(c) has 5 different graphs, and no isomorphic. 

Fig. 4(d) has 5 different graphs, with some isomorphic. 

Fig. 4(e) has 2 different graphs, with many isomorphic. 

Fig. 4(f) has all graphs isomorphic. 



Constructionism 2018, Vilnius, Lithuania 

164 

 

 
(a) 1st place   (b) 2nd place 

 
(c) 3rd place  (d) 8th place 

 
(e) 100th place   (f) 227th place 

Figure 3. Best solutions of the 1st level according to the 1st criterion: the number of non-isomorphic planar 
connected components 

Figures 3 and 4 present examples of solutions, that demonstrate different levels of diving into the 
essence of the problem. 227 participants of 666 (34%) managed to find the optimal number of 
constellations, that is, they managed to build a graph from a maximal number of non-isomorphic planar 
components, with at least 4 vertexes each (fig. 3a). What is the difference between the beginning of the 
list and its end? The answer came after the analysis: the difference is in the degree of taking into account 
the criterion of graph minimality (the minimality of total edges length). This is especially obvious from 
the last 227th solution, that surely does not take into account the minimality at all. Note, that well known 
greedy algorithms (for example, the Kruskal’s algorithm) are not applicable here because they do not 
consider the requirement of non-isomorphism of components being built. 

The qualitative analysis of solutions demonstrates that during the solution almost all participants (more 
than 90%) gradually mastered the concept of isomorphism. Only the lowest rated solutions demonstrate 
participants that were trying to optimize the second criterion (not the main one) about the number of 
graph components. Note that best solutions do not use all the stars. There were no requirement to build 
a graph on all vertexes, however only a small fraction of participants were looking for a solution on a 
subset of stars. The two best found solutions have this form. 



Constructionism 2018, Vilnius, Lithuania 

165 

 

 
(a) 500th place   (b) 575th place 

 
(c) 580th place   (d) 600th place 

 
(e) 650th place   (f) 658th place 

Figure 4. Examples of solutions of the first level with non-optimal solutions according to the main criterion 

Statistical analysis of solutions for the “Constellations” task 

In the “Constellations” task the best solutions over the main criterion (the number of non-isomorphic 
graphs) had also the best value of the second criterion (the total number of components) (fig. 5, 6). In 
this case the good dispersion of results was achieved by the third criterion: the total length of planar 
graph edges. 

At the same time one can see, that the second criterion played the important role for solutions with a 
few non-isomorphic graphs (see fig. 7). If only the dispersion of results is important, then the first and 
the third criteria are enough. 



Constructionism 2018, Vilnius, Lithuania 

166 

 

 

Figure 5. The number of different (non-isomorphic) graphs in the solution of the “Constellations” task on the 1st 
level. The first decrease from 12 to 11 corresponds to 227 optimal results according to the first criterion. 

 

Figure 6. A histogram of the number of different (non-isomorphic) graphs in the solutions of the “Constellations” 
problem on the 1st level 

 

Figure 7. The number of all graphs in the solutions of the “Constellations” problem of the 1st level, results are 
ordered according to the number of non-isomorphic graphs (the main criterion). Splashes on the right of the plot 

shows differences by the second criterion for solutions that are neighbors by the first criterion. 

However, the second criterion is important for the support of the individual work, because it is much 
more visually obvious for a participant: the number of built graphs is the first thing obvious for a 



Constructionism 2018, Vilnius, Lithuania 

167 

 

participant, and the total length of edges is hard to be estimated visually and thus it plays smaller role 
in the feedback (fig. 8, 9). 

 

Figure 8. Total lengths of graphs in solutions of the “Constellations” task. Results are sorted according to the 
number of non-isomorphic graphs and the number of all graphs. There are no horizontal areas o the graph, that 

means that all solutions of participants are different according to the three criteria. 

 

Figure 9. A histogram of deviations of total lengths of graphs from the best total length in the solutions of the 
“Constellations” task of the 1st level with the maximal number of non-isomorphic graphs (elements are grouped 

by 10). 

Concluding remarks 
The qualitative and statistical analysis of results of 6 subjects (the paper contains only one subject) 
leads to the following conclusion: 

1. Practically all participants (99%) got partial solutions of the task, that proves that subjects are 
understandable for participants. 

2. Participants solutions demonstrate than more than 90% of participants not only mastered the 
concept of graph (vertex, edge) and learned to build graphs with different properties (planar, 
connected), but also formed an understanding of the isomorphism concept. 

3. More than 30% participants managed to optimize a solution over the main criterion, they built a 
graph with the maximal number of non-isomorphic components. And the majority of them formed 
an understanding of building minimal spanning trees. 

4. The stated task contained elements of an open research problem. The two best found solutions 
(different) lay in an unobvious region of a solutions set, they do not use all the stars as graph 
vertexes. 

5. The proposed approach to construct tasks and their automated support provides an ability for a 
vast majority of participants to achieve success in solving proposed task and not to reject searching 
for solutions despite that problems in the formal statement are quite hard and belong to the class 
of olympiad problems. 

6. The implementation of problems in the form of constructive-research subjects provides wide 
abilities for building own solutions and individual routes of searching for these solutions. The 
analysis of results demonstrates that this potential of problems really shows up in the works of 
students. More of that, it is interesting that participants usually add their own implicit criteria to their 
solutions, that are not stated in the problem and that may be considered “estetic”, this shows that 
it is possible to automatically support elements of creative activity by the proposed types of 
problems. 



Constructionism 2018, Vilnius, Lithuania 

168 

 

7. The proposed approach supposes an ability to state and assess success in solving problems with 
the optimal solution unknown to problems authors. The results of works sometimes really reveal 
effects of “discoveries” by participants and the arise of original solutions, that do not lay in the area 
of common tendencies of searching for the optimal solution. Thus, it confirms an ability to automate 
a support of creative activity by the proposed means. 

8. The proposed approach of organization of online competitions, the usage of several subordinate 
criteria both for the feedback for the participants, and for the ranking of participants, allows for wide 
dispersion of results and an ability to objectively compare results of a big number of participants 
(thousands of different results). 

9. The fact that subjects are based on hard and even unsolved problems connected with important 
ideas of mathematics and informatics, together with the huge amount of sensible solutions (more 
than 90%), show that it is possible to use proposed automated subjects for popularization of 
important and hard for understanding theoretical ideas, that do are not included in the school 
curriculum. 

References 

Akimushkin V.A., Maytarttanakhon A., Pozdnyakov S.N. Olympiad in theoretical computer science and 
discrete mathematics in "Informatics in Schools. Curricula, Competences, and Competitions. 8th 
International Conference on Informatics in Schools: Situation, Evolution, and Perspectives", ISSEP 
2015, Ljubljana, Slovenia, September 28 - October 1, 2015, Proceedings / Springer, LNCS 9378, 2015, 
p.94-105. 

Attali. Yigal. Effects of multiple-try feedback and question type during mathematics problem solving on 
performance in similar problems Computers & Education, Volume 86 Issue C, August 2015, Pages 260-
267. 

Baker EL, Dickieson J, Wulfeck W, O’Neil HF (editors): Assessment of Problem Solving Using 
Simulations. Mahwah, NJ, Erlbaum, 2008. 

Chiu, Jennifer L.; Malcolm, Peter T.; Hecht, Deborah;  DeJaegher, Crystal J.; Pan, Edward A.; Bradley 
Michael; Burghardt, M. David. WISEngineering: Supporting precollege engineering design and 
mathematical understanding: Computers & Education, Volume 67, September 2013, Pages 142-155. 

Gibson, D. & de Freitas. Exploratory Analysis in Learning Analytics. Technology, Knowledge and 
Learning, April 2016, Volume 21, Issue 1, pp 5–19. 

Honey, M. A., & Hilton, M. (Eds.). (2010). Learning science through computer games and simulations. 
Washington, DC: National Academies Press. 

Hosein, Anesa; Aczel, James; Clow, Doug and Richardson, John T. E. (2008). Mathematical thinking of 
undergraduate students when using three types of software. In: The 11th International Congress on 
Mathematics Education, 06-13 Jul 2008, Monterrey, Mexico. 

Mislevy, R. (2011). Evidence-centered design for simulation-based assessment. Los Angeles, CA: The 
National Center for Research on Evaluation, Standards, and Student Testing.Google Scholar 

Posov Ilya, Pozdniakov Sergei. Implementation of Virtual Laboratories for a Sci- entific Distance Game-
Competition for Schoolchildren / The 2013 International Conference on Advanced ICT (Information and 
Communication Technology) for Education (ICAICTE2013), September 20-22, 2013, Hainan, China. 

Potkonjaka, Veljko; Gardnerb, Michael; Callaghanb, Victor; Mattilac, Pasi; Guetld, Christian ; Petrović, 
Vladimir M.; Jovanović. Kosta. Virtual laboratories for education in science, technology, and 
engineering: Computers & Education, Volume 95, April 2016, Pages 309-327 

Pozdniakov S., Posov I, Akimushkin V., Maytarattanakon A. The bridge from science to school / 10th 
IFIP World Conference on Computers in Education // WCCE 2013 Torun, 25 July 2013. 

Pozdniakov, S, Posov, I, Pukhov, A, Tsvetkova I. Science Popularization by Organizing Training 
Activities Within the Electronic Game Laboratories/International Journal of Digital Literacy and Digital 
Competence (IJDLDC), Volume 3: 2 Issues (2012), p. 17-31. 

Yagunova E., Pozdniakov S, Ryzhova N., Razumovskaia E., Korovkin N. Evaluation of Difficulty and 
Complexity of Tasks: Case Study of International On-line Competition "Beaver", International Journal of 
Engineering Education Vol. 32, No. 3(A), pp. 1141–1150, 2016  



Constructionism 2018, Vilnius, Lithuania 

169 

 

Short Tasks – Big Ideas: Constructive Approach for 
Learning and Teaching of Informatics Concepts in 
Primary Education 

Valentina Dagienė, valentina.dagiene@mii.vu.lt 
Vilnius University Institute of Data Science and Digital Technologies, Lithuania 

Gabrielė Stupurienė, gabriele.stupuriene@mii.vu.lt 
Vilnius University Institute of Data Science and Digital Technologies, Lithuania 

Abstract 
Constructionism as a learning paradigm is based on a design, actions and constructing things or 
solutions by using means via collaboration and the construction of knowledge (Papert & Harel, 1991). 
The main idea is that pupils can learn by performing activities by making things, or even deeper, by 
speaking about what they are performing (doing).  

Our approach focus on informatics concept-based tasks (problems) as scaffolding activities to introduce 
informatics concepts to primary schools. The tasks are short and can help pupils to construct their 
knowledge and mental structures of informatics as a science discipline. In our long experience (more 
than ten years) hundreds of short tasks on informatics concepts were created.  

Resent years many countries, and Lithuania among them, have been developing informatics (computer 
science, computing), or digital technologies, curriculum for primary school level. Usually the curriculum 
is based on integration with other subjects, nevertheless the principles and concepts of informatics are 
needed to be introduced. The key components and competence areas of informatics for primary school 
education needs to be identified and described (Fig. 1). 
 

 
 

Figure 1. Lithuania identifies the key components of informatics curriculum in 6 competence areas  

Main educational goal is to provide the different teaching possibilities and environments supporting 
various activities and to motivate pupils to discover new ideas. Constructionist teaching and learning is 
one of the important approaches and takes place through conceptually open learning activities in 
individual as well as group exploration by seeking common knowledge and understanding. 

Keywords 
Constructionism; informatics education; informatics concepts; short task; concept-based solving; 
primary education.  



Constructionism 2018, Vilnius, Lithuania 

170 

 

Introduction 

Informatics (or computer science, or computing) education is emerging area starting from the first level 
in primary schools. Informatics activities can be included in other subject but not only at the level of 
using digital technologies. Our ambition is to go beyond technologies and present informatics as a 
scientific discipline for children. We show that by introducing a methodology for solving informatics 
concepts-based tasks.  

There are many reasons for including informatics education at primary level. One of them is reducing 
gender inequality in the information technology sphere. Upper school students already have a vision on 
what is “for girls” and what things are “for boys”. Informatics usually falls into “for boys only” category. 
This problem might be partly avoided by introducing the course earlier (Fisher, Margolis, 2003).  

The main goal of informatics at school is to teach how to think – to solve problems by using different 
ways including a computer. These different ways can be expressed by computational thinking – a term 
which become high-profile nowadays. Computational thinking involves many components starting from 
formulation of task, data collection and analysis, data representation; logical reasoning, abstraction, 
algorithm design, decomposition, parallelization, automation, pattern generalization, pattern 
recognition, simulation (Wing, 2011; Selby & Woollard, 2013; Weintrop et al., 2016; Google for 
Education, 2018) 

Thinking computationally draws on the concepts that are fundamental to computer science, and involves 
systematically and efficiently processing information held in the tasks. Computational thinking involves 
defining, understanding, and solving problems, reasoning at multiple levels of abstraction, 
understanding and applying automation, and analysing the appropriateness of the abstractions made 
(Lee et. al., 2011). 

When considering the transfer of knowledge, we need to understand what type of knowledge is being 
transferred. We need to discover conceptual and procedural knowledge. Conceptual knowledge 
consists of a connection of networks (chains) and is rich in relationships. Procedural knowledge is close 
to algorithmically thinking: consists of a series of steps on actions. Conceptual knowledge is related with 
deep quality of knowledge, while procedural knowledge is related with superficial quality of knowledge 
(Star & Stylianides, 2013). Our approach is based on obtaining the conceptual knowledge with aim to 
develop the procedural knowledge. 

Two years ago the Ministry of Education and Science of the Republic of Lithuania organised a team of 
researchers, teachers, education experts and businessmen for developing a framework of informatics 
as well as digital technologies curricula covering both primary and secondary education. In 2017 a pilot 
project for introducing informatics to primary education started in ten schools. The aim of the project is 
to create educational content for primary schools based on the developed curriculum framework and 
innovative ideas. The framework of informatics curriculum is built on six core competence areas:  

1. Problem solving: using computers, digital devices, and computer networks – principles of 
functioning of computers, digital devices, and computer networks; performing calculations and 
executing programs; using digital tools and technologies to create knowledge and to innovate 
processes and products; engaging individually and collectively in cognitive processing to 
understand and resolve conceptual problems and problem situations in digital environments. 

2. Digital content: creating and editing digital content in different formats, to express oneself 
through digital means; modifying, refining, improving and integrating information and content 
into an existing body of knowledge to create new, original and relevant content and knowledge. 

3. Algorithms and programming: problem solving by using computers and other digital devices 
– designing and programming algorithms; organizing, searching and sharing information; 
utilizing computer applications; 

4. Information and data: understanding and analysis of problems – logical and abstract thinking; 
algorithmic thinking, algorithms and representation of information; 



Constructionism 2018, Vilnius, Lithuania 

171 

 

5. Virtual communication: developing social competences especially in virtual environments; 
project based learning; taking various roles in group projects. 

6. Safety and protection: observing law and security principles and regulations – respecting 
privacy of personal information, intellectual property, data security, netiquette, and social norms; 
positive and negative impact of technology on culture, social life and security. 

Related Works  

Since 2010, Austria has a project “Informatik erLeben” (experiencing informatics) that aims at attracting 
students for Informatics as a constructive, technical discipline (Bischof, Sabitzer, 2011). Pupils from 
primary school up to upper secondary school obtained lectures by university teachers spread over a 
period of one and a half year. The lessons developed show pupils of all grades selected core-concepts 
of Informatics/CS in a playful way and at an age-specific level. The prepared lessons cover the topics 
adequate for primary school pupils. Topics are divided to core-concepts and into several modules that 
can be composed individually. For example, Coding (Morse Game; Creating a Code with Colours; Code 
trees; Error Detection); Computer Networks (Chinese Whispers; Communication Rules; Postman-
Game); Algorithms (Instructions how to get somewhere); Sorting (Binary Search-tree); Searching (Blind 
Search; Searching in a linear Structure) etc.  

Depending on the topic they act either as part of the computer, serving as data or as object being 
manipulated by algorithms, or assuming some role of a program. Out of principle, computers were 
specifically not used during the lessons. The pupils learned, based on activities, simulations, and 
animations. Important didactical principals behind the concept are discovery learning and teamwork.  

Based on the project reflection there are some useful findings: 
• It is very important to start at an early age to broaden the pupils’ image of CS and to create 

interest.  

• While some boys already have been interested in informatics before, all participating girls could 
be influenced.  

• Pupils must have the possibility to attend exciting CS lessons during all grades.  

• Because primary school kids are very open and enthusiastic towards new topics and concepts, 
it is necessary to bring more technical topics in all primary schools.  

Duncan and Bell (2015), having established the six general areas covered by existing primary school 
curricula, have analysed three key English-language computing curricula: the CSTA K-12 Computer 
Science standards (2011), the English computing curriculum (2014), and the Australian Digital 
Technologies curriculum (2013). They found some notable features: 

• All three curricula introduce programming concepts from the first year (5 or 6 years old), using 
only sequencing and turtle graphics, which are based on concrete physical motion that students 
can relate to.  

• Selection (branching) is introduced from about 7 years old, and if iteration (repetition) is 
introduced, it seems to be in the form of simple counted loops. More sophisticated iteration with 
conditions on the loops, and the introduction of textual (general purpose) languages, seems to 
be expected around 11 or 12 years old. 

• Topics relating to safety and ethics are covered from the very first year, again gradually 
increasing in sophistication from simple scenarios for young students to more serious issues of 
identity and privacy as students approach their adolescent years.  

• There is some difference in what is taught around “algorithms", which covers both the design of 
simple programs, as well as understanding algorithms for standard problems such as searching 
and sorting. These standard problems serve as examples of clearly defined problems, but also 
allow students to investigate their performance. The Australian curriculum starts earlier with 
standard problems, but by 11 years old all three curricula include such algorithms. This will be 



Constructionism 2018, Vilnius, Lithuania 

172 

 

another important area to evaluate in studies with students to determine if there is value in 
starting early with these concepts. 

Six core learning areas have been announced in New Zealand curriculum: (1) algorithms, (2) 
programming, (3) data representation, (4) digital devices and infrastructure, (5) digital applications, and 
(6) humans and computers. The proposal to relate these areas to the principles of Computational 
Thinking are made (Duncan, Bell, Atlas, 2017). 

Webb et al. (2018) have discussed the evidence that young students, of 7–8 years old can start to 
develop understanding of important informatics concepts. Students can learn through hands-on 
experience and gradually begin to link theoretical concepts to their developing practical problem-solving 
capabilities. Therefore, identifying trajectories in the development of these concepts and devising 
effective pedagogical approaches which make use of the tools available are important current research 
challenges. Furthermore, in addition to developing informatics concepts to support the subject per se, 
it is necessary to define the underlying knowledge base of informatics concepts and crucial skills needed 
to support digital citizenship.  

There are some suggestions about introducing informatics in primary education in Poland: informatics 
activities need to be included in the same place where kids playing, so no need for a full equipped 
classroom. Integration of informatics with other subjects during the whole week (1 hour lasts a week). 
Of course, sometimes a teacher may take pupils to a computer lab. Teacher has access to pupils’ results 
regardless of the place they work, in school or at home (home works). Flipped learning method is 
suggested to use (Sysło, 2017). 

Many countries are integrating digital competencies in primary education and introducing basics of 
informatics by using various activities.  

Learning and Teaching Informatics in Primary Schools through 
Solving the Short Tasks based on Informatics Concepts 

The predominant theories of learning are based on the premise that learning is an epistemological 
problem involving individual psychological processes that lead to the acquisition of knowledge (Lave, 
2008). Thus, an individual constructivist view sees learners as active agents who construct knowledge 
as their own internal model of ‘the world’ based on the result of interactions within it. Knowledge changes 
from being something you acquire to be an ability to act within a community of practice (Fig. 2).  
 

 
 

Figure 2. From acquiring knowledge individually to building community of practice 

 
Schools should help pupils to make this transition by scaffolding their constructive work performed 
individually and in groups. For example, teachers can set pupils work, which were to find solutions of 
the given short tasks (presented as the set of several task cards). At first pupils should work individually 
and solve the given tasks. Then they join in groups of 3-4 pupils and discuss the tasks. Each group 
should discuss and agree on the presented solution. This is one of scenarios developed for teachers. 
We know that scaffolding increases pupils’ ability of deeper understanding knowledge and promotes 
the acquisition of computational thinking’ (Lee et. al., 2011). Thus, pupils’ skills and capacities are 
increasing. 
 



Constructionism 2018, Vilnius, Lithuania 

173 

 

    

Figure 3. Pupils solving individually (sometimes with help of a teacher) and by groups 

 

 

Figure 4. Solving process of tasks based on informatics concepts 

Children build their own knowledge structures as they are engaged in constructing things and then these 
structures are becoming a materialization of ideas and thoughts. Similarly, during the solving process 
pupils read, think, explore, and analyse the task (text structure) and develop the solution path.  

Our practice of pupils’ observation during the solving informatics concepts-based tasks showed that this 
process can support pupils to generate and share meanings about the informatics concepts involved in 
the tasks and promote the development of computational thinking and understanding of informatics.  

Primary school teachers usually have too little informatics background. For them, a deconstructionist 
process of tasks is very important (Boytchev, 2015; Dagiene, Futschek, Stupuriene, 2016). Primary 
school teachers can improve their informatics competence through analysing, solving, and explaining 
the essence of the informatics concept-based tasks (Fig. 5). 

 

Figure 5.  Pupils’ and teacher’s attitude towards learning by solving tasks  

Informatics concepts need to be brought to pupils in attractive way, what is done by establishing Bebras 
challenge model (www.bebras.com) (Dagiene & Stupuriene, 2016). The Bebras challenge is aimed to 
promote pupils interest in informatics from the very beginning of school and lead them to develop 
computational thinking abilities. Main idea is to involve pupils into informatics task solving activities and 
to use computational thinking and modern technologies more intensively and creatively. At the 
beginning the Bebras challenge was aimed mainly at junior level, however nowadays more and more 
countries focus on primary school level as well (Carteli et al., 2010; Dagiene et all, 2017; Izu et al., 
2017). 

However, we need well developed short tasks which are based on informatics concepts and aimed to 
develop computational thinking. Since knowledge and understanding are both essential for educational 



Constructionism 2018, Vilnius, Lithuania 

174 

 

progress, the informatics curriculum should contain main concepts, and provide a clear structure, a 
logical progression and open ways for various didactical approaches.  

The tasks should be really short, answerable in a few minutes through a computerized interface, and 
requiring deep-thinking skills in the informatics field. The tasks should be answered without prior 
knowledge in informatics, and they are clearly related to fundamental informatics concepts. To solve 
those tasks, pupils are required to think in and about information, discrete structures, computation, data 
processing, data visualization, and they should use algorithmic as well as programming concepts. Each 
task can both demonstrate an aspect of informatics and test the participant’s ability of understanding 
informatics fundamentals. 

International Bebras community has agreed to develop the informatics tasks according to the following 
framework (Fig. 6-a). The framework consists of two parts: a task formulation (text, image, question) 
and metadata (solution, explanation why it belongs to informatics, etc.). Metadata is very important for 
teachers, also for others tasks developers. 

 

                           

Figure 6.  Structure of informatics concept-based task: a) for a Bebras task, b) for a card 

 
Informatics concept-based tasks on cards, or the informatics tasks cards have been originated from the 
Bebras tasks and supported informatics without computer paradigm (CS Unplugged idea). The tasks 
on cards are more compact (Fig. 6-b), their metadata is published separately (in additional cards or in 
the internet). 

The informatics concepts-based tasks are based on problem solving process. Problem solving is well 
known paradigm in education. Our didactical approach to introduce informatics concepts is based on 
short tasks which involve informatics concepts carefully selected for primary level. Bebras community 
has a long experience in creating informatics concept-based tasks (more than ten years’ practice, more 
than 50 countries are involved). Solving short informatics tasks can be a transformative teaching 
methodology and can support an intensive learning atmosphere. Incorporating reasoning and 
discussions, as well as other active learning strategies is an important didactical component for 
educators. Many informatics concept-based tasks are developed during the annual Bebras tasks 
development workshops. 

Short informatics concept-based tasks solving is a powerful method that can support a pedagogical shift 
in the classroom and foster pupils’ engagement and motivation to learn. Many publications deal with 
problem solving methods. Problem solving of the short tasks can be considered as a systematic process 



Constructionism 2018, Vilnius, Lithuania 

175 

 

involving pupils into deeper understanding of informatics concepts. The short task solving can be one 
of the strategies that engage and motivates pupils for deeper learning and fosters the deeper thinking 
skills. 

There are many ways for selecting problems to be solved by pupils in the classroom. For primary 
education two type of problem solving are usually declared: practical problems which take more time 
and cover several topics (1), and everyday exercises. Exercises are very common in mathematics and 
language (grammar) lessons (2). But we suggest the third type of problems - short tasks with double 
folded aim: to cover informatics concepts and to be solvable in few minutes. 

A Pilot Study in Primary Schools: Solving the Small Tasks 
containing Big Ideas of Informatics 

In 2017, the project introducing informatics in primary schools (“Informatika pradiniame ugdyme“42) was 
initiated by the Ministry of Education and Science of the Republic of Lithuania together with the 
Education Development Centre. The aim of the project is to create informatics educational content in 
primary education and test it in ten schools before summer 2018. Ten schools were selected from 
different locations in Lithuania (https://informatika.ugdome.lt/en/teams/). The school teachers are asked 
to integrate informatics education in their lessons (grades 3 and 4): develop and testing teaching and 
learning material, sharing their best practices, giving suggestions on informatics educational content 
and curriculum in primary education. 

Various activities and resources have been developed during a year working with these schools. 
Schools exchange their lessons plans and scenarios using different educational means and 
technologies, for example, Scratch Juniors, Bee Bots, CS Unplugged activities, Scottie Go, etc. Having 
a huge experience in informatics gamification and contests (namely, the Bebras challenge) we 
suggested a set of short tasks based on attractive stories and containing informatics concepts. For 
supporting pupils’ engagement in learning informatics concepts, we developed a set of tasks and design 
them as attractive story based task solving card set. Each school get 10-15 set of cards and didactical 
recommendations.  

In January 2018, we visited 5 schools and made observation of 3 and 4 grades pupils’ work on solving 
short informatics concept-based tasks presented on cards. Some results are described below. 

Participants 
The study was divided into several 45 min sessions and took place in 5 public primary schools as a 
school activity – integrated into various school lessons. The participants were 87 pupils, mixed boys 
and girls, from the third and fourth grades, aged 10-11 years old. They worked collaboratively in small 
groups of 2-3 pupils in the school’s by using task cards. When discussing of solving process some 
schools used a projector to show the task. All of the pupils had little previous experience with informatics 
concepts.  

The Cards – Short Tasks 
A set of cards with 54 informatics concepts-based tasks was developed (Fig. 7-a).  
Also an additional card contains a list of the informatics concepts with link to the tasks (card numbers) 
and rules example how to use the tasks. During a pilot study we mostly pay attention to solving tasks 
which based on the following informatics concepts: sorting and grouping, information analyses and 
search, understanding of an algorithm, program and automation, pattern recognition, selection, 
repetition, logic, and coordinates. 

 

                                                
42 https://informatika.ugdome.lt/en/about-project/ 

https://informatika.ugdome.lt/en/teams/


Constructionism 2018, Vilnius, Lithuania 

176 

 

 

Figure 7. A tasks card box (a) and some cards with tasks (b) 

Data collection and analysis 
During the study, we collected qualitative data: photos, pupil’s reactions, answering questions and 
reasoning of the solving process. We observed both pupils solving process, and presentation of solution. 
Also we focus on informatics concepts in tasks: are they recognisable by pupils as well as teachers. 

Findings 
At the end of the study, we got very broad view of the short tasks and their suitability to pupils for learning 
informatics. The tasks, which pupils have solved during our observations, are briefly presented in Table 
1 with a short description and the comments they had. 

Table 1: Some findings when observing pupils work by solving informatics concept-based tasks on cards 

Informatics concept Description / Activities Discovery 

Sorting, grouping - sorting buttons, toys, 
searching for features 
- groupings the given items 
(mentally and physically) 

About haft of the third grade pupils can easy 
sort items mentally by recognizing different 
features. 1/3 of pupils have difficulties in 
mental sorting and need to manipulate with 
physical items.  

Information analyses 
and search 

- observing images, texts, 
extracting details, 
- dealing with text and 
numbers, searching for them 

Pupils are familiar with such type of tasks in 
language or mathematics lessons, they are 
comfortable and solve them without 
questioning. About 1/5 of pupils lack of 
concentration. 

Algorithm - following precisely rules and 
descriptions,  
- discovering steps and 
implementing them. 

Algorithm tasks are very different, from simple 
ones to quite complex. Then it is not easy to 
present summary. More than half of pupils 
understand rules and can follow or implement 
them. About 1/5 of pupils struggle with 
attention to follow strictly an algorithm 
description (rules). 

Program, automation - implementation of algorithms 
using commands, 
- seeking to determine 
repetitive parts or components 

Many pupils are familiar with table games and 
are able to follow rules. They can easy 
perform set of commands, sequences. 
However, automation needs more work and 
more tasks to be solved. 

Pattern recognition - dealing with everyday items 
(decoration, neckless) and 
searching for structures, 
- determining and finding 
patterns, 
- matching patterns. 

Task solution process is similar to sorting. 
About haft of third grade pupils can easy 
recognise simple patterns. 1/3 of pupils have 
difficulties in reasoning and need to 
manipulate with physical items. Complex 
patterns take more time and few pupils in 
classroom can properly deal with such tasks. 

Selection - choosing one item from two 
under certain condition, 
- dealing with condition’ 

Half of pupils can deal with making decision 
for selecting items under conditions. Almost 
all pupils can follow the command’s IF-THEN 
is implementation. Some pupils have 



Constructionism 2018, Vilnius, Lithuania 

177 

 

- understanding statement IF-
THEN-ELSE 

problems with understanding ELSE. Physical 
games and activities would help pupils to 
understand the selection deeper. 

Repetition - recognizing repetitive parts, 
- following repetitive rules and 
commands, 
- applying repetition to 
everyday life processes. 

Pupils like to follow repetitive (iterative) rules. 
Some pupils due to lack concentration can 
easy loose track in repetition especially by 
doing mentally. Pupils enjoy playing repetitive 
games, mentally and physically.  

Logic - reasoning by logic rules, 
- excluding alternative, 
- applying logical operations: 
AND, OR. 

Many pupils solve logical puzzles from 
magazines, they are familiar with several 
types of logical games. Mathematical oriented 
pupils (about 1/4) like logic tasks and solve 
them very fast. Other pupils need time and 
support. 

Coordinates - understanding 
representation, 
- two dimensional way of 
thinking. 

Pupils know usually tables however they do 
not pay attention to indicate a cell location. 
Coordinates introduce to two-dimensional 
way of thinking and it takes time for 
understanding. Many tasks should be solved. 

 
In everyday life pupils apply algorithmic concepts to describe different activities and especially game 
rules. The most common are the sequences of do-this commands, conditional statements (if ... then … 
else), logical expressions, and variables in the form of task attributes. Everybody agrees that these 
concepts are very important for many informatics areas, especially in artificial intelligence, robotics as 
well as blockchains. 
 

For this paper, following findings from the study are relevant: 

• Informatics integration model is used in primary school’s education: usually schools dedicate 
from 15 to 45 min. per week in each grades 3 and 4. The short informatics concepts-based tasks 
on cards were used as an introductory resource to various topics, mainly integrated with 
mathematics: data analyses, pattern recognition, repetition, commands, etc. 

• We were pleased to learn that all teachers use of the short tasks cards in classes as means for 
teaching and learning informatics basics. 

• The study proved what we had worried about – there are several misconceptions about the 
informatics concepts. Primary school teachers do not have informatics background and need 
carefully prepared trainings on informatics topics.  

• In general, the reactions of pupils to the short tasks are highly positive. Both teachers and pupils 
are enjoying by solving the tasks and discussing various topics connected to informatics 
concepts. 

• The short tasks cards inspired the teachers themselves to learn about informatics concepts, to 
create similar tasks or exercises, and to extend some short tasks by physical tools.  

Conclusions 

Informatics education is important area of XXI century. Many research studies are aimed at 
computational thinking as one of the most discussed part of informatics education. In this paper, we 
explored the informatics concepts through the process of solving short tasks. We presented a small pilot 
study in which pupils were engaged in solving informatics concept-based tasks on cards. The task 
solving activities were developed around a set of cards. The results of the data analysis revealed some 
significant outcomes regarding task solving. First of all, it seems that short and story-based tasks 
engage pupils in solving and thinking process. Not only pupils but and teachers are interested in this 
process, because a lot of primary school teachers never study informatics as a science discipline. 

Moreover, the analysis showed that the short task solving approach can contribute to guidance for the 
solving process. This study showed that the solving short tasks has significant potentials as an 



Constructionism 2018, Vilnius, Lithuania 

178 

 

educational approach for fostering computational thinking skills. However, more research needs to be 
done on this field. 

Acknowledgments 

The authors gratefully acknowledge the support of the Nordic Research Council through the NordPLUS 
programme of transverse actions, in particular through the funding of the two year project “Culturally 
Diverse Approaches to Learning Mathematics and Computational Thinking” with project code NPHZ-
2018/10063. We also acknowledge the participated Lithuanian schools. The authors wish to thank 
Nicklas Anttu for proofreading the paper and making suggestions. 

References  

Boytchev, P. (2015). Constructionism and Deconstructionism. Constructivist Foundations, 10(3). 

Bischof, E., & Sabitzer, B. (2011, October). Computer science in primary schools–not possible, but 
necessary?!. In International Conference on Informatics in Schools: Situation, Evolution, and 
Perspectives (pp. 94-105). Springer, Berlin, Heidelberg. 

Cartelli, A., Dagiene, V., & Futschek, G. (2010). Bebras contest and digital competence assessment: 
Analysis of frameworks. International Journal of Digital Literacy and Digital Competence (IJDLDC), 1(1), 
24-39. 

Dagiene, V., Futschek, G., & Stupuriene, G. (2016). Teachers’ Constructionist and Deconstructionist 
Learning by Creating Bebras Tasks. In Conference Constructionism (Vol. 16, pp. 257-264). 

Dagiene, V., & Stupuriene, G. (2016). Bebras-a sustainable community building model for the concept 
based learning of informatics and computational thinking. Informatics in Education, 15(1), 25. 

Dagiene, V., Sentance, S., Stupurienė, G. (2017). Developing a Two-Dimensional Categorization 
System for Educational Tasks in Informatics. Informatica, Vol. 28, No 1, p. 23-44. 

Duncan, C., Bell, T., & Atlas, J. (2017, January). What Do the Teachers Think?: Introducing 
Computational Thinking in the Primary School Curriculum. In Proceedings of the Nineteenth 
Australasian Computing Education Conference (pp. 65-74). ACM. 

Duncan, C., & Bell, T. (2015, November). A pilot computer science and programming course for primary 
school students. In Proceedings of the Workshop in Primary and Secondary Computing Education (pp. 
39-48). ACM. 

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. MIT press. 

Google for Education (2018). Exploring computational thinking. Retrieved from 
https://edu.google.com/resources/programs/exploring-computational-thinking/#!home 

Izu, C., Mirolo, C., Settle, A., Mannila, L., & Stupuriene, G. (2017). Exploring Bebras Tasks Content and 
Performance: A Multinational Study. Informatics in Education, 16(1), 39-59. 

Lave, J. (2008). Everyday life and learning. Knowledge and practice: Representations and identities, 3-
14. 

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner, L. (2011). Computational 
thinking for youth in practice. Acm Inroads, 2(1), 32-37. 

Papert, S. & Harel, I. (1991). Constructionism. New York: Ablex Publishing Corporation. 

Selby, C. & Woollard, J. (2013). Computational thinking: the developing definition, available via internet: 
http://eprints.soton.ac.uk/356481 

Star, J. R., & Stylianides, G. J. (2013). Procedural and conceptual knowledge: exploring the gap 
between knowledge type and knowledge quality. Canadian Journal of Science, Mathematics and 
Technology Education, 13(2), 169-181. 



Constructionism 2018, Vilnius, Lithuania 

179 

 

Sysło, Maciej M. (2017). Implementing Computer Science Curriculum in schools in Poland: issues, 
challenges, and practice, WCCE, Ireland. 

Webb, M. E., Bell, T., Davis, N., Katz, Y. J., Fluck, A., Sysło, M. M., ... & Brinda, T. (2018). Tensions in 
specifying computing curricula for K-12: Towards a principled approach for objectives. IT-Information 
Technology, 60(2), 59-68. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 
computational thinking for mathematics and science classrooms. Journal of Science Education and 
Technology, 25(1), 127-147. 

Wing, J. (2011). Research notebook: Computational thinking—What and why? The Link Magazine, 
Spring. Carnegie Mellon University, Pittsburgh. 

 

  



Constructionism 2018, Vilnius, Lithuania 

180 

 

Design Science Research for Computational 
Thinking in Constructionist Education: A 
Pragmatistic Perspective 

Vladimiras Dolgopolovas, vladimiras.dolgopolovas@mii.vu.lt 
Vilnius University, Institute of Data Science and Digital Technologies, Lithuania 

Valentina Dagienė, valentina.dagiene@mii.vu.lt  
Vilnius University, Institute of Data Science and Digital Technologies, Lithuania 

Eglė Jasutė, egle.jasute@mii.vu.lt 
Vilnius University, Institute of Data Science and Digital Technologies, Lithuania 

Tatjana Jevsikova, tatjana.jevsikova@mii.vu.lt 
Vilnius University, Institute of Data Science and Digital Technologies, Lithuania 

Abstract 
Constructionist educational environments have provided solutions for effective learning process. What 
are the criteria of the effectiveness of using such environments? The question is even more difficult if 
we are seeking computer enhanced constructionist solutions. One more problem is how to train the 
computational thinking (CT) skills and especially to develop their assessment. If we consider the level 
of understanding of the relevant scientific knowledge to be transferred to the learner as the effectiveness 
criteria, like done in such traditionally positivistic fields like physics or mathematics, how it corresponds 
to the computational thinking skills and abilities? This is an even more difficult question to answer in the 
case of multi-paradigmatic fields like engineering or informatics. The nature of knowledge in these 
disciplines is non-positivistic in general, such research areas usually include not only technical but also 
social domains and the research methods in these fields are mainly qualitative.      

The article makes an attempt to start a discussion on the above presented problems. This research 
aims at a detailed analysis and study of the possibility to arrange a constructionist platform and the 
relevant software enhanced educational environment in an effective way as it could be seen from the 
point of view of acquisition of CT skills. The possible solution is based on Design Science Research 
(DSR) methodology. The DSR methodology is developed under the pragmatistic research paradigm 
and could provide a framework for unification of educational solutions, especially in such educational 
fields like informatics and Science, Technology, Engineering, and Mathematics (STEM). 

Research questions as related to software enhanced constructionist educational platforms are 
formulated as follows: (RQ1) What are the relations between inquiry-based learning (IBL) and CT? How 
can IBL help to develop CT? (RQ2) What are the advantages and possible disadvantages of inductive-
deductive reasoning in connection with IBL?  What is the role of abductive reasoning as related to IBL 
and CT? (RQ3) How to effectively (as related to CT) incorporate DSR into IBL? The article focuses on 
cognitive and epistemological aspects of the presented approach and analyses the possible connection 
of DSR to the inquiry-based educational process. Another important aspect is the possible approach to 
IBL in the paradigmatically non-positivistic areas of scientific research. Pragmatistic aspects of DSR, 
based on the implementation of abductive and circumscriptive cognitive features, allow implementation 
of an inquiry-based educational process that focuses on CT in various inter-disciplinary areas like, for 
example, informatics. 

Keywords  
Computational thinking, constructionist education using technology, design science research, inquiry-
based education, pragmatism.  

mailto:vladimiras.dolgopolovas@mii.vu.lt
mailto:egle.jasute@mii.vu.lt


Constructionism 2018, Vilnius, Lithuania 

181 

 

Introduction  

Modern educational environments are usually based on technology. Appropriate software and hardware 
platforms are an integral part of modern teaching and learning. There are two main directions in the 
design and application of educational software: (1) the development of educational software, including 
software platform, and (2) development of software-based learning objects. Examples of educational 
software may include various educational software platforms, such as virtual laboratories (Scheckler, 
2003) or serious games (Ritterfeld et al., 2009). Software-based learning objects promote the 
educational use of software in a form of programming code and can be used in engineering and 
computing educational environments, for example, in robotics (Štuikys, 2015), introductory stochastics 
(Dolgopolovas et al., 2014), or programming education (Dolgopolovas et al., 2015). Computers affect 
and at the same time provide requirements for the skills that students must acquire. One of these skills 
is computational thinking. These skills are one of the most important competencies in the 21st century 
(Kurilovas & Dagiene, 2016). 

In this respect, the main questions to be studied are: What is the "proper" list of skills, and if it is already 
provided, is it still relevant for current business and society requirements? How to organize learning 
process that allows us to develop or improve the student's computing skills? How to integrate computers 
it the way that improves the learning process or, conversely, the use of computers will require additional 
efforts and skills of the student, and this will make the process of achieving educational goals even more 
difficult and less effective? How to organize a "personally significant" environment, taking into account 
aspects of social communication that naturally arise in the classroom and are promoted by modern 
means of telecommunications? Another type of questions is related to evaluation. How to evaluate 
progress in acquiring skills and assessing cognition skills, such as thinking skills? What is the 
relationship between mental abilities and cognitive abilities and how this to be assessed? 

Another group of questions focuses on the possible relationship between formal requirements for the 
results of the educational process, such as a clearly formulated list of professional skills and knowledge, 
or rather abstract requirements for mental skills that need to be improved. How to organize the learning 
process, which will correspond to the student's acquisition of both practical knowledge and "proper" 
thinking skills? How, in this aspect, is possible to teach different scientific and technical disciplines that 
probably relate to even different research paradigms? We will try to discuss at least some of these 
issues and tasks with an emphasis on philosophical, epistemic and cognitive aspects related to 
constructionist education in general and constructivist aspects of engineering education in particular. 

The history of the concept of "Computational Thinking Skills" originates from the definition given and 
further developed by Jeannette M Wing: “Computational thinking is taking an approach to solving 
problems, designing systems and understanding human behavior that draws on concepts fundamental 
to computing” (Wing, 2008). Computational thinking skills incorporate analytical thinking, engineering 
thinking, and scientific thinking thus they could be positioned as a kind of universal skills for the modern 
student, and this is especially true for engineering and STEM education. Wing wrote: “Computational 
thinking is a kind of analytical thinking. It shares with mathematical thinking in the general ways in which 
we might approach solving a problem. It shares with engineering thinking in the general ways in which 
we might approach designing and evaluating a large, complex system that operates within the 
constraints of the real world. It shares with scientific thinking in the general ways in which we might 
approach understanding computability, intelligence, the mind and human behavior” (Wing, 2008). How 
to arrange a proper educational environment which enables computational thinking skills to be 
systematically developed? There is no doubt that an integrated approach is needed. We need to provide 
solutions for the navigation and motivation of students, including different educational environments for 
schoolchildren. (Dagienė & Sentance, 2016). A more difficult problem is how to evaluate the acquisition 
of such skills (Dolgopolovas et al., 2016)? It seems that the software enhanced environments could 
provide proper solutions. The logic is straightforward: computers and skills of using computer improve 
the skills of computational thinking, because computational thinking “…draws on concepts fundamental 
to computing” (Wing, 2008).  However, this is not that simple. There are many contradictory examples 
provided in literature (Coughlan, 2015; Richtel, 2011). In many educational cases, computers and 
software enhanced environment do not work as expected. Instead of improving the abilities and skills 



Constructionism 2018, Vilnius, Lithuania 

182 

 

of students, the skills and abilities of students are degrading, including the skills associated with 
computational thinking. In order to solve this problem, we do not recommend avoiding the use of 
computers in educational environments. Instead, we promote the proper organization of the "computer 
friendly" educational process. Such an educational process must be based on a properly designed 
constructionist environment. Such a "proper" environment should include the appropriate "cognitive 
interface", provided to the student. This cognitive interface will serve as an intermediate link between 
the extended educational environment, which includes a computer with the appropriate programming 
interface, on the one hand, and the cognitive processes and epistemological actions of students on the 
other, and all this allows to correctly direct the "flow" of the constructionist learning process.   

The article examines the modern and computer-based educational environment, including an analysis 
of the relevant types of educational software and its application. Also detailed analyses on the 
requirements and a specification of the previously described cognitive interface are provided. Although 
the main emphasis is on cognitive and physiological aspects, we present a description of some practical 
tools for computational thinking enabling modern constructionist educational environment. Since we 
study the computer enhanced educational environment, the presented analytical material and 
developed solutions are aimed at education with computers. But in connection with the general 
principles of constructionist education focused on computational thinking, the proposed solutions can in 
any case be generalized, which makes it possible to create a computer-free environment and 
corresponding educational solutions. The universalizing paradigm here is pragmatism, viewed as a 
philosophical assumption. By designing and creating a pragmatic educational environment, one can 
find a common way of organizing computational thinking enabling constructionist educational solutions. 
We will discuss this pragmatistic approach in the following sections. 

Inquiry-based education and computational thinking skills in 
constructionist settings  

In this section we discuss the educational aspects of a scientific inquiry. Then we create a link to 
computational thinking skills, which are acquired by students during the learning process. First, we need 
to answer the following question: what is the scientific or engineering inquiry and why is it important for 
all levels of education? There is a strong opinion (Council, 2000b; Jadrich, 2011) that students should 
not only learn science and scientific methods, but also should have the opportunity to “... do science. 
This vision for science teaching stems directly from the educational imperative to develop scientifically 
literate students” (Jadrich, 2011). Students can become scientifically literate if they participate in 
practical scientific activities. Moreover, this is true for students at all levels of educational programs in 
schools, as well as in universities. The practical implementation of educational technology based on 
scientific inquiry is a complex and challenging task (Flick & Lederman, 2004; Jadrich, 2011). Learning 
of scientific content corresponds to the highest levels Bloom’s taxonomy. “Consequently, learning to 
think and act like a scientist is much more difficult to do than just learning about scientific content” 
(Jadrich, 2011). How could scientific inquiry be defined?  

First, what constitutes scientific inquiry? Several approaches could be presented: scientific inquiry (1) 
begins with a scientific question; (2) is a hands-on activity; (3) is a set of specific methods and practices 
used by scientists; (4) is a set of reasoning strategies or skills needed while driving a scientific process. 
The main common feature of the presented approaches to the definition of scientific inquiry is that all 
these definitions are process oriented, as they attempt to define scientific inquiry, describing the 
activities of scientists. Another solution is to define scientific inquiry using a result-oriented approach 
(Jadrich, 2011). What is the primary goal of scientific activity? We share the opinion (Jadrich, 2011; 
Nersessian, 2010; Windschitl et al., 2008) that the primary goal of science are scientific models and the 
aim of any scientific work is to develop, test, and modify the scientific model of the subject of study. 
Generally, we could name the process of development, testing, evaluating and modification of a model 
as simulation. The reason for this is the following. In any case, such operations with the model should 
take place within time, therefore it can be described as a simulative modelling process or simply a 
simulation. Why do we focus on this? The reason will be clear after a closer look at the nature of the 
simulation. Scientific activity in the design (development, testing, evaluation and modification) of 
simulations as artefacts is closely related to the cognitive activity of constructing mental simulations and 



Constructionism 2018, Vilnius, Lithuania 

183 

 

simulative reasoning (Nersessian, 2010). Summing up, scientific inquiry can be defined as an activity in 
the design of scientific simulations, and the goal of scientific work is the design of model-based scientific 
simulations.  

Why are simulations so important? The process of designing simulations provides a part of the cognitive 
interface enabling the leaner’s relevant cognitive activities of constructing and grounding of mental 
models. We will discuss this in more detail. The definition of a model-based simulation is based on the 
following meanings (Landriscina, 2013): (1) The meaning of a system. A system is a collection of 
different elements whose combination yields results that are unobtainable by the elements alone. 
Therefore, the system is more than a sum of its parts; (2) The definition of a model. A model is a 
simplified representation of a real or imagined system; (3) A simulation could be defined based on (1) 
and (2): a simulation is an interactive representation of the system to be studied based on a model of 
the system. This definition has a wider meaning than the traditional view of simulations as a dynamic 
set of interactive representations.  Basically model-based simulations are associated with cognitive 
activity of students  and with the process of constructing appropriate mental models  (Landriscina, 2013).  
This approach to simulations also improves learning related cognitive processes, facilitates 
modification, construction or replacement of appropriate cognitive structures (Mayer, 2009). These 
processes include enhancement of “… cognitive processes that are crucial to learning, such as: 
selecting key information; organizing this information into a cognitive structure; integrating this new 
information into previous knowledge; accessing and creating appropriate analogies and metaphors; 
generating inferences; reorganizing cognitive structures” (Jadrich, 2011). One should mention an 
alternative – a cybernetic approach based on engineering traditions. This approach has roots in the 
technique of representing any system in the form of a "black box" with a certain behaviour. Typically, 
the aim of simulation is to observe the dynamic behaviour of the model of a real system. Thus, a person, 
especially with engineering experience, could view modelling as something superfluous, complex and 
not essential, especially for educational needs. The model can be considered more important than its 
simulation, and one can confine himself to the learning task only with the use of modelling. At the same 
time, educational simulations are usually seen as an example of the use of information and 
communication technology (ICT) tools, so the effectiveness of such a "traditionally understandable" 
educational process based on simulations can be questionable. This article focuses on simulation 
making rather than simulation using activities, although the role of simulation as an ICT tool is not 
completely rejected.  

The constructionist approach focuses on the creation of physical or mental "things" (artefacts) during 
instruction and student interaction with these artefacts in order to facilitate knowledge (Papert, 1980). 
Focusing on simulations making, simulating using activities can be an alternative in some cases 
depending on the available learning environment. Implementing the engineering point of view, modelling 
and simulations can be defined more generally as follows (Raczynski, 2014): modelling as a link 
between real systems and models and simulation as the relationship between models and computers. 
In fact, the simulation is based on the model. From the engineering and pragmatistic positions, the 
model can be defined as: “A model is a description of some system intended to predict what happens if 
certain actions are taken” (Bratley et al., 2011) and extended in (Zeigler, 1975). First, you need to specify 
a set of model components. Each component is described by a set of input, output, and state variables. 
Then the experimental frame is defined as the set of all descriptive variables. Depending on the chosen 
level of simplification, various experimental frames can be determined (Zeigler, 2014).  
 
Another important aspect is the aspect of simulative scientific reasoning. A model-based scientific 
reasoning based on simulations of mental models was developed (Nersessian, 2010). As a rule, the 
mental model corresponds to the conceptual model, which is built on the first stage implementing model-
based simulation activities. A properly designed learning process should implement a unique mapping 
between model-based cognitive simulations and computer simulations based on models that must be 
designed during the educational activity. This mapping can be provided by the teacher also in the form 
of co-mediated teaching. Presented ideas of intermediate conceptual models and simulation making 
educational activities provide a clear bridge to the environment aimed at acquiring of computational 
thinking skills.  For example, there is clear evidence of conceptual support of acquisition of 
computational thinking skills practically applied in the contest-based educational environment (Dagiene 



Constructionism 2018, Vilnius, Lithuania 

184 

 

& Stupuriene, 2016). As will be discussed in the following sections, an approach that focuses on 
developing learner's conceptual models as intermediaries for his or her cognitive grounding will provide 
a solution to the computational thinking skills to be acquired.  In this aspect, the set of computational 
thinking skills can serve as a kind of criterion for evaluating the effectiveness of the educational process, 
with an emphasis on epistemological and cognitive educational aspects. Such an assessment is aimed 
to root the process of justification that takes place in the process of the student's abductive reasoning. 
We will discuss this in more detail in the following sections. 

Inductive-deductive reasoning scheme and educational aspects 

Computational pedagogy is an example of one possible approach to arrange the educational 
environment in the constructionist manner and is especially relevant for the introductory level education. 
The approach is based on didactic schemes, general computational thinking skills and practical abilities 
to conduct simulations. Traditionally, a deductive approach is considered as the most applicable for 
teaching scientific topics. Such an approach is considered as demotivating for students, especially for 
topics where sufficient theoretical background and a large amount of pre-knowledge are required (Yasar 
& Maliekal, 2014; Prince & Felder, 2007). On the contrary, the inductive approach is promoted as such 
an alternative, which can improve the positive attitude of students towards the learning of science 
(Council, 2000a). Inquiry-based learning, problem-based learning, and project-based learning, all relate 
to forms of inductive instruction (Prince & Felder, 2006). To overcome the described problems of the 
deductive approach, modelling and simulation-based computational pedagogy is proposed. Such 
pedagogy allows “cycle back and forth between the inductive and deductive approaches to learning” 
(Yasar & Maliekal, 2014) with the assistance of modelling and simulation tools.   

The theoretical foundations of computational pedagogy are based on the concept of cognitive retrieval, 
presented by P. C. Brown, H. L. Roediger III, and M. A. McDaniel (Brown et al., 2014). This so-called 
interleaved retrieval practice creates a cognitive basis for the interdisciplinary computational 
pedagogical content knowledge. “Interleaving retrieval practices by weaving together multi-disciplinary 
features around a common topic (i.e., interdisciplinary education) have great advantages for gaining 
deep and lasting knowledge” (Yaşar, 2013). The process of model-based reasoning is presented as an 
inductive/deductive cycle of modelling and retrieval of models. This process “is consistent with the dual 
deductive and inductive process of computational modelling and simulation” (Yaşar, 2016). Using 
modelling and simulation, the learner can receive feedback from the modelling and simulation 
environment, thereby promoting his or her construction of knowledge. 

The presented approach consists of two main principles: (1) the principle of designing educational 
environment based on using modelling and simulations and (2) the idea of scientific reductionism. There 
are several important aspects for discussion. First, and this has already been mentioned in the previous 
section, from the educational perspectives, there is a great difference between simulation making and 
simulation using activities. Moreover, there are many doubts about the effectiveness of simulation-using 
tools aimed at increasing the learner's motivation and his conceptual understanding of scientific topics 
(Council, 2011).  Usually, the practical implementation of simulation using predefined software can be 
considered as a sample of a pre-designed cognitive artefact. 

Application of the artefact in the educational environment can be studied from different points of view: 
the system view and the personal view. The effectiveness of educational software is a key motivating 
factor for educators in favour of including such solutions in the educational process. However, from the 
learner’s point of view, such a cognitive artefact is positioned as another tool with a personal view of its 
effectiveness (Fig. 1 and Fig. 2 are adapted from Norman, 1991, p. 3). D. C. Norman provides the 
following illustrative example: consider a to-do list (1991, p. 3). Such a checklist, for example, developed 
for aircraft pilots, enhances the cognitive abilities of pilots and improves their memory. Therefore, from 
the point of view of the system, it is a memory enhancer. From the point of view of the pilot or from a 
personal view, using the list is just another task requiring different type of activity. Without a check list, 
a person should remember all the to-do tasks. To use the list, you must perform the following task: (1) 
building a list (in the described case is done beforehand by the third person); (2) do not forget to read 
the list; (3) reading and interpreting the items of the list items. 



Constructionism 2018, Vilnius, Lithuania 

185 

 

To sum up, if from the point of view of the system (read the "teacher") the cognitive abilities are 
improved, from the personal (student's) view the person participates only in (2) and (3) activities, 
because instead of trying to memorize the elements of the list, the person now should remember only 
to consult this list. This type of memory degradation is clearly manifested in the daily practice of 
education. Perhaps this is one of the reasons for the current popular movement towards educational 
technology without a computer (Richtel, 2011). With regard to the use of educational software as an 
advanced educational tool for constructionists educational platforms, such educational platforms, 
viewed as cognitive artefacts from the user's point of view, can be very harmful and demotivating. 
Obviously, during the process of using software there is some shift in tasks and cognitive processes, 
therefore educational software platforms must be carefully designed and tested. Another obstacle is the 
problem of bricolage (Papert & Harel, 1991). By focusing on using the provided educational platforms, 
the learner will improve his / her skills in using the software, rather than constructing knowledge for the 
learning topic. The bricolage leads to the “endless debugging of the ’try-it-and-see-what-happens’ 
variety” (Ben-Ari, 2001). As can be seen, the described aspects are interrelated.  Next, the relevance 
of the use of the ideas of scientific reductionism for the theoretical grounding. To argue this, we first 
provide a description of inquiry-based educational process: “… Inquiry also refers to the activities of 
students in which they develop knowledge and understanding of scientific ideas, as well as an 
understanding of how scientists study the natural world” (Colburn, 2000). As can be seen from the above 
description, it would at least be questionable to reduce scientific methods to positivistic and basically 
quantitative, as scientific reductionism does. Other forms of research and the paradigm of research are 
also important. This is especially true for interdisciplinary engineering areas, such as, for example, 
research of information systems, where interpretivist and pragmatist paradigms and methods of 
qualitative research are of paramount importance (Goldkuhl, 2012; Walsham, 2006). As for cognitive 
and epistemological aspects, to reduce the scheme of reasoning only to inductive-deductive reasoning 
is doubtful. This can lead to the disabling of the proper grounding process for the student's cognitive 
models, and we will discuss this aspect in the next section.  

 

Fig. 1. System view of a cognitive artefact. Adapted from (Norman, 1991, p. 3) 

 



Constructionism 2018, Vilnius, Lithuania 

186 

 

 

Fig. 2. Personal view of a cognitive artefact. Adapted from (Norman, 1991, p. 3) 

Pragmatistic approach as the key to inquiry-based education  

The psychological aspects of situated cognition give recommendations on how the learning environment 
should be designed and constructed. Obviously, there is a clear distinction “between natural 
environments which afford the learning of ‘percepts’ in everyday life, and unnatural environments” 
(Laurillard, 2002). Viewing from pragmatic positions, modelling and simulation is considered as a tool 
for grounding a student to such an artificial environment in terms of grounded cognition (Barsalou, 2008, 
2010). Using computer simulation in a constructivist way could be considered as a specific type of 
grounding through situated simulations (Barsalou, 2008; Pezzulo et al., 2013). How can this grounding 
be practically achieved? Simulation-based learning can be described from the standpoint of the 
progression of mental models (Landriscina, 2013): “... beginning with a student’s initial model of an 
examined system and developing into a target conceptual model-presumably the same one underlying 
the simulation’s computational model. Moreover, to arrive at the target model, students must first 
develop their own intermediate conceptual models, which are mental models expressed as cognitive 
artifacts”. The presented approach focuses on the conceptual model, as an intermediate for grounding. 
How can such conceptual models be developed? Following is noteworthy. Conceptual models are 
based on mental models, so first one has to ask the next relevant question: how does the mental model 
develop by the human brain?  The approach developed by P. Thagard considers “mental models as 
representations consisting of patterns of activation in populations of neurons” (Thagard, 2010). This 
cognitive model-based approach overcomes the limitations of sentential models of theoretical abduction 
(Magnani, 1999; Magnani, Casadio & Magnani, 2016) and expand C. S. Peirce ideas of how mental 
models can “contribute explanatory reasoning” (Peirce, 1992) going beyond verbal information and 
including “visual, olfactory, tactile, auditory, gustatory, and even kinesthetic representations” (Magnani, 
1999). Considering mental representations as patterns of firing in neural populations, the process of 
constructing of mental models could be presented as a chain of patterns developing by the process of 
causal correlations (Magnani, 1999). Such an approach could be used to provide explanations of how 
abduction could generate new ideas. The neural model of abduction presented by P. Thagard and T. 
Stewart (2011) implements a fully multimodal convolutional model of “creative conceptual combination” 
describing “many kinds of creativity and innovation, including scientific discovery, technological 
invention, social innovation, and artistic imagination” (Thagard, 2010). The human brain is adapted to 
powerful learning mechanisms: “One of these learning mechanisms is an abductive inference, which 
leads people to respond to surprising observations with a search for hypotheses that can explain them. 
Like all cognitive processes, this search must be constrained by contextual factors such as triggering 
conditions that cut down the number of new conceptual combinations that are performed” (Thagard, 
2010). It is obvious that such triggering conditions use circumscription (McCarthy, 1981) in the form of 
a previous experience to eliminate inapplicable transactions. 

How could the abductive reasoning, viewed from pragmatistic positions, practically improve the 
software-based constructionist educational environment towards acquisition and improving of 
computational thinking skills? First, we should discuss the pragmatistic meaning of abduction (Peirce, 
1992). What are the differences between abduction and the well-known hypothetical-deductive method 
(Lawson, 2015; Magnani, 2009)? The essence of abduction or abductive reasoning, as can be seen 
from the pragmatistic perspective, is to provide a way to generate a "clear" hypothesis. How to describe 



Constructionism 2018, Vilnius, Lithuania 

187 

 

the definition of "clarity"? First, according to Pierce, the clear idea is that it is possible to experience in 
practice. As he reminds us by the example of the concept of hardness “there is absolutely no difference 
between a hard thing and a soft thing so long as they are not brought to the test” (Magnani, 2009; 
Peirce, 1992). Regarding the research issue, the learner can test the hypothesis by implementing the 
simulation and modelling process. Further, C. S. Pierce's idea of "pragmatistic" truth as a result of inquiry 
(Peirce, 1992). In this respect, abduction can be considered “as inference to the best explanation, that 
also evaluates hypotheses by induction.” (Magnani, 2009). The criteria for choosing the "best" 
hypothesis among the possible ones are presented in the form of a list of requirements for computational 
thinking skills that must be acquired and is provided during the co-mediated teaching process. The 
description of computational thinking (Barr at al., 2011) could be positioned as a pragmatistic criterion 
for evaluating the effectiveness of the process of abductive reasoning.  

Enhancing educational process by circumscription and 
abductive reasoning 

To formalize the presented approach, a model of modelling (Justi & Gilbert, 2002), which describes how 
students produce their models as mental and as expressed ones, will be used. The presented approach 
considers modelling as “non-linear creative process comprised of multiple and complex stages mainly 
concerning with acquiring information about the entity that is being modelled (from empirical 
observations and/or from previous knowledge); producing a mental model of it; expressing that model 
in an adequate mode of representation, testing it (through mental and empirical experimentation) and 
evaluating its scope and limitations” (Justi, 2009). From the point of view of cognitive reasoning, the 
presented "model of modelling" could be generalized as follows. First, the propositional phase is needed 
to generalize existing information by inductive reasoning. Further, the process of producing mental 
models based on existing information requires a kind of hypothetical model-based reasoning that should 
be involved, therefore, as previously described, a kind of abduction (or grounded abduction in this 
particular case) is required to be implemented in such a case. The following steps are based on such a 
classical method of reasoning as a deduction, requiring some form of conceptualization through an 
empirical design process. Finally, all these processes are based on existing knowledge and skills, which 
provide some sort of limitations in the form of circumscriptive reasoning.  

This practical model, related to modelling and simulation in education, is generalized by Franco 
Landriscina (Landriscina, 2013). The processes of abduction and circumscription are extremely 
important, since they provide a plane dividing simulation using educational methods from simulation 
making educational methods. At the same time, the presented approach provides a clear picture of the 
general practice of eliminating abduction and circumscription from the educational process. This is a 
kind of common practice based on complete reliance on software tools, like a magic wand.  Thus, you 
can completely defocus your educational goals, focusing not on teaching inquiry and scientific 
reasoning, but simply training you additional skills in using software tools. Obviously, the practical 
implementation of the described approach is not a trivial task. This requires as additional efforts for pre- 
and post-training of teachers, as well as to develop additional educational programs. Moreover, the lack 
of practical examples for such activities stimulates a strong movement for education without computers, 
like presented by (Bell et al., 2009), that is, behind-the-scenes movement for the introduction of 
abduction and circumscription in pedagogical practice. Another reason for such popular movement of 
learning without computer can be a strong influence of instructional techniques, a sort of Instructionism 
vs Constructionism as it was defined by S. Papert and I. Harel (1991).  

Design Science Research cognitive aspects 

Previously described cognitive and epistemological aspects require additional efforts to improve the 
software driven educational environment, which allows to develop inquiry-based constructionist 
approaches to computational thinking skills. Correct application of educational software tools allows us 
to organize the learning context in a constructionist manner, that is, to develop a context that is 
personally significant for the learner. In this regard, the following important remark should be made. We 
are studying a complex environment that includes both technical and social factors. Technical factors, 



Constructionism 2018, Vilnius, Lithuania 

188 

 

in addition to hardware, also include software products in the form of educational software or software 
learning objects. This environment can be characterized as socio-technical. When studying, developing 
or implementing such educational environment, it is necessary to take into account not only the technical 
aspects of the system, but also social aspects and interactions. Such environment: has a type of a 
socio-technical system; includes participants (teachers, students, educational authorities, community, 
other stakeholders), as well as educational technology, instructional design methods, educational tools; 
educational tools are (mostly) artefacts, including cognitive artefacts in the form of educational software 
or software-based learning objects (software as a learning object). We could continue to analyse the 
previously described aspects from an epistemological standpoint. In general, science can be divided 
into formal science, such as logic or classical mathematics and factual science, which describes, 
explains and predicts phenomena and is tested when it gives empirical data. Factual science is divided 
into natural and social sciences. Natural sciences are interested in objects or phenomena, and the main 
research activity is to analyse their nature and the reasons for their occurrences (Dresch et al., 2014). 
Social science describes and reflects the society and individuals. Research conducted in social science 
is usually question-based and it is focused on the researchers’ view on the problem in study, therefore 
it is subjective in its nature (Dresch et al., 2014; Romme, 2003). Social science could focus on 
descriptions with attention to a quantitative approach. Another focus, for example in management 
science, is on solutions to given problems or on artefacts creation (Dresch et al., 2014). The concept of 
Design Science as science of artificial was first introduced by H. A. Simon (Simon, 1996). The Design 
Science is focusing on practical solutions and artefacts. The motivational cause of any research can 
range from research focused on solving theoretical problem and without any or less concern with 
practical applications, or applied research focused on practical solutions (Saunders et al., 2009). 
Generally, design means creation (or invention) of some new artefacts and its implementation into the 
area of application. This could be done under existing or non-existing (innovative design) theoretical 
backgrounds (Vaishnavi & Kuechler, 2004). If Design Research focuses on the question of how to 
design artefacts, Design Science Research (DSR) focuses on the problem of using design as a research 
method (Vaishnavi & Kuechler, 2004). Therefore, DSR could be positioned as a well-formalized 
teaching technique, which implements learning through building an educational paradigm and inquiry-
based educational methods. Considering inquiry-based educational process, DSR could provide a set 
of formalizations for implementing in the practical process of instruction. The main focus of the 
application of DSR methodology in education is “to teach research” (Vaishnavi & Kuechler, 2004). To 
go further, the artefact is the highlight of our interest, which gives us a target for the design process.  
Therefore, the design can be described as relating to the artefact, its internal structure and the “crafting” 
process of the outer environment (Vaishnavi & Kuechler, 2004). The next question should be answered: 
can design be research? The answer is affirmative, if the learning process is built as an artefact-
oriented, enabling research through the process of designing an artefact. A model for DSR process 
focuses on the contribution of new knowledge to be produced. Fig. 3 (adapted from Vaishnavi & 
Kuechler, 2004) presents the cognitive aspects of the DSR process.  

 



Constructionism 2018, Vilnius, Lithuania 

189 

 

 

Fig. 3. The cognitive aspects of the DSR process. Adapted from (Vaishnavi & Kuechler, 2004) 

Towards computational thinking by using Design Science 
Research approach 

The DSR methodology provides a way for the formalization of an inquiry-cantered approach based on 
the development of model-based scientific simulations. This methodology provides a set of analytical 
techniques based on circumscription and abduction reasoning. The formal structure of research based 
on DSR, very clearly corresponds to educational objectives. This correspondence can provide a set of 
formalisms for practical implementations of DSR as a set of educational tools. The purpose of DSR as 
an educational tool is twofold: (1) First, formalize the process of design of model-based simulations as 
cognitive artefacts. For this educational purpose, the set of DSR techniques is truncated and adapted 
for the educational needs. The learner is immersed in a kind of “quasi” scientific research environment, 
satisfying inquiry by designing a set of simulations based on provided models of one or another type. 
Therefore, a practical algorithm could be provided for such a case. The most important remark is the 
following: the learner should get a clear idea of the meaning of "rigorness" (with reference to this 
educational scientific research environment and possible future "real" scientific research). In this 
educational case, the word rigor strict adherence to the steps of the algorithm and the instructions of 
the teacher; (2) Next, to introduce DSR as a practical design tool for the future scientific activities of the 
students. For this purpose, an example of one of the DSR formalisms can be introduced to the students. 
Such an introduction will provide a clear understanding of the method and its possible future (research) 
and present (educational tool) applications. 

Educational process could be arranged as follows. The research question is provided by an educator in 
the form of a project or a problem to be studied in detail (Bell, 2010; Mills & Treagust, 2003; Solomon, 
2003). The learner should start with developing some definitions and generalizations and specify how 
the system to be modelled should be defined (from reality to a system, identification of the problem). 
This identification should be provided in the form of definite and clear answers to the presented 
educational research questions (Dresch et al., 2014). Then, a formal review-based on the previous 
study should be provided and approved by an educator. The fourth step is to provide the generalization 
(factorization) of the previous studies in the next form: what class of similar problems could be named? 
The final step (implementation) is to propose a practically implementable solution for the problem: the 
learner starts from proposition for the simulation solution (from system to model, the representation 
process): how to implement a simulation solution for the previously formulated problem? After, the 
design process for a specific cognitive artefact for the presented problem has to be solved: what are 
possible models of the system? Then, the implementation phase follows (from model to simulation, the 



Constructionism 2018, Vilnius, Lithuania 

190 

 

exploration process): what is the practical solution for simulation? Evaluation phase follows the next. In 
this phase, the learner runs the simulation on the computer and evaluates the results. After, the 
clarification of the problem could be done and the steps are repeated if needed. Finally, the learner 
summarizes the problem and provides a kind of generalizations in the form of the final report. All these 
steps provide a formal basis for inquiry-based research in the form of developing of model-based 
scientific simulations.  

The presented approach provides a practical educational methodology for the constructionist 
inquiry-based learning. Such well-developed approaches as a model-based approach to instruction and 
DSR are implemented in the form of inquiry-cantered pedagogy. The model-based approach provides 
a solid foundation for teaching via development of model-based scientific simulations, enhancing 
scientific inquiry and project-based constructionist teaching methods. Design Science Research 
provides clear formalizations in the form of universal educational techniques. Using these 
considerations, students can act within an interdisciplinary group as quasi-researchers, generating 
hypotheses, designing simulations, and evaluating results using DSR techniques. Teachers should 
provide a quasi-research environment by predesigned multifaceted models, educational instructions, 
and seamless theoretical backgrounds.  

Conclusions 

The provided discussion analyses the pragmatistic aspects of the constructionist inquiry-based 
educational environment. The focus is on the cognitive and epistemological features of the learning 
process, including descriptions and studies of applications of such important meanings as 
circumscription and abductive reasoning. Abductive reasoning is considered both from the point of view 
of the formation of hypotheses, and from the point of view of evaluating hypotheses (Magnani, 2009). 
This provides foundations for a model of grounded cognition and allows and inquiry-based educational 
activities to be organized in a “personally significant” way. At the same time, the formalities of the DSR 
provide a framework for the teacher to design the inquiry-based educational environment that is aimed 
at acquiring of computational thinking skills while developing new knowledge. The cognitive aspects of 
DSR clearly correspond to previously described epistemological considerations, and at the same time 
this approach can be viewed as a kind of universal approach that could be used for various educational 
topics and in various educational environments, including computer-based STEM or engineering 
education. The list of computational thinking skills provides criteria for assessing of the effectiveness of 
the process of the student's abductive reasoning. The methodological paradigm for this approach is 
clearly not positivistic, and, as discussed in the article, the pragmatistic nature of the presented 
approach provides a way of practical implementation of the study results. 

References  

Barr, David, Harrison, John, & Conery, Leslie. (2011). Computational thinking: A digital age skill for 
everyone. Learning & Leading with Technology, 38(6), 20-23.  

Barsalou, Lawrence W. (2008). Grounded cognition. Annu. Rev. Psychol., 59, 617-645.  

Barsalou, Lawrence W. (2010). Grounded cognition: Past, present, and future. Topics in cognitive 
science, 2(4), 716-724.  

Bell, Stephanie. (2010). Project-based learning for the 21st century: Skills for the future. The Clearing 
House, 83(2), 39-43.  

Bell, Tim, Alexander, Jason, Freeman, Isaac, & Grimley, Mick. (2009). Computer science unplugged: 
School students doing real computing without computers. The New Zealand Journal of Applied 
Computing and Information Technology, 13(1), 20-29.  

Ben-Ari, Mordechai. (2001). Constructivism in computer science education. Journal of Computers in 
Mathematics and Science Teaching, 20(1), 45-73 %@ 0731-9258.  

Bratley, Paul, Fox, Bennet L, & Schrage, Linus E. (2011). A guide to simulation: Springer Science & 
Business Media. 



Constructionism 2018, Vilnius, Lithuania 

191 

 

Brown, Peter C, Roediger III, Henry L, & McDaniel, Mark A. (2014). Make it stick: Harvard University 
Press. 

Colburn, Alan. (2000). An inquiry primer. Science scope, 23(6), 42-44.  

Coughlan, Sean. (2015). Computers ‘do not improve’pupil results, says OECD. BBC News, 15.  

Council, National Research. (2000a). How people learn: Brain, mind, experience, and school: Expanded 
edition: National Academies Press. 

Council, National Research. (2000b). Inquiry and the national science education standards: A guide for 
teaching and learning: National Academies Press. 

Council, National Research. (2011). Learning science through computer games and simulations: 
National Academies Press. 

Dagienė, Valentina, & Sentance, Sue. (2016). It’s computational thinking! Bebras tasks in the 
curriculum. Paper presented at the International Conference on Informatics in Schools: Situation, 
Evolution, and Perspectives. 

Dagiene, Valentina, & Stupuriene, Gabriele. (2016). Bebras--A Sustainable Community Building Model 
for the Concept Based Learning of Informatics and Computational Thinking. Informatics in Education, 
15(1), 25-44.  

Dolgopolovas, Vladimiras, Jevsikova, Tatjana, Dagiene, Valentina, & Savulioniene, Loreta. (2016). 
Exploration of Computational Thinking of Software Engineering Novice Students Based on Solving 
Computer Science Tasks. International Journal of Engineering Education, 32(3), 1-10.  

Dresch, Aline, Lacerda, Daniel Pacheco, & Antunes Jr, José Antônio Valle. (2014). Design science 
research: A method for science and technology advancement: Springer. 

Flick, Lary, Lederman, Norman G. (2004). Scientific inquiry and nature of science. Contemporary Trends 
and Issues in Science Education.  

Goldkuhl, Göran. (2012). Pragmatism vs interpretivism in qualitative information systems research. 
European journal of information systems, 21(2), 135-146.  

Yaşar, Osman. (2013). Teaching science through computation. generations, 13, 15.  

Yaşar, Osman. (2016). Cognitive Aspects of Computational Modeling and Simulation in Teaching and 
Learning. J. Computational Science Education, 7(1).  

Yasar, Osman, & Maliekal, Jose. (2014). Computational Pedagogy: A Modeling and Simulation 
Approach. Computing in Science & Engineering, 16(3), 78-88.  

Jadrich, James. (2011). Learning & teaching scientific inquiry: Research and applications: NSTA press. 

Justi, Rosária. (2009). Learning how to model in science classroom: Key teacher's role in supporting 
the development of students’ modelling skills. Educación química, 20(1), 32-40.  

Justi, Rosária S, & Gilbert, John K. (2002). Modelling, teachers' views on the nature of modelling, and 
implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.  

Kurilovas, Eugenijus, & Dagiene, Valentina. (2016). Computational thinking skills and adaptation quality 
of virtual learning environments for learning informatics. International Journal of Engineering Education, 
32(4), 1596-1603.  

Landriscina, Franco. (2013). Simulation and learning: Springer. 

Laurillard, Diana. (2002). Rethinking university teaching: A conversational framework for the effective 
use of learning technologies: Routledge. 

Lawson, Anton E. (2015). Hypothetico-deductive method Encyclopedia of Science Education (pp. 471-
472): Springer. 

Magnani, Lorenzo. (1999). Model-based creative abduction Model-based reasoning in scientific 
discovery (pp. 219-238): Springer. 

Magnani, Lorenzo. (2009). Abductive cognition: The epistemological and eco-cognitive dimensions of 
hypothetical reasoning (Vol. 3): Springer Science & Business Media. 

Magnani, Lorenzo, Casadio, Claudia, & Magnani. (2016). Model-based reasoning in science and 
technology: Springer. 



Constructionism 2018, Vilnius, Lithuania 

192 

 

Mayer, Richard E. (2009). Multimedia Learning. Cambridge University Press.  

McCarthy, John. (1981). Circumscription—a form of non-monotonic reasoning Readings in Artificial 
Intelligence (pp. 466-472): Elsevier. 

Mills, Julie E, & Treagust, David F. (2003). Engineering education—Is problem-based or project-based 
learning the answer. Australasian journal of engineering education, 3(2), 2-16.  

Nersessian, Nancy J. (2010). Creating scientific concepts: MIT press. 

Norman, Donald A. (1991). Cognitive artifacts. Designing interaction: Psychology at the human-
computer interface, 1, 17-38.  

Papert, Seymour. (1980). Mindstorms: Children, computers, and powerful ideas: Basic Books, Inc. 

Papert, Seymour, & Harel, Idit. (1991). Situating constructionism. Constructionism, 36(2), 1-11.  

Peirce, Charles Sanders. (1992). The essential Peirce: selected philosophical writings, 2: Indiana 
University Press. 

Pezzulo, Giovanni, Barsalou, Lawrence W, Cangelosi, Angelo, Fischer, Martin H, McRae, Ken, & 
Spivey, Michael. (2013). Computational grounded cognition: a new alliance between grounded cognition 
and computational modeling. Frontiers in psychology, 3, 612.  

Prince, Michael, & Felder, Richard. (2007). The many faces of inductive teaching and learning. Journal 
of college science teaching, 36(5), 14.  

Prince, Michael J, & Felder, Richard M. (2006). Inductive teaching and learning methods: Definitions, 
comparisons, and research bases. Journal of engineering education, 95(2), 123-138.  

Raczynski, Stanislaw. (2014). Modeling and simulation: the computer science of illusion: John Wiley & 
Sons. 

Richtel, Matt. (2011). A Silicon Valley school that doesn’t compute. The New York Times, 22.  

Romme, A Georges L. (2003). Making a difference: Organization as design. Organization science, 
14(5), 558-573.  

Saunders, Mark, Lewis, Philip, & Thornhill, Adrian. (2009). Research methods for business students: 
Pearson education. 

Simon, Herbert A. (1996). The sciences of the artificial: MIT press. 

Solomon, Gwen. (2003). Project-based learning: A primer. Technology and learning, 23(6), 20.  

Thagard, Paul. (2010). How brains make mental models Model-based reasoning in science and 
technology (pp. 447-461): Springer. 

Thagard, Paul, & Stewart, Terrence C. (2011). The AHA! experience: Creativity through emergent 
binding in neural networks. Cognitive science, 35(1), 1-33.  

Vaishnavi, Vijay, & Kuechler, William. (2004). Design research in information systems.  

Walsham, Geoff. (2006). Doing interpretive research. European journal of information systems, 15(3), 
320-330.  

Windschitl, Mark, Thompson, Jessica, & Braaten, Melissa. (2008). Beyond the scientific method: Model‐
based inquiry as a new paradigm of preference for school science investigations. Science education, 
92(5), 941-967.  

Wing, Jeannette M. (2008). Computational thinking and thinking about computing. Philosophical 
transactions of the royal society of London A: mathematical, physical and engineering sciences, 
366(1881), 3717-3725.  

Zeigler, Bernard P. (1975). Simulation based structural complexity of models. International Journal of 
General System, 2(1), 217-223.  

Zeigler, Bernard P. (2014). Object-oriented simulation with hierarchical, modular models: intelligent 
agents and endomorphic systems: Academic press.  



Constructionism 2018, Vilnius, Lithuania 

193 

 

Computational Thinking in Teacher Professional 
Development Programs 

Xiaoxue Du, xd2164@tc.columbia.edu  
Columbia University, New York, NY, USA  

Kay Chioma Igwe, kci2104@columbia.edu  
Columbia University, New York, NY, USA 

Abstract 
The integration of computational thinking, CT, through technology, into curriculum strongly depend on 
teacher openness to compliance, of which is strongly correlated to awareness and technological skill 
level. Here, technological skill refers to ability to manipulate hardware, such as using problem solving 
to build a simple car robot, and/or software creation and implementation. In this pilot study, we create a 
project-based technology based workshop for teachers that introduce principles of computational 
thinking and analyze their abilities and thoughts about adding these learning tools into their curriculum. 
Six pre and in-service teachers in New York City were recruited to participate in this forty five minute 
workshop at separate times. The results suggest that technologically driven project-based learning 
design principles have the potential to increase participants’ confidence and as a consequence motivate 
them to consider applying computational thinking related pedagogical practices in their classroom 
especially in subjects relating to math and science. Although CT pedagogical practice is rather technical 
and new to the majority of the participants, technology driven workshops may be necessary to increase 
teacher participation in CT classroom CT practices. This paper outlines the process by which 
computational thinking, through technology and problem solving, can be embedded in a professional 
training program for teachers. The results suggest that teachers need to have an understanding of 
technology and ways to implement computational thinking in order for it to be introduced in curriculum. 

Keywords 
computational thinking; project-based learning; teacher professional development; pedagogical 
practice; curriculum; workshop; program 

 

In a global atmosphere where digital technology plays an important role, it is critical for individuals to 
have the education, knowledge, and skills to recognize their rights and responsibilities in this 
interconnected digital world (Standard 1, Empowered Learner, ISTE), and to develop strategies for 
understanding and solving problems (Standard 5, Computational Thinker, 2014 ISTE). Czerkawski and 
Lyman (2015) argues the knowledge that individuals have that corresponds to 21st  century skills has 
to go beyond knowledge acquisition; i.e.,  individuals are expected to understand the basics of computer 
systems and practices. Students need to develop skills in critical thinking, communication, creativity and 
collaboration. In the 1970s, numerous computer scientists researched the field of Computational 
Thinking (CT) and defined it as “procedure thinking” (Papert, 1981). Several findings suggested that key 
CT constructs, including algorithms, abstraction and automation, can move students from merely being 
“technology-literate” to using “computational tools” to solve problems (Yadav, Hong, & Stephenson, 
2016).   

The question is how educators prepare for students to develop relevant concepts and skills in order to 
cope with the technological changes of the 21 century. This educational goal can be achieved by 
preparing teachers by increasing their technological and computational problem solving literacy. Thus, 
these educators will be more equipped to teach students certain CT principles such as how computers 
make decisions based on human being behaviors in order to solve the real-life problem.  

The CS4All policy initiative makes a concerted effort to increase the level of computer science education 
and provide equitable access to the students in the New York City. However, building educator 
knowledge and capacity in CT is a complex issue that involves legislative, administrative, political and 



Constructionism 2018, Vilnius, Lithuania 

194 

 

educational challenges. Specifically, there are two major educational challenges, which are i) 
understanding the body of knowledge teachers need in order to be able to embed the CT framework 
into the regular class practices; ii) how to introduce the concepts and skills of CT to build teachers 
competency considering the common core standards in the Next Generation Science Standards 
(NGSS), Math and English language learning (ELA).  

This paper begins with the discussion of challenges and changes that schools are facing in the digital 
age, and the rationale to introduce CT focused professional development to pre-service and in-service 
teachers. Next, this paper introduces a hands-on project project based professional development 
program to increase educator CT related knowledge and skills. This paper concludes with a discussion 
of the study design, the challenges of incorporating CT pedagogical practices into the classroom, and 
the potential for a larger scale research study that looks into more ways of designing educator programs 
for increased probability of computational thinking classroom integration.  

Literature review 

Computational Thinking  
The importance of the integration of computational thinking into curriculum is based on the idea that 
knowledge and skills derived from the application of computer science principles can be beneficial to all 
the learners, especially in areas where problem solving is imperative (Weintrop, Holbert, Horn & 
Wilensky, 2016). Computational thinking is necessary for building learner skills in areas such as 
algorithmic and critical thinking, of which both increase learner ability to tackle tough decisions. This 
skill set can be applied to all subject areas such as music, english, and are not limited to science, 
technology, engineering, and mathematics, STEM, type classes. The increased accessibility of the 
computer facilities and the development of the national education technology plan has further validated 
the need for the application of CT in the K-12 education.    

Central to the skill of CT is “the ability to encode ideas into a form that can be interpreted and executed 
by a computational device ” (Weintrop et al., 2016). Recently, Wing (2006) suggested that CT involves 
solving problems, designing systems and understanding human behaviors by drawing on the concepts 
fundamental to computer science.  

The prospective limitations including a definition of computational thinking and computer science has 
been discussed in the research fields and has not reached consensus. Research on CT and its 
relevance to students’ problem-solving skills was pioneered by Seymour Papert. He explained, in 
Mindstorm, that CT was closely related to “procedural thinking”, including developing, representing, 
testing and debugging procedures. When people design a program, it is important for them to use 
procedural thinking and plan their programs in terms of a sequence of what happens next, before, or 
until another action (Pea & Kurland, 1984). Programming is a valuable educational tool that provides 
the cognitive artifacts necessary for the human mind to build a representation of the world with which it 
interacts (Papert, 1981). 

Numerous scholars argue that computational thinking refers to a cross-disciplinary set of mental skills 
that entail the basic elements of problem representation, abstraction, decomposition, simulation, 
verification and prediction. Hu (2011) argues that CT is a hybrid paradigm that accommodates different 
thinking modes with similar practices. Denning (2017) argues how that CT is a part of mental skills that 
can automate. It is not clear whether CT should be categorized under computer science, or is a subject 
that is able to connect the abstract knowledge representation in the mind, such as “connecting explicit 
knowledge into a concrete form” to student (NRC, 2011). Research suggests that professional 
development training workshops on the use of CT can help learners develop better understanding of 
CT and adopt relevant skills to participate in the digital world (Denning, 2017). 

Systematic Changes and CT Classroom Practices 
A systematic change that educators are facing to is how to support teachers in developing meaningful 
approaches to implementing CT practices in the K-12 classrooms. First, a few teacher education 
programs focus on training pre-service teachers to incorporate CT into K-12 classrooms (Yadav, 



Constructionism 2018, Vilnius, Lithuania 

195 

 

Gretter, Good, & McLean, 2017). The challenge has multiple aspects that include; how CT benefits 
students’ understanding of fundamental disciplinary concepts and cross-cutting concepts found in the 
Common Core State Standards and the Next Generation Science Standards (Stephenson et al., 2016); 
how to identify promising pathways and pedagogical strategies that help preservice and in-service 
teachers infusing CT in their curricula; and how to embed CT in the disciplinary knowledge of each 
subject area in K-12 teaching to avoid the situation by simply “adding it on” to what they are already 
doing—not substantively changing what they do (Cuban, 2001; Means, Roschelle, Penuel, Sabelli, & 
Haertel, 2004; Sandholtz, Ringstaff, & Dwyer, 1997). 

Secondly, assessments of CT remain underdeveloped and under-researched (Yadav et al., 2017) and 
this issue has been called out as a key computer science education research imperative (Cooper, 
Grover, Guzdial, & Simon, 2014). The few research efforts that have specifically targeted tackling the 
issue of CT assessment—especially in the context of activities involving programming—suggest that 
assessing the learning of computational concepts and constructs in popular programming environments 
is a challenge (e.g., Fields, Searle, Kafai, & Min, 2012; Koh, Nickerson, Basawapatna, & Repenning, 
2014; Meerbaum-Salant, Armoni, & Ben-Ari, 2010; Werner, Denner, Campe, & Kawamoto, 2012; 
Werner, Denner, & Campe, 2015).   

Thirdly, a few efforts have looked at the issue of transferring computational thinking skills beyond the 
common core curriculum. Transferring of learning is an aspect of assessment that deserves attention 
since computational experiences at various levels of K-12 aim to serve as bridges to future 
computational work. New approaches to transfer such as Preparation for Future Learning (PFL; 
Bransford & Schwartz, 1999; Schwartz, Bransford, & Sears, 2005) have shown promise in the context 
of science and mathematics learning at the secondary level (Zakaria, Chin & Daud, 2010; Dede, 2010; 
Schwartz & Martin, 2004).  

Integrating CT into K-12 system poses systematic changes in schools. The personnel and 
organizational changes are complex for any groups, but perhaps particularly challenging for educators 
because of the complexity of the schooling process and the number of forces competing for the time 
and attention of teachers and leaders (Meier, 2015). As Fullen mentioned (2007), educational change 
depends on what teachers do and think - it is as simple and as complex as that (p.129). One key to help 
teachers and leaders understand the required changes of CT envision in the K-12 classroom is to build 
the active professional learning communities. An effective teacher professional development workshop 
needs to be developed for teachers to make ongoing improvements (Fullen, 2007). There is a need for 
the ongoing research work to foster the professional training communities, support teachers to model 
applicable steps to develop CT skills, and apply the cross-cutting concepts through the process of 
prototype building, creating and designing the prototype. The backward design process positions 
teachers as designers and helps them move from covering content to uncovering the big ideas (Meier 
& Richards, 2016, Wiggins & McTighe, 2005) in face of curriculum planning.  

Project-based Learning (PBL) and Backward Design Principles  
To gauge interest in the field of computational thinking, numerous studies have been accomplished to 
introduced educators to the field of computational thinking. Constructionism as a paradigm for teaching 
and learning provides the theoretical framework of project-based learning and backward design models. 
As a form of situated learning (Lave & Wenger, 1991), PBL is based on the constructivist finding that 
students gain a deeper understanding of material when they actively construct their understanding by 
working with and using ideas in real world contexts.  

Project-based learning (PBL) starts with a driving question in a real-world situation that learners find 
meaningful and important (Krajcik, 2015; Nahum, Mamlok-Naaman, Hofstein & Krajcik, 2007). First, the 
driving question in PBL project design helps the participant focus on the main goal. Second, while 
engaging in the practice of PBL, participants are introduced to learning goals and technologies that 
support the inquiry process which is normally non-existent in the regular in-class projects: a process 
also known as scaffolding learning. Third, learners who develop these new skills can explore the driving 
question by participating in scientific practices in collaborative activities that are central to expert 
performance in the discipline. Fourth, participants can create a set of tangible products that address the 



Constructionism 2018, Vilnius, Lithuania 

196 

 

problems that become shared artifacts, a publicly accessible external representation of the class’s 
learning (Lave & Wenger, 1991). 

The pedagogical framework Understanding by Design (Wiggins & McTighe, 2005) as a backward design 
approach has played a crucial role in the educator professional development. UbD focuses on guiding 
educators through the process of designing curriculum units, performance assessments and classroom 
instructions, that integrate computational thinking. Research has shown that the project-based learning 
principle can maximize the chances that students be exposed to big ideas specified in the learning goal 
(Darling-Hammond, 2008; Larmer & Mergendoller. 2015). Also, engaging teachers in the design-
centered approach and the backward design approach (Meier, 2005; Wiggins & McTighe, 2005) can 
deepen the content knowledge and pedagogical practices in CT . 

Project-based learning hands-on projects can be used to model the integration of CT practices into 
classroom settings, of which the applicability of CT concepts in real world situations, as well as the 
application of tools and techniques from computing to understand natural, social and artificial systems 
and processes, is realized. The project-based learning design principle can be a powerful tool for 
allowing participants to transform computational thinking principles into real world problem solving skills. 

Research questions 

Research Question I: How can a technologically based CT program help educators increase their 
confidence and motivation for integrating CT concepts into curricula;  

Research Question II: Is the project-based learning, hands-on project framework an effective model for 
integrating CT concepts into pedagogical practices.  

Study design 

This plot study focused on introducing participants to the applicabilitablity of computational thinking 
pedagogical practices into the regular classroom practices, and to create the understanding of how 
computers can function in different ways to solve real-world problems. First, the principal investigator 
(e.g., facilitator) conducted a pre-interview questionnaire to get information about participants’ attitudes 
towards computational thinking and prior experience in the field of computer science and hardware 
design. Some of the questions included were, “What is computational thinking?”, “What terms come to 
mind when you think of computational thinking?”, “Do you think it is realistic to integrate computational 
thinking practices into regular classroom teaching environments?”.   

Next, the participant completed a short survey to indicate the applicability of computational thinking in 
the subject areas of English Language Arts, Math and Science by way of crosscutting concepts. Each 
question is rated on a scale from 1 to 5, (1 = the least applicable, 5 = the most applicable). The big ideas 
in ELA are key ideas and details, craft and structure, and integration of knowledge and ideas. Some of 
the key ideas in mathematics and science under the cross-cutting paradigm are; geometry and 
relationships, patterns and relationships, cause and effect, energy and matter, etc.  

Next, the principal investigator walked participants through a hands-on robotic car assembly workshop 
while discussing concepts such as speed, velocity, acceleration that could be reinforced through the 
robot assembly. The principal investigator told the participants to imagine they were the designers and 
to develop an autonomous driving car of the future with the materials in front of them. The participants 
used the material provided to assemble the car without fixed instructions. The material consisted of two 
car wheels, two motors, two line follower sensors, one raspberry pi hardware, multiple female and male 
wires, and screws.  

Lastly, the principal investigator guided participants in writing a computer program that simulated the 
car driving process in order to model how the computer processes signals. Participants used the Python 
turtle graphics programming environment to simulate the moving forward and backward procedures. 
The purpose of the variables and functions as well as how the computer execute the specific commands 
were to be explained.  



Constructionism 2018, Vilnius, Lithuania 

197 

 

To engage participants in scientific, engineering and mathematics practices, the workshop facilitator 
encouraged participants to develop a collaborative learning atmosphere, and to ask questions. Some 
of the questions asked included the mechanism of the self-driving cars, why sensor matters in the 
autonomous driving, and how to use Raspberry Pi could control the car’s navigation. The inquiry and 
guiding process allowed participants to use their knowledge to explore emerging technologies.  

Pre-Data Collection 

In designing the program, the principal investigator surveyed 50 participants to collect the preference of 

the introductory projects to learn computer science related concepts at New York City. Eighty percent 

of participants indicated that they did not have any previous hardware design experience ( i.e., using 

Arduino or other types of microcontrollers). Only 38% participants showed they do not have previous 

programming experience. When asked about participants’ levels of interests in the following project (0 

= the least interested, 4 = the most interested), a majority of the participants selected the Line Following 

Robot project.  

  

Figure 2. The level of interests in the project Line Following Robot . The vertical axis is the amount of 
participants, and horizontal axis is the level of interests (0 = the least interested, 4 = the most interested) 

Methods 

Participants 
This research study used the mixed methods research methodology to collect qualitative and 
quantitative data from six participants, (three males and three females), who represent a group of pre 
and in service teachers in New York City. The workshop is approximately 45 minutes, and is videotaped 
to capture the entire process. There were no restrictions relating to teaching discipline of the 
participants. Participation in the study was completely voluntary. Convenience sampling was used to 
recruit participants who are affiliated with educational institutions of this research.  

Procedures 
The study followed a four-stage, iterative protocol. Step 1, participants discussed their understanding 
about computational thinking concepts and skills. Step 2, the participants were given the brief survey to 
rate the applicability of computational thinking in different areas. Step 3, the participants were asked to 
assemble a robotic car, without formal instructions, while discussing the relevant big idea concepts that 
could be applied to hands-on classroom exercises. Step 4, the participants were asked to use Turtle to 
simulate the car driving process. This interactive interview-play design allowed us to understand how 
the participant made sense of the hands-on project and the correlation of CT concepts. Along with 
recording the interview, we collected and analyzed the strategies that participants used in assembling 
the car and their programming command structure to support findings from our computational analysis.  



Constructionism 2018, Vilnius, Lithuania 

198 

 

Results  
At the beginning of the workshop, participants believed that computational thinking was more applicable 
in science and math subject areas. The following table shows the average number that participants 
marked for the applicability of CT in the big ideas learning areas.  

English Language Arts Math Cross Cutting Concepts  

Big ideas  Applicability Big ideas  Applicability Big ideas  Applicability  

Integration of 
knowledge and 
ideas 

2.3 Ratios & 
Proportional  

2.6 Interdependence of 
Science, Engineering, 
and Technology 

4.3 

Craft and structure  3 Relationship 1.3 Cause and Effect  3 

Key Ideas and 
Details  

2 The Number 
System 

2.3 Scale, Proportion, and 
Quantity 

3.6 

  Expressions & 
Equations 

2.3 Systems and System 
Models 

4 

  Geometry  3.7 Energy and Matter 2.3 

  Statistics & 
Probability  

3.4 Structure and 
Functions 

4 

    Patterns 3.3 

Figure 3. The participants rated from 1 to 5 in each category (1= the least applicable, 5= the most applicable) to 
integrate computational thinking into the listed content areas.  

Computational thinking is a fairly new term to the participants, some of the definitions included 

“ …...decisions through mathematical computation……”, and some of the participants believed that 
computational thinking was similar to the systematic thinking. It is similar to programming and is very 
technical as well as procedural. Also, participants expressed “ logic”, “ deduction” and “calculation” are 
the terms related to the concept of computational thinking.  

After the car assembly exercise, a majority of the participants indicated their willingness and interest in 
integrating CT relevant pedagogical practices into their curricula. Below are some of the responses from 
the participants. 

 Level 1 Level 2 Level 3 Level 4 

Have no confidence on CT 
integration;  
Reject CT curricula without 
rational reasons 

Have less confidence on 
CT integration; 
Reject CT curricula with 
rational reasons 

Have confidence on CT 
integration;  
Accept CT curricula without 
rational reasons 

Highly confidence on CT 
integration;  
Accept CT curricula with 
rational reasons 



Constructionism 2018, Vilnius, Lithuania 

199 

 

The teachers reject and did 
not accept to integrate CT 
into the classroom teaching.  
 
 
The teachers display a 
minimal understanding of 
how computational thinking 
can be applicable into the 
classroom setting - and little 
knowledge of their varied 
approach to integrate CT 
knowledge, skills into 
classroom practice.  
 
 
The teachers do not feel 
motivated about using 
project-based learning 
methods in the classroom 
teaching.  

The teachers reject with 
rational reasons that they 
cannot implement CT 
curricula in the classroom.  
 
The teachers display 
generally accurate 
knowledge of how 
computational thinking can 
be applicable into the 
classroom setting, yet not 
to apply the knowledge into 
the classroom teaching 
and learning,  
 
The teachers give rational 
reasons why they do not 
feel motivated about using 
project-based learning 
methods in the classroom 
teaching.  

The teachers accept the CT 
curricula and would like to 
implement CT curricula in the 
classroom.  
 
The teachers understand the 
nature of the CT, and 
purposefully to think about the 
how to design CT curricula 
into the classroom setting. 
However, the CT curricula is 
not authentic and fit to the 
school learning environment.  
 
 
The teachers show the 
willingness to integrate CT 
into the classroom currently or 
in the future without the 
concrete plan and rational 
reasons.  

The teachers accept the CT 
curricula and actively 
brainstorm ideas to 
implement CT curricula in the 
classroom, schools or 
districts.  
The teachers not only 
understand the nature of CT, 
and also systematically 
acquire knowledge from 
several sources about how to 
design project based learning 
model to put CT curricula into 
practices.  
 
 
 
The teachers are highly 
motivated to brainstorm 
ideas to integrate CT 
curricula into the classroom 
with rational reasons and 
concrete plans.  

“ There is no use to integrate 
CT in my classroom…”  
 
 
 
 
 
 
“ There is no applicability to 
integrate CT curricula into 
my daily classroom practice 
or student teaching 
work……” 
 
 
 
 
 
 
 
 
 
“Computational thinking 
concepts are confusing and 
the hands-on practice is 
tedious…. 
 
“ I did not see the 
implementable potentials of 
the project into my 
classroom……”  

“ I see the values to 
integrate CT curricula into 
my class, however, I 
cannot accommodate my 
daily teaching reality 
considering my school 
environment.”  
 
 
“ I see the applicability to 
integrate CT curricula into 
my daily classroom 
practice, however, I have to 
accommodate other 
initiatives to our leadership 
team at school.” 
 
 
 
 
 
 
“ I understand the concepts 
of CT and values of project-
based learning, however, 
my teaching styles did not 
fit with the hands-on 
workshop deliverable 
methods.”  
 
 

“ I see the values to integrate 
CT curricula into my class, 
and I would like to give a try! 
Although I am not sure how to 
achieve my goal.” 
 
 
 
“ There is a great potential to 
integrate CT curricula into my 
daily classroom teaching, 
however, I feel CT is about 
science and math, and has 
less focus on writing and 
reading skills.”  
 
 
 
 
 
 
“I see the values of project-
based learning into my 
classroom. I am not sure how 
to design the project-based 
learning unit with the 
emphasized concepts of 
computational thinking.”  

“There is a great potential to 
integrate CT curricula into the 
classroom, and I am ready to 
design the curricula with my 
colleagues in our maker 
space.”  
 
 
 
“I fully appreciate the 
workshop study that allows 
me to think about how to 
integrate CT curricula into my 
class. CT is more about the 
general skills about pattern 
recognition, problem solving 
and critical thinking. I would 
like to collaborate with my 
colleagues in the school to 
design the project-based 
learning focused unit.”  
 
“ I am excited to implement 
project-based learning 
hands-on workshop into my 
classroom. Also, I would like 
to modify the workshop, and 
think about how 
computational thinking 
concepts can connect to my 
own content teaching areas”.  

Figure 4. Rubrics to evaluate participants acceptances of the research study and CT curriculum  implementation 
based on project-based learning model.   

After this hands-on exercise, the participants showed more confidence and willingness to use CT 
concepts and hardware material in their educational environments. Some of the participants expressed 



Constructionism 2018, Vilnius, Lithuania 

200 

 

their willingness to utilize the modeled examples in the hands-on projects and to integrate into the 
kindergarten teaching practices. One participant explained the application to integrate CT into their 
language learning programs. 

 Pre-interview Hands-on Workshop Post-Interview 

No.1 Level 2 Level 3 Level 4 

No.2 Level 2 Level 2 Level 3 

No.3 Level 1 Level 2 Level 3 

No.4 Level 2 Level 3 Level 3 

No.5 Level 3 Level 4 Level 4 

No.6 Level 1 Level 3 Level 3 

Figure 5. Workshop participation result analysis  

By the end of the workshop, participants changed the previous beliefs on computational thinking and 
realized that it does not have to be strongly correlated with high technical skill. It is a way of teaching 
that incorporates algorithmic, or procedural thinking, critical thinking and hands-on experiences that 
facilitate learning retention and better prepare students for the real world experiences.  

Discussion and implication 

Although computational thinking pedagogical practice are a bit more technical and new to a majority of 
the participants, technology driven programs may be necessary to increase teacher participation in CT 
practices. More research work needs to be accomplished to design a more robust hands-on project to 
guide educators towards that goal. To ensure participants were not intimidated by the proposed projects, 
the facilitator told the participant that complete assembly of the robotic car was not required. The 
principal investigator also gauged the stress level of participants when they believed they were to build 
the robot to completion. A workshop design the includes how to guide participants in building the robotic 
car to completion that minimizes stress level, needs to be explore. Some variables that need to be 
tested are the difficulty level of assembly with and without formal instruction and whether that plays into 
stress levels. Also, whether stress is necessary for completing the task. 

Some of the critiques from participants are the car assembling project tend to be mechanical with less 
flexibility and does not foster participant creativity. A future hands-on project can allow participants to 
use their own imagination and create technology prototypes of their own choosing. Ideas about 
computational thinking stemmed from participant level of experience with technological ideas and 
concepts. Although user technology experience data was not collected at the beginning of the workshop, 
their experience level could be implied based on their attitudes towards their computational integration 
during the workshop. Without the prior experience and expertise in computer science, participants can 
not realize the direct connections between the computational thinking and content areas in ELA, science 
and Math. In the designed study, there should be the specific sections to offer some examples of the 
big area to the participants to familiarize their understanding at the beginning of the workshop.  

More research needs to be done to capture ways of introducing technical concepts to educators in order 
to change perspectives adding computational thinking principles in K-12 education. Helping educators 
gain the experience and knowledge to integrate CT into the regular classroom settings is an ongoing 
process and requires an excitement and acknowledgement of necessity. Research supports the need 
to facilitate this change-in-agency work in the individual classroom of each teacher and the individual 
ethos of each school (Bull, Spector, Persichitte, Meier, 2016). This pilot study needs to be scaled to 
include a larger cohort of pre and in service educators.  



Constructionism 2018, Vilnius, Lithuania 

201 

 

To conclude, this study showed that teachers need to have an understanding of technology and ways 
to implement computational thinking in order for it to be introduced in curricula. Also, the technologically 
driven project-based learning design principles have the potential to increase participants’ confidence 
and in consequence motivates them to consider applying computational thinking related pedagogical 
practices in their classroom. 

References 

Bransford, J. D., & Schwartz, D. L. (1999). Chapter 3: Rethinking transfer: A simple proposal with 
multiple implications. Review of research in education, 24(1), 61-100. 

Bull, G., Spector, J. M., Persichitte, K., Meier, E. (2017). Reflections on preparing educators to evaluate 
the efficacy of educational technology: An interview with Joseph South. Contemporary Issues in 
Technology and Teacher Education, 17(1).  

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). A future for computing education research. 
Communications of the ACM, 57(11), 34-36. 

Cuban, L. (2001). Oversold and underused. Cambridge, MA: Harvard University Press. 

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in higher 
education. TechTrends, 59(2), 57-65. 

Darling-Hammond, L. (2008). Teacher learning that supports student learning. Teaching for intelligence, 
2(1), 91-100. 

Dede, C. (2010). Comparing frameworks for 21st century skills. 21st century skills: Rethinking how 
students learn, 20, 51-76. 

Denning, P. J. (2017). Computational Thinking in Science. American Scientist, 105(1), 13. 

Fields, D. A., Searle, K. A., Kafai, Y. B., & Min, H. S. (2012, February). Debuggems to assess student 
learning in e-textiles. In Proceedings of the 43rd ACM technical symposium on Computer Science 
Education (pp. 699-699). ACM. 

Fullen, M. (2007). The new meaning of educational change. Routledge. 

Hu, C. (2011, June). Computational thinking: what it might mean and what we might do about it.  

In Proceedings of the 16th annual joint conference on Innovation and technology in computer science 
education (pp. 223-227). ACM. 

International Society for Technology in Education. International Association for Computing in Education 
International Council for Computers in Education. (2000). ISTE national educational technology 
standards (NETS). Eugene, OR :International Society for Technology in Education, 

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge 
university press. 

Larmer, J., Mergendoller, J., & Boss, S. (2015). Setting the standard for project based learning. ASCD. 

Koh, K. H., Nickerson, H., Basawapatna, A., & Repenning, A. (2014, June). Early validation of 
computational thinking pattern analysis. In Proceedings of the 2014 conference on Innovation & 
technology in computer science education (pp. 213-218). ACM. 

Krajcik, J. (2015). Project-based science: Engaging students in three-dimensional learning. The science 
teacher, 82(1), 25. 

Means, B., Roschelle, J., Penuel, W., Sabelli, N., & Haertel, G. (2004). Technology’s  

contribution to teaching and policy: Efficiency, standardization, or transformation? In R. Floden (Ed.), 
Review of research in education (vol. 27, pp. 159-183). Washington, DC:  

American Educational Research Association.     



Constructionism 2018, Vilnius, Lithuania 

202 

 

Meerbaum-Salant, O. (2010). Armoni, Michal a Ben-Ari, Mordechai (Moti). In Learning computer 
science concepts with Scratch. Proceedings of the Sixth international workshop on Computing 
education research. Aarhus, Denmark: ACM. 

Meier, E. (2005). Situating technology professional development in urban schools. Journal of 
Educational Computing Research, 32(4), 395-407. 

Meier, E. (2015). Beyond a digital status quo: re-conceptualizing online learning opportunities. Bank 
Street Occasional Paper Series 34. Retrieved from https://www.bankstreet.edu/occasional-paper-
series/ 

Nahum, T. L., Mamlok‐Naaman, R., Hofstein, A., & Krajcik, J. (2007). Developing a new teaching 
approach for the chemical bonding concept aligned with current scientific and pedagogical knowledge. 
Science Education, 91(4), 579-603. 

National Research Council. (2011). Report of a workshop on the pedagogical aspects of computational 
thinking. National Academies Press. 

Pea, R. D., & Kurland, D. M. (1984). Logo Programming and the Development of Planning Skills. 
Technical Report No. 16. 

Richards, R., Meier, E. (2016). Leveraging Mobile Devices for Qualitative Formative Assessment.  in D. 
Mentor, (Ed.), Handbook of Research on Mobile Learning in Contemporary Classrooms (pp. 94-115).  
Hershey, PA:  IGI Global Publishing Company. 

Sandholtz, J., Ringstaff, C., & Dwyer, D. (1997). Teaching with technology. New York: Teachers  

College Press. 

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of 
encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129-
184. 

Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. Transfer of 
learning from a modern multidisciplinary perspective, 1-51. 

Seymour Papert, 1981, Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic  

Books.  

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational thinking in  

constructionist video games. International Journal of Game-Based Learning (IJGBL), 6(1), 1-17. 

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The fairy performance 
assessment: measuring computational thinking in middle school. In Proceedings of the 43rd ACM 
technical symposium on Computer Science Education (pp. 215-220). ACM. 

Werner, L., Denner, J., & Campe, S. (2015). Children programming games: a strategy for measuring 
computational learning. ACM Transactions on Computing Education (TOCE), 14(4), 24. 

Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Ascd. 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. 

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical  

approaches to embedding a 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565-
568. https://doi.org/10.1007/s11528-016-0087-7 

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Computational thinking in teacher education. In 
Emerging Research, Practice, and Policy on Computational Thinking (pp. 205-220). Springer, Cham. 

Zakaria, E., Chin, L. C., & Daud, M. Y. (2010). The effects of cooperative learning on students’ 
mathematics achievement and attitude towards mathematics. Journal of social sciences, 6(2), 272-275. 

https://www.bankstreet.edu/occasional-paper-series/
https://www.bankstreet.edu/occasional-paper-series/


Constructionism 2018, Vilnius, Lithuania 

203 

 

What is Constructionism? Views from a Thai 
Perspective 

Deborah A. Fields, deborah.fields@usu.edu  
Utah State University, USA 

Paulo Blikstein, paulob@stanford.edu  
Stanford University, USA 

 

Abstract  

This paper investigates the interpretation and implementation of constructionist principles in Thailand. 
Interviewing key founders of the movement as well as teachers, village leaders, business people, and 
others vested for many years in the constructionism movement in Thailand, we ask what 
constructionism means within the diverse Thai community where it has been applied.  

Keywords  

Constructionism; developing countries; educational reform; Thai perspective 

Introduction 

In a 1991 paper, Seymour Papert faced the difficult challenge of defining constructionism, an 
educational philosophy that prided itself in not telling people what things are—after all, he was a 
constructivist who advocated that knowledge should be constructed and not simply transmitted. At the 
same time, pressure was mounting on Papert and his collaborators to offer a better definition of 
constructionism, which, alongside the explosive growth of the Logo language, was become increasingly 
popular and influential. It was one thing to define constructionism within the confines of Seymour’s 
weekly seminars at the Massachusetts Institute of Technology (the “Loud Thinking” meetings), but 
defining it for a broader audience, in an academic article, was an entirely different business. Papert’s 
response was that, 

“If one eschews pipeline models of transmitting knowledge in talking among ourselves as well 
as in theorizing about classrooms, then one must expect that I will not be able to tell you my idea 
of constructionism. Doing so is bound to trivialize it. Instead, I must confine myself to engage 
you in experiences (including verbal ones) liable to encourage your own personal construction 
of something in some sense like it.” (p. 1). 

If Papert succeeded in steering away from contradicting his own principles by offering a set-in-stone 
definition of constructionism, intentionally or not he opened up a wide and complex set of possibilities 
for implementing and thinking about constructionism. In traditional academic circles, whenever a new 
theory or methodology is created, the proponents spend the rest of their lives making sure that their 
ideas are not “distorted” or wrongfully appropriated. By allowing his readers to “personally construct” 
their own definitions, Papert was doing the opposite. It sounds like a good idea in principle, but what 
happens when people outside of Papert’s close circle of students and colleagues try to implement 
constructionism? What happens when people have indeed the license to appropriate it in very personal 
and culturally-aware ways? 

This paper investigates one such case: the interpretation and implementation of constructionist 
principles in Thailand. In 1996 a group of MIT graduates from Thailand started a foundation to support 
what they hoped would be a transformative initiative to reshape education in their country. They brought 
Papert and later many other researchers from MIT, including his then student Cavallo, to visit Thailand 
and begin a project to introduce constructionism to the country, starting first with teachers then reaching 
out through non-formal education to people in rural communities (e.g., Cavallo, 2000). After a few years, 
the collaboration with MIT phased out and the movement was left largely to its own devices, with 
relatively little contact with U.S. institutions or researchers. The foundation, led by a few visionary figures 



Constructionism 2018, Vilnius, Lithuania 

204 

 

and several educators and leaders, with some support from the ministry of education and various 
corporations, continued to figure out by on their own how to implement constructionism in Thailand. 
Intriguingly the Thai leadership and people who joined the constructionist community applied the 
philosophy not just in K-12 education but also in industry (from chemical companies to banks), remote 
farming villages, technical colleges, and non-formal education. Interviewing key founders of the 
movement as well as teachers, village leaders, business people, and others vested for many years in 
the constructionism movement in Thailand, we ask what constructionism means in Thailand within the 
diverse community in which it has been applied.  

Background 

In order to understand how constructionism has been framed and practiced in Thailand, we must situate 
those meanings against the background of how constructionism has been defined and applied in other 
areas, namely the developed countries in the West (in the context of this paper, we will refer to the West 
as mostly North America and Europe, from which most of the constructionist research originates, but 
we are aware that there are active communities in Latin Brazil, Mexico, Senegal, Australia, and many 
other countries.) Because of Papert’s intention to not overly define constructionism and to convey what 
it is through stories and interventions, it can be difficult to pin down what it is and how it has been 
applied. Yet given the substantial literature on the topic, we certainly can frame some key foci of the 
movement. Perhaps the most common definition of constructionism comes from succinct statements, 
such as that the following one by Papert himself (Papert & Harel, 1991): 

“Constructionism--the N word as opposed to the V word--shares constructivism's connotation of 
learning as "building knowledge structures" irrespective of the circumstances of the learning. It 
then adds the idea that this happens especially felicitously in a context where the learner is 
consciously engaged in constructing a public entity, whether it's a sand castle on the beach or 
a theory of the universe” (p. 3). 

Later, Ackermann (2001) tried to clarify the definition in broader terms, saying that Papert’s 
constructionism “focuses more on the art of learning, or 'learning to learn'.” She further emphasized 
Papert’s interest in learners engaging in conversation with their and others’ artifacts and “how these 
conversations boost self-directed learning, and ultimately facilitate the construction of new knowledge” 
(p. 1). 

These two sets of statements embody several themes in constructionist literature, including the roles of 
creating things/artifacts, engaging with others about these public artifacts, learning in a self-directed 
way, and developing new knowledge. Ostensibly constructionism could be applied to any human being 
in any context creating anything of relevance to them and others. Yet within these very general themes 
the application of constructionism has tended to be far narrower. For instance, it has not often been 
used to study the construction of knowledge related to sand castles or cosmological theories. At the risk 
of grossly overgeneralizing a rich movement in just a few paragraphs, below we suggest four 
overarching ways to understand constructionism in the West. We consider the foci of people, 
institutions, activity, and mechanisms of building constructionism. Our goal is not to oversimplify a 
philosophy that has been explored in multiple books, but to situate the simultaneously familiar and 
unique 20-year implementation of constructionism in Thailand. 

People Focus 
Given its roots in developmental psychology, published literature of constructionism has focused almost 
exclusively on children. In the early years of constructionist research, in the 1980s and 1990s there was 
practically no work on adult education, higher education, or workforce development. Though 
constructionists worked considerably with teachers, they were seen as a vehicle to ultimately reach the 
children. There was a strong child-centered focus both in terms of research and implementation, but 
also in terms of the philosophy of the movement. On occasion, Papert would state that technology was 
giving children the opportunity to “learn on their own” or make some of the teaching redundant (for 



Constructionism 2018, Vilnius, Lithuania 

205 

 

example, in a video-debate between Papert and Freire recorded in the 1990s43). In contrast, in Thailand 
the constructionist movement has been broadly applied to people of a wide age span: children, youth, 
young adults, adults, the elderly. 

Institutional Focus 
Deriving from the focus on children, educational institutions have been the main focus of constructionism 
in the West. In 1985, MIT started the well-known project in the Hennigan School in Boston which 
implemented Logo across the curricula (Tabor, 1990), and in the 1980s and early 1990s, schools in 
tens of countries started to incorporate Logo in their curricula. Much of the work was bottom-up with 
teachers bringing it on their own to schools, but given Papert’s and MIT’s centrality and international 
reputation, they were approached by many big school systems and ministries of education to implement 
constructionism in entire countries or cities (e.g., Costa Rica, Thailand, Senegal, etc.). Eventually, with 
the “Logo crisis,” of the late 1990s, there was a bigger focus on out of school implementations: 
extracurricular time, summer programs, and after-school workshops. Over the past two decades, 
especially with the emergence of games-for-learning and FabLabs, libraries, community spaces, and 
museums have also begun to play a strong role in constructionist education for children. Still, all of these 
are generally educational institutions. In the Thailand constructionist movement, there has been a triple-
focus on schools, businesses, and rural villages, laying the groundwork for some potentially unusual 
applications of constructionism. 

Activity Focus 
The initial Logo implementations focused considerably on project-based learning—students were 
writing computer programs based on personal interest. Papert defined the terms “project” and “problem” 
in very particular way: “projects are primary, problems come up in the course of projects” (Papert, 1996). 
“Projects” were larger-scale personal endeavors, and within them students would find “problems” to 
solve. This was a specific reaction to the “problem” based approach in traditional math instruction, in 
which students are given different math problems to solve without a connection to a broader project. 
The definition of these terms is relevant in our context because “problem” and “project” are used in 
Thailand in slightly different ways. This focus on making things has continued in recent years, visible in 
the number of titles in Constructionism conference proceedings that focus on learning programming, 
making games, creating animations, developing system models, and so forth.  

Mechanisms of Dissemination 
It is impossible to deny the role that digital tools have played in disseminating constructionism 
throughout the world. Since Papert introduced turtle geometry and Microworlds, there has been an 
almost inevitable focus on designing tools that children can use as much as designing the learning 
environments those tools are used in. Indeed there are many constructionist tools and “construction 
kits” since the early days, including Lego/Logo, NetLogo, StarLogo, Scratch, electronic textiles, 
FabLabs, and digital games. Even though many of those tools were not originally designed as stand-
alone education materials, they have been undeniably a primary means of disseminating 
constructionism to educational settings. Programs, workshops, and curricula are built around the use of 
a tool, albeit with reflection, social expression, and sharing with a broader audience as familiar attributes 
of these learning environments. These are some of the primary (though certainly not the only) ways that 
constructionism has been disseminated, along with some academic artifacts such as books, 
publications, and conferences. 

Methods 

Context and Participants 
This is part of a larger study to investigate the historical development of the constructionist movement 
in Thailand. Constructionism was formally introduced in Thailand in 1997 and has continued there 

                                                
43 https://www.youtube.com/watch?v=FnVCyL9BwS8 



Constructionism 2018, Vilnius, Lithuania 

206 

 

through the present time. What started as a small movement with a foundation established in 1996, 
some government and business sponsors, and initial training and workshops led by Seymour Papert 
and David Cavallo has grown substantially. It would take a full article or perhaps a book to wholly 
describe the breadth and history of that movement, but here we seek to provide a little context to provide 
a backdrop within which to situate what constructionism means in Thailand. The Thai community has 
three overlapping domains of implementing constructionism: education (K-16 schools and non-formal 
education), business (chemical, agricultural, tech-driven, and financial institutions), and rural villages. It 
has spread through both word of mouth (ground-up) and by top-down support from business, village, 
and school leaders.  

Implementing constructionism has involved many types of activities for the different individuals and 
communities involved. Many teachers have sought to apply constructionism in their classrooms, often 
expanding to a school-wide approach if school leadership has been supportive. A number of large 
corporations in Thailand have used workshops to train employees and subsequently supported these 
workers in identifying and working through problems in manufacturing, human resources, or community 
outreach. Villages have identified problems such as water management, sustainable agriculture, 
managing finances, improving family education, and so forth as areas to work with constructionism. 
Some of these areas are described in more detail by the Thai community itself (e.g., Israsena et al., 
2014). None of these areas are without contestation. When a principal at a school or the head of a 
business changes often constructionist efforts have been thoroughly disrupted or ended altogether. As 
we discuss below, it can take months, even years, for people to accept a constructionist mindset. Yet 
the community has persevered, largely isolated from out-of-country resources, for more than two 
decades, raising the opportunity to study what constructionism means in Thailand and how it has 
developed there.  

Data and Participants 

During a two-week visit to Thailand in December 2017 one of the co-authors (Fields), with a translator 
as needed, conducted 1-2-hour semi-structured interviews with 22 participants nominated by leaders of 
the community with the goal of sampling from people long- and/or heavily-involved in one or more of 
three main domains of constructionism in Thailand: education (9 participants), business (8), and villages 
(5). An interview protocol and a list of interviewees was developed by the authors with collaboration 
from some other researchers familiar with the history of Constructionism in Thailand. With a few 
exceptions, most participants had more than 10 years of experience working with constructionism, 
including some who were involved from the very early years of the project. A few people were relatively 
new to constructionism but were highly involved in growing the constructionism project over the past 2-
3 years. Geography and time limited the number of people who could be interviewed during this first 
visit of the larger study. Interviews focused on participants’ histories with constructionism, key 
characteristics they thought important to constructionism, and positive and negative examples of how 
they had seen constructionism in practice. All interviews were transcribed in the main language the 
interviewee used—English or Thai depending in participant preference. Thai interviews were then 
translated into English. 

Analysis and Limitations 
Multiple rounds of grounded, comparative analysis (see Charmaz, 2002) were conducted on the 
interviews with the focus of identifying key attributes of constructionism in Thailand. We initially 
developed 16 codes grounded in the participants’ descriptions that were applied to the entirety of the 
data. In a second round we compared, condensed, and reorganized the codes to better reflect the 
dominant themes emerging from the analysis. We identified four overarching themes spoken of by 
almost everyone interviewed, with several subthemes that provided further clarification. We do not claim 
that any of these themes are universally shared by all members of the constructionist community in 
Thailand. Findings in this paper emerged from discussion with a particular subset of very experienced 
leaders in the community and are likely not reflective of the thousands of individuals who have 
experienced and applied constructionism overall. Further, we as authors recognize that we are foreign 
to the Thai context and though we have been involved in varying levels with the constructionism 
community in Thailand for several years (primarily during 1-2 week visits, often as workshop leaders or 



Constructionism 2018, Vilnius, Lithuania 

207 

 

observers), it has been largely as outsiders. Member checking with two leaders of the constructionist 
community at multiple stages of analysis and writing has helped us check our understanding against 
that of participants. 

Findings 

Given that the Thailand community applies constructionism across a wide range of contexts, from K-
12 schools to non-formal education, and from rural villages to large industrial companies, it should not 
be surprising that there was a wide range in what people valued and prioritized in their explanations 
and descriptions of constructionism. Yet there were several core themes that emerged across people’s 
accounts. Intriguingly, what might be considered one of the core aspects of constructionism in the West, 
the idea that learning happens when creating something was mentioned by only a few people, namely 
those with fluent English who had an advanced degree from a U.S. university, and had read Papert’s 
original works. So if the idea of “learning by constructing and sharing objects” is not the core of Thai 
constructionism, what is? 

Control over One’s Own Learning 
One thing that nearly all participants spoke about in regard to constructionism was that learners were 
in control of their own learning and that this was a transformative attitude compared to traditional Thai 
culture. Boonkong44, a businessperson who had spent extensive time studying and observing 
constructionism in Thailand, described this as a powerful transformation in one village that took up 
constructionism across the past 18 years: “[M]ost of the villagers in Chuenchit, they control their lives. 
Before their life was controlled by someone else. Now they control their life. They say that everyday 
they wake up, they feel happy, not because they’re rich, because they can control their life” (p. 4). 
Participants reported that without constructionism, when people in Thailand encounter a problem, they 
either wait to be told what to do or report a problem to higher authorities rather than trying to figure out 
what to do oneself, whether in a business or a village. Similarly, in schools, children are told what to do 
and are in continual search for what the “right” answer is, something that many participants said was 
still a tendency in their adulthood. In contrast, taking control over one’s own learning meant having the 
power to deal with issues that came up in one’s life and actively doing something about it.  

Implied in the idea of being in control of one’s own learning was the notion that learning should be 
interest-driven, which came with both a sense of freedom and responsibility. In other words, people 
should get to choose what to do, whether in class, at work, or in community life.  For instance, Saijai, a 
leader in her village, described that constructionism is “the learning process, that the learner is the 
center of the learning” (p. 3). Or as Punya, a long-time teacher, explained, students should have the 
freedom to “do whatever they want to complete [their] project[s]” (p. 3). Learning should be driven by 
learners, not by others in authority. At the same time, there was an emphasis on responsibility, on doing 
things oneself rather than having others do a project or solve a problem for them, though support was 
always available in the form of mentorship. As an example, Saijai described how she and other 
members in her village helped others begin to apply constructionism: “We didn’t do a project for them, 
they have to do it by themselves with our support” (p. 5). Thus applying constructionism meant taking 
responsibility and ownership over one’s life, one’s problems, one’s projects. 

This belief that people should have ownership of their own learning had empowering implications for 
how people thought of themselves and others. As Pinit, a business leader and constructionist facilitator, 
spelled out, “I’ve changed from a person who lacks confidence, afraid to try new things, to have more 
confidence. I now know the beauty of learning,” (p. 2). Further, just as participants like Pinit took more 
empowered views of themselves, they took similar views of the students they worked with, whether 
those students were children in schools, family members, or colleagues in companies, or fellow 
members of a village. Many teachers described the transformation they experienced as they witnessed 
constructionism in practice with their students. Students became more engaged, happier, spoke up 
more, presented with confidence, and demonstrated changed mindsets even years later. Thus not only 

                                                
44 All names are pseudoymns. Quotes are cited by page number of the interview. 



Constructionism 2018, Vilnius, Lithuania 

208 

 

did participants describe greater confidence in themselves, they expressed similarly strong confidence 
in the capabilities of the students or learners that they worked with.  

Notably participants described learning this attribute of Thai constructionism in practice, not by a 
definition read in a book or heard in a lecture. Most participants first encountered constructionism 
through a one-week workshop on Microworlds Logo. Designed to put learners in an unfamiliar situation, 
participants often felt very uncomfortable at the beginning because they were not told exactly what to 
make or how to make it. Yet through the weeklong experience they learned how to learn and grasped 
that learning could be driven by their interests and learned through practice not through lecturing or 
being told what the right answer was. Not only this, but as participants went on to apply constructionism 
in their own jobs and families (many expressed applying this with family members), the support they 
received further emphasized the interest-driven and learner-centered characteristics of constructionist 
learning. For instance, one teacher, Samorn, explained that when she and her fellow teachers tried to 
figure out how to implement constructionism at their own school, their director “didn’t try to control us 
‘how’ to do it, we managed ourselves,” figuring out how to design constructionist learning environments 
in their classrooms and grade levels (p. 2). This was emphasized again and again in participants’ 
interviews; they were never told how to implement constructionism, something that was occasionally 
frustrating but overall fulfilling. Instead, it was up to them to try it out, learn through a process of trial, 
error, observation, and trying again. 

Real-World-Problem-Focused and Process-Driven 

In the Thailand constructionist community, solving real-world problems and the processes of solving 
them are at the center of doing constructionism45. Whereas in the West the types of projects that are 
most common are related to personal interests of the individual child, in Thailand the context of 
constructionism involved working on a real-world problem, usually one of relevance to a local 
community. In businesses, employees need to be able to identify what a problem is when it arises and 
find a solution to solve the problem themselves. In villages, “Rural people need deep understanding on 
their own problem[s],” finding the root cause of an issue, collecting data and community knowledge 
about that, and solving the bigger, underlying issue (Worawech, p. 17). Finally in schools, students can 
identify problems in their class or in their community and try to work on a solution to that. In all of this, 
people work toward bettering their local community, be it a school, neighborhood, village, business, or 
Thailand itself. In other words, the interest-driven emphasis of constructionism in Thailand is based on 
broader collective interests rather than personal intellectual inclinations or hobbies.  

Solving these problems involves applying a process. Almost everyone interviewed explicitly mentioned 
the word “process” in discussing constructionism, and those who did not mention the actual word 
described a type of process or set of steps that they used to solve problems in a constructionist manner. 
There was variation to the processes described, but in general it involved identifying a problem, doing 
something about it, reflecting on the result, and adapting to continue to fix the problem. One senior 
facilitator of constructionism, Boonmee, summarized one process as follows: “Think, make, reflect are 
the core principles… Then rethink, remake, and reflect.” (p. 2). Perhaps one reason why process is so 
important in Thai constructionism is that it is a set of abstracted principles that can be applied to a wide 
variety of situations. As village leader Pana Pong explained, “In the past, everything is scattered and 
unorganized, not systematic, but when we learn things we can get into clear processes” (pp. 1-2). Like 
Pana Pong, many participants emphasized that the process of doing constructionism gave them power 
to deal with problems, work through mistakes, and persevere when things did not work out the first time. 
Anurak explained that the idea of a process may work well with common cultural ways of thinking in 
Thailand: “If you look at all the different interpretations of the learning process in Thailand, all of it is a 
cycle. They might have five steps, six steps, seven steps, eight steps, but it’s all a cycle” (pp. 4-5). 
Internalizing a process of constructionism allowed people to use it again and again.  

Although people had slightly different expressions of what a process of constructionism involved, 
several overarching themes emerged across the interviews. First, the process involved community. 

                                                
45 Note that many constructionists would consider the term “problems” as an equivalent to “textbooks problems,” so here we used “real-world 
problems” to differentiate. 



Constructionism 2018, Vilnius, Lithuania 

209 

 

Identifying, understanding, and working through a problem was best done with others. Manit described 
this insight as transformative. Instead of facing a problem by himself and when often he could not find 
a way to solve it, “by sharing information with the other people, other workers, there are many solutions 
to solve the problems” (p. 3). Many like Manit shared that constructionism brought people together, 
whether in a classroom, village, or workplace. Teachers intentionally supported peer pedagogy, villages 
thought about issues together in ways that built community, and workplaces experienced teamwork. 
Pinit shared that constructionism “made us understand or empathize with others’ perspectives and 
ideas” (p. 4). He explained that before technicians and engineers did not share their expertise in working 
through issues, but that constructionism helped them to listen to each other, share ideas, and work with 
“cross-disciplinary knowledge.” It would be all too easy to stereotype a community focus as relating to 
broad ideas about collectivist versus individualist cultures. But that idea does not explain why groups 
across the spectrum of Thai culture had previously failed to collaborate on solving problems before they 
were introduced to constructionism. Constructionism may have opened up deeper, more collaborative 
communities than were able to exist before. 

About half of the participants mentioned managing emotions, often through meditation, in their 
descriptions of a constructionist process. They spoke about this as a means to concentrate, stay 
focused, understand oneself, and be receptive to constructive criticism. As Boonmee explained, “If you 
can’t control your mindfulness, you will get angry and you can’t think thoroughly about the cause of the 
problem you made” (p. 2). He shared that this was very personal to himself. Before constructionism he 
had a very short temper and was especially unreceptive when people criticized his teaching. But after 
learning to apply constructionism he was calmer and think about the other person’s perspective when 
they gave criticism. For many, managing their emotions, especially anger, allowed them to listen deeply 
to others and also helped them to be more humble. This all helped them to broaden their perspectives 
on the problem or project they were working on and to get help from others—to be more open to their 
community in productive ways. 

Finally, about half of the participants also cited reflection as a core attribute of the constructionist 
process. This goes back to the “think, make reflect… rethink, remake, reflect” process that Boonmee 
described. It was important to take time to think about what one had done, evaluating what went well 
and what to change. Pimchan highlighted the importance of reflection in the changes her village 
experienced once they began to apply constructionism:  

“Because normally, in the normal village, when they have activities or the things that they 
have to do, after those activities end, then it is finished. But our village has applied 
constructionism to the working process. And when we finish one activity, we have a 
reflection time asking whether or not this one is good? This one is bad? Are we going to 
continue doing this?” (pp. 6-7). 

Like Pimchan, for those participants who mentioned it, reflection was tremendously powerful to their 
learning experiences. It gave them the ability to improve, to persevere through initial failures or 
imperfections, and to “crystallize” their knowledge. Those who were teachers saw a further value to 
reflection in that it enabled them to see their students’ thinking. Samorn, a retired teacher of 3rd graders 
explained that when she changed to constructionism, her students can “express into words so I know 
that they can think!” (p. 3). Reflection allowed students to externalize their thoughts so that they could 
be shared and seen by others.  

Many of the characteristics shared here should be familiar to constructionist audiences, though some 
may be a surprise. It is not a far stretch to shift from a project focus (in the classical sense used in the 
West of personally-meaningful endeavors) to a problem focus (i.e., community problems in the real 
world,) especially since the types of problems solved in the Thai community often involve projects to fix 
them (e.g., water management projects, industrial design machines, agricultural plans). Further, in 
terms of an emphasis on process, the ideas that Thai leaders shared here are not far from processes 
such as “design thinking” that involve idea-generation, creation, testing, and evaluation common to 
many implementations of constructionism. Although reflection is far from a universal characteristic of 
constructionist literature, it has had an explicit part of some early constructionist work, such as the 
design notebooks that children in Harel’s software and game design environments used to keep track 



Constructionism 2018, Vilnius, Lithuania 

210 

 

of changes they made in their projects every day (Harel & Papert, 1990). In terms of community, Papert 
himself suggested some “social criteria” for the learning environments he promoted, drawing on the very 
social Samba School to compare it to the traditional “lonely, impersonal” mathematics environments. 
Managing emotions and using meditation may seem the most unusual characteristics of constructionism 
to western mindsets, but if we note that this is to facilitate focus and concentration in problem solving 
and to be more open to criticism on one’s work, then it may be something we can learn from.  

Contested/Conflicting Roles of Digital Technology 
While digital technology has played a key role in many, if not most, reports of constructionism in the 
west, it has a contested role in constructionism in Thailand. On the one hand, nearly all participants 
were first introduced to constructionism through a technology-centric, weeklong workshop on 
Microworlds, Gogo Boards, or photojournalism. This workshop structure was inherited from the initial 
work by Papert and Cavallo when they introduced constructionism in Thailand (see Cavallo, 2000). 
Since then local leaders started to create their own version of a trio of weeklong Microworlds, 
photojournalism, and Gogo Board workshops. The emphasis in these workshops was creating a 
situation where attendees could “learn how to learn” in a way they were unused to. These tech-driven 
workshops allowed participants to learn teamwork, meditation, reflection, the constructionist process. 
As the director of a technical school explained, “Tools are the first step—used to encourage learners so 
they can understand and see the process of learning” (p. 1). Then learners could figure out how to apply 
constructionism in their own locales. This training was common for people in all contexts - industry, 
villages, and education.  

A few people continued to view technology as core to their implementation of constructionism and 
sometimes as essential to constructionism more broadly. One teacher who first experienced a 
Microworlds workshop 18 years ago immediately implemented it in her grade 6 classroom and continued 
to use technology as her primary way to share constructionism with her students, shifting to Scratch 
and Crickets (an early platform for robotics) as she learned of newer, more contemporary tools that 
worked with the computing systems available. A former teacher and now school leader, Nisa, prioritized 
introducing various digital technology in the school where she has worked for many years: starting with 
Microworlds and then shifting to Scratch, Gogo boards, and now FabLabs as ways to engage children. 
She spoke of a desire to emphasize the computational side of constructionism more in Thailand and 
her school. Another participant, Anurak, is a computer engineer and focuses most of his constructionist 
work on “building things to build other things with,” designing new technologies that are affordable for 
everyday Thai people to design and think with. However, outside of a few members like these, most 
participants did not necessarily focus on digital technology in how they put constructionism to practice.  

Some participants, especially those in areas of industry and rural outreach, expressed concern that 
“digital technology is not essential for doing constructionism” (Worawech, p. 10) and that it could actually 
be a “block” to people in industry and rural areas if they became too focused on a particular technology 
(Boonkong, p. 7). After all, most people in workplaces do not use Microworlds or Gogo boards as 
professional tools. These participants hinted at a misunderstanding by workshop participants that 
constructionism was only relevant in the context of digital tools. Boonkong, an engineer at a technical 
firm sought deeper understanding of the key elements and outcomes of the now-traditional introductory 
constructionism workshops: “[W]hen we know those key elements, there’s no need of Microworlds, 
photojournalism, or Gogo Boards anymore. We can all create our own tools,” (p. 8). Similarly, one of 
the primary leaders of the introductory workshops thought that the community should not be stuck on 
particular technologies. Instead it might be better to shift to broader “project-based or work-place 
learning” (Boonmee, p. 5) so that participants could see the potential for using constructionism in their 
areas of employment or everyday life. The range of opinions and concerns about the role and 
importance of digital technology in constructionism raises it as an issue in the broader field worldwide. 
Constructionism was introduced in the context of digital tools, but Papert clearly drew insight from and 
saw applications in other areas, such as Samba Schools (Papert, 1980) and in sand castles (Papert, 
1991). Yet in Thailand there is concern about over-associating constructionist with a particular tool. It 
raises the question of what is the role of digital technology in constructionism, historically and in 
contemporary times?  



Constructionism 2018, Vilnius, Lithuania 

211 

 

Constructionism as a Life-Altering and Lifelong Pursuit 

One very striking element that participants spoke of was what they saw as the lifelong, transformative 
aspect of constructionism. Learning to think and act in a constructionist way involved taking up a new 
mindset that affected all aspects of life, both present and future. Teachers saw helping students (from 
elementary to vocational schools) to learn constructionism as valuable not just for particular academic-
based thinking skills (e.g., computing) but as something that they would use for a lifetime. “The most 
important key of constructionism is to develop people with lifelong learning skills,” (Mana, p. 3). Taking 
on a constructionist mindset meant being able to learn and continue to improve for one’s entire life, 
regardless of problems one might need to face. Teachers reported that students came back years after 
their education was over to say how much they had learned from the experiences in the constructionist-
based classes. That they had the ability to make decisions, to learn how to learn, to take an active 
approach to their own learning. Participants regarded training people in a constructionist manner as 
something that would enable them to improve their lives and contribute to their communities. 

Participants saw a changed constructionist mindset and thus a trajectory of lifelong learning as key to 
transforming their local communities, workplaces, Thailand, and even the world and society as a whole. 
This is nowhere more evident than in the ways that people took constructionism from the contexts in 
which they first used it and applied it to broader areas, often in their volunteer time or in their retirement. 
Having received so much themselves from particular mentors over the years, many expressed the 
desire to give back, to help people have “a happy learning experience and hope they can do more for 
our nation in the future” (Pinit, p. 4). A transformed mindset ready to tackle problems through a 
thoughtful, iterative and reflective process within a shared community was important for the individual, 
community, society, Thailand, and the world.  

At the same time participants spoke clearly about how difficult it was to help people develop such a 
changed mindset. “Constructionism is like growing a tree. It takes time,” (Mana, p. 4). Working for over 
a decade with students in a vocational school program, Mana explained that it took six months to two 
years for students to understand and adopt constructionism as a mindset with changed habits, and even 
then 10% of the students still did not change. It often took longer for some teachers at the school, but 
when they saw the evidence in the form of how students thought and acted (especially through a trial 
program where some students were taught in a constructionist program and others were not), they were 
willing to shift. Complicating this was that often results of constructionist projects were slow, especially 
if they dealt with challenging problems in a community. Anurak said that some projects in elementary 
schools he worked with took 1-3 years to finish. Pana Pong, familiar with nearly 18 years of educational, 
agricultural and financial changes in his village, spoke of a 4-5-year timespan to see the results of 
constructionism. Yet everyone thought the investment worthwhile. Constructionism took a “lifetime” of 
learning but was a “process that can pass on to different generations, young or elders or even kids” 
(Pana Pong, p. 4). In the Thailand constructionist community, this was about transforming their society 
over the course of individual lives and across generations within society. 

Conclusion and Discussion 

Papert taught the philosophy of constructionism in a way that prioritized people learning it in a 
constructionist manner themselves, through stories and personal experiences. One could argue that 
the Thailand constructionist community’s 20-year process of learning and growth well illustrates the 
affordances of this approach as they built their movement largely in isolation from the broader worldwide 
community. In doing so they extended constructionism to a number of settings that are not often 
considered in the literature of the broader constructionism community, namely businesses, non-formal 
education, and rural villages. The values and practices that they ascribe to constructionism show both 
cultural integration and transformation. They brought culturally relevant practices validating process, 
emotions, and community to their implementations in ways that, at least for them, transform how they 
think, live, and relate. The way they conceptualize constructionism also raises a number of important 
questions for us to consider as we explore what this means for the broader constructionist community. 

One question this study raises is what the starting point for constructionism can be. There are many 
examples in constructionist literature of the starting point for an educational intervention being a 



Constructionism 2018, Vilnius, Lithuania 

212 

 

particular digital technology (or a set of technologies, i.e., in a makerspace), albeit one with openness 
for learners to design something of personal relevance to them. However, in Thailand the starting point 
is more often a problem of relevance to a local community, which might lead people to a range of 
different solutions which may or may not involve particular tools. 

A related question is what the role of technology should be in constructionism. Despite Papert’s 
insistence that constructionism can involve making sand castles or cosmological theories, using 
technology to do things that can't be done (at all or as effectively) with paper and pencil is one of the 
central foci of western constructionism (for a discussion see Kafai, 2006). One of the motivators for this 
may be a prioritization to introduce computational literacy, but it may be helpful to tease apart the more 
domain-centric drive to support computation and more broadly applicable philosophy of constructionism. 
Perhaps it is time to revisit epistemological considerations (e.g., syntonicity, epistemological pluralism, 
powerful ideas) or pedagogical strategies (e.g., audience collaboration, reflection) that have received 
far less attention in constructionist literature. 

Constructionists have always had a strong identification with the work of Paulo Freire and other scholars 
in critical pedagogy, due to their agreement on issues of student-centeredness, real life relevance, and 
student empowerment. However, Freirean scholars had a much stronger stance on issues of power 
within the classroom (“dialogical education”) and on the broader role of education in society (e.g., 
education as a way towards personal “emancipation”). In many school systems and countries we might 
anticipate that even though policy makers are enthusiastic about to constructionist principles, they might 
not have anticipated that, if fully implemented, those principles will upend some of the canons of 
traditional educational policy: being able to predict, test, and track students, the ability create 
environments that are predictable and stable, the respect for authority in classrooms or schools, and 
the lowering of cost. Some interviewees raised some of those questions, and we believe that, if 
constructionism keeps expanding in Thailand, at some point these larger societal issues will come to 
the fore of the discussion. 

Acknowledgments  

This work was supported by the Suksapattana Foundation and the Lemann Center for Entrepreneurship 
and Educational Innovation in Brazil. Any opinions, findings, and conclusions or recommendations 
expressed in this paper are those of the authors and do not necessarily reflect the views of the 
Suksapattana Foundation, Utah State University, or Stanford University. Special thanks to Nalin 
Tutiyaphuengprasert and Arnan Sipitakiat for substantive constructive feedback and earlier reviews of 
this paper. 

References  

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future 
of Learning Group Publication, 5(3).  

Cavallo, D. (2000). Emergent design and learning environments: Building on indigenous knowledge. 
IBM Systems Journal, 39(3.4), 768-781. 

Charmaz, K. (2002). Stories and silences: Disclosures and self in chronic illness. Qualitative Inquiry, 
8(3), 302-328.  

Harel, I., & Papert, S (1990). Software design as a learning environment. Interactive Learning 
Environments, 1(1), 1-32. 

Harel, I., & Papert, S. (1991). Constructionism. Norwood, NJ: Ablex Publishing Corporation. 

Israsena, P., Wongviriyawong, C., Sipitakiat, A., Tutiyaphuengprasert, N., Tantikul, T., Limpiti, N., 
Rattanathavorn, I. & Cheamsawat, S. (2014). Constructionism in Thailand and its transformative effect 
on the lifelong learning process. In Proceedings of Constructionism, Vienna, Austria. Retrieved online 
at http://constructionism2014.ifs.tuwien.ac.at/papers/2.1_2-8590.pdf on March 30, 2018. 

http://constructionism2014.ifs.tuwien.ac.at/papers/2.1_2-8590.pdf


Constructionism 2018, Vilnius, Lithuania 

213 

 

Kafai, Y. B. (2006). Constructionism. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning 
Sciences (pp. 35–46). New York: Cambridge University Press. 

Papert, S. (2000). What's the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 
39(3.4), 720-729. 

Papert, S. (1996) An Exploration in the Space of Mathematics Educations. International Journal of 
Computers for Mathematical Learning, Vol. 1(1), pp. 95-123. 

Papert, S. (1991). Situating constructionism. In S. Papert & I. Harel (Eds.), Constructionism (pp. 1–11). 
Norwood, NJ: Ablex  

Tabor, M. B.  (1990). A Lab to Re-invent Communication. The New York Times. Retrieved online at 
https://www.nytimes.com/1990/12/26/news/a-lab-to-re-invent-communication.html March 30, 2018. 

  

https://www.nytimes.com/1990/12/26/news/a-lab-to-re-invent-communication.html


Constructionism 2018, Vilnius, Lithuania 

214 

 

Personal Learning Journeys: Reflective Portfolios 
as “Objects-to-Learn-With” in an E-textiles High 
School Class 

Deborah A. Fields, deborah.fields@usu.edu  
Utah State University, Logan, UT, USA 

Mia S. Shaw, mshaw12@gse.upenn.edu 
University of Pennsylvania, Philadelphia, PA, USA  

Yasmin B. Kafai, kafai@upenn.edu  
University of Pennsylvania, Philadelphia, PA, USA  

Abstract  

Much attention in constructionism has focused on the design of learning tools and support for students 
building artifacts. Far less attention has been placed on reflection and reflective artifacts that let students 
consider their own learning.  the design of their electronic textile projects during an eight-week curricular 
unit in an Exploring Computer Science class, an introductory computing course for high school 
(secondary) students in the United States. We examine the portfolios as sites of student self-authorship: 
places where students showed agency in positioning themselves in relation to how they made their e-
textile projects and to computer science more generally. In the discussion we consider the implications 
of reflective portfolios as “objects-to-learn-with” for educational implementation and constructionist 
pedagogy.  

Keywords  
Electronic textiles; computer science education; identity; portfolios; objects-to-think-with 

Introduction 

“Studying one’s own learning process...can be a powerful method of enhancing learning.” 

(Papert, 2001, p. 85) 

A lot of attention in constructionism has centered on how how learners can construct knowledge through 
the design and interaction with artifacts ranging from Logo programs, video games, robots, and 
animations to 3D-printed and laser-cut objects (Blikstein, 2013; Harel, 1990; Kafai, 1995). To support 
young designers in constructing objects on and off the screen, hundreds of tools have been designed, 
including programming environments like Logo, Scratch, Squeak, Blockly, Snap!, and Alice in addition 
to construction kits such as Lego Mindstorms, LilyPad Arduino, MaKey MaKey, Chibitronics, and many 
more, working with materials such as Lego bricks, textiles and paper. A major emphasis has been on 
what kids can make and what they learn by making through “objects-to-think-with” that engage them 
with powerful ideas (Papert, 1980) and through “objects-to-share-with” that foster interactions with 
others (Kafai & Burke, 2014). An emphasis in this work is highlighting children’s capabilities to make 
and create when they are provided with powerful tools such as computers. In these situations, children 
and youth can make interest-driven, student-centered projects that are highly engaging and can 
promote rich learning through the process of creating these objects. 

Far less attention has been placed on how learners can make their own learning an equally important 
focus as Papert (2001) suggested (see quote above) or formally reflect on their own learning with what 
we would like to call “objects-to-learn-with.” Creating artifacts and reflecting on both the process of 
making them and the products themselves engages students not only with disciplinary learning, but just 
as importantly supports students’ authorship of their own identities or senses of self within a particular 
discipline, i.e., a “disciplinary identity” (Van Horne & Bell, 2017). Being able to author one’s own 



Constructionism 2018, Vilnius, Lithuania 

215 

 

disciplinary identity may be especially important in a field such as computer science (CS), a field that is 
well-documented as historically exclusive and in which many students often struggle to develop a 
positive sense of self or sense of belonging (Cheryan, Plaut, Handon & Hudson, 2013; Yardi & 
Bruckman, 2007). To help students articulate a clear sense of self or self-narrative in relation to a 
discipline presents a critical dimension of the learning process (Carlone, 2017) and would suggest 
involving learners in documenting their own development in design notebooks or portfolios that could 
capture their reflections on their learning processes and outcomes. Such reflective artifacts could 
engage students in making their own learning an object-to-learn-with—just as much as the actual design 
of games, robots or software already does—and uncover how they see themselves establishing (or not) 
personal connections with academic disciplines. 

In this paper we share the design and analysis of learner-generated reflective portfolios that 
accompanied the development of a series of electronic textile (hereafter e-textile) projects that high 
school students completed during an eight-week curricular unit in an introductory Exploring Computer 
Science (ECS) class (Goode, Chapman & Margolis, 2012). E-textiles are hybrid designs, consciously 
combining traditionally “masculine” activities such as engineering and computing with traditionally 
“feminine” activities such as crafting and sewing (Buechley, Peppler, Eisenberg & Kafai, 2013). 
Portfolios have been extensively used as a means of assessment, for instance, in studying how students 
reflect on their academic learning by documenting computational thinking concepts and practices 
learned (Chang et al., 2015; Lui, Jayathirtha, Fields, Shaw, & Kafai, 2018). However, here we wanted 
to focus on another equally important aspect of constructionist learning—that of personal expression 
and connection to the academic discipline—which could uncover critical aspects of students’ identities 
as learners in the field of CS. This led us to consider the portfolios as sites of student self-authorship, 
places where students could show agency in positioning themselves in relation to how they made their 
e-textile projects and to CS more generally. In this paper we ask, how do students use reflective 
portfolios to express their own voices and self-authorship in relation to computer science? In the 
discussion we consider the implications of reflective portfolios as “objects-to-learn-with” in 
constructionist learning environments where students can personally express themselves as well as the 
ramifications for educational implementations and constructionist pedagogy more generally. 

Background 

Early constructionist activities such as the instructional software design (Harel, 1990) or game design 
projects (Kafai, 1995) included reflection in the form of design notebooks. For instance, when children 
designed Logo software and games, they also wrote out daily reflections on the “problems and changes 
they made each day” (Harel & Papert, 1991, p. 6). These journals or design notebooks encouraged 
students to reflect on what they were learning and supported self-awareness of the process of creating 
as students noted how their projects changed as they moved through the process of making them. While 
notebook entries captured changes in students’ thinking and designs, such reflections tend to be under-
analyzed in comparison with the actual programmed artifacts (e.g., games, software) that were created 
by learners (Reynolds & Caperton, 2011). A further limitation is that even the learners considered the 
notebooks transitional or process artifacts, as they ultimately did not become part of students’ final 
artifacts that were shared with a wider audience.  

In contrast, portfolios have begun to emerge as potential culminating artifacts in some classrooms to 
showcase students’ work, accompanying the actual project(s) that students have made. For instance, 
portfolios featuring the best projects or series of projects students have made, as in a professional art 
portfolio, highlight students’ accumulated competency and skill (Býrgýn & Baký, 2007). Portfolios can 
also be process-based, showing students’ progress through a series of projects or even within a project 
(Chang, et al., 2015). Here students can narrate how they have grown throughout the creation of a 
single project or across multiple projects, allowing students to author their own pathways of learning 
through reflection. While portfolios are more common in arts education, more recently they have 
appeared in CS education. For example, in the Advanced Placement Computer Science Principles 
class, students submit both a project and a portfolio that explicates the intention behind their projects 
as well as documents how they were made (College Board, 2017). Thus the portfolio supplements the 
project itself and can be used as a type of learning assessment for academic content. 



Constructionism 2018, Vilnius, Lithuania 

216 

 

In addition to serving as a learning assessment or a demonstration of learning progress, the type of 
narration that portfolios encourage holds equal potential to be a key resource in supporting students’ 
authorship of “disciplinary identity” (Van Horne & Bell, 2017). Identity is a broad concept that, from a 
sociocultural perspective, includes how people act in particular situations (practice-based identities), 
how people think about themselves (self-narratives), and how other people perceive someone (others’-
narratives) (Fields, 2010). Though creating personalized artifacts linked to core disciplinary content can 
support students’ identities in practice-based ways (Van Horne & Bell, 2017), the design process alone 
may not necessarily help students articulate a clear sense of self (i.e., self-narrative) in relation to a 
discipline. In this paper we are primarily concerned with the aspect of identity that relates to students’ 
self-narrative—how they think about themselves (Fields, 2010). In discussing identity development, 
Nasir and Cooks (2009) argue for the importance of “ideational resources” in developing and 
establishing one’s identity within a particular learning space. Ideational resources are the “ideas about 
oneself and one’s relationship to and place in the practice and the world, as well as ideas about what is 
valued and what is good” (p. 44). Ideational resources might include specific lessons or sayings about 
how to manage one’s emotions in a challenging scenario or how to name oneself in relation to others, 
for instance as a core participant in a community (i.e., a “hurdler” or a “jumper” in track-and-field or a 
“problem solver” in a computer science class). Having a sense of self as a type of computer scientist or 
as having characteristics of capable computer scientists can situate students on an inbound trajectory 
of participation in a discipline.   

In turning to portfolios for capturing students’ identities as learners, we suggest that they can become 
an ideational resource in helping students express who they are in relation to an academic discipline or 
field, namely computer science. By combining the process features of the early design notebooks of 
constructionist projects (Harel, 1990) with the product features of portfolios found more in arts education, 
we can turn reflective portfolios into meta-artifacts, or “objects-to-think-with”, in which students express 
what, why, and how they have made a computational artifact and thus begin to narrate, in their own 
personalized ways, who they are within the field of CS. Below we describe the type of portfolio that 
students made in the e-textile curricular unit, a portfolio that was both project-based (featuring a series 
of artifacts students made) and process-based (highlighting challenges and revisions made in the 
process of making the projects). Then we explore the ways that students expressed and authored 
themselves through the personalized portfolios that they created, ending with a discussion about the 
implications for educational implementation and constructionist pedagogy. 

Methods  

Curriculum & Portfolio 
Over the past two years we have co-developed an e-textiles unit for the Exploring Computer Science 
curriculum, a year-long course providing an introduction to computing with equity-focused and inquiry-
based teaching (Goode, et al., 2012). The e-textiles unit took place over eight weeks and consisted of 
a series of four projects: 1) a paper-card using a simple circuit, 2) a wristband with three LEDs in parallel, 
3) a classroom-wide mural project where pairs of students created portions that each incorporated two 
switches to computationally create four lighting patterns, and 4) a “human sensor” project that used two 
aluminum foil conductive patches that when squeezed generated a range of data to be used as 
conditions for lighting effects. Each project allowed increasing flexibility in design and personalization, 
and the human sensor projects reflected this in the diversity of students’ projects: stuffed animals, paper 
cranes, wearable shirts or hoodies, handbags, and gifts for family members.  

In the second year of implementation, with the help of two teachers, we revised the unit, adding reflective 
portfolios as a capstone to accompany the final project of the unit. The portfolio that students created 
was co-developed with Ben, the teacher of the ECS class that is the subject of this paper. The portfolio 
was both project- and process-based, showing the series of projects students made as well as 
reflections about their processes of making them. The portfolio consisted of a set of at least four Google 
Slides for each project, with students adding on slides until the portfolio contained reflections on all four 
projects. For each project, the requirements included: 1) an initial drawing of the project and a reflection 
on changes made to the project, 2) at least one challenge they faced and an explanation of how they 



Constructionism 2018, Vilnius, Lithuania 

217 

 

dealt with it (Figures 1 and 3), 3) how they had “grown as a computer scientist” accompanied by at least 
one picture or video of their work in progress (Figure 2), and 4) a picture/video of the final project with 
an explanation of what it did plus a reflection about what they learned and how the project fits into their 
identities as computer scientists. The portfolio ended with one final reflection on students’ learning 
across the entire unit. Figures 1, 2, and 3 provide examples of how students chose to illustrate the 
different parts of the portfolio assignment, as well as how students personalized their portfolios. All but 
one student personalized their portfolios by using specialized fonts and backgrounds, adding title pages 
for each project, creating digital representations of their projects, and incorporating selfies or images 
that exhibited their own styles and interests.  

 

Figure 1. Ashley’s portfolio page on challenges in the human sensor project. 

 

 

Figure 2. Alejandra’s portfolio page on growing as a computer scientist after the wristband project. 

 



Constructionism 2018, Vilnius, Lithuania 

218 

 

 

Figure 3. Louis’s portfolio page on challenges in the human sensor project. 

Ben piloted the e-textiles unit in Spring 2017 in his ECS class with 35 students (13 girls and 22 boys), 
with 32 consenting to participate in the research project. Most students were in 9th grade (14-15 years 
old); one student was in 12th grade (17 years old). At Ben’s school, 54% of students were identified as 
socioeconomically disadvantaged as defined by the State of California and included the following 
demographics: 4% African American, 18% Asian, 10% Filipino, 40% Hispanic or Latino, 25% White, 1% 
as two or more races, and 2% race not reported). The school had a three-year trajectory of elective (i.e., 
optional) computer science courses, with ECS being the introductory course. 

Data and Analysis  
The data for this project included the digital portfolios from all 32 consenting students in Ben’s class, 
and we sought to develop a framework to analyze how students utilized the portfolio assignment to 
author themselves in relation to CS. We conducted multiple rounds of grounded, comparative analysis 
(Charmaz, 2002). We initially developed 11 codes stemming from the identity statements students 
generated as answers to the question “How have I grown as a computer scientist?” However, we found 
these codes limiting, as we noticed that students related to and framed CS in more subtle ways outside 
the identity statements. In a second review of the portfolios, we expanded our analysis to the entire 
portfolio, developing several new categories in addition to the original ones. We created a dictionary of 
codes with examples for clarity, then two researchers independently coded a portion of the portfolios 
until they reached uniform agreement. They then proceeded to separately code the remaining portfolios, 
soliciting second opinions for borderline areas as needed. 

In further analysis we compared and contrasted the categories of codes, looking at areas of 
commonality and areas of exception. Finally, we analyzed student narrative statements that did not fit 
any of our six categories to consider what they revealed about the portfolios, reflection, and student 
narratives about CS. Together these stages of analysis helped unveil how the portfolios afforded 
students the space to articulate how they identify with CS. In the end we framed our research in the six 
broad categories below: 

Self as a Computer Science (CS) Person 

● Computational: Students author themselves as problem-solvers and relate this to doing 
computer science or being a type of computer scientist.  

● Personal: Students explicitly link growth as a computer scientist with specific skills they learned, 
such as coding or making circuits. 

Self and CS as Personal 



Constructionism 2018, Vilnius, Lithuania 

219 

 

● Socioemotional: Students describe how doing the project or the project itself demonstrates 
personal characteristics like dedication, perseverance, patience, getting out of one’s comfort 
zone, making mistakes, or collaborating with others.  

● Relational: Students express a relationship with a friend, family member, or teacher that either 
provided feedback on the e-textile project, involved collaboration, or made a project intended for 
someone else. 

Self in Relation to the Larger Field of CS  

● Aspirational: Students discuss themselves in a future tense in relation to computer science in 
the context of applications outside the classroom such as future jobs or in other projects. 

● Projectional: Students describe new realizations of what computer science is or what it can 
include.  

Findings  

Throughout our analysis of Ben’s students’ portfolios, we discovered that in addition to serving as a tool 
to assess student learning of computer science content (Lui et al., 2018), the portfolios afforded students 
the space to author themselves in relation to CS. In constructing their portfolios, students not only 
articulated who they were in relation to CS but identified the various resources, skills, and personal 
qualities that helped them construct their artifacts. In addition, the portfolios allowed students to author 
new and expanded understandings of CS as a field. They also allowed students to narrate who they 
could be in the future in relation to CS, articulating what lessons they learned that could help them 
succeed in CS beyond this unit.  

Identifying as Types of Computer Scientists 
Answering the question “How have I grown as a computer scientist?” in their portfolios afforded students 
the opportunity to author themselves explicitly as computer scientists. Many students did so by 
articulating specific functional skills they exhibited throughout the unit that they believed aligned with 
being a computer scientist. In total, 20 students said that they had grown as a computer scientist through 
developing specific skills: 14 of these students listed specific coding skills, 12 cited circuitry skills, and 
7 mentioned crafting skills (some students cited multiple skills across their portfolios). For instance, 
Leon claimed that the project helped him become a better computer scientist by his ability to code and 
design light functions. Other students linked being a computer scientist with things such as making 
LEDs light up, learning how to program a microcontroller, and even how to create a fabric that contained 
LEDs. The frequency of students linking being a computer scientist with particular skills is striking and 
shows the association they saw between being a computer scientist and the things that they learned in 
class while creating projects—they saw a direct link between what they were doing and who they were 
as computer scientists. 

This direct link between doing and being is also visible in the ways that students associated being a 
computer scientist with problem solving. In all, 17 out of 32 students authored themselves as problem 
solvers specifically in relation to computer science. Jarvis expressed this the most obviously by writing 
that the project helped him as a computer scientist because in his words, a lot of computer science is 
problem solving. In this, Jarvis made a direct statement that computer science is problem solving, and 
since he did some problem solving in his work, he therefore was “helped” as a computer scientist in the 
making. Other students explained this connection between being a computer scientist and problem 
solving. For example, Jeevan “realized his mistakes so he would not make the same mistakes the next 
time, Anita shared that the project experience allowed her to solve problems on her own and work until 
she figured out a solution (Anita), and Ana expressed that her final project illustrates that her identity of 
being a computer scientist is she understands what to do but messes up a lot. This connection between 
problem solving and identity is intriguing because problem solving is a more general skill or way of 
thinking than particular forms of coding, crafting, or making circuits discussed above. Students’ 
highlighting how to problem solve or work through challenges reflects broader, intentional teaching 
practices in the classroom community valuing mistakes and failure as legitimate means of learning 
(Fields, Kafai, Nakajima, Goode & Margolis, in press). It also reflects the values behind the requirements 



Constructionism 2018, Vilnius, Lithuania 

220 

 

of the design notebook and the portfolio, showing that students respected challenges and the processes 
of working through them.  

In positioning themselves as having new skills in computer science as well as abilities in problem 
solving, these high school students challenged the common notion of not being “smart enough” to 
participate in computer science (Yardi & Bruckman, 2007). In other words, as opposed to being told 
what computer scientists do or what kinds of people they are (which can act as a barrier for participation 
in computer science), the students personally authored what they did throughout the e-textiles unit and 
how that confirmed their identities as computer scientists.  

Relating to Computer Science as Personal and Social  
Intriguingly, beyond listing particular skills and practices, 12 students also linked demonstrating 
socioemotional characteristics to being computer scientists. Consider Ashley’s explanation about being 
creative and taking risks, in which she shared that the project fits into her identity of a computer scientist 
because it allows her to go out of her comfort zone and create something new. She further explains that 
creating doesn’t only mean putting everything together, but imagining, discussing, evaluating, and 
understanding. Ashley explored an expanding view of creativity with her willingness to step out of her 
comfort zone as important personal attributes she associated with being a computer scientist. Other 
students expressed how they felt “more capable” (Heidi), how their project work improved their 
“patience” (Anita) or how the process of making e-textiles demonstrated “hard work” that developed 
through “constant practice” (Adeep). For these students, computer science was more than just learning 
specific skills or coding; they linked CS to involving personal attributes that they valued. 

In addition, students particularly challenged the stereotypical perception of computer science being 
antisocial (Yardi & Bruckman, 2007). In total, 18 students acknowledged relationships as serving a role 
in the construction of their artifacts, whether it was by working with a partner on the mural project, 
gaining help from their peers or the teacher, or eliciting feedback from peers or family members. Heidi, 
for example, came up with her project idea by eliciting feedback from both her mother and her peers on 
whether to design a bag or pants and a corgi or flowers. In other words, Heidi valued people’s opinions 
in her design process, truly conceptualizing her e-textile project as an “object-to-share-with” (Kafai & 
Burke, 2014). Four other students specifically designed their e-textiles artifacts as gifts for family 
members, integrating relationships in the purpose of their designs. For example, both Jeremy and Ana 
designed their electronic cards for their mothers, while Ashley and Sara designed their human sensor 
projects (a ladybug and a wolf, respectively) for their little sisters. Designing their projects for family 
members and leveraging those relationships created additional meaning and relevance for students in 
considering the role computer science plays in their lives.  

What is interesting about students noting how relationships played a role in their projects rests on the 
fact that most of their projects (aside from the mural project) and their portfolios were individual 
assignments. However, in reflecting on their learning through their portfolios, over half of the students 
recognized how others played a role in their being able to construct their projects, demonstrating how 
without explicit prompting they were able to author an expanded understanding of computing as a social 
field. By acknowledging the social aspects of computer science, students who normally view the field 
as antisocial can develop an increased interest and sense of belonging, such as Alejandra who 
expressed that she got to work with someone new, which made her want to explore more in the field.   

Situating Selves with Computer Science as a Field 
The portfolios also afforded students the space to author new and expanded understandings of 
computer science as a field. In analyzing all of the portfolios, we found that 14 students described new 
realizations of what computer science is outside the classroom. For example, Kevin learned that coding 
can be found in everything when he came to realize that lights required a software program to turn them 
on and off. Other students shared discovering new ways that computer science is done. For instance, 
as opposed to computer science being a highly regimented field with limited ways to participate, Adeep 
reflected on how the project helped him grow as a computer scientist by showing him that computer 
science does not have a handbook. It should be noted that students were not required to reflect on 
computer science as a field. However, in reflecting on their identities as computer scientists, students 



Constructionism 2018, Vilnius, Lithuania 

221 

 

positioned themselves in the field by broadening its criteria in ways that validated their participation. In 
addition, they reflected on how what they did in completing their projects related to how computer 
science is done in the real world, which speaks to how they were able to create meaning and relevance 
from their projects.    

Other students, 12 in all, authored themselves as participating in e-textiles projects in the future, 
including Shona who expressed interest in doing both of the projects again due to the wonderful 
experiences she had  In addition to wanting to make e-textiles in the future, students like Leon and 
Ashley identified specific lessons they learned from the projects that they would apply for future e-
textiles projects, such as listening more carefully in order to make fewer mistakes (Leon) or creating an 
initial plan before designing (Ashley). By identifying these lessons, there were given the opportunity to 
reflect on how they could improve upon their initial designs and experiences, increasing their chances 
of success. Other students like Jesse expressed interest in exploring computer science past the e-
textiles class, particularly in college. Interestingly enough, one student, Mario, explicitly stated that he 
did not want to be a computer scientist in the future but acknowledged that it could help him get a job, 
become a skill, or help his family with computer problems. Even though Mario had expressed in his 
portfolio that he did not want to be a computer scientist, he still named meaningful ways he could apply 
what he learned in the e-textiles unit to his future.   

It is fascinating how students used the space of their portfolios to author these future selves in relation 
to computer science. This reflects how portfolios can serve as ideational resources that allow students 
to construct identities of themselves participating in computer science in the future in ways that are 
personally relevant. Doing so affords students the opportunity to develop positive self-narratives that 
situate them on an inbound trajectory of participation in CS.   

Discussion  

When Papert (2001) wrote about valuing the study of one own’s learning, he was reviewing his own 
journey—the various experiences, activities, and observations of learning—that contributed to his 
conceptualizing learning as a multi-facetted process of connecting with the world. Students engaged in 
very much the same approach in reviewing their learning as they created their portfolios in addition to 
and in review of their e-textile artifacts; both served as powerful ways to reflect on their own learning 
process and identities as e-textile designers. Not only did students apply computer science in real-world 
contexts through constructing their e-textiles artifacts but constructing their portfolios provided them with 
the opportunity to author new understandings of computer science in ways that were meaningful to them 
as well as increased their interest in the field. In other words, as opposed to holding negative perceptions 
of computer science, students were able to reframe their perceptions of computer science in more 
nuanced ways as a more relevant, sociable, and engaging field.  

From “Objects-to-Think-With” to “Objects-to-Learn-With”  
We started out with the observation that constructionist theory and practice have emphasized the 
construction of artifacts as “objects-to-think-with”, on and off the screen, as a primary vehicle for 
learners’ knowledge reformulation and personal expression. Adding to this is the importance in 
constructionism of creating objects in a supportive social environment. In creating shareable artifacts, 
learners’ knowledge construction becomes not only an individual but also as a social process. One 
could argue that by designing for an audience, learners have an opportunity to share the understanding 
they have gained from making something and in the process revisit their learning. We have called this 
dimension “objects-to-share-with” (Kafai & Burke, 2014). For instance, in Harel’s (1990) instructional 
software design project learners developed software to teach others. However, in this instance the point 
of reflection was always another person—customizing software for the user—not the designer. The 
reflective portfolios studied in this paper move the examination of learning back to the learner him or 
herself. While “objects-to-think-with” have student-created artifacts as the focal point, reflective 
portfolios become “objects-to-learn-with”, places where students can trace their path of learning, record 
what they have discovered, and situate themselves as learners within a larger disciplinary community.  

Identifying with Process and Mistakes  



Constructionism 2018, Vilnius, Lithuania 

222 

 

The portfolios also served as ideational resources (Nasir & Cooks, 2009) that supported students’ 
authorship of who they were (i.e., students’ expressions of identity) in relation to computer science. Most 
students in Ben’s class clearly articulated themselves in relation to computer science, whether 
expressing that by describing the skills they learned, the types of problem-solving and persevering 
people they had become, or the friends, family and teachers who were part of their learning experiences. 
It is further evident from students’ reflections that many felt able to clarify the type of computer scientist 
they were: as someone who “messes up”, fixes things, thinks out of the box, works collaboratively with 
others, or “solves problems on my own.” Here students were not limited to culturally dominant 
stereotypes about the types of people who do computer science (Yardi & Bruckman, 2007). Instead 
they linked their personal interests and experiences in authoring new ways of participating in the field 
of CS.  

There are interesting parallels and links between the reflective portfolios students wrote and the e-
textiles artifacts they made. Both are interest-driven and student-centered; students molded projects in 
relation to their own personal interests and shaped their portfolios in similar ways. Both had constraints 
that helped shape what students made. In the e-textiles projects, students were constrained by using 
certain tools or creating a number of lighting patterns; in the portfolios students had to fill in specific 
sections with writing and evidence. Both allowed for personal aesthetics. E-textiles projects varied 
based on students’ interests and showed visible links to family, schools, or popular culture; e-textiles 
portfolios differed in fonts, backgrounds, digital images, and discourses of writing. In this we argue that 
portfolios like the ones students created in Ben’s class are a type of secondary artifact, one that can 
accompany the type of personalized object usually focused on in constructionist-based learning 
environments. Yet while the primary artifact (i.e., an e-textiles or another project) only shows the end 
product, portfolios complement this by sharing the stories behind the e-textiles artifacts’ creation: 
troubles encountered, mistakes made, revisions that took place, and people who influenced the design. 
While the primary artifact hints at students’ identities in the skills exhibited or interests made visible, 
portfolios allow students to explain in explicit ways what type of people they are and how they relate to 
the broader field in which they are participating.  

Constructing Spaces for Learning Journeys   

Just as we design tools and communities for supporting students’ constructions we need to attend to 
the design of tools for reflection. Some key affordances of the portfolios in this study could be applied 
to portfolios or similarly reflective artifacts in other contexts. One requirement of the portfolio in this study 
was to write about challenges faced and changes made in the projects. This constraint may have had 
a direct influence on students’ prioritizing qualities such as problem solving, troubleshooting, 
persevering, and having patience. Another helpful requirement was specifically designed by the teacher: 
explaining “how you have grown as a computer scientist.” Ben created this requirement to explicitly 
support students’ identity development, and his success is evident in the frequency with which students 
associated certain skills or personal qualities with being a computer scientist or doing computer science. 
In future research we are investigating variations of these design features as well as other formats and 
contexts to understand how to facilitate students’ reflections.  

For instance, in our case, the portfolios were created in Google Slides format, very much resembling 
PowerPoint presentations. Yet there is an implicit contradiction in using a presentation format that is 
often introduced as visual medium with as few words as possible for a reflection journal that asked 
students to elaborate in writing about their creative process. While the visual component is invited in 
presentation format, the textual component is not. In the next iteration of the portfolio assignment which 
is being implemented in more than a dozen schools, teachers are choosing different formats for their 
classes, including blogs, websites, documents, and, of course, slides (though those could be oriented 
as a landscape or portrait format in ways that make them more or less like a traditional document). We 
plan to analyze to what degree different formats support students’ creativity and self-expression in their 
reflections. Further, we are maintaining and adding to core constraints for the portfolios, while allowing 
teachers to have the flexibility to add to them. For instance, the new portfolio assignment has doubled 
the emphasis on challenges and revisions (each student must share at least two instances of facing a 
challenge or revision) but has no requirement to express how students have grown as computer 



Constructionism 2018, Vilnius, Lithuania 

223 

 

scientists. We will study to what degree students continue to author themselves explicitly in relation to 
computer science with and without that obvious prompt. 

In this study, we focused on understanding how the construction of a personal and shareable artifact 
itself with the accompanying construction of a reflective portfolio could support students’ learning 
journeys. Portfolios as meta-artifacts or objects-to-think-with deserve their own place in thinking about 
the philosophy and pedagogy of constructionism and how the combined artifacts can contribute to 
students’ growing self-narratives in a broader disciplinary way. 

Acknowledgements 

This work was supported by a grant #1509245 from the National Science Foundation to Yasmin Kafai, 
Jane Margolis, and Joanna Goode. Any opinions, findings, and conclusions or recommendations 
expressed in this paper are those of the authors and do not necessarily reflect the views of the National 
Science Foundation, the University of Pennsylvania, or Utah State University. Special thanks to 
Tomoko Nakajima, Debora Lui, Justice Walker, and Gayithri Jayathirtha for their help with data 
collection, portfolio design, and constructive feedback.  

References  

Blikstein, P. (2013). Digital fabrication and ‘making’ in education: The democratization of invention. In 
J. Walter-Herrmann & C. Büching (Eds.), FabLabs: Of machines, makers and inventors (pp. 1-21). 
Bielefeld: Transcript Publishers.   

Buechley, L., Peppler, K., Eisenberg, M. & Kafai, Y. (Eds.) (2013). Textile messages: Dispatches from 
the world of e-textiles and education. New York, NY: Peter Lang Publishing Group. 

Býrgýn, O., & Baký, A. (2007). The use of portfolio to assess students' performance. Journal of Turkish 
Science Education, 4(2), 75. 

Carlone, H. B. (2017). Disciplinary identity as analytic construct and design goal: Making learning 
sciences matter. Journal of the Learning Sciences, 26(3), 525-531. 

Chang, S., Keune, A., Peppler, K., Maltese, A., McKay, C. & Regalla, L. (2015). Open Portfolios: Maker 
Education Initiative Full Research Brief Series. Retrieved from: http://makered.org/opp/publications/  

Charmaz, K. (2002). Stories and silences: Disclosures and self in chronic illness. Qualitative Inquiry, 
8(3), 302-328.  

Cheryan, A., Plaut, V. C., Handon, C., & Hudson, L. (2013). The stereotypical computer scientist: 
Gendered media representations as a barrier to inclusion for women. Sex Roles, 69(1-2), 58–71. 

College Board (2017). Advanced Placement Computer Science Principles Course Guide. Retrieved 
from https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam- 
description.pdf  

Fields, D. (2010). Trajectories of identification across social spaces: Intersections between home, 
school, and everyday settings. Unpublished dissertation. University of California, Los Angeles. 

Fields, D., Kafai, Y., Nakajima, T., Goode, J., & Margolis, J. (in press). Putting making into high school 
computer science classrooms: Promoting equity in teaching and learning with electronic textiles in 
Exploring Computer Science. Equity, Excellence, and Education.  

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: The Exploring Computer Science 
program. ACM Inroads, 3(2), 47-53. 

Harel, I., & Papert, S (1990). Software design as a learning environment. Interactive Learning 
Environments, 1(1), 1-32 

Harel, I., & Papert, S. (1991). Constructionism. Norwood, NJ: Ablex Publishing Corporation. 



Constructionism 2018, Vilnius, Lithuania 

224 

 

Kafai, Y. (1995). Minds in play: Computer game design as a context for children’s learning. Hillsdale, 
NJ: Lawrence Erlbaum Associates.      

Kafai, Y. & Burke, Q. (2014). Connected code: Why children need to learn programming. Cambridge, 
MA: The MIT Press.   

Lui, D., Jayathirtha, G., Fields, D., Shaw, M., & Kafai, Y. (2018). Design considerations for capturing 
computational thinking practices in high school students’ electronic textile portfolios. In the proceedings 
of the International Conference of the Learning Sciences, London, UK. 

Nasir, N., & Cooks, J. (2009). Becoming a hurdler: How learning settings afford identities. Anthropology 
& Education Quarterly, 40(1), 41-61. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books. 

Papert, S. (2001). Personal thinking. In C. Paechter, R. Edwards & P. Twining (Eds.), Learning, space 
and identity (pp. 78-86). London, UK: Sage Publishing. 

Reynolds, R., & Caperton, I. (2011). Contrasts in student engagement, meaning-making, dislikes, and 
challenges in a discovery-based program of game design learning. Educational Technology Research 
and Development, 59(2), 267-289. 

Van Horne, K., & Bell, P. (2017). Youth disciplinary identification during participation in contemporary 
project-based science investigations in school. Journal of the Learning Sciences, 26(3), 437-476. 

Yardi, S. & Bruckman, A. (2007). What is computing? Bridging the gap between teenagers’ perceptions 
and graduate students’ experiences. In Proceedings of the 3rd International Workshop on Computing 
Education Research (pp. 39-50). New York, NY: ACM. 

  



Constructionism 2018, Vilnius, Lithuania 

225 

 

Constructionism and De-Constructionism as 
Complementary Pedagogies  

Jean M. Griffin, jean.griffin@temple.edu 
Temple University, USA 

Abstract  
Constructionism is advantageous for learners of all ages but underutilized in “serious” formal education 
settings. It can be challenging for teachers to allocate enough time for students to construct their own 
designs if the students are expected to master numerous concepts and skills. Also, some teachers lack 
experience with evaluating creative constructions. Students often want to abandon their designs when 
they encounter obstacles or bugs. Constructionism might be more widely adopted if teachers knew how 
to pair it with a pedagogy that ensures coverage of key concepts, provides effective practice with core 
skills, and helps students gain confidence with troubleshooting. This paper presents such a pedagogy, 
de-constructionism, a learning-by-taking-apart approach grounded in reverse engineering and practice 
theory. An experiment is described where students learning to program solve practice problems 
designed with a de-constructionist approach. Students’ attitudes about the problems are reported. 
Suggestions for balancing constructionist activities with de-constructionist ones are discussed. 

 

Figure 1. Model for De-Construction 

Keywords  
Constructionism; De-Constructionism, code comprehension, bugs 

Introduction 

Constructionism is a pedagogy and learning theory conceived by Seymour Papert that encourages 
learners to create personally meaningful computational artifacts and share them with others (Papert, 
1980, 1987). Constructionism enjoyed a wave of popularity in the late 1900s when numerous education 
initiatives engaged young children with the Logo programming language to explore computing, math, 



Constructionism 2018, Vilnius, Lithuania 

226 

 

animation, storytelling, and other topics. By the early 2000s Logo’s popularity had waned but new 
constructionist technologies emerged that attracted an even larger number of participants from a wider 
age range. Examples include Scratch, MIT App Inventor, Lilypad Arduino, and littleBits.  

There are a few well-known college-level courses that use constructionist technologies and approaches 
at the beginning of a “serious” programming course (Malan & Leitner, 2007) or throughout an 
introductory computer science (CS) course that is also suitable for high school (Guzdial, 2003; “Mobile 
CSP,” n.d., “The Beauty and Joy of Computing,” n.d.). Despite such examples, constructionism is often 
perceived as a pre-college “just for fun” pedagogy. Although there is a constructionist component to the 
new American advanced placement (AP) CS Principles course, which requires student to design and 
create a computational artifact, teachers are typically not informed that constructionism is a pedagogy 
relevant to the course (“AP Computer Science Principles,” n.d.; Kick & Trees, 2015).  

It would be helpful if teachers of such courses, and teachers of traditional CS courses with a problem-
solving focus, knew about constructionism – its history, guiding principles, and varied techniques (for 
designing, managing, and evaluating constructionist projects) – because students of all ages are 
motivated by making their own computational creations. For teachers who already take a constructionist 
approach, it would be helpful to know how to counter-balance its focus on design with a pedagogy that 
focuses on analysis and skill building. The Background section of this paper outlines the theoretical 
framework for such a pedagogy, de-constructionism. The Method and Results sections describe an 
experiment with a university Python programming course where the lab exercises were designed with 
a de-constructionist approach. The Discussion section considers the experiment within a 
constructionist/de-constructionist dialectic. It discusses future work, suggests ways to incorporate 
student collaboration, and invites others to apply de-constructionism to topics other than programming. 

Background 

The Background section discusses guiding principles for de-constructionism: learning from taking apart 
well-built examples, learning from taking apart well-built examples with intentional errors, and learning 
through effective practice. Note that de-constructionism is used here to mean a pedagogy; this is distinct 
from uses of the term deconstruction relative to literary analysis, social theory, architecture, or as a 
general decomposition strategy, e.g. (Boytchev, 2015; Self, 1997). 

Learning From Taking Apart Well-Built Examples 
How do people become mechanical engineers? Car mechanics? Fashion designers? In disciplines that 
involve physical objects, there is a long tradition of learning-by-taking-apart. Future mechanics and 
mechanical engineers are often drawn to take apart and fix cars, appliances, gadgets, and toys. Future 
fashion designers often take apart and then copy others’ garment designs while developing their own 
unique style. While constructionism encourages this practice to some extent through remixing, a 
remixing experience (which involves changing an existing artifact) is often serendipitous. Students may 
choose to remix only an object’s surface features, and either avoid or be unaware of its more complex 
features. 

This section reviews three learning-by-taking-apart pedagogies. Two are used for hands-on engineering 
education: mechanical dissection and Tod Phod Jod. The third, worked examples, has been researched 
extensively for mathematics education and to some extent for computing education. Also discussed are 
a few additional learning-by-taking-apart techniques used in computing education. These approaches 
are compared and contrasted to find best practices applicable to a general pedagogy of de-construction. 

Mechanical Dissection 

In job training and vocational education settings, it is common for apprentices to disassemble, analyze, 
and assemble (DAA) vehicles, appliances, and other machines. This is useful for developing not only 
mechanics, but mechanical engineers and designers (Seabrook, 2010; Wu, 2008). For 
college/university mechanical engineering departments, this presents challenges in terms of 
workspaces, staffing, and storage. Thus, many offer introductory courses that are theoretical. An 



Constructionism 2018, Vilnius, Lithuania 

227 

 

exception is a Stanford University course that implements a hands-on DAA approach called mechanical 
dissection (Sheppard, 1992).  

Mechanical dissection is similar to the medical school practice of dissecting cadavers, but instead 
students disassemble (and re-assemble) mechanical things such as bicycles, fishing reels, and drills. 
Later courses engage students with design activities. Guiding questions for the mechanical dissection 
course are: “How did others solve a particular problem?” and “Why does the solution work?” An 
important goal is for students to become familiar with the terminology of mechanical engineering. This 
is accomplished by reading instructions, conversing in a structured team setting, answering questions, 
and writing reflections. Students are guided to study product diagrams, and to notice labels and 
categories of parts and systems. Students also explain what they learned, and generate their own labels 
and categories in written reports and reflections. Names, labels, and categories all serve as 
metacognitive cues (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). Researchers who 
observed participants of a Toy Dissection module report “We observed most groups generating a causal 
chain, in which they traced how a sequence of events propagates from one part of the device to the 
next” (Roschelle & Linde, 1996). 

Some mechanical dissection activities have students analyze multiple items from the same product 
family, e.g. coffee machines made by different companies. Students compare them and evaluate design 
tradeoffs. Comparing and generalizing helps students learn design templates, develop design 
strategies, and think abstractly. Sheppard says: “The reality is that very little design is actually new 
design. Very good designers have this catalog in their brains of stuff – of mechanisms, of devices, of 
machine elements” (Wu, 2008, p. 59). Over thirty institutions have implemented mechanical dissection 
(Agogino, Sheppard, & Oladipupo, 1992; Regan & Sheppard, 1996; Roschelle & Linde, 1996; Wood & 
Agogino, 1996). It has been adapted to teach about products that aren’t solely mechanical; this is called 
product dissection.  

Tod Phod Jod 

An innovative approach to hands-on engineering education in India is Tod Phod Jod. It is similar to 
mechanical dissection in many respects but offered to children through a series of out-of-school 
workshops, each several hours long. Tod Phod Jod roughly translates to “break and make.” In the first 
phase, middle school aged boys and girls deconstruct and reconstruct objects such as ceiling 
fans, clocks, and irons. Later they take apart more complicated things and fashion new things (Jods). 
Like mechanical dissection, Tod Phod Jod encourages students to work hands-on with one or more 
teammates, and ask questions such as: “ How does it work?,” “What’s inside?,” “Who made this?,” 
“Why?,” “How?” Also similar is the anticipation that discoveries participants make during Tod Phod 
(deconstruction) will come in handy later on for Jod (design). Yet another similarity is the goal of learning 
relevant terminology, by “deconstructing the scientific jargon that is usually learned by rote” (Vishnoi, 
2012). Tod Phod Jod builds on the lower levels of Bloom’s taxonomy (remembering and understanding) 
to engage youth with higher levels – applying, analyzing, evaluating, and creating (“Tod Fod Jod: To 
Encourage Students to Discover, Experiment, Innovate,” 2012). Unlike mechanical dissection, 
participants of Tod Phod Jod do not fill out detailed worksheets and reports. Instead the emphasis is on 
having a fun and motivating experience. India’s national initiative to promote youth interest in STEM 
education recommends Tod Phod Jod for hands-on, activity-based learning (“Rashtriya Avishkar 
Abhiyan,” n.d.).  

Both mechanical dissection and Tod Phod Jod promote learning through reverse engineering, given 
this definition: “Reverse engineering is the process of analyzing a subject system to identify the system’s 
components and their interrelationships and create representations of the system in another form or at 
a higher level of abstraction” (Chikofsky & Cross, 1990, p. 15). Both help students develop mental 
abstract representations, which can later be draw upon for design. There are other approaches for 
learning by taking apart physical things, e.g. un-crafting (Murer, Fuchsberger, & Tscheligi, 2017). 

Worked Examples 

Another approach to learning from analyzing well-made examples is the use of worked examples. John 

Sweller introduced this pedagogy, where students learn from studying problems that are completely 

https://en.wikipedia.org/wiki/Ceiling_fan
https://en.wikipedia.org/wiki/Ceiling_fan
https://en.wikipedia.org/wiki/Clock


Constructionism 2018, Vilnius, Lithuania 

228 

 

worked out as an expert would solve them (Sweller, 1988). Contrary to the prevailing belief that students 

should spend a lot of time solving problems, Sweller’s research showed that learning can be more 

efficient if students study worked examples while gradually learning to solve problems on their own. 

This is known as the worked example effect (Sweller, 2006). According to cognitive load theory, which 

Sweller developed as the theoretical foundation for this research, humans can learn and store many 

schemas (patterns of knowledge) in long-term memory, but have a quite limited amount of working 

memory that can make sense of new information. Learning can be efficient if the cognitive load is 

managed and the learner doesn’t experience cognitive overload due to excessive or confusing 

information. Scaffolding (instructional support) is needed to manage cognitive load. Worked examples 

can provide such support (Sweller, 1988; Sweller & Cooper, 1985).  

Mathematics education researchers have conducted numerous large-scale experiments with worked 
examples to measure students’ learning gains. After decades of research, experts recommend that 
students spend roughly the same amount of time studying worked examples as they do solving 
problems on their own (Booth, McGinn, Young, & Barbieri, 2015). It is important to consider prior 
knowledge; students with high prior knowledge may lose expertise if required to study too many 
rudimentary examples (Kalyuga, 2007). Empirical research attests to the benefits of several techniques 
used in conjunction with worked examples. These include self explanations, where students explain in 
their own words or choose an explanation (Chi, De Leeuw, Chiu, & Lavancher, 1994), comparisons 
(Rittle-Johnson & Star, 2007), sub-goal labels (Catrambone, 1998), and feedback (Conati & VanLehn, 
2000). These same techniques show promise with worked examples for computing education. There is 
recent empirical research on students explaining programs and algorithms (Margulieux, Morrison, 
Guzdial, & Catrambone, 2016; Sudol-DeLyser, Stehlik, & Carver, 2012), comparing algorithms 
(Patitsas, Craig, & Easterbrook, 2013), interacting with sub-goal labels (Margulieux, Catrambone, & 
Guzdial, 2016; Morrison, Margulieux, & Guzdial, 2015), and getting feedback via intelligent tutoring 
systems (Di Eugenio et al., 2015; Harsley & Morgan, 2015; Sudol-DeLyser et al., 2012) and electronic 
books (Ericson, Guzdial, & Morrison, 2015).  

Best Practices from Mechanical Dissection, Tod Phod Jod, Worked Examples, CS Education 

Mechanical dissection, Tod Phod Jod, and worked examples all guide students to deconstruct well-
constructed examples. Students explain how the examples work, identify parts, learn terminology, and 
compare items. Participants of mechanical dissection and Tod Phod Jod get hands-on feedback, while 
students that interact with worked examples can get computerized feedback. They all help students 
learn exemplary design patterns and problem solving strategies. This prepares students both 
intellectually and psychologically to master design challenges and problem solving challenges.  

A few additional learning-by-taking-apart techniques that are used for teaching programming are 
noteworthy. These emphasize code comprehension, with the philosophy that it is important that students 
understand code before, or as, they learn to write code on their own. This stands in contrast to the 
typical emphasis on code writing. There is evidence that students who are unable to understand code 
samples are unable to write similar ones accurately (Lister et al., 2004; Lopez, Whalley, Robbins, & 
Lister, 2008). Some researchers investigate the cognitive processes involved with code comprehension 
(Schulte, Clear, Taherkhani, Busjahn, & Paterson, 2010), while others experiment with curricula 
designed to promote code comprehension. A variety of curricular approaches engage students with 
analyzing and comparing well-written code samples (Astrachan & Reed, 1995; Deimel & Moffat, 1982; 
Kimura, 1979; Linn & Clancy, 1992). Some emphasize the importance of tracing code (Cutts, n.d.; Lopez 
et al., 2008) and understanding the invisible/notional machine of a programming language with the help 
of program visualization aids (du Boulay, O’Shea, & Monk, 1981; Sorva, 2013). One popular technique 
is to ask students to predict what code does. Another is to use completion problems; here students are 
given well-structured code and asked to complete missing sections of it (Deimel & Moffat, 1982; Van 
Merriënboer & Paas, 1990). Completion problems help bridge the gap between comprehending code 
and writing code. Thus, predicting and completing are useful activities for de-construction in addition to 
explaining, comparing, and labeling.  



Constructionism 2018, Vilnius, Lithuania 

229 

 

Learning From Intentional Errors and Bugs 

Given that budding bicycle mechanics and fashion designers typically gain mastery by fixing and 
mending broken things, it follows that an educator could systematically present a collection of broken 
items to students to provide knowledge of common problems, and practice with fixing them. Neither 
mechanical dissection nor Tod Phod Jod take this approach, perhaps due to the logistical challenges 
of doing this with physical objects. This approach is used to some extent in math and CS education, 
through intentional errors and bugs. Here, the instructional designer intentionally places a carefully 
designed error or bug in an otherwise well-built example to highlight a key concept, common error, or 
common misconception.  

Although people can learn from their own mistakes (Duncker, 1945), this is often serendipitous. Could 
learning be more comprehensive and efficient if instruction included intentional errors? This question 
sparks controversy. Behavioral psychologists view this approach as undesirable because it may 
introduce or reinforce misconceptions. Several math education researchers who use intentional errors 
view the behaviorist philosophy as normative, and characterize their own use of them as controversial 
(Isotani et al., 2011; Tsamir & Tirosh, 2003; Tsovaltzi et al., 2010). In contrast, several theories support 
the idea that intentional errors can promote learning. These include the theories of cognitive dissonance 
(Festinger, 1957, 1962), negative knowledge (Kaess & Zeaman, 1960; Oser, Näpflin, Hofer, & Aerni, 
2012), impasse-driven learning (VanLehn, 1988), learning from errors (Ohlsson, 1996), and overlapping 
waves (Siegler, 2002). Learning from intentional bugs may ease the pain of debugging one’s own 
programs. Researchers of intentional errors hypothesize that they may ultimately reduce frustration and 
increase feelings of competency.  

Learning Through Effective Practice 

Most of us are familiar with the proverb practice makes perfect, but what does education research have 
to say about practice? The testing effect is a well-known phenomenon. Researchers have found that 
frequent quizzes provide retrieval practice that helps students learn, retain, and transfer knowledge. 
This is most successful if tests are distributed/spaced over time, if they engage learners in effortful recall 
rather than rote memorization, and if feedback is given (P. C. Brown, Roediger III, & McDaniel, 2014; 
Dunlosky, Rawson, Marsh, Nathan, & Willingham, 2013; Roediger & Butler, 2011). 

Some education researchers view practice from a metacognitive perspective. Palincsar and Brown 
introduced the reciprocal teaching pedagogy, which guides teachers to explicitly teach metacognitive 
strategies and encourage students to practice these strategies (Palincsar & Brown, 1984). Singley and 
Anderson researched the role of practice in developing the ability to transfer knowledge from one 
context to another (Singley & Anderson, 1989). K. Anders Ericsson and colleagues introduced the idea 
of deliberate practice in response to longstanding beliefs that expertise is innate and that experts don’t 
have to practice much. Considering domains such as chess, music, sports, and writing, they found that 
a lot of time spent on practice does not necessarily lead to progress. In order for practice to be effective 
it must have certain qualities: deliberate practice is focused, effortful, and individualized by a teacher or 
coach to address weaknesses and build strengths. Although deliberate practice is usually not enjoyable, 
people do it to master a domain (Ericsson & Charness, 1994).  

Many computing teachers engage their students with blocked practice. For example, topic A is 
introduced and students practice topic A. Then topic B is introduced and students practice topic B, and 
so on. Education psychology researchers have found that distributing practice over time and interleaving 
topics is superior to blocked practice. It is also helpful to scaffold instruction from concrete to abstract, 
balance examples with problem solving, provide feedback, and consider students’ prior knowledge 
(Dunlosky et al., 2013; Koedinger, Booth, & Klahr, 2013). Practice correlates positively with developing 
programming skills (Douce, Livingstone, & Orwell, 2005; Macnamara, Hambrick, & Oswald, 2014; 
Ventura Jr., 2005). The Leeds group recommends that teachers frequently give students practice 
problems to develop automaticity with basic programming skills (Lister et al., 2004). Kranch studied 
novice programmers and argues that they need plenty of practice with fundamentals (Kranch, 2011). 
Unfortunately, many beginning students say they lack the time and motivation to practice (Kinnunen & 
Malmi, 2006).  



Constructionism 2018, Vilnius, Lithuania 

230 

 

Research Questions 

• How can a de-constructionist approach be realized in a programming class?  

• What are students’ attitudes about this approach? 

Method 

I conducted a design based research study. Design based research involves iterative experimentation 
in authentic settings such as classrooms; it typically involves a curricular intervention and cooperation 
with teachers (A. L. Brown, 1992; Collins, 1990). “Design experiments have both a pragmatic bent – 
‘engineering’ particular forms of learning – and a theoretical orientation – developing domain-specific 
theories by systematically studying those forms of learning and the means of supporting them” (Cobb, 
Confrey, DiSessa, Lehrer, & Schauble, 2003, p. 9). I conducted a usability study, two pilot studies, and 
a semester-long experiment. Here I report on parts of the semester-long experiment, for which I 
designed web-based de-constructionist practice problems for learning to program with Python.  

Context and Participants  
The study was conducted in cooperation with the CS department of an urban public research university 
in the northeast United States. In 2015 the university had ~28.5k undergraduate students: 51% female; 
11% Asian; 13% African American/Black; and 55% White. The study involved Professors Town and 
Park (pseudonyms). Each taught two sections of an introductory CS1-Python course with (N=87) 
undergraduate students overall. Both CS majors and non-majors attended the course. 15% of the 
students were female; 24% identified as a (non-Caucasian, non-Asian) racial or ethnic minority. I was 
the lab instructor and developed the activities for the weekly labs. 

I developed a problems set for each lab starting with week 4, and iteratively designed problems for the 
following week for a total of ten labs. I used the Runestone Interactive e-book system to create web-
based practice problems (Ericson et al., 2015; Miller & Ranum, 2014). Runestone has a unique 
collection of components that provide interactivity and real-time feedback. In addition to components for 
multiple choice and free response questions, several components help students explore code through 
interactive code reading. The clickable component (See Figure 2) allows the student to click on one or 
more sections of code to identify key features. The codelens component (See Figure 3) provides 
program visualization as the user steps through code line by line (Cross, Hendrix, & Barowski, 2011; 
Guo, 2013). Using the drag ‘n drop component (See Figure 4), the user clicks and drags items from one 
column to match items in another. With the Parsons problem component, the user re-orders scrambled 
code (Parsons & Haden, 2006). Several components require students to write code. The author may 
supply starter code (to be completed or changed), or ask the student to write code from scratch. The 
author may also supply unit tests, to test the user’s code and supply feedback. Practice problems related 
to debugging can be created with any of these components.  

 

 

 

Figure 2. Clickable  Figure 3. Codelens (Guo, 2013) Figure 4. Drag ‘n Drop  

As a guide I used an instructional design model for de-construction (Griffin, 2016), which I refined during 
the experiment (See Figure 1). Following the model, the practice problems progressed from easier 
reading and tracing problems (that involved explaining, identifying, labelling, predicting, and comparing) 



Constructionism 2018, Vilnius, Lithuania 

231 

 

to harder ones that required writing code. Most problems involved short code segments. The problem 
sets incorporated distributed practice and interleaving. Students who finished before the lab period 
ended were free to leave. Students worked individually but could consult with classmates, with me, or 
my teaching assistant. A student who completed all ten labs interacted with 109 practice problems, ~11 
per lab. 

The treatment group (Bugs) and control group (NoBugs) were each comprised of two lab sections, one 
for each teacher. The Bugs group got 22 practice problems with bugs; the NoBugs group got 22 similar 
reading/tracing problems without bugs. Thus, ~80% of the problems were common; ~20% were specific 
to condition. Debugging problems were generally introduced as follows. For a given topic, problems 
with correct example code were introduced first. Next, easy problems with bugs were introduced, such 
as ones where the bug location was shown, which the student was asked to explain, categorize, or fix. 
Then more difficult problems were introduced, such as ones that required finding a bug. (These are not 
hard and fast rules.)  

Timeline 
The course spanned a 14-week semester, with two 80-min lectures and one 2-hour lab per week. Class 
time was devoted to lectures, lab time to practice problems. I met with the professors weekly. They 
taught the same topics with the same textbook and gave similar exams.  

Instruments and Procedures 

At the end of the semester an online survey was administered to gauge students’ attitudes about the 
practice problems. It had the following Likert-scale questions: 

1) Indicate your level of agreement with the following statement: The "Interactive Python" e-book 
exercises during lab helped me to learn Python (strongly disagree, disagree, neutral, agree, strongly 
agree). 

2) In general, I found the e-book exercises to be: (too easy, about the right level of difficulty, too hard) 

3) I recommend that in the future, the labs have: (fewer e-book exercises, about the same number, 
more) 

4-5) Did you like the {reading/tracing, writing} exercises? (strong dislike, dislike, neutral, like, strong 
like) 

6-7) Do you think the {reading/tracing, writing} exercises helped you learn Python? (not helpful, 
neutral, helpful, very helpful) 

The Bugs group got two additional questions, about liking and learning from the debugging problems. 
Additional instruments to measure learning gains were administered; that data will be reported in a 
future publication. Throughout the experiment I recorded researcher memos and took field notes about 
students’ interactions with the practice problems in the labs. 

Results  

This section summarizes the responses to the post attitudes survey.  

Attitudes About Overall Learning, Difficulty, and Quantity. A majority of students responded positively 
about overall learning, difficulty, and quantity of practice problems. Of the (N=76) survey respondents, 
92% agreed or strongly agreed that the practice problems helped them to learn Python. 88% thought 
the level of difficulty was about right; 8% found them too easy; 4% too hard. Regarding dosage, 62% 
recommended the same amount for future courses; 11% recommended fewer, 28% more.  

Attitudes about Liking the Practice Problems. A majority of students liked or strongly liked each type of 
practice problem. (N=75) students responded to the question about how much they liked the 
reading/tracing problems. 83% liked or strongly liked them; 8% disliked them; 9% were neutral. Of the 
(N=76) students who responded to the question about liking the code writing problems. 87% liked or 
strongly liked them; 3% disliked them; 8% were neutral. (N=39) students in the Bugs group responded 
about liking the debugging problems. 69% liked or strongly liked them; 5% disliked them; 26% were 
neutral.  



Constructionism 2018, Vilnius, Lithuania 

232 

 

Attitudes About Learning From the Practice Problems. A majority of students thought both the 
reading/tracing and the writing problems helped them to learn, while 38% thought so about the 
debugging problems. (N=76) students answered the question about learning from the reading/tracing 
problems; 82% thought they were helpful or very helpful; 3% thought they were not helpful; 16% were 
neutral. About the code writing problems, 96% of (N=76) thought they were helpful or very helpful; 1% 
thought they were not helpful; 3% were neutral. For learning from debugging, an extra response 
category was added (Detrimental) because the review of the literature suggests that some think errors 
may deter learning. Of the (N=39) students in the Bugs group who responded, 38% thought they were 
helpful or very helpful; 15% thought they were not helpful; one student (3%) thought they were 
detrimental; 44% were neutral.  

Discussion  

This design-based research study implemented and further developed the emerging pedagogy of de-
constructionism. In a 10-week intervention with a quasi-experimental design, undergraduates in a 
Python programming class solved sets of practice problems designed with a de-constructionist 
approach. This approach emphasizes ample practice with taking apart well-built examples, some of 
which have intentional bugs. Before writing code for a given topic, students engaged with interactive 
reading and tracing code by explaining, comparing, identifying, labelling, matching, tracing, and 
unscrambling. The treatment group got some problems with intentional bugs. 

The study sought to understand students’ attitudes about learning with a de-constructionist approach. 
According to the post attitudes survey, a majority of students liked each type of practice problem (for 
reading/tracing, writing, and debugging). While a majority of students thought the reading/tracing and 
writing problems were helpful for learning, only 38% thought so about the debugging problems. Further 
research is warranted to determine if it is useful to help students see the potential benefits of learning 
from intentional bugs, e.g. to help one become aware of common errors and learn how to repair them.  

As the lab instructor, I observed that students’ interactions with the practice problems were generally 
smooth; they appeared motivated to complete the problem sets. I was assured that all students who 
attended the lab interacted with the key course concepts. Students appreciated the immediate feedback 
and the chance to re-try until they completed a problem successfully. Approximately a third to half of 
the students finished during the first hour of the 2-hour lab period. Usually several took the entire period.  

As the instructional designer, my experience with Runestone Interactive was generally positive. Despite 
being a fledgling system, it is reliable and responsive, and has a rich variety of components. Creating 
the practice problems was somewhat laborious. It required encoding them with the reStructuredText 
language, but Runestone is evolving to streamline this process. I found that implementing distributed 
practice and interleaved practice was more difficult and time consuming than implementing blocked 
practice. 

As the researcher, in some respects it was beneficial for me to also have the roles of lab instructor and 
instructional designer. This was an early-stage, exploratory study that implemented the Model for De-
Construction for the first time (See Figure 1). The lab exercises were iteratively designed weekly based 
on observations from the previous week. In future studies, having two or three people perform these 
roles would be advantageous. 

Future plans include incorporating constructionist activities into the lab period. Rather than having 
students leave when they finish the problem sets, students could work on creative projects. Ideally the 
rubrics would be such that students who need more time to master the practice problems are not 
penalized for having less time to work on creative projects. This approach is common with the mastery 
learning approach (Bloom, 1968; Griffin, Pirmann, & Gray, 2016). Unfortunately, many CS professors 
are unaccustomed to designing rubrics for creative projects, such as the professors in this study who 
have doctorates in mathematics and computer science. Introducing constructionism into such learning 
environments would be valuable for both teachers and students. Students could have motivating design 
experiences, and teachers could learn how to design, manage, and evaluate creative projects. 



Constructionism 2018, Vilnius, Lithuania 

233 

 

Additional future plans include adding appealing graphics, and gamification elements. A priority would 
be to add these elements to debugging and reading/tracing activities, since students already view writing 
code as a worthwhile activity. Having students collaborate on de-constructionist activities, e.g. with Pair 
Programming, is worth exploring. Also desirable would be to differentiate instruction based on prior 
experience and/or demonstrated mastery. 

The constructionist/de-constructionist dialectic is useful for teachers and instructional designers but it is 
not all-inclusive. Other pedagogies are also important, such as ones that teach problem solving or 
systematic approaches to debugging. De-constructionism draws inspiration from both reverse 
engineering and mathematics education. While this study explored de-constructionism as it applies to 
learning programming, it can be implemented for a variety of subjects with both physical and conceptual 
elements. 

References  

Agogino, A. M., Sheppard, S., & Oladipupo, A. (1992). Malking Connections to Engineering During the 
First Two Years. In Frontiers in Education, Proceedings of the Twenty-Second Annual Conference (FIE 
’92) (pp. 563–569). IEEE. 

AP Computer Science Principles. (n.d.). Retrieved January 3, 2018, from 
https://apcentral.collegeboard.org/courses/ap-computer-science-principles 

Astrachan, O., & Reed, D. (1995). AAA and CS 1: The Applied Apprenticeship Approach to CS 1. In 
Papers of the 26th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’95) (pp. 
1–5). ACM. 

Bloom, B. S. (1968). Learning for Mastery. UCLA Evaluation Comment, 1(2). 

Booth, J. L., McGinn, K. M., Young, L. K., & Barbieri, C. (2015). Simple Practice Doesn’t Always Make 
Perfect: Evidence From the Worked Example Effect. Policy Insights from the Behavioral and Brain 
Sciences, 2(1), 24–32. 

Boytchev, P. (2015). Constructionism and Deconstructionism. In Constructivist Foundations (Vol. 10, 
pp. 355–369). 

Bransford, J. D., Brown, A. L., Cocking, R. R., Donovan, M. S., & Pellegrino, J. W. (Eds.). (2000). How 
People Learn: Brain, Mind, Experience, and School: Expanded Edition. Washington DC: National 
Academy Press. 

Brown, A. L. (1992). Design Experiments: Theoretical and Methodological Challenges in Creating 
Complex Interventions in Classroom Settings. Journal of the Learning Sciences, 2(2), 141–178. 

Brown, P. C., Roediger III, H. L., & McDaniel, M. A. (2014). Make it Stick: The Science of Successful 
Learning. Cambridge MA; London England: The Belknap Press of Harvard University Press. 

Catrambone, R. (1998). The Subgoal Learning Model: Creating Better Examples So That Students Can 
Solve Novel Problems. Journal of Experimental Psychology: General, 127(4), 355–376. 

Chi, M. T. H., De Leeuw, N., Chiu, M.-H., & Lavancher, C. (1994). Eliciting Self-Explanations Improves 
Understanding. Cognitive Science, 18(3), 439–477. 

Chikofsky, E. J., & Cross, J. H. (1990). Reverse Engineering and Design Recovery: A Taxonomy. In 
IEEE Software (Vol. 7, pp. 13–17). 

Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design Experiments in 
Educational Research. Educational Researcher, 32(1), 9–13. 

Collins, A. (1990). Towards a Design Science of Education, Technical Report No. 1. Center for 
Technology in Education. (pp. 1–9). New York NY: Center for Technology in Education. 

Conati, C., & VanLehn, K. (2000). Toward Computer-Based Support of Meta-Cognitive Skills: a 
Computational Framework to Coach Self-Explanation. International Journal of Artificial Intelligence in 
Education, 11(1), 389–415. 



Constructionism 2018, Vilnius, Lithuania 

234 

 

Cross, J. H., Hendrix, T. D., & Barowski, L. A. (2011). Combining Dynamic Program Viewing and Testing 
in Early Computing Courses. In Computer Software and Applications Conference IEEE 35th Annual 
(pp. 184–192). IEEE. 

Cutts, Q. (n.d.). Quintin Cutts - Teaching Programming: Too much doing, not enough understanding. 
Retrieved March 13, 2018, from https://www.youtube.com/watch?v=Pim4aYfiZiY 

Deimel, L. E., & Moffat, D. V. (1982). A More Analytical Approach to Teaching the Introductory 
Programming Course. In J. Smith & M. Schuster (Eds.), Proceedings of the NECC (pp. 114–118). 
Columbia: The University of Missouri. 

Di Eugenio, B., Green, N., Alzoubi, O., Alizadeh, M., Harsley, R., & Fossati, D. (2015). Worked-out 
Examples in a Computer Science Intelligent Tutoring System. In Proceedings of the 16th Annual 
Conference on Information Technology Education (pp. 121–121). ACM. 

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of programming: a 
review. ACM Journal of Educational Resources in Computing, 5(3), 1–13. 

du Boulay, B., O’Shea, T., & Monk, J. (1981). The black box inside the glass box: presenting computing 
concepts to novices. International Journal of Man-Machine Studies, 14, 237–249. 

Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5). 

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving Students’ 
Learning With Effective Learning Techniques: Promising Directions From Cognitive and Educational 
Psychology. Psychological Science in the Public Interest, 14(1), 4–58. 

Ericson, B. J., Guzdial, M. J., & Morrison, B. B. (2015). Analysis of Interactive Features Designed to 
Enhance Learning in an Ebook. In Proceedings of the 11th International Conference on Computing 
Education Research (ICER ’15) (pp. 169–178). ACM. 

Ericsson, K. A., & Charness, N. (1994). Expert performance: Its structure and acquisition. American 
Psychologist, 49(8), 725–747. 

Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press. 

Festinger, L. (1962). A theory of cognitive dissonance (Vol. 2). Stanford CA: Stanford University Press. 

Griffin, J. M. (2016). Learning by Taking Apart: Deconstructing Code by Reading, Tracing, and 
Debugging. In Proceedings of the 17th Annual Conference on Information Technology Education 
(SIGITE ’16) (pp. 148–153). ACM. 

Griffin, J. M., Pirmann, T., & Gray, B. (2016). Two Teachers, Two Perspectives on CS Principles. In 
Proceedings of the 47th ACM Technical Symposium on Computer Science Education (SIGCSE ’16) 
(pp. 461–466). ACM. 

Guo, P. J. (2013). Online Python Tutor: Embeddable Web-Based Program Visualization for CS 
Education. In Proceeding of the 44th ACM Technical Symposium on Computer Science Education (pp. 
579–584). ACM. 

Guzdial, M. (2003). A Media Computation Course for Non-Majors. In Proceedings of the 8th annual 
conference on Innovation and Technology in Computer Science Education - ITiCSE ’03. 

Harsley, R., & Morgan, S. (2015). Learning Together : Expanding the One-To-One ITS Model for 
Computer Science Education, 9–10. 

Isotani, S., Adams, D., Mayer, R. E., Durkin, K., Rittle-Johnson, B., & McLaren, B. M. (2011). Can 
erroneous examples help middle-school students learn decimals? Proceedings of the Sixth European 
Conference on Technology Enhanced Learning: Towards Ubiquitous Learning (EC-TEL-2011), 1–14. 

Kaess, W., & Zeaman, D. (1960). POSITIVE AND NEGATIVE KNOWLEDGE OF RESULTS ON A 
PRESSEY-TYPE PUNCHBOARD. Journal of Educational Psychology, 60(1), 12–17. 

Kalyuga, S. (2007). Expertise Reversal Effect and Its Implications for Learner-Tailored Instruction. 
Educational Psychology Review, 19(4), 509–539. 



Constructionism 2018, Vilnius, Lithuania 

235 

 

Kick, R., & Trees, F. P. (2015). AP CS Principles: Engaging, Challenging, and Rewarding. ACM Inroads, 
6(1), 42–45. 

Kimura, T. (1979). Reading before Composition. In Proceedings of the 10th SIGCSE Technical 
Symposium on Computer Science Education - SIGCSE ’79 (pp. 162–166). 

Kinnunen, P., & Malmi, L. (2006). Why Students Drop Out CS1 Course? In Proceedings of the second 
International workshop on Computing Education Research - ICER ’06 (pp. 97–108). ACM. 

Koedinger, K. R., Booth, J. L., & Klahr, D. (2013). Instructional Complexity and the Science to Constrain 
It. Science, 342(6161), 935–937. 

Kranch, D. A. (2011). Teaching the Novice Programmer: A Study of Instructional Sequences and 
Perception. Education and Information Technologies, 17(3), 291–313. 

Linn, M. C., & Clancy, M. J. (1992). The Case for Case Studies of Programming Problems. 
Communications of the ACM, 35(3), 121–132. 

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., … Thomas, L. (2004). A 
Multi-National Study of Reading and Tracing Skills in Novice Programmers. ACM SIGCSE Bulletin, 
36(4), 119. 

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships Between Reading, Tracing and 
Writing Skills in Introductory Programming. In Proceedings of the 4th International Workshop on 
Computing Education Research (ICER ’08) (pp. 101–112). ACM. 

Macnamara, B. N., Hambrick, D. Z., & Oswald, F. L. (2014). Deliberate practice and performance in 
music, games, sports, education, and professions: A meta-analysis. Psychological Science, 25(8), 
1608–1618. 

Malan, D. J., & Leitner, H. H. (2007). Scratch for Budding Computer Scientists. ACM SIGCSE Bulletin, 
39(1), 223–227. 

Margulieux, L. E., Catrambone, R., & Guzdial, M. (2016). Employing subgoals in computer programming 
education. Computer Science Education, 26(1), 44–67. 

Margulieux, L. E., Morrison, B. B., Guzdial, M., & Catrambone, R. (2016). Training Learners to Self-
Explain: Designing Instructions and Examples to Improve Problem Solving. In Proceedings of 
International Conference of the Learning Sciences, ICLS (Vol. 1, pp. 98–105). 

Miller, B., & Ranum, D. (2014). Runestone Interactive: Tools for Creating Interactive Course Materials. 
In Proceedings of the First ACM Conference on Learning @ Scale (L@S ’14) (pp. 213–214). ACM. 

Mobile CSP. (n.d.). Retrieved May 1, 2015, from http://mobile-csp.org 

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, Context, and Worked Examples in 
Learning Computing Problem Solving. In Proceedings of the 11th International Conference on 
Computing Education Research (ICER ’15) (pp. 21–29). ACM. 

Murer, M., Fuchsberger, V., & Tscheligi, M. (2017). Un-Crafting: De-Constructive Engagements with 
Interactive Artifacts. In Proceedings of the Ninth International Conference on Tangible, Embedded, and 
Embodied Interaction (TEI ’17) (pp. 67–77). ACM. 

Ohlsson, S. (1996). Learning from error and the design of task environments. International Journal of 
Educational Research, 25(5), 419–448. 

Oser, F., Näpflin, C., Hofer, C., & Aerni, P. (2012). Towards a theory of Negative Knowledge (NK). 
Almost-mistakes as drivers of episodic memory amplification. Professional and Practice-Based 
Learning, 6, 53–70. 

Palincsar, A. S., & Brown, A. L. (1984). Reciprocal Teaching of Comprehension Monitoring Activities. 
Cognition and Instruction, 1, 117–175. 

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc. 



Constructionism 2018, Vilnius, Lithuania 

236 

 

Papert, S. (1987). Constructionism: A New Opportunity for Elementary Science Education (NSF Award 
Abstract #8751190). Retrieved from https://nsf.gov/awardsearch/showAward?AWD_ID=8751190 

Parsons, D., & Haden, P. (2006). Parson’s Programming Puzzles: A Fun and Effective Learning Tool 
for First Programming Courses. In Proceedings of the 8th Australasian Conference on Computing 
Education (Vol. 52). Australian Computer Society, Inc. 

Patitsas, E., Craig, M., & Easterbrook, S. (2013). Comparing and Contrasting Different Algorithms Leads 
to Increased Student Learning. Proceedings of the 9th International Conference on Computing 
Education Research (ICER ’13), 145–152. 

Rashtriya Avishkar Abhiyan. (n.d.). Retrieved September 21, 2017, from 
http://mhrd.gov.in/sites/upload_files/mhrd/files/raa/Order_of_RAA_Guidelines.pdf 

Regan, M., & Sheppard, S. (1996). Interactive Multimedia Courseware and the Hands-On Learning 
Experience: An Assessment Study. Journal of Engineering Education, 85(2), 123–132. 

Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and 
procedural knowledge? An experimental study on learning to solve equations. Journal of Educational 
Psychology, 99(3), 561–574. 

Roediger, H. L., & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends 
in Cognitive Sciences, 15(1), 20–27. 

Roschelle, J., & Linde, C. (1996). Toy Dissection Formative In-Depth Assessment Report. Institute for 
Research on Learning (IRL),Palo Alto, CA. 

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J. H. (2010). An introduction to program 
comprehension for computer science educators. In Proceedings of the 2010 ITiCSE working group 
reports on Working group reports - ITiCSE-WGR ’10 (p. 65). 

Seabrook, J. (2010, September). How to Make It. The New Yorker. Retrieved from 
http://www.newyorker.com/magazine/2010/09/20/how-to-make-it 

Self, J. (1997). From constructionism to deconstructionism: anticipating trends in educational styles. 
European Journal of Engineering Education, 22(3), 295–307. 

Sheppard, S. D. (1992). Mechanical Dissection: An Experience in How Things Work. In Proceedings of 
the Engineering Education Conference: Curriculum Innovation & Integration (pp. 6–10). 

Siegler, R. S. (2002). Microgenetic Studies On Self-Explanation. In N. Granott & J. Parziale (Eds.), 
Microdevelopment: Transition Processes in Development and Learning (pp. 31–58). Cambridge 
University Press. 

Singley, M. K., & Anderson, J. R. (1989). The Transfer of Cognitive Skill. Cambridge, MA: Harvard 
University Press. 

Sorva, J. (2013). Notional machines and introductory programming education. ACM Transactions on 
Computing Education, 13(2), 1–31. 

Sudol-DeLyser, L. A., Stehlik, M., & Carver, S. (2012). Code comprehension problems as learning 
events. Proceedings of the 17th ACM Annual Conference on Innovation and Technology in Computer 
Science Education - ITiCSE ’12, 81. 

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 
12(2), 257–285. 

Sweller, J. (2006). The worked example effect and human cognition. Learning and Instruction, 16(2), 
165–169. 

Sweller, J., & Cooper, G. A. (1985). The Use of Worked Examples as a Substitute for Problem Solving 
in Learning Algebra. Cognition and Instruction, 2(1), 59–89. 

The Beauty and Joy of Computing. (n.d.). Retrieved August 15, 2015, from http://bjc.berkeley.edu/ 



Constructionism 2018, Vilnius, Lithuania 

237 

 

Tod Fod Jod: To Encouage Students to Discover, Experiment, Innovate. (2012, May 30). Office of 
Adviser to the Prime Minister on Public Information Infrastructure and Innovations. Retrieved from 
https://www.slideshare.net/pmpiii/tod-fod-jod 

Tsamir, P., & Tirosh, D. (2003). In-service mathematics teachers’ views of errors in the classroom. In 
International Symposium: Elementary Mathematics Teaching. Prague. 

Tsovaltzi, D., Melis, E., McLaren, B. M., Meyer, A., Dietrich, M., & Goguadze, G. (2010). Learning from 
Erroneous Examples: When and How do Students Benefit from them? In Proceedings of the European 
Conference on Technology Enhanced Learning, LNCS (vol. 6383). Heidelberg: Springer. 

Van Merriënboer, J., & Paas, F. G. W. C. (1990). Automation and Schema Acquisition in Learning 
Elementary Computer Programming: Implications for the Design of Practice. Computers in Human 
Behavior, 6(3), 273–289. 

VanLehn, K. (1988). Towards a Theory of impasse-driven Learning. Learning Issues for Intelligent 
Tutoring Systems, 19–41. 

Ventura Jr., P. R. (2005). Identifying Predictors of Success for an Objects-First CS1. Computer Science 
Education, 15(3), 223–243. 

Vishnoi, A. (2012). NIC lesson on learning: Tod-Fod-Jod. The Indian Express. New Delhi India. 
Retrieved from http://archive.indianexpress.com/news/nic-lesson-on-learning-todfodjod/1015042/0 

Wood, W. H., & Agogino, A. M. (1996). Engineering Courseware Content and Delivery: The NEEDS 
Infrastructure for Distance-Independent Education. Journal of the American Society for Information 
Science, 47(11), 863–869. 

Wu, C. (2008). Some Disassembly Required. In ASEE Prism (Vol. 18, pp. 56–59). American Society for 
Engineering Education. 
 

 

  



Constructionism 2018, Vilnius, Lithuania 

238 

 

Mind the Gap: Teaching High School Students 
about Wealth Inequality through Agent-based 
Participatory Simulations 

Yu Guo, yuguo2012@u.northwestern.edu  
Northwestern University, USA 

Uri Wilensky, uri@northwestern.edu 
Northwestern University, USA 

Abstract 
This research paper presents a design-based research study centring on a constructionist curricular 
unit, called Mind the Gap (MTG), which was designed to help high school students learn about a 
complex and controversial social issue in the United States—wealth inequality. The four-day-long unit 
was implemented in eight economics classes with a total of more than 200 students across two high 
schools with vastly different demographics. In both schools, students’ engagement with the unit was 
high. Preliminary data analysis has shown that students 1) made connections between their simulation 
experience and the real world to reason about wealth inequality, and 2) showed attitudinal changes 
favouring more equality after the unit.   

MTG revolves around a series of three participatory simulations, which are microworlds that allow 
students to project themselves into through their own avatars like in a multiplayer online game and 
interact with the virtual environments in order to “figure out” the rules embedded in these simulations. 
This work contributes to both the literature of designing constructionist learning environment and 
people’s perception and understanding of wealth inequality. In democratic countries, people’s 
understanding of inequality is the key to achieve more equal societies. 

 

Mind the Gap ABPS. Upper left: teacher’s view; the other four: students’ view 

Keywords 
agent-based participatory simulation; wealth inequality; economics curriculum; complex social 
phenomena; artificial society   



Constructionism 2018, Vilnius, Lithuania 

239 

 

Introduction  

Today, American people face many controversial social issues that deeply divide the country. Examples 
include wealth inequality, racial segregation, and climate change. Although natural and social scientists 
have been studying these problems and have provided accumulating evidence for causes and 
consequences, when people think about these problems, they tend to form very polarized views based 
on the vastly different local environments they are in (e.g., Xu & Garand 2010), political beliefs (e.g., 
Kteily, Sheehy-Skeffington, & Ho, 2017), and media coverage (e.g., Diermeier et al. 2017). The scientific 
methods and evidence, which can help people understand the mechanisms and consequences of many 
social issues, remain underutilized in people’s reasoning about complex social problems.  

Through the lens of complexity science, wealth inequality, racial segregation, and climate change can 
be seen as patterns that emerge from interactions among constituting elements. The system level 
patterns at very large scale can be strikingly different from the behavior of the constituting elements at 
the local level, making these complex systems unintuitive and hard for people to understand (Wilenksy 
& Resnick, 1999; Chi, 2005; Penner, 2000; 2001). Agent-based modeling (ABM) is a computational 
modeling method that scientists use to study these complex systems. With the ABM approach, elements 
of complex systems are modeled as autonomous agents, which have their own properties and 
behaviors. In an ABM, numerous such agents interact with each other and give rise to complex patterns 
at the system’s level.  

ABM is also an effective way to help students understand complex systems. Extensive research has 
been done on using NetLogo (Wilensky, 1999)—an agent-based modeling tool that dynamically 
simulate and visualize complex systems—to create instructional interventions in STEM education. 
Evidence show that these curricula supported students’ understanding of complex phenomena in a 
variety of scientific subjects, including biology, chemistry, and physics (e.g., Wilensky & Reisman, 2006; 
Levy & Wilensky, 2008; Sengupta & Wilensky, 2009).  

Teaching about complex social phenomena is an understudied area (Hjorth & Krist, 2016). While social 
phenomena such as wealth inequality can be treated as complex systems, learning about these 
phenomena presents new challenges. Hjorth & Wilensky (2014) designed and taught urban planning 
and policy reasoning with an agent-based models and found that compared with physical or biological 
systems with constituting elements like molecules or animals, social systems—composed of people 
with wants and needs—are much more heterogeneous and therefore more difficult for students to 
reason about (Hjorth & Krist, 2016).  

A special form of ABM—participatory simulation—can be especially promising for helping students 
understand complex social issues. Agents’ behavior in regular ABMs are pre-programmed, but agents 
in agent-based participatory simulations (ABPS) are controlled directly by students, who project 
themselves in to the models by taking on the roles of the agents and acting out their behaviors. For 
example, the Disease participatory simulation (Wilensky & Stroup, 1999) models the spread of a 
contagious disease across a population. In this simulation, each student uses a computer to control an 
avatar’s movements in a shared virtual world. When an infected avatar touches a healthy avatar, there 
is a certain chance that the healthy one also becomes infected. The simulation starts with nobody being 
infected, but when the teacher randomly chooses a student to infect, the simulation usually turns into a 
chasing game, in which the infected student tries to infect as many other students as possible. Once 
others are infected, they in turn chase those who are not infected. This participatory simulation teaches 
an important complex systems idea about logistic growth: no matter what the students do at the 
individual level, the larger pattern of infection across the population remains the same—the epidemic 
starts with a very slow spreading speed, but as it develops, it reaches a breakout point, after which the 
number of infected people skyrockets, and finally the progress levels off, when the whole population is 
infected. Such an approach not only teaches students’ the dynamics of complex systems, but also 
brings out students’ emotions, desires, and decisions, which can be productive elements that contribute 
to understanding complex social issues. 



Constructionism 2018, Vilnius, Lithuania 

240 

 

ABPS as Constructionist learning environments  
Constructionist learning environments are designed to support students’ constructing knowledge and 
artifacts (Papert, 1980). Core features of these learning environments include leveraging students’ prior 
knowledge—tapping into students existing experience, closeness to objects (Papert & Harel, 1991)—
bringing student close to objects that they can manipulate, and epistemological pluralism (Turkle & 
Papert, 1992)—valuing different ways of knowing.  

Microworlds are a genre of constructionist learning environments in which students explore a very 
specific aspect of the world. In this sense, a microworld is a model of the real or a hypothetical world, in 
which the rules and regularities that govern the world are beneath the surface as far as the students’ 
direct experience is concerned, but the rules and regularities manifest themselves by transforming the 
states of concrete objects as students interact with the microworld (Groen & Kieran 1983). Edwards 
(1995) citing Piorlli & Greeno (1988) and Pratt (1991) describes a fundamental aspect of microworlds 
as “the scientific or mathematical phenomenon which the designer intends to introduce to the learner is 
instantiated or embodied in computer code. It is by translating mathematical or scientific regularities into 
procedures and computational objects that the designer constructs a microworld, and this process 
involves a complex series of choices and design decisions.” (Edwards 1995)  

ABPS can be seen as a special type of microworlds, in which models can be executed by participants’ 
following rules in the microworlds and acting out the behavior of elements that they are representing 
(Colella 2000). Students explore these powerful models by becoming part of them. Students construct 
specific runs, or instances, of the model by collectively acting out the rules. These runs become artifacts 
that can be replayed and investigated. In addition, in ABPS, students co-construct theories to explain 
the phenomena that they are part of. The explanation is grounded in students’ individual experience of 
being part of the phenomena and interacting with others in the ABPS. Students construct publicly 
sharable entities and pay collective attention to these entities, which can either be projected on the big 
screen for the whole class to see, or exist ephemerally in the shared virtual space, such as the 
configuration of everybody’s avatar in that space. 

Mind the Gap Curricular Unit 

We designed an ABPS curricular unit, called “Mind the Gap” (Guo & Wilensky, 2018a), for students to 
learn about wealth inequality—a complex and controversial socioeconomic phenomenon.  

Previous studies have shown that most people have misperceptions and misconceptions about wealth 
inequality, such as severely underestimating the extent of wealth inequality in the U.S. and attributing 
the problem solely to individual characteristics, such as work ethic (e.g., Bullock 2008; Hauser & Norton 
2017). Most existing instructional interventions on wealth inequality use multicultural or social justice 
approaches to engage students in knowing factual knowledge, analyzing their social environments, 
critically thinking about diversity, and advocating for possibilities for marginalized groups (Nagda, Gurin, 
& Lopez, 2003; Seider 2011; Mistry, Brown, Chow, & Collins, 2012). These interventions are important 
because they raise students’ awareness of social issues, empower marginalized students, and help 
students avoid deficit thinking. However, students still have difficulties identifying or explaining the 
structural problems of wealth inequality after going through these curricula (e.g., Seider, 2011; Mistry et 
al., 2012). 

Building on a body of work on participatory simulations of social complex phenomena (e.g., Sterman 
1992; Wilensky, 2002; Maroulis & Wilensky, 2004), we use ABPSs to teach the complex and 
controversial socioeconomic topic of wealth inequality. Participatory simulations in STEM education are 
shown to promote engagement (e.g., Colella, 2000; Klopfer, Yoon, & Perry, 2005), improve 
understanding of complex systems mechanisms (e.g., Wilensky & Stroup, 1999; 2002; Stroup & 
Wilensky, 2014; Berland & Wilensky, 2015), and high classroom participation (e.g., Fies & Langman, 
2011). However, less is known about the affordances of participatory simulations in social science 
topics. 

Mind the Gap (MTG) centers on a series of three ABPSs—microworlds in which students’ avatars 
interact with the computer-based virtual environments that represent simplified economies. Instead of 



Constructionism 2018, Vilnius, Lithuania 

241 

 

encompassing all the factors and intricate relations that may contribute to wealth inequality in the real 
world, these microworlds highlight three mechanisms of the phenomenon: 1) emergence, 2) 
randomness, and 3) feedback loops. These ABPSs serve as computational laboratories of social 
systems for students to play the roles of people with different socioeconomic status, explore the rules 
and the structures of the system, experience success and frustration, and make sense of the emergence 
of complex patterns from individuals’ behavior. 

The design of the three ABPSs are based on SugarScape agent-based models (Epstein & Axtell, 1996; 
Li & Wilensky, 2009a, 2009b, 2009c) that allow computational scientist to investigate complex social 
phenomena such as wealth inequality, migration, trade, and epidemics through a bottom up approach—
agents’ following very simple rules. It is surprising for people to see a small set of simple rules, when 
followed by each agent, can generate highly complex patterns at the system level, which are similar to 
real-world social phenomena. 

The original SugarScape models represent a society with two major parts: 1) the “land”, where 
resources (sugar) can be harvested to become people’s wealth; 2) the people, which are computational 
agents that are pre-programmed to find the highest concentration of sugar around them and to “harvest” 
that sugar. The land is represented by a 51 by 51 checkerboard. Each tile on the checkerboard contains 
certain amount of sugar. The people have randomly assigned traits and are randomly placed on the 
checkerboard. 

Our design of MTG ABPSs preserved the basic structures of the SugarScape models, such as the 51 
by 51 checkerboard, the random placement of agents, the random assignments of agent traits, and 
most of the rules. However, in our ABPS models, agents are avatars that are directly controlled by 
students, who can make decisions of what to do next within the constraints of certain rules. Students 
are connected to the virtual space through the HubNet architecture—a client-server technology 
designed for participatory simulations (Wilensky & Stroup, 1999b). Therefore, in MTG ABPSs, students 
not only explore the simulations, they become parts of the simulation. 

Figure 1 shows the teacher’s view of the MTG Equality model. At the center of the view is the 
checkerboard. The grid is added to this figure to visualize the checkerboard. In the real model, the grid 
is not visible to either the teacher or the students. The unicolor of yellow shows that each tile contains 
the same amount of sugar. However, in the other two models, the shades of yellow can differ from tile 
to tile, representing different concentration of sugar—the darker the color, the higher the sugar. Students 
are not supposed to know about the resource distribution. The teacher can hide the checkerboard from 
the students by clicking the “hide-world” button, which makes the whole checkerboard grey and 
students’ avatars invisible. After playing the simulation, in the discussion phase, the teacher can use 
the “show-world” button to show students what kind of world they were in. 

The three plots on the right—a bar graph, a Lorenz curve, and a Gini index plot—show three frequently 
used forms of representation of wealth inequality in economics. The plots automatically update based 
on real time aggregation of the amount of sugar that students own. The “setup” and “go” buttons at the 
upper left corner prepares the model and runs the model. The “sugar-mean” monitor shows the average 
of sugar that students own, and the sugar distribution plot shows a histogram of tile sugar on the 
checkerboard. 



Constructionism 2018, Vilnius, Lithuania 

242 

 

 

Figure 1. MTG Equal Opportunity model teacher’s view (grid added to visualize the checkerboard) 

Students see a different view from the teacher (Figure 2). The red arrowhead at the centre of the view 
is a student’s avatar. Because the avatar has only imperfect local knowledge about its surroundings, it 
can only see a few tiles away in each direction. The yellow cross represents the field of view of the 
avatar.  

 

Figure 2. Students’ View 

A Student can use the “up”, “down”, “left”, and “right” buttons on the left to move their avatar around and 
explore the surroundings. He or she can also use the “harvest” button to collect sugar from the tiles they 
are on. The “sugar” monitor above the buttons show the current amount of sugar that the avatar owns. 
The “message” bar at the top shows real time tips and warnings about the student’s behaviour. The two 
big input boxes on the right are data collection tools, accepting students’ typed answers to two open-
ended questions posted by the teacher during class.  

Students have a few attributes: 

 Vision: how many steps (tiles) away a student can see.  
 Endowment: how many units of sugar a student starts with 
 Metabolism: how many units of sugar is needed for moving one step or doing one harvest 

Students have some actions they can take: 



Constructionism 2018, Vilnius, Lithuania 

243 

 

 Move: by clicking the direction buttons or the keyboard shortcuts, students can move around. Each 
click moves the student by one step and burns metabolism amount of sugar. 

 Harvest: by clicking the harvest button, students harvest all the sugar on the tile that he or she is 
standing on. One harvest burns metabolism amount of sugar. 
 

MTG curricular unit consists a series of three models: 1) Equal Opportunity, 2) Random Assignment, 
and 3) Feedback Loop (with education as an example). Each subsequent model builds on the previous 
one with added complexity that more closely resembles the real world (Figure 3). At the beginning of 
the unit, students are asked an overarching question that drives their inquiry: Why are rich people rich 
while poor people poor?  

 

Figure 3. A series of three MTG models.  
Left: Equal Opportunity model; middle: Random Assignment model; right: Feedback Loop model 

The Equal Opportunity model (Guo & Wilensky, 2018b) allows students to experience that even 
everybody starts with equal opportunities, inequality can still emerge due to individual differences. In 
Equal Opportunity, sugar is evenly distrusted, as shown by the unicolour yellow. Students are randomly 
placed on the checkerboard with the same personal traits, including equal vision, endowment, and 
metabolism. Students strive to become the richest in the class by harvesting as much sugar as possible. 
Inequality inevitably emerge due to differences in students’ strategies, understanding of rules, and 
motivation. To answer the question about why rich people are rich while poor people are poor in this 
simulation, given that everyone starts with equal opportunity, it is fair to say that personal differences, 
such as intelligence, efforts, and work ethics determine wealth status. 

The Random Assignment model (Guo & Wilensky, 2018c) allows students to experience the power of 
an uncontrollable force that contributes to wealth inequality. In this model, sugar is unevenly distributed 
across the checkerboard. Students are randomly placed on the board and are also randomly assigned 
different visions, metabolisms, and endowments. Therefore, the initial conditions that a student starts 
with to a large extent determine the student’s course of life in this simulation. Students should realize 
that when faced with the force of randomness, the draw of luck, instead of personal abilities, usually 
shapes the course of life. 

The Feedback Loop model (Guo & Wilensky, 2018d) allows students to experience another type of 
strong force that shapes people’s course of life. Feedback loops, usually called virtuous circles or vicious 
circles, are systematized or institutionalized forces. Unlike randomness, which is not biased against 
anyone, feedback loops are usually socially constructed, privileging certain groups of people at the cost 
of oppressing other groups. This model uses education as an example to let students experience that 
depending on the cost of education, it can become a force that either closing or widening the gap 
between the rich and the poor. This model gives students the opportunity to “go to school” by pressing 
a button. While going to school has benefits, such as boosting earning per harvest by 130% and 
expanding vision by one step, it also has monetary and opportunity costs. When education is less 
expensive, all students can make use of it to improve their vision and earning. However, when education 
is expensive, it becomes a virtuous circle for the rich and a vicious circle for the poor. As the result, the 
rich become richer and the poor become poor, closely reflecting a crucial inequality issue in the real 
world. 



Constructionism 2018, Vilnius, Lithuania 

244 

 

For each model, the teacher facilitates the students to go through a five-step inquiry cycle: introduction, 
2) question, 3) simulation, 4) reflection, and 5) connection (See Figure 4).                      

 

Figure 4. A Five-Step Inquiry Cycle. 

In Step 1, students are introduced to the interface and rules of the model. In Step 2, students are asked 
to think about what makes rich people rich and poor people poor in that specific model. In Step 3, 
students play the simulation and compete to become the wealthiest person. In Step 4, whole class 
discussions are held for students to reflect on their experience in the model: who was the richest in this 
round? How did s/he achieve it? What was his or her starting condition? Who was the poorest? Why 
did s/he end up being poor? The richest and the poorest students are asked to share their stories in the 
simulation with the whole class. In Step 5, group discussions and whole class discussions are held for 
students to make connections between their simulation experience and the real-world: What are the 
real-world analogies of vision, endowment, metabolism, and the color of the starting tile? What is a real-
world version story of the richest student? What is a real-world version story of the poorest student?  

Students go through these five steps of inquiry cycle in each activity and keep revisiting the question 
about why the rich are rich while the poor are poor in different models. The increased complexity in each 
activity is expected to contribute to students’ more sophisticated thinking about the question. 

Method 

The central goal of this design-based research study (Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003) to investigate high school students’ learning processes and outcomes in the MTG unit. 

Research questions 

With this curriculum design, we ask two research questions: 

 How do students connect their simulation experience with their real-world experience?  
 Does the unit improve students’ understanding of wealth inequality and change their attitude 

toward it? 
 

Participants  

We implemented this curricular unit in eight high school economics classes with a total of more than 
200 students across two schools with vastly different demographics. So far, we only finished preliminary 
analysis on the data from one school with two participating classes, so in this paper, we only report the 
implementation, analysis, and findings based on this corpus of data.  

The two classes are in a public high school located in a highly ethnically diverse suburb of a large 
Midwestern city in the U.S. Students in these two classes are mostly sophomores and seniors, who are 

Introduction

Question

SimulationReflection

Connection



Constructionism 2018, Vilnius, Lithuania 

245 

 

taught by the same teacher for their regular economics curriculum. All 51 students were invited to 
participate in this study. Fifty (50) students consented to participate. Forty-four (44) completed the 
demographic survey: There are 19 females and 25 males. Twenty-one (21) self-identified as Asian, 14 
White, 4 biracial (2 Asian and White, 1 Black and White, and 1 unspecified), 1 African American, and 1 
Hawaiian or other pacific islanders. 13 students speak a language that is different from English at home 
(including Assyrian, Bangla, Cantonese, Gujarati, Romanian, Serbia, Farsi, Tagalog, Telugu, and Urdu). 
A majority of 32 students identify with the Democratic Party, 3 with the Republican Party, 4 with Other 
parties, and 6 with None.  

Implementation 

The implementation of the MTG unit spanned four days with 42 minutes of class time on each day. The 
first 20 minutes of the first day and the last 15 minutes of the last day were used for students to take the 
pre- and post- questionnaires. The first author taught the unit following the 5-step inquiry cycle described 
in the section above.  

Data collection 

Multiple types of data were collected. The pre- and post- questionnaires collect data on students’ 
knowledge and attitudes toward wealth inequality before and after the unit. During the unit, students’ 
typed responses to questions about each simulation are collected through input boxes built in the MTG 
models. Computer log data of all students’ interactions with the models (including key strokes and 
performance) were collected. Whole class video recordings captured the class dynamics throughout the 
four days. A total of 20 students (10 from each class) were selected in consultation with their economics 
teacher as focal students to represent the racial and gender diversity. Two additional types of data were 
collected from the focal students: 1) Pre- and post- clinical interviews, in which researchers probed 
students’ thoughts and attitudes toward wealth inequality through structured and follow-up questions. 
2) Screen recordings: Focal students’ computer screens were recorded using Camtasia screen 
grabbing software, which records on-screen behaviour and conversations between students.  

Analysis 

We analysed the pre- and post- questionnaires for evidence of attitudinal change towards wealth 
inequality before and after the unit. In both pre- and post- questionnaires, students were asked to rate 
a series of statements about wealth inequality on Likert scales. Questions include “On a scale of 1-7, 
with 1 being extremely unfair and 7 being extremely fair, please rate”: 1) How fair is the wealth 
distribution in the U.S.?, 2) “The rich deserve their economic status”, 3) “The poor deserve their 
economic status”, 4) “In America, anyone can advance, regardless of their family of origin, economic 
status, or ethnicity”, 5) “It is possible to move from poverty to affluence thorough hard work”, and 6) 
“Poverty is a sign of personal failure”. Students’ ratings were summarized with two histograms, one for 
the pre-, one for the post. Because 44 students completed the pre-test and 43 the post-test, the 
histograms were normalized (converted to percentages) for easier comparison. Summary statistics 
were generated to describe the mean and the standard deviation of the pre- and post- results. The pre- 
and post- means were then compared.  

In addition, we conducted interaction analysis (Jordan & Henderson, 1995) based on the whole class 
video data. The first author watched the videos to identify interesting moments during students’ class 
discussions, in which students utilized resources from both their experience gained from the simulations 
and their real-world experience. These interesting moments were then transcribed. Below, we provide 
an excerpt of class video transcripts that illustrate these moments.  

Findings 

Changing attitudes  

Overall, students’ ratings shifted toward a more pro-equality attitude in the post questionnaire. More 
students rated wealth distribution in the U.S. as less fair and showed stronger disagreement toward the 
subsequent statements. We calculated and compared the means of pre- and post- ratings based on the 



Constructionism 2018, Vilnius, Lithuania 

246 

 

assumption that the 1-7 scale is an even continuum, and the same rating shows the same degree of 
agreement for all students.  

Figure 5 shows the comparison of pre- and post- rating distribution of the fairness questions.  

  

Figure 5. Pre- and post- comparison of students’ rating distribution of the fairness question. 

No. Statement pre post shift 

1 fairness 2.95 2.28 0.67 

2 The rich deserve 4.25 3.74 0.51 

3 The poor deserve 2.66 2.56 0.1 

4 Anyone can advance 3.8 3.4 0.4 

5 Get rich by hard work 4.93 4.47 0.46 

6 Poverty is failure 2.2 2.02 0.18 

Table 1. Attitude shifts on all six Likert scale questions.  

In Figure 5, the left bars (blue) show students pre- ratings and the right bars (orange) show post ratings. 
Although most students came to the unit already believing that wealth distribution in the U.S. was 
somewhat unfair (an average rating of 2.95), after the unit, students believed it even more strongly (post 
mean = 2.28). The average rating changed by 0.67 towards left, which means students think the wealth 
distribution is more unfair. The biggest change occurred in the lowest rating category (extremely unfair). 
Before the unit, only 11% (5 students) thought the distribution was extremely unfair. After the unit, the 
percentage increased to 28% (12 students).  

Shifts in attitudes toward all statements followed a similar pattern, as shown in Table 1. These shifts are 
evidence that after the unit, students had more realistic perceptions of the fairness (Q1) and the 
opportunity structures in the U.S. (Q4 and Q5) based on understanding of mechanisms of wealth 
distribution and exposure to real-world data during the unit. Minimum changes were observed in 
negative statements about poor people (0.1 in Q3 and 0.18 in Q6). Students’ pre-unit ratings of these 
questions were already very low (2.66 and 2.2, respectively). The minimum changes may have less to 
do with understanding the mechanisms that students learned from the unit, but have more to do with 
empathy that the students already have toward the poor.  

Making connections between simulation experience and the real world 

Below we present an excerpt of whole class discussion about the real-world meaning of students’ 
experience in the MTG Randomness model. Kate was one of the richest persons for this round. The 



Constructionism 2018, Vilnius, Lithuania 

247 

 

teacher asked her to share her experience in the simulation and asked the class to find a real-world 
story that matches Kate’s simulation experience (all names are pseudonyms).  

Teacher: Can You share your story? 

Kate: So I was kind of very near the dark yellow, so I just moved over and a started harvesting. 

Teacher: Ok, so basically you spawned and you saw dark yellow right next to you. You moved 
over and started harvesting, right? And what was your vision? 

Kate: One. 

Teacher: One? OK, Interesting! Very interesting. 

… 

Teacher: Now let’s get into groups and talk about: Is there a real version of their stories in the 
real world. let’s think about her story. She started right next to the darkest yellow. She just went 
over and started harvesting. 

[Students discussed in groups of three for 2 minutes] 

Teacher: Which group wants to share their story of the rich in the real world? Go ahead. 

Jack: We kind of thought of like really specific, like Sam Walton’s kids have a bunch of money 
coming from Walmart and so as long as they don’t mess up and move away from the wealth 
they have, they can keep that wealth and build on it and like how Kate just moved over one spot 
to build on the wealth that she already had. 

Teacher: You guys agree? That’s pretty much true right? It is like a kind of the inheritance thing, 
right? So, if your parents are super wealthy, they will give you a lot of resources. Just make sure 
you don’t do too stupid things to move away from them. Make use of it, then you’re probably 
pretty well off, right? Ok, yeah, I think that’s a great story. Any other things to add? Any other 
things about the rich story? 

Amy: Not about the rich, but sort of in general, I think that it’s interesting that even if she was in 
a very good neighbourhood, but she had very limited vision. I think that was like kind interesting, 
because I think that’s almost less realistic rather than more realistic, because I think if the 
simulations were more like real life, if you have a high vision, you are more likely to be in a very 
yellow area and have a low metabolism. it wouldn’t be randomly assigned. 

Teacher: I think this is a great point. In [MTG Randomness model], everything is random. It’s 
possible that you are born in a very rich place but with a very limited vision. In the real world, do 
you think that happens that often? Not really, right? Because if you were born in a very 
resourceful place, you probably get better education. Your parents are probably well-educated, 
and you probably know a lot of people. Your vision is actually a lot better than a lot of other 
people. I think that’s a great point. Thank you for bringing it up.  

This excerpt shows that students’ engagement with the simulation is quite sophisticated. Jack and his 
group understood that spawning near a dark yellow area in the simulation is analogous to being born to 
a rich family in the real world. It is easier for those who were born rich to build on the wealth they 
inherited to obtain more wealth. The MTG Randomness simulation helped students relate randomness 
in the simulation and in the world that can make life easier just by chance. However, Amy had deeper 
thoughts about the analogy between the simulation and the real world: she pointed out that random 
assignment in the model was not realistic, because things are correlated in the real world. If the 
simulation were more realistic, then “if you have a high vision, you are more likely to be in a very yellow 
area and have a low metabolism”, which can form systematic, rather than random biases that work for 
or against people.   

In this case, the less realistic feature of the simulation is not a drawback of the design. Instead, it is 
precisely the nature of a microworld and a computational model, which foreground certain aspects of 
the system being modelled to highlight its basic mechanisms. The MTG Randomness model highlights 
randomness as a strong mechanism that contributes to inequality. The students were able to identify its 



Constructionism 2018, Vilnius, Lithuania 

248 

 

limits and provide real world mechanisms in contrast. The discussion triggered by comparing the 
simulation with the real world is a valuable learning opportunity about the mechanisms of wealth 
inequality and the scientific practice of modelling for the whole class.  

Conclusion and Discussion 

Mind the Gap agent-based participatory simulation curricular unit is our attempt to address people’s 
understanding and attitude toward complex and controversial social issues through designing 
constructionist learning environments. The implementation of this unit in eight high school economics 
classes showed students’ high engagement with this type of design. Preliminary evidence has shown 
that students’ attitude shifted toward a more pro-equality stance after learning the unit. Students also 
showed sophisticated thinking about rules and conditions in the simulation and in the real world in their 
discussions when making connections between the virtual and the real world. 

Wealth inequality is an example of a myriad of social issues that people face in today’s society. This 
pioneer work shows what learning pathways and learning outcomes are possible to achieve with this 
type of ABPS constructionist learning environment. We will continue data analysis to discover more 
evidence of students’ knowledge and attitude change. With a better understanding of the learning 
affordances of ABPS learning environments, we can use it to teach other complex and controversial 
social topics, such as racial segregation, climate change, and gun control. Equipped with better 
understanding of mechanisms of these social issues, people in democracies can exercise their rights 
more responsively to achieve more equal societies for everyone.    

References  

Berland, M., & Wilensky, U. (2015). Comparing Virtual and Physical Robotics Environments for 
Supporting Complex Systems and Computational Thinking. Journal of Science Education and 
Technology, 24(5), 628–647. https://doi.org/10.1007/s10956-015-9552-x 

Bullock, H. E. (2008). Justifying inequality: A social psychological analysis of beliefs about poverty and 
the poor. In L. Ann, & D. Harris (Eds). The colors of poverty: Why racial and ethnic disparities persist. 
Russell Sage Foundation: New York, NY. 

Chi, M. T. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are 
robust. The Journal of the Learning Sciences, 14(2), 161–199. 

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., Schauble, L., & others. (2003). Design experiments in 
educational research. Educational Researcher, 32(1), 9–13. 

Colella, V. (2000). Participatory simulations: Building collaborative understanding through immersive 
dynamic modeling. The Journal of the Learning Sciences, 9(4), 471–500. 

Diermeier, M., Goecke, H., Niehues, J., & Thomas, T. (2017). Impact of inequality-related media 
coverage on the concerns of the citzens. DICE Discussion Paper. 

Edwards, L. D. (1995). Microworlds as representations. In Computers and exploratory learning (pp. 
127–154). Springer. 

Epstein, J. M. & Axtell, R. L. (1996). Growing artificial societies: social science from the bottom up. 
Brookings Institution Press.  

Fies, C., & Langman, J. (2011). Bridging worlds: Measuring learners’ discursive practice in a partsim 
supported biology lesson. International Journal of Science and Mathematics Education, 9(6), 1415–
1438. 

Groen, G., & Kieran, C. (1983). In search of Piagetian mathematics. The Development of Mathematical 
Thinking, 351–375. 

Guo, Y. & Wilensky, U. (2018a). Mind the Gap curriculum. http://ccl.northwestern.edu/MindtheGap/. 
Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, 
IL. 

http://ccl.northwestern.edu/MindtheGap/


Constructionism 2018, Vilnius, Lithuania 

249 

 

Guo, Y. & Wilensky, U. (2018b). NetLogo MTG 1 Equal Opportunities HubNet 
model. http://ccl.northwestern.edu/netlogo/models/MTG1EqualOpportunitiesHubNet. Center for 
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.  

Guo, Y. & Wilensky, U. (2018c). NetLogo MTG 2 Random Assignment HubNet 
model. http://ccl.northwestern.edu/netlogo/models/MTG2RandomAssignmentHubNet. Center for 
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 

Guo, Y. & Wilensky, U. (2018d). NetLogo MTG 3 Feedback Loop HubNet 
model. http://ccl.northwestern.edu/netlogo/models/MTG3FeedbackLoopHubNet. Center for 
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 

Hauser, O. P., & Norton, M. I. (2017). (Mis)perceptions of inequality. Current Opinion in Psychology, 18, 
21–25. 

Hjorth, A., & Krist, C. (2016). Unpacking Social Factors in Mechanistic Reasoning (Or, Why a Wealthy 
Person is Not Exactly Like a Grey Squirrel). Singapore: International Society of the Learning Sciences. 

Hjorth, A., & Wilensky, U. (2014). Redesigning Your City–A Constructionist Environment for Urban 
Planning Education. Informatics in Education-An International Journal, (Vol13_2), 197-208. Chicago 

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The Journal of the 
Learning Sciences, 4(1), 39–103. 

Klopfer, E., Yoon, S., & Perry, J. (2005). Using palm technology in participatory simulations of complex 
systems: A new take on ubiquitous and accessible mobile computing. Journal of Science Education and 
Technology, 14(3), 285–297. 

Li, J. and Wilensky, U. (2009a). NetLogo Sugarscape 1 Immediate Growback model. 
http://ccl.northwestern.edu/netlogo/models/Sugarscape1ImmediateGrowback. Center for Connected 
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.  

Li, J. and Wilensky, U. (2009b). NetLogo Sugarscape 2 Constant Growback model. 
http://ccl.northwestern.edu/netlogo/models/Sugarscape2ConstantGrowback. Center for Connected 
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.  

Li, J. and Wilensky, U. (2009c). NetLogo Sugarscape 3 Wealth Distribution model. 
http://ccl.northwestern.edu/netlogo/models/Sugarscape3WealthDistribution. Center for Connected 
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.  

Kteily, N. S., Sheehy-Skeffington, J., & Ho, A. K. (2017). Hierarchy in the eye of the beholder:(Anti-) 
egalitarianism shapes perceived levels of social inequality. Journal of Personality and Social 
Psychology, 112(1), 136. 

Levy, S. T., & Wilensky, U. (2008). Inventing a “mid level” to make ends meet: Reasoning between the 
levels of complexity. Cognition and Instruction, 26(1), 1–47. 

Maroulis, S. and Wilensky, U. (2004). NetLogo Oil Cartel HubNet model. 
http://ccl.northwestern.edu/netlogo/models/OilCartelHubNet. Center for Connected Learning and 
Computer-Based Modeling, Northwestern University, Evanston, IL.  

Mistry, R. S., Brown, C. S., Chow, K. A., & Collins, G. S. (2012). Increasing the Complexity of Young 
Adolescents’ Beliefs About Poverty and Inequality: Results of an 8th Grade Social Studies Curriculum 
Intervention. Journal of Youth and Adolescence, 41(6), 704–716.  

Nagda, B., Gurin, P., & Lopez, G. E. (2003). Transformative pedagogy for democracy and social justice. 
Race, Ethnicity and Education, 6, 165-191. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books. 

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 1–11. 

Penner, D. E. (2000). Explaining systems: Investigating middle school students’ understanding of 
emergent phenomena. Journal of Research in Science Teaching, 37(8), 784–806. 

http://ccl.northwestern.edu/netlogo/models/MTG1EqualOpportunitiesHubNet
http://ccl.northwestern.edu/netlogo/models/MTG2RandomAssignmentHubNet
http://ccl.northwestern.edu/netlogo/models/MTG3FeedbackLoopHubNet


Constructionism 2018, Vilnius, Lithuania 

250 

 

Penner, D. E. (2001). Complexity, emergence, and synthetic models in science education. Designing 
for Science, 177–208. 

Pirolli, Peter, & Greeno, James. (1988). The problems space of instructional design. In J. Psotka, D. 
Massey, & S. Mutter (Eds.), Intelligent tutoring systems: Lessons learned (pp. 181-201). Hillsdale, NJ: 
Erlbaum. 

Pratt, David. (1991). The design of Logo microworlds. In L. Nevile (Ed.), Proceedings of the Fifth 
International Logo and Mathematics Education Conference (pp. 2541). Cairns, Australia. 

Seider, S. (2011). The Role of Privilege as Identity in Adolescents’ Beliefs About Homelessness, 
Opportunity, and Inequality. Youth & Society, 43(1), 333–364. 

Sengupta, P., & Wilensky, U. (2009). Learning Electricity with NIELS: Thinking with Electrons and 
Thinking in Levels. International Journal of Computers for Mathematical Learning, 14(1), 21–50.  

Sterman, J. (1992). Teaching Takes Off: Flight Simulators for Management Education-"The Beer 
Game". Retrieved from http://web.mit.edu/jsterman/www/SDG/beergame.html 

Stroup, W. M., & Wilensky, U. (2014). On the Embedded Complementarity of Agent-Based and 
Aggregate Reasoning in Students’ Developing Understanding of Dynamic Systems. Technology, 
Knowledge and Learning, 19(1–2), 19–52.  

Turkle, S., & Papert, S. (1992). Epistemological pluralism and the revaluation of the concrete. Journal 
of Mathematical Behavior, 11(1), 3–33. 

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and 
Computer-Based Modeling, Northwestern University. Evanston, IL. 

Wilensky, U. (2002). NetLogo HubNet Tragedy of the Commons HubNet model. 
http://ccl.northwestern.edu/netlogo/models/HubNetTragedyoftheCommonsHubNet. Center for 
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.  

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through 
constructing and testing computational theories - An embodied modeling approach. Cognition & 
Instruction, 24(2), 171-209. 

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense 
of the world. Journal of Science Education and Technology, 8(1), 3–19. 

Wilensky, U. and Stroup, W. (1999). NetLogo HubNet Disease HubNet model. 
http://ccl.northwestern.edu/netlogo/models/HubNetDiseaseHubNet. Center for Connected Learning 
and Computer-Based Modeling, Northwestern University, Evanston, IL.  

Wilensky, U. & Stroup, W., (1999b). HubNet. http://ccl.northwestern.edu/netlogo/hubnet.html. Center 
for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL. 

Wilensky, U., & Stroup, W. (2002). Participatory Simulations: Envisioning the networked classroom as 
a way to support systems learning for all. Paper presented at the annual meeting of the American 
Educational Research Association, New Orleans, LA, April 13. 

Xu, P., & Garand, J. C. (2010). Economic context and Americans’ perceptions of income inequality. 
Social Science Quarterly, 91(5), 1220–1241.  



Constructionism 2018, Vilnius, Lithuania 

251 

 

To Assess or Not to Assess: Tensions Negotiated in 
Six Years of Teaching Teachers about 
Computational Thinking 

Daniel Hickmott, Daniel.Hickmott@uon.edu 
School of Education, The University of Newcastle, Australia 

Elena Prieto-Rodriguez, Elena.Prieto@newcastle.edu.au 
School of Education, The University of Newcastle, Australia 

Abstract  
Coding and computational thinking have recently become compulsory skills in many school curricula 
around the world. This presents a major challenge for teachers, as many of them would not have had 
formal education on the underlying concepts needed to apply these skills, or the pedagogies to teach 
them. A range of professional development opportunities are currently being offered to teachers to 
address this challenge. One notable example of a model of PD designed to include constructionist 
learning experiences is ScratchEd, which was designed by Karen Brennan. Upon reflecting on her 
experiences designing and running ScratchEd for seven years, Brennan identified five tensions that 
professional development providers may need to negotiate, and proposed that these tensions could be 
used for scrutinising and critiquing professional development. 

 

The five ‘tensions negotiated’ by Karen Brennan and our additional tension 

In this paper, we analyse the process we have followed in the past six years to design, evaluate and 
improve our professional development through the lens of Brennan’s ‘tensions negotiated’. While we 
have experienced the same tensions, we contend that the extent to which we assess teachers’ learning 
is a new tension that extends those identified by Brennan. There are strong reasons to assess teachers’ 
knowledge, however, quantitative measures of learning could be at odds with Constructionism: as 
Papert argued in Mindstorms, constructionist educators should study their learning environments as 
anthropologists. Consequently, we have called this new tension the tension between anthropology and 
assessment. 

Keywords 
teacher professional development; constructionism; computational thinking; programming; 

pedagogical content knowledge.  



Constructionism 2018, Vilnius, Lithuania 

252 

 

Introduction 

Recently, while working with a colleague to develop a joint research project on teaching quality, he 
asserted, ‘just add coding or computational thinking somewhere, it’s the only way to get funds these 
days’. This colleague is a successful academic in the field of physical education and has what one could 
consider an impressive track record with funding applications. While this comment is not entirely 
reflective of the funding situation in the field of educational research, and admittedly was pronounced in 
jest, it provides an interesting insight into how prominent coding has become for education authorities 
worldwide. Many countries have recently introduced, or are planning to introduce, curricula that include 
the teaching of Coding and Computational Thinking throughout K-12 (Webb et al., 2016). Australia has 
recently introduced a Digital Technologies learning area within its new national curriculum (Falkner, 
Vivian, Falkner, & Williams, 2017), England introduced a Computing Curriculum in 2014 that is 
mandatory for all K-6 students (Sentance & Csizmadia, 2016), and in the United States there have been 
national efforts to introduce K-12 Computer Science education into all of the states (Brown & Briggs, 
2015; Fisher, 2016). 

However, Coding and Computational Thinking (C&CT) are not new to schools and there have been 
many attempts to bring these skills into mainstream K-12 education since the 1970s. Many of these 
efforts were led by constructionists, who encouraged students coding in Logo, and similar programming 
languages, to explore “powerful ideas”, as Papert (1980, p. 138) had envisioned. The teaching of coding 
in Logo did not become widespread in K-12 education in the 1980s and 1990s, due to a complex mix 
of social, political and technical issues, and a “lack of subject-matter integration” (Agalianos, Whitty, & 
Noss, 2006; Kafai & Burke, 2013, p. 61). Papert (1987, p. 24) lamented that many researchers and 
educators had taken a “technocentric” view of Logo and that they had ignored many of the powerful 
ideas from Mindstorms (Papert, 2000).  

The renewed interest in C&CT has motivated educators and researchers to work towards fulfilling 
Papert’s dream (Resnick, 2017), and although Seymour has recently passed away, his legacy lives on 
in the 21st Century. His ideas have had a large influence on the design of Scratch, which is widely 
available, free and commonly used in schools (Kafai & Burke, 2013). The Maker Movement, which 
encourages learners to construct digital and physical artefacts that are personally meaningful to them, 
has also been influenced by Papert’s Constructionism (Blikstein, 2013). Despite the wide availability of 
free tools for learning C&CT, there are still some major challenges that educators and researchers are 
facing when introducing C&CT in K-12. One of the main challenges is the preparation of teachers, as 
C&CT is unlikely to have been part of their K-12 or tertiary education (Falkner et al., 2017; Yadav, 
Sands, Good, & Lishinki, 2018). 

To overcome the challenges that the introduction of C&CT in school curricula presents for teachers, 
many professional development (PD) initiatives are being developed and implemented worldwide 
(Garneli, Giannakos, & Chorianopoulos, 2015). These initiatives focus on different aspects of C&CT 
and typically provide a range of experiences and knowledge for teachers to take to their classrooms. 
While there is general consensus that content knowledge (CK) is essential in order to effectively teach, 
there is also general acceptance of the importance of pedagogical content knowledge (PCK), as 
introduced by Lee Shulman (1986). PCK is widely used in the education literature as a means of 
understanding the particular types of knowledge unique to teachers. This type of knowledge includes, 
for example, knowledge of student misconceptions about specific topics and how teachers might 
respond to these and knowledge of effective analogies for illustrating concepts or ideas. PCK has been 
studied in the context of C&CT both in primary and secondary school settings (Angeli et al., 2016). 
However, while PCK is recognised as being of crucial importance for effective teaching in C&CT (Saeli, 
Perrenet, Jochems, & Zwaneveld, 2011), research about ways to understand and promote PCK in 
C&CT is still in its infancy (Cooper, Grover, Guzdial, & Simon, 2014). There are still many lessons to 
learn about providing appropriate and effective PD to pre-service and in-service teachers (Guzdial, 
2015; Yadav et al., 2018).  

Interestingly, in the special issue on ‘Constructionism and Creativity’ of the journal Constructivist 
Foundations, Karen Brennan reflected, “I am often asked ‘What lessons have you learned from your 
[PD] work?’ I have to appreciate that my experiences and understandings are more aptly described as 



Constructionism 2018, Vilnius, Lithuania 

253 

 

‘tensions negotiated’ than ‘lessons learned’” (Brennan, 2015, p. 293). In her article, she describes the 
tensions she has encountered when running the ScratchEd model of PD. Brennan (2015) provides 
examples of when these tensions have occurred in each of the PD formats and explains the approaches 
she has used to negotiate these tensions. 

Our experiences running PD over the last six years have taught us what we thought were invaluable 
lessons about what effective PD is and how certain aspects of the PD can be evaluated. However, it 
has become that apparent our lessons learned are much more like the tensions negotiated by Brennan 
(2015), and that our latest lesson learned is that we have not really learned any lessons - we have just 
discovered ways to negotiate tensions. 

In this paper, we analyse the process we followed in the past six years to design, evaluate and improve 
our PD through the lens of the tensions negotiated by Brennan (2015). Our analysis highlights the 
importance of evaluating PD and developing metrics that can help us evaluate teachers’ learning during 
and after the PD. As we have designed the most recent PD workshops with Constructionism as a 
“framework for action” (DiSessa & Cobb, 2004, p. 83), we often find that it is difficult to decide between 
measuring the changes of teachers’ PCK and CK, and not measuring these changes.  We contend this 
difficulty is a new tension that differs from those identified by Brennan (2015), which we call the tension 
between anthropology and assessment. 

Professional Development Design 

As stated in the previous section, many PD initiatives have been established around the world to 
address the challenge of preparing educators for teaching C&CT in K-12 (Menekse, 2015). These 
include Massive Open Online Courses (Falkner et al., 2017), face-to-face workshops (Menekse, 2015), 
and the development of local hubs that provide teachers with support from peers, known as ‘Master 
teachers’ (Sentance, Humphreys, & Dorling, 2014). 

One notable example of a model of PD that has been designed to include constructionist learning 
experiences is ScratchEd (Brennan, 2015). Initially, Brennan (2015) developed an online community for 
educators to share their experiences teaching with Scratch. After the establishment of the online 
community, Brennan developed Scratch educator meetups that are run for three hours on a Saturday 
morning each month in Boston.  Brennan (2015, p. 293) stated that the online community “cannot 
provide constructionist experiences”, and, consequently, the meetups were intended to provide these 
experiences. Brennan also developed an online workshop titled the Creative Computing Online 
Workshop (CCOW), which was available to teachers globally. The CCOW lasted six weeks and involved 
a variety of activities, including the development and sharing of design journals. The ScratchEd model 
combined these three formats of PD: the online community, monthly face-to-face meetups and the 
CCOW. 

We have been developing and running face-to-face PD workshops at our university for six years. The 
main aim of the workshops has been to help prepare teachers for teaching the Australian Digital 
Technologies curriculum. In 2013 and 2014, the workshops were only available for High School 
teachers, but in 2015 we began to include Primary School teachers. These workshops have involved a 
variety of sessions: activities with step-by-step instructions, collaborative problem-solving exercises and 
lesson-planning activities, and presentations by academics and industry representatives. 



Constructionism 2018, Vilnius, Lithuania 

254 

 

 

Figure 1. Participants in 2017 workshop 

The design and implementation of the workshops has evolved each year as a result of participants’ 
feedback, which has been collected through validated surveys. As discussed later in the Tensions 
Negotiated section, the feedback that we received in the surveys, particularly the feedback in responses 
to the surveys’ open-ended questions, has influenced the changes that we have made to the PD. For 
example, the feedback from our first workshop in 2013 indicated that there was too much theory and 
lectures in the sessions, which led us to begin the inclusion of more hands-on and constructionist 
sessions in the PD in the years that followed. We have also been informed by the general PD literature, 
in which there has been extensive research about what factors are present in effective PD (for example, 
Desimone, 2009). Unlike Brennan (2015), we have not had any online components in our PD yet, and 
we would argue that face-to-face PD will always be valuable and essential. The availability of face-to-
face PD is particularly important for teachers who are only beginning to learn C&CT and have low-
confidence about teaching them, as argued by Sentance and Csizmadia (2017).  

Tensions Negotiated 

Six years after beginning the ScratchEd project, Brennan (2015) reflected on her experiences and 
observations when running the different forms of PD and also analysed interviews with 30 of the 
teachers that participated in her PD. In her analysis, Brennan (2015, p. 294) concluded that her 
experiences and understandings would be best described as “tensions negotiated”, rather than “lessons 
learned” and described the five tensions that she considered to be the most pressing. She also 
explained how these tensions were experienced and negotiated in the different formats of the ScratchEd 
model. 

Like Brennan (2015), we have sought to provide constructionist learning experiences in our PD, as we 
believe that learning environments that are influenced by constructionist ideas should be encouraged 
in K-12. However, the format of the PD that we have run over the last six years has been very different 
to the forms of PD in the ScratchEd model. Our PD has mainly been run as two-day workshops that 
have been planned weeks or months beforehand and have not had an online component like the 
ScratchEd online community or CCOW. Like Brennan, when we have reflected on our experiences 
about running the workshops, we have often thought about the lessons that we have learned that could 
be useful for other PD providers. But, also like Brennan, we have found tensions negotiated to be a 
more appropriate description than lessons learned. In the conclusion of her article, Brennan argues that 
the tensions she identified are not specific to Scratch or her ScratchEd model, and that they could be 
scrutinized or critiqued by other PD providers.  

In the following sections, we explain how we have experienced each of the five tensions identified by 
Brennan when developing and running our PD. To determine how the PD was impacted by the different 
tensions, we initially analysed the open-ended responses to the feedback surveys (n = 137) through the 
lens of the five tensions identified by Brennan (2015), by thematic coding the responses in NVivo 11. 
We also reflected on our experiences during the PD and discussed how these related to each of the 
different tensions. We found that teachers have been satisfied with our workshops, and some aspects 
have improved as a consequence of responding to feedback. However, we found that this feedback 
provided only insight on teachers’ general satisfaction with our workshops and, to a certain extent, the 
classroom applicability of the PD content, but was not enough to give us a full picture of their learning. 



Constructionism 2018, Vilnius, Lithuania 

255 

 

Also, our funding bodies have started to require measures of impact that go beyond self-reported self-
efficacy outcomes. Consequently, we determined that we are experiencing a tension that was not 
identified by Brennan, which we have called the tension between anthropology and assessment, after 
the argument made by Papert (1980) that educators should study their learning environments as 
anthropologists. 

Tension between tool and learning 
The tension between tool and learning refers to balancing the PD’s focus between teaching about 
concepts/tools (CK) and helping teachers create learning environments for students to use these 
concepts/tools (PCK). On one side of the tension is a focus on teaching a tool, such as Scratch, and 
the essential concepts needed to use and understand that tool. On the other side of the tension are the 
pedagogical practices and different approaches to classroom activities, such as the “creative design 
activities” described by Brennan (2015, p. 294).  

In our workshops, we have conducted sessions with a variety of software and hardware tools and have 
usually focused on imparting CK. The rationale for including a variety of tools has been to make teachers 
aware of the many options that they have for teaching C&CT at different levels of K-12.  Each year, the 
teachers that have attended the workshops have taught at a variety of levels and subjects and, 
consequently, we always try to provide a variety of options of activities that are relevant to them.  

We have often focussed on imparting CK in the majority of the workshop sessions because many 
teachers have not learned about C&CT during their K-12 or tertiary education and much of this CK is 
likely to be new to them (Falkner et al., 2017; Yadav et al., 2018). Consequently, we expected that the 
workshops participants would not have much CK and that they primarily needed to acquire CK before 
they acquire PCK. Although the workshop sessions always involve the teaching of certain tools, we tend 
to have central concepts that we aim to impart in the sessions and theme the sessions accordingly. For 
example, we titled the session that we introduce Scratch in, “Visual Programming with Scratch”. During 
that session we explained what visual programing is, gave examples of how visual programming can 
be included in K-12, and described visual programming tools that could be used instead of Scratch.  

Despite the workshop sessions having had a concept as a central theme, we have found that teachers 
usually responded to questions about applying the concepts learned during the workshops with answers 
about introducing the tools to their students, rather than introducing the concepts or particular 
pedagogical approaches in their classes. For example, in response to the question “Do you think you 
will you apply what you learned in the workshop? If so, what?”, many teachers responded with a list of 
tools, such as, “Yes, makey makeys, scratch at a deeper level than I've been teaching it and sphero”. 
Comments such as this led us to include a combination of sessions that focus on a particular concept 
and/or tool, and sessions that focus on particular pedagogical approaches. For example, in the 2017 
Primary School workshop we introduced C&CT concepts in Scratch in a session on the first day and 
then ran a session on the second day that focussed on teaching CT through design activities with the 
Creative Computing Curriculum guide (Brennan, Balch, & Chung, 2014), which has activities that use 
Scratch.  

Another difficulty encountered during our PD, which Brennan (2015) does not explicitly mention, and 
that we consider to be encompassed in the tension between tool and learning, is the technical issues 
we experienced when using certain tools. For example, we encountered technical issues when using 
the MIT AppInventor software with Android tablets during the “Building Mobile Apps” activity, due to the 
way the network was configured at our university. Although we resolved these issues quickly during the 
session, this troubleshooting detracted from the activity. Teachers may encounter these issues 
themselves with their classes, so it could be argued that it is beneficial to include instruction on how to 
troubleshoot these issues in PD. Despite the difficulties faced, we believe that the tools that can be 
difficult to use in some environments, are conducive to constructionist learning experiences. 
Consequently, we intend to include more instructional time that addresses the potential technical issues, 
so that teachers can troubleshoot these issues themselves and assist their students to troubleshoot 
these issues. 



Constructionism 2018, Vilnius, Lithuania 

256 

 

Tension between direction and discovery 
The tension between direction and discovery refers to the balancing by instructors to provide guidance 
and resources to learners, while also allowing learners to discover resources and concepts on their 
own. This is similar to the “play paradox” defined by Noss and Hoyles (1996), which they used to refer 
to the balancing of exploration and guidance when students are learning in a microworld (for example, 
Logo).  

When we design our PD, there are certain learning outcomes that we aim to address in each of the 
sessions, which align with concepts from the Australian Digital Technologies curriculum. These 
concepts include what Brennan and Resnick (2012) call computational concepts, which include 
concepts like sequencing and loops. Additionally, Primary School teachers have also been encouraged 
to integrate C&CT across different subject areas (NSW Education Standards Authority, 2018), and to 
teach C&CT to assist development of students’ “general capabilities”, for example, Literacy, Numeracy 
and Creative Thinking (ACARA, 2018). Our past PD workshops have been focussed on upskilling 
teachers’ CK and consequently many of the sessions’ planned learning outcomes have been related to 
the essential computational concepts from the Australian Digital Technologies curriculum.  

Brennan (2015, p. 293) designed the ScratchEd PD model with the main assumption that “teachers 
should have learning experiences that are comparable to their students’ learning experiences”. Like 
Brennan, we believe that if we are encouraging teachers to include constructionist learning experiences 
in their classes, we should be including these experiences in our PD. In recent PD workshops, we have 
made changes to provide more constructionist learning experiences, but we have often had to negotiate 
the tension between direction and discovery when designing and running the PD activities. In past 
evaluations of our workshops we found that teachers have enjoyed the sessions that had step-by-step 
exercises more than the sessions that involved self-guided activities (Prieto-Rodriguez & Hickmott, 
2016). For example, one teacher thought “it was very useful to have printed sheets to follow…” during 
the sessions. Conversely, some teachers responded to the surveys with suggestions to include more 
self-directed activities and “problems to solve with minimal guidance on how to solve them”.  
Consequently, we have had to learn to negotiate the balance of providing different types of instruction 
or pedagogical approaches, as the teachers themselves are likely to do in their own classes. 

In the 2016 and 2017 workshops, we began to include sessions that allowed the teachers to spend 
more time on self-guided exploration and play. For example, in the 2017 Primary School workshop we 
included a session themed around the Creative Computing curriculum guide and included the “10 
Blocks” activity from that guide in the session. In the “10 Blocks” activity, learners are asked to create a 
Scratch program but are limited to 10 different types of blocks, which the instructor can learn about 
before they run the activity. These types of activities can help teachers believe that it is “…ok to not 
know everything as the teacher”, as stated by one of the survey respondents,  

Another difficulty that we have experienced designing our PD, that we consider to be encompassed 
within the tension between direction and discovery, is related to the limited amount of time for the PD. 
In most of our workshops, 20-30 local teachers have attended six-hour long workshops for two 
consecutive days. The workshops take place during the school term and at a local university, so the 
teachers have to be away from their classes during this time and their schools need to cover the costs 
of substitute teachers. Consequently, we plan many of the sessions prior to the workshop, in order to 
make the best use of the time we have with the teachers, and this planning has often resulted in activities 
that do give learners specific direction. We are aware of approaches to PD that solely involve self-
directed, constructionist activities, such as the four-day Constructing Modern Knowledge workshops run 
by Martinez and Stager (2013). However, we have typically had 1-2 instructors during the workshops, 
which would have made it difficult to provide guidance to 20-30 teachers working on open-ended 
projects, and the two days has not been enough time to cover essential CK and to also run design 
activities. There are also difficulties that are discussed in the tension between expert and novice and 
tension between actual and aspirational sections, which prevent us from only including self-directed, 
constructionist sessions in our PD. To address this tension, we intend to run after-school sessions over 
a term in our PD. This structure would allow teachers to work on design projects during their free time 
and for us to provide guidance during the sessions or through email. 



Constructionism 2018, Vilnius, Lithuania 

257 

 

Tension between individual and group 
The tension between individual and group refers to the challenge of facilitating productive collaboration 
between the teachers that attend the PD. As Brennan (2015) argues, learners should be encouraged 
to connect with each other and learners working in groups can learn new perspectives from one another. 
We have not had to negotiate this tension to the same extent as Brennan, which could be due to the 
collaborative and face-to-face nature of our workshops. There are a few aspects of our workshops that 
allow for collaboration to occur with minimal intervention from us, such as introduction sections, meal 
breaks, and collaborative hands-on or lesson planning activities.  

One challenge, that we consider to be part of the tension between individual and group, is the sustaining 
of knowledge sharing and connections after the PD has been completed. Unlike the ScratchEd model, 
we do not have an online community for our PD for teachers to share resources or discuss ideas in. 
Additionally, teachers that have attended the workshops have usually been from different schools and 
it has been rare for more than two teachers from the same school to attend the same workshop. To help 
address this challenge, we decided to design a workshop in 2018 that is focused on assisting 
experienced C&CT teachers acquire the CK and PCK they need to establish local professional learning 
communities (PLCs).  

Tension between expert and novice 
The tension between expert and novice refers to the tension between the teachers who are considered 
to be knowledgeable about the content in the PD activities (the experts) and the teachers who have 
only begun to learn the content (the novices). Like Brennan (2015), the teachers that have attended our 
PD have had a wide range of CK and experience teaching C&CT. Some of the teachers that have 
attended our PD were professional software developers before their teaching careers, whereas some 
other teachers had not learned anything about C&CT prior to our PD. However, the ways in which we 
have experienced this tension seem to differ from (Brennan, 2015), which could also be due to the 
differences in the PD format. Brennan (2015) gave examples that were mainly experienced in the 
interactions between the teachers when they were learning together. On the other hand, we ourselves 
have experienced this tension when trying to choose planned learning outcomes, session themes and 
activities that are appropriate for teachers that have varying levels of CK and PCK. 

We consider the difficulty of providing resources and instruction that are suitable for a wide range of 
teachers’ CK to be encompassed by the tension between expert and novice. We have encountered this 
difficulty since our first PD in 2013 and, consequently, negotiating this tension has been the precursor 
to several of the major changes we have made to our PD. For example, prior to 2015 we had only run 
one workshop per year, with activities that involved high school Digital Technologies concepts. 
However, in 2015, we decided to run two different workshops, the Introductory and Advanced 
workshops, which had activities that were designed to cater for teachers with different levels of CT CK. 
This decision was a result of reflecting on our observations of teachers’ varying levels of CK and 
responses to the feedback surveys in the previous years’ workshops. We have also given the teachers 
the choice to participate in different activities that are suitable to their level of expertise, which are similar 
to the breakout sessions in the Meetups described by Brennan. For example, in the 2016 High School 
workshop, teachers chose between a session that introduced the teaching of Data Science in R and an 
Introduction to General-Purpose Programming with Sonic Pi. 

As we have often presented short talks before the activities in each PD session, we have often been 
positioned as the experts during the PD. However, some of the teachers have had expertise in areas of 
CK and PCK that we did not have. Consequently, we have invited some teachers to assist us when 
running activities or present their own sessions, and also encouraged the expert teachers to share their 
knowledge with the rest of the group during the PD. For example, in the 2017 Primary School workshop 
we invited a teacher that had attended a workshop in an earlier year, to help us run a Collaborative 
Lesson Planning Activity. That teacher had extensive knowledge about relevant K-6 curriculum 
outcomes, that we did not have ourselves, and consequently was able to help the teachers map their 
lesson plans to these outcomes.  



Constructionism 2018, Vilnius, Lithuania 

258 

 

We have also encountered the tension between expert and novice when we have considered the 
changes to make to the PD from teachers’ suggestions in the feedback surveys. Although we have run 
workshops that have had activities that aim to cater for different levels of teachers’ CK, we still have 
received feedback that indicated we may have needed to differentiate the content more. An example of 
this was found in the feedback responses of the 2017 Maths workshop, which was intended to be 
suitable for teachers with some CK and some experience Coding in a Blocks-based language, like 
Scratch. One teacher stated that the workshop content was “All well delivered and at right level”, 
whereas another teacher responded that “As a beginner of coding, I found the pace of the coding 
activities too fast.” Despite the changes we have made to the PD to address the challenge of 
differentiation, negotiating this tension seems to be inevitable, as the teachers that have attended the 
PD have always had a wide range of CK. As discussed in the tension between anthropology and 
assessment section, one way to address this would be to measure the teachers’ CK before the PD, 
which could help us plan sessions that are appropriate for teachers with different levels of CK. 

Tension between actual and aspirational 
The tension between actual and aspirational refers to the difficulty of providing constructionist learning 
experiences to teachers that they can replicate in their classes. Brennan (2015, p. 295) argues that 
“constructionist learning experiences are fundamentally at odds with the lived reality of K-12 education” 
in many ways. However, we contend that teachers that have attended our PD would be able to 
incorporate some constructionist learning experiences into their classes, particularly in view of the 
emphasis that creative thinking has in the general capabilities of the Australian Curriculum (ACARA, 
2018). 

Unlike Brennan (2015), the changes to our PD have been largely been motivated by the challenges 
reported by the teachers, which would be considered to be on the actual side of the tension between 
actual and aspirational. The feedback from the teachers in our workshop surveys, particularly those in 
2013 and 2014, indicated that the teachers wanted resources that could be directly used in their classes, 
such as lesson plans. Furthermore, the current consensus is that PD is effective when it is aligned with 
the needs of the participating schools and involves collaboration with school administration (Desimone, 
2009; Menekse, 2015). Therefore, we have often designed PD which has addressed the actual nature 
of K-12 education, rather than the aspirational nature of a more constructionist approach. 

In recent years’ workshops, we have also included sessions that involved open-ended, constructionist 
learning experiences such as the Creative Computing session in the 2017 Primary School workshop. 
Although there is a climate of high-stakes testing in Australia, there are ways to introduce design 
activities that align with outcomes in the relevant curricula. For example, our local state education 
authority states that, “Designing, making, data collection and analysis” are part of the Science and 
Technology subject area (NSW Education Standards Authority, 2018). Additionally, in the national 
curriculum there are general abilities, such as Critical and Creative Thinking (ACARA, 2018), which 
could be addressed through the inclusion of design activities in teachers’ classes. 

One of the other challenges that we consider to be part of the tension between actual and aspirational 
is related to the inclusion of C&CT into a curriculum that is already considered to be overcrowded 
(Polesel, Rice, & Dulfer, 2014). Ideally, teachers would have sufficient time to learn and teach C&CT in 
addition to other subjects, but it is challenging for teachers to find this time. To address this challenge, 
local educational authorities and researchers have recommended that teachers find ways to integrate 
C&CT across existing subject areas (Barr & Stephenson, 2011; NSW Education Standards Authority, 
2018). One way we have found to negotiate this tension is the creation, in 2017, of two workshops that 
were focussed on integrating C&CT with mathematics: ScratchMaths for Primary School teachers and 
Networks for High School mathematics teachers. The contents of these workshops were aligned with 
specific curriculum outcomes, from mathematics and C&CT.  

Tension between anthropology and assessment 
One of the tensions that we have experienced, which was not identified by Brennan (2015), is the 
tension between assessing the teachers’ CK and PCK and restricting our evaluation to quality 
assurance and self-reported measures of self-efficacy or impact. Brennan (2015, p. 295) does not 



Constructionism 2018, Vilnius, Lithuania 

259 

 

mention the assessment of the teachers during the ScratchEd PD directly but does state that there is a 
“lack of meaningful metrics for assessment and evaluation” when defining the tension between actual 
and aspirational. However, we contend that there are metrics for assessment of CK and PCK that can 
be meaningful and appropriate for suitable contexts and, consequently, we consider the tension 
between anthropology and assessment as separate to the tension between actual and aspirational. We 
also recognise that the formats of different PD in the ScratchEd PD may be more difficult to assess than 
workshops. For example, it could be impractical to assess teachers’ CK and PCK before and after a 
breakout session in one of the ScratchEd Meetups. 

Although the teachers that have participated in our PD have not suggested that we include assessment, 
we contend that there are two main reasons why a more rigorous evaluation of CK and PCK would be 
beneficial. Firstly, in order to improve the effectiveness of our PD, we need to know whether we have 
had a positive effect on teachers’ CK and PCK. Presently, we base improvements to our activities based 
on self-reported measures given by participating teachers.  Secondly, organisations and governments 
spend significant funds on PD and, consequently, there is a need to identify whether the PD has had a 
positive impact on teachers’ classroom practices beyond teachers self-reporting. For example, 
researchers from Google, who have funded the CS4HS (Computer Science 4 High School) program, 
have recently begun investigating the long-term impacts of their programs on teachers’ self-reported 
knowledge of C&CT and their beliefs about teaching C&CT (Ravitz, Stephenson, Parker, & Blazevski, 
2017). 

One of the challenges that we have encountered, that we consider part of the tension between 
anthropology and assessment, is the difficulty of identifying appropriate instruments to measure 
teachers’ CK and PCK. There have been instruments developed for assessing understanding of CK, 
but much of this work has been done in tertiary education (Guzdial, 2015), and these instruments may 
not be appropriate for measuring the CK that K-12 teachers need. In his review of PD studies conducted 
in the United States of America between 2004 and 2014, Menekse (2015) reports that seven of the 
studies involved some assessment of teachers CK. However, a deeper reading of these studies 
uncovered that only three of them involved measurement of CK that was not self-reported. Furthermore, 
these three studies used instruments that were developed by the authors or by an unidentified source, 
and did not report reliability of scales. There is also currently limited research into the assessment of 
PCK specific to C&CT (Saeli et al., 2011; Yadav et al., 2018).  A form of PCK, which is referred to as 
Computational Pedagogical Content Knowledge (CPACK), was present in one of the studies reviewed 
by Menekse (2015). However, in the study in which Yasar and Veronesi (2015) introduce CPACK, they 
do not report measures of teachers’ CPACK or include details on how data can be collected or analysed 
to measure teachers’ CPACK. Similarly, while the research conducted by Yadav et al. (2018) examines 
teachers’ PCK through teaching vignettes, their methods do not include quantitative measures.  

Discussion and Further Research 

In this paper, we have analysed our PD through the framework of the ‘tensions negotiated’ defined by 
Brennan (2015). In this section, we summarise our findings and discuss the implications for PD design. 
We also outline our plans for future research. 

To negotiate the tension between tool and learning we have found it is helpful to include a balance of 
activities that address both tools and learning, as we recognise that both CK and PCK are essential. 
We have also identified potential technical issues that can be encountered when using the different 
tools, and believe it is important that teachers are made aware of these issues.  

To negotiate the tension between direction and discovery we have observed it is valuable to include 
activities where teachers can explore concepts without direct instruction from a resource or instructor, 
such as the 10 Blocks activity. We have also found that it is beneficial to provide teachers with choices 
of activities in the form of parallel sessions, or to let them choose their own direction for learning and 
then offer instructional support. In response to survey feedback, we have included sessions where 
teachers worked together to create an artefact unaided, such as a unit plan, or sessions where teachers 
were given a problem to solve with minimal guidance. These sessions were very well received in 
subsequent years. 



Constructionism 2018, Vilnius, Lithuania 

260 

 

To negotiate the tension between individual and group we have included an increasing number of 
collaborative activities, such as collaborative lesson planning and problem solving. For our PD design 
for 2018, we have planned to train and support teachers who are interested in establishing PLCs. These 
PLCs could encourage the sharing of knowledge and collaboration between teachers after they have 
participated in the PD. The development of the workshop was influenced by the work to develop Master 
Teachers in England (Sentance et al., 2014). 

To negotiate the tension between expert and novice we observed that it is useful to design extension 
activities for the teachers that complete the PD activities quickly. We have differentiated the activities to 
cater for different levels of CK within workshops and created different workshops to accommodate 
different PCK needs according to the level of schooling that participants teach at. We also found that 
inviting expert teachers to share their experiences implementing C&CT with their classes was highly 
regarded by all participating teachers.  

To negotiate the tension between the actual and aspirational we have started running workshops that 
address existing subject areas and specific curriculum outcomes. It is assumed that the teachers 
participating in these workshops already have subject knowledge in that domain, and that they would 
be able to assess those subjects already. These workshops are narrower in scope but provide greater 
depth of learning. We have made changes to the PD that are intended to address the aspirational 
aspects of constructionism as well. We have found these changes have provided teachers with skills 
and resources that can help them introduce design activities to their classes, such as the Creative 
Computing curriculum guide (Brennan et al., 2014). Another PD project planned for 2018, which may 
address this tension, involves running the PD over a longer period of time. This could allow for longer-
term open-ended projects that teachers can, in turn, develop with their students. 

The new identified tension, the tension between anthropology and assessment, extends the tensions 
negotiated by Brennan (2015). Although there are arguments for measuring outcomes in our PD, as 
explained in the previous section, it could also be argued that PD with constructionism as a framework 
for action should not involve any assessment of learning outcomes. Papert and the MIT Logo group 
were known for being opposed to standardised testing (Agalianos et al., 2006), and Papert (1987) 
argued that focusing on assessing outcomes could lead to technocentrism. However, there are 
examples of constructionist research that involve the collection of quantitative measurable learning 
outcomes, including the study of children designing instructional mathematics games conducted by 
Harel and Papert (1990). Harel and Papert (1990, p. 10) referred to these outcomes as “thinner results” 
because, while they could be used to assess the students’ performance, they are not as in-depth and 
rich as the qualitative data collected in the study. While we agree with this sentiment, the analysis of 
quantitative data helps us understand what we can do to improve our PD. Furthermore, the reporting of 
quantifiable measures helps address the concerns of funding agencies and government bodies 
regarding the impact of our PD on teachers.  

We believe that learners, whether they are teachers or students, should be encouraged to explore ideas 
through the self-directed creation of artefacts that are personally meaningful to them. However, as Noss 
and Hoyles (1996) argue, this does not mean that we should not plan for learning outcomes or that 
there should be no assessment of these outcomes. Thus, we need to negotiate the tension between 
acting as anthropologists and assessing teachers’ learning in CK and PCK with quantitative measures. 
Our next PD workshops will integrate our desire for authentic constructionist experiences and the desire 
to improve these experiences by ensuring that the PD has had a measurable positive effect on teachers’ 
CK and PCK.  

Acknowledgements 

The authors would like to thank Google Inc. for funding the CS4HS workshops held at our institution. 
We would also like to thank the university academics who presented talks and gave laboratory tours 
during the workshops, as well as the administrative staff of our institution. 



Constructionism 2018, Vilnius, Lithuania 

261 

 

References 

ACARA. (2018). F-10 Curriculum - General Capabilities. from 
https://www.australiancurriculum.edu.au/f-10-curriculum/general-capabilities/ 

Agalianos, A., Whitty, G., & Noss, R. (2006). The Social Shaping of Logo. Social Studies of Science, 
36(2), 241-267.  

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 
computational thinking curriculum framework: implications for teacher knowledge. Journal of 
Educational Technology & Society, 19(3), 47.  

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what 
is the role of the computer science education community? ACM Inroads, 2(1), 48-54.  

Blikstein, P. (2013). Digital fabrication and ‘making’in education: The democratization of invention. 
FabLabs: Of machines, makers and inventors, 1-21.  

Brennan, K. (2015). Beyond Technocentrism: Supporting Constructionism in the Classroom. 
Constructivist Foundations, 10(3), 289-296.  

Brennan, K., Balch, C., & Chung, M. (2014). Creative Computing - Scratch Ed.   Retrieved March 2018, 
from http://scratched.gse.harvard.edu/guide/ 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of 
computational thinking. Paper presented at the Proceedings of the 2012 annual meeting of the American 
Educational Research Association, Vancouver, Canada. 

Brown, Q., & Briggs, A. (2015). The CS10K initiative: progress in K-12 through "exploring computer 
science" part 1. ACM Inroads, 6(3), 52-53.  

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). A future for computing education research. 
Communications of the ACM, 57(11), 34-36.  

Desimone, L. M. (2009). Improving Impact Studies of Teachers’ Professional Development: Toward 
Better Conceptualizations and Measures. Educational Researcher, 38(3), 181-199.  

DiSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. 
The journal of the learning sciences, 13(1), 77-103.  

Falkner, K., Vivian, R., Falkner, N., & Williams, S.-A. (2017). Reflecting on Three Offerings of a 
Community-Centric MOOC for K-6 Computer Science Teachers. Paper presented at the Proceedings 
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, Washington, 
USA.  

Fisher, L. M. (2016). A decade of ACM efforts contribute to computer science for all. Communications 
of the ACM, 59(4), 25-27.  

Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015, 18-20 March 2015). Computing education 
in K-12 schools: A review of the literature. Paper presented at the 2015 IEEE Global Engineering 
Education Conference (EDUCON). 

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for 
everyone. Synthesis Lectures on Human-Centered Informatics, 8(6), 1-165.  

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive learning 
environments, 1(1), 1-32.  

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Education Week, 61-65.  

Martinez, S. L., & Stager, G. (2013). Invent to learn: Making, tinkering, and engineering in the classroom: 
Constructing modern knowledge press Torrance, CA. 

Menekse, M. (2015). Computer science teacher professional development in the United States: a review 
of studies published between 2004 and 2014. Computer Science Education, 25(4), 325-350.  



Constructionism 2018, Vilnius, Lithuania 

262 

 

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers 
(Vol. 17): Springer Science & Business Media. 

NSW Education Standards Authority. (2018). Digital Technologies and ICT Resources.   Retrieved 11 
March 2018, from http://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-
areas/technologies/coding-across-the-curriculum 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas: Basic Books, Inc. 

Papert, S. (1987). Information Technology and Education: Computer Criticism vs. Technocentric 
Thinking. Educational Researcher, 16(1), 22-30.  

Papert, S. (2000). What's the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 
39(3/4), 720.  

Polesel, J., Rice, S., & Dulfer, N. (2014). The impact of high-stakes testing on curriculum and pedagogy: 
A teacher perspective from Australia. Journal of Education Policy, 29(5), 640-657.  

Prieto-Rodriguez, E., & Hickmott, D. (2016). Preparing teachers for the Digital Technologies curriculum: 
preliminary results of a pilot study. Paper presented at the Constructionism 2016 Conference, Bangkok, 
Thailand.  

Ravitz, J., Stephenson, C., Parker, K., & Blazevski, J. (2017). Early Lessons from Evaluation of 
Computer Science Teacher Professional Development in Google’s CS4HS Program. ACM Trans. 
Comput. Educ., 17(4), 1-16.  

Resnick, M. (2017). Fulfilling Papert's Dream: Computational Fluency for All. Paper presented at the 
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, 
Washington, USA.  

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching programming in secondary 
school: a pedagogical content knowledge perspective. Informatics in Education, 10(1).  

Sentance, S., & Csizmadia, A. (2016). Computing in the curriculum: Challenges and strategies from a 
teacher’s perspective. Education and Information Technologies, 1-27.  

Sentance, S., & Csizmadia, A. (2017). Professional Recognition Matters: Certification for In-service 
Computer Science Teachers. Paper presented at the Proceedings of the 2017 ACM SIGCSE Technical 
Symposium on Computer Science Education. 

Sentance, S., Humphreys, S., & Dorling, M. (2014). The network of teaching excellence in computer 
science and master teachers. Paper presented at the Proceedings of the 9th Workshop in Primary and 
Secondary Computing Education, Berlin, Germany.  

Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational 
Researcher, 15(2), 4-14.  

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2016). 
Computer science in K-12 school curricula of the 2lst century: Why, what and when? Education and 
Information Technologies, 1-24.  

Yadav, A., Sands, P., Good, J., & Lishinki, A. (2018). Computer Science and Computational Thinking 
in the Curriculum: Research and Practice. In J. Voogt, G. Knezek, R. Christensen, & K.-W. Lai (Eds.), 
Handbook of Information Technology in Primary and Secondary Education (pp. 1-18). Cham: Springer 
International Publishing. 

Yasar, O., & Veronesi, P. (2015). Computational Pedagogical Content Knowledge (CPACK): Integrating 
Modeling and Simulation Technology into STEM Teacher Education. Paper presented at the Society 
for Information Technology & Teacher Education International Conference 2015, Las Vegas, NV, United 
States.  

  



Constructionism 2018, Vilnius, Lithuania 

263 

 

Sharing is Caring in the Commons – Students’ 
Conceptions about Sharing and Sustainability in 
Social-Ecological Systems 

Arthur Hjorth, arthur.hjorth@u.northwestern.edu 
Center for Connected Learning and Computer-Based Modeling, Northwestern University, USA 

Corey Brady, corey.brady@vanderbilt.edu 
Department of Teaching and Learning, Vanderbilt University, USA 

Uri Wilensky, uri@northwestern.edu 
Center for Connected Learning and Computer-Based Modeling, Northwestern University, USA 

Abstract 
In this paper, we present the design and analysis of a high school environmental science participatory 
simulation-based activity about sharing natural resources. In particular, we focus on this activity’s utility 
in surfacing students’ diverse ways of thinking about Social-Ecological Systems, offering entry points 
for Constructionist design. The activity was implemented as part of a three-week unit in an 
environmental science AP class. At the core of the activity was a participatory NetLogo simulation in 
which students played the role of dairy farmers. Through their interactions with the simulation and 
collective and individual decision-making, students struggled to reason and argue productively about 
the difficulties involved with sharing natural resource systems. 

 

The virtual grazing ground and accompanying data interface gives students insights into how their individual and 
collective decisions affect the ecosystem. 

We gave students two written assignments, in which they were asked questions about true, historical 
descriptions of communities sharing natural resource systems. Here we analyse the responses, 
identifying four distinct ‘thinking patterns’ across student responses. We discuss how these four patterns 
were productive in so far as they helped students to reason about the historical cases, but also how 
these patterns in their thinking restricted them from thinking productively about the full nature of the 
case studies. Finally, we discuss how future designs might address the less productive aspects of these 
patterns. 

Keywords 
NetLogo; agent-based modelling; HubNet; participatory simulation; social studies; complex systems 

Abstract 
This paper presents data from a high school implementation of a unit on common-pool resource sharing 
dilemmas in Social-Ecological systems. We designed and implemented a computer-simulation-based 



Constructionism 2018, Vilnius, Lithuania 

264 

 

classroom activity in a high school Environmental Science course. Students took on the role of cattle 
farmers who had to maintain and share a virtual grazing ground and prevent a “Tragedy of the 
Commons.” We present an analysis of students’ responses to questions about how best to coordinate 
collective action and ensure sustainable utilization of the commons.  We identify four patterns in 
students’ thinking and discuss how these patterns were simultaneously productive and a hindrance to 
reasoning about different aspects of this complex problem. Finally, we discuss the impact of our findings 
on our own iterative design-based research, as well as wider implications for future learning design and 
research on social-ecological systems and sustainability. 

Introduction 

The United States’ National Council for the Social Studies’ recent C3 framework (NCSS, 2013) proposes 
a new set of standards for Social Studies, including the use of computer simulations to test and 
understand the effects of policies and collective action. Despite decades of using computer modelling 
in science education (Wilensky & Jacobson, 2014), there have been relatively fewer applications in 
social studies classrooms. In this paper, we present data from a 3-week high school classroom 
implementation of activities focusing on the challenge of sustainable food production and featuring 
computer-based network-supported participatory simulations, or PartSims (Klopfer, Yoon, & Perry, 
2005; Wilensky & Stroup, 1999b). Our core PartSim activities took Hardin’s (1968) seminal Tragedy of 
the Commons paper as a point of departure. Hardin argues that collectively shared resource systems 
are doomed to end in “tragedy” because individual actors within the system will act in their short-term 
interest to the detriment of the collective. However, Elinor Ostrom’s Nobel Prize-winning work 
(Brondizio, Ostrom, & Young, 2009; Ostrom, 1990, 2007) has shown that while true under certain 
conditions, other conditions make it possible for communities to sustainably share and maintain 
resource systems. In such contexts, collectives can work to discover and sustain solutions to common-
pool resource sharing problems. Ostrom and colleagues thus refer to a drama of the commons (The 
Drama of the Commons, 2002), which may end either in “comedy” or in “tragedy” depending on policies 
and practices adopted by participants. 

Given the societal importance of the sustainable use of natural resource systems like oceans, aquifers, 
and populations of fish or game, it is critical to prepare students to envision and engage the potential 
impact of policies oriented towards addressing the drama of the commons. In this paper, we present an 
analysis of a study in which we designed and implemented a 3-week PartSim-based unit on sharing 
natural resource systems in a high school Environmental Science class. Our focal PartSim activities, 
and our unit as a whole, gave the classroom group the opportunity to role-play a village of cattle farmers. 
Together, they collaboratively explored possibilities for sustainable growth and for collectively 
maintaining a “virtual commons” in a simulated world. Our analysis focuses on students’ written 
responses to two sets of questions on this topic. We identify four patterns in student thinking, explain 
how they both helped and hindered students in making sense of the topic, and discuss why future 
learning design and research would benefit from addressing these thinking patterns. 

What is hard about sharing 

Following Hardin (1968) and Ostrom (1990), we can think of the difficulties of sharing a resource system 
from the perspective of an individual, and from the perspective of an individual’s larger community. From 
the perspective of an individual, the dilemma is a classical free-rider problem: the long-term benefits of 
collaboration are shared between all community members, whereas “cheating” benefits only the 
individual cheater. This leads to an individual-centred logic which dictates that cheating creates a net 
gain for the cheater. From the community’s point of view, the difficulties of sharing stem from the very 
nature of conditionally self-replenishing resource systems: 

Resource systems can best be thought of as stock variables that are capable under 
favorable conditions of producing a maximum quantity of a flow variable without harming 
the stock or the resource system itself. (Ostrom, 1990, p. 30) 

To exemplify, let us imagine a shared fishing pond: the stock variable is the amount of fish in the pond, 
and flow variable is the amount of fish being “produced” in the pond (through reproduction). Favourable 



Constructionism 2018, Vilnius, Lithuania 

265 

 

conditions include natural or anthropogenic factors like weather or nutrition levels in the water that affect 
how much flow the system produces. Finally, the last part of the quote alludes to the fact that these 
systems are often fragile and can be harmed or even driven to collapse if not cared for properly. The 
challenges facing communities who depend on sharing sustained access to these systems are then 
two-fold: First, how does a community collectively manage a system in order to create and sustain the 
set of ‘favourable conditions’ that optimize the amount of flow resource? This difficulty is exacerbated 
by the fact that the cost to maintain favourable conditions sometimes cannot be spread easily among 
community members. (For instance, while the community could decide to share the costs associated 
with feeding the fish, the time-cost involved in physically feeding the fish or measuring current nutrition 
levels will fall on one or a few individuals.) Second, and related, how does a community set up a system 
for sharing the produced resource that makes individual community members feel that their efforts are 
rewarded fairly? This difficulty involves a number of social challenges: for instance, establishing a 
means to ensure compliance with group norms that enables members of the community to “rest easy” 
that their fellow citizens are not cheating. 

Research questions  

In this paper we offer a preliminary analysis, through which we aim to better understand how students 
reason about communities that share resource systems. We ask, 

1. How do students reason about the problems facing communities who rely on shared natural 
resource systems?  

2. What kinds of community rules do students imagine would help address these problems, and 
why? 

Design, Implementation, and Data 

The study presented here emerged from the first year of a multi-year design-based research project 
(Cobb, Confrey, Lehrer, Schauble, 2003) in partnership with a classroom teacher at a suburban high 
school in the US Midwest. Together, we collaboratively designed a unit to run over 15 periods in a high 
school Environmental Science classroom. The 22 students in our partner teacher’s class were 
consented, and all chose to participate in the study. In addition to fitting into the larger themes of the 
course, we designed the unit to target the NCSS’s standards for social sciences (NCSS, 2013), and the 
NGSS science standards (NGSS Lead States, 2013), focusing on the use of computer simulations of 
ecological systems, to test the viability and effectiveness of policy interventions and collective action. 
Seven periods out of 15 during the first two weeks of implementation revolved around PartSim activities 
and are the focus of this study. 

The Virtual Commons Sharing Activity 

PartSims are socially shared computer-mediated simulations in which a group of students takes on the 
role of agents in a system whose aggregate behaviour emerges in real time as the students interact. As 
such, PartSims provide a means for a group of learners to experience a phenomenon from both the 
micro-level (as individual participants) and the macro-level (as a collective group experiencing the 
emergence of these outcomes). PartSims have a long history in the design of Constructionist learning 
activities, and have been used to teach topics as diverse as chemistry (Brady et al, 2015), geography 
and policy decision-making (Gilligan et. al, 2015), and as a tool for teaching complex systems principles 
(Brady et al, 2017; Guo & Wilensky, 2016).   

From a Constructionist perspective, the purpose of a HubNet activity is to give a group of students a 
shared, manipulable object with an underlying set of complex systems interactions, and a socially 
meaningful purpose for these manipulations. Our PartSim was programmed in NetLogo (Wilensky, 
1999) using the HubNet (Wilensky & Stroup, 1999a) architecture. The purpose of the PartSim was to 
give students the experience of sharing a “virtual commons” with collective responsibilities. The Virtual 
Commons HubNet activity began on day 3 of the unit. During the first two days, we ran two activities 
focusing on the Tragedy of the Commons. In the first, a non-virtual activity, students had to share a 



Constructionism 2018, Vilnius, Lithuania 

266 

 

fishing ecosystem consisting of candy fish. In the second, students had to share a grazing ground in a 
HubNet NetLogo model. Both of these activities were designed with Hardin’s original constraints in 
mind: students were not allowed to speak or coordinate with each other, nor were they permitted to 
share responsibilities. In both of these activities, students inevitably “crashed” the ecosystem and 
enacted the Tragedy of the Commons. 

In contrast, and reflecting an important difference between Hardin’s thought experiment and Ostrom’s 
empirical research, our subsequent Virtual Commons PartSim was designed to give students incentives 
to work together to maintain their resource systems: Students played the role of dairy farmers who relied 
on a shared grazing ground. For each “week” (turn) of the activity, students held a town hall meeting in 
which they assessed the state of the commons by looking at data together, and agreed on what tasks 
would need to be done in the following week as well as, by whom.  

 

Figure 1. Each student’s private view of the Virtual Commons PartSim model. 

Each student could take on one of four tasks (see Figure 1): (a) spreading fertilizer (accelerating the 
regrowth of grass on the commons); (b) repairing fences (ensuring that the village’s cattle do not 
escape); (c) herding their own cattle (increasing their own milk production for the week); or (c) monitoring 
their peers (confirming that they were doing what they promised to do). Importantly, the simulation 
allowed students to “cheat” – by promising to engage in one task, while secretly doing another. This 
made monitoring an important task, as monitors enabled the village to catch cheaters.  

During the town hall meetings, students gathered around the shared view (Figure 2), which displayed 
relevant information, including the number of cows on the field, the amount of grass on the grazing 
ground, the total milk production, the Gini coefficient for the farm community, and the general state of 
repair of their fences. Based on these data and their shared experiences up until this point, students 
discussed the dilemmas they faced, both as individuals and as a group, and devised means to address 
them through collective action. In addition to pursuing collective farming goals, they also conducted 
“experiments” to learn information about their environment. These included varying the number of 
people who spread fertilizer (to assess how quickly grass grew back on its own or to estimate “carrying 
capacity”) or repaired fences (to assess the rate at which fences deteriorated). 



Constructionism 2018, Vilnius, Lithuania 

267 

 

  

Figure 2. Students' collective view of the grazing ground. 

Our aim with the Virtual Commons PartSim activity was to give students a contrasting experience to the 
Tragedy of the Commons, so that they might come to understand problems facing sustainable sharing 
as well as to explore the viability of potential solutions. By exploring the aggregate outcome of their 
collective choices, students experienced the potential problems that commons-sharing communities 
face, while also confronting the strengths and weaknesses of different solutions. We hypothesized that 
this activity would support students in reasoning about other, similar, situations in which social 
collectives share a commons.  

The Elicitation: Two Real Cases of Resource Sharing  

At the end of each of the three weeks of the unit, students were asked to respond individually to 
questions about written case studies in which communities share resource systems. These assignments 
were given as homework over the weekends, and questions were distributed via Google Forms. The 
data presented in this paper come from the first and the second of these assignments. As mentioned 
above, our purpose analysing these data is more to identify patterns in students’ ways of thinking about 
resource systems, than to argue for the effectiveness of our unit in creating conceptual change or 
learning in this area. 

These two homework assignments presented students with historical cases from Ostrom’s (1990) work. 
We decided to use these two cases for a variety of reasons: first, because Ostrom’s own treatment of 
them provided us with an “expert analysis” with which we could compare student responses. Second, 
both these cases took place years ago before technological innovations would offer easier solutions to 
some of these problems. By taking out technical solutions, we forced students to reason about the social 
and ecological aspects of the dilemma, instead of coming up with intricate technical solutions like 
satellite surveillance or GPS tracking. Finally, these cases involved self-replenishing but fragile resource 
systems with similar features to the one that students experienced in the Virtual Commons, but were 
still different enough that we could see whether students would reason about these systems by drawing 
on their experiences from the Virtual Commons. 

The first case described a community of farmers outside of Valencia, Spain who shared an irrigation 
canal system in the Middle Ages. Maintenance of the canals relied on the coordinated effort of many 



Constructionism 2018, Vilnius, Lithuania 

268 

 

people and more resources than any one farmer could afford. Additionally, the amount of water 
fluctuated each year due to differences in precipitation.  

The second case described a community of fishermen in Sri Lanka living by a bay, whose livelihood 
depended on the use of large seine nets. These nets were so costly that seven families typically had to 
co-own each one, and so large that only one boat could fish in the bay at a time. The nets, then, posed 
both financial and logistical constraints, forcing people to cooperate. In addition, maintaining the health 
of the bay (a fragile ecological resource system) was yet another factor requiring community 
collaboration.  

Analysing the Responses 

The questions (9 questions for the first case and 8 for the second), probed student thinking about the 
difficulties that these communities might face, and asked students to think about what rules the 
community could instate to address the difficulties, and probed their thinking about why those rules 
would help. We changed the number of questions between the two cases as part of our iterative design 
process, because a preliminary look at student responses after the first week of implementation 
suggested to us that two of the questions overlapped in a confusing manner. Our second iteration of 
questions collapsed these two questions into one and rephrased the prompt. 

Because we were still in the exploratory stages of our research, we took an open-ended approach to 
coding students’ responses. We used “ways in which students identify challenges at the community or 
individual level” as “sensitizing concepts” (Miles & Huberman, 1994) in our initial coding. The first two 
authors coded all student responses individually, and we then converged on four interesting patterns 
that both researchers noticed across many student responses. 

Findings  

In this section, we will describe four patterns in students’ thinking that emerged from our open-ended 
analysis, and that we believe future learning design and research should focus on. We describe each 
pattern and how it relates to the specific details of each of the cases; provide examples of student 
responses that exemplify each pattern; and, finally, discuss how each pattern seemed to participate in 
the broader reasoning of the students who exhibited it. These patterns proved to be two-sided in their 
effects on student reasoning about common-pool resource sharing. On one hand, they acted as 
productive tools to support students in thinking and in articulating ideas; on the other, they seemed to 
foreground particular aspects of sharing dilemmas at the cost of backgrounding other features, thus 
tending to limit student thinking in some ways. 

The “Fixed Flow” Pattern  
We found that when asked to identify a potential tragedy of the commons in each of the two cases, it 
many students reasoned primarily about short-term aspects of sharing the flow resource. In contrast, 
very few students mentioned long-term, stock-related aspects relating to optimizing the yield of the 
system.  

For example, consider this typical flow-focused response to Case 2 (fishing): 

By cheating […] that group would get the most fish and […] affect the other groups by forcing 
them to split a smaller number of fish and depriving them of equal opportunity. (S12) 

Compare this thinking with the following typical stock-focused response, also to Case 2. (Note: Here 
and elsewhere students’ spelling and grammar are maintained.) 

If one of the fisherman caught more than assigned then the it effects the rest of the 
community because thre wouldn't be enough fish to reproduce and have enough for next 
‘harvest.’ (S21) 

Interestingly, both students are talking here about overfishing. But the function of overfishing is different 
and reflects the distinction between fish as stock and fish as flow. In the former response, the student 
identifies the problem with overfishing as there being an immediately lower number of fish to split 



Constructionism 2018, Vilnius, Lithuania 

269 

 

between the rest of the fishermen at that moment. In the latter, the student identifies the problem with 
overfishing as diminishing or threatening future yield.  

This illustrates the importance of thinking about both stock and flow. However, we often saw that 
students focused only on flow. In Case 1 (irrigation), 21 students brought up potential flow-related 
problems with people taking too much water and not leaving enough for the rest of the community, and 
14 students brought up potential rules to address these problems. In contrast, only 10 students 
mentioned stock-related problems, and only four students mentioned solutions to them. Likewise, in 
Case 2, 20 out of 22 students mentioned potential flow-problems - relating to taking more than one’s 
share by fishing too much - and 12 brought up rules to prevent them. In contrast, only 3 student 
responses brought up problems relating to stock – the maintenance of the system and its ability to 
produce future fish – and only 2 identified potential rules to address these problems. Moreover, those 
who did reason about long-term stock issues were very likely also to reason about short-term flow 
issues, but not vice versa: of the 10 students who mentioned stock problems, 8 also mentioned flow 
problems. 

We call the thinking pattern that attends to flow-aspects at the expense of stock-aspects the “fixed flow” 
pattern, because responses exhibiting this pattern treat the shared resource as an invariant quantity of 
flow – water in the canal, or fish in the bay. That is, this thinking pattern attends to “fair sharing” of the 
flow, possibly making a hidden assumption that the group’s access of the resource will not damage the 
system’s capacity to produce future flows. This pattern of thinking can be problematic if it prevents 
students from considering how to preserve the “favourable conditions” that optimize the long-term 
availability of flow resources to be shared, either through maintenance of the stock or the system’s 
infrastructure. 

The “Social, Not Ecological” Pattern  
We also observed a pattern of thinking in student responses that emphasized solving the social 
problems of freeloading, at the expense of considering ecological problems. Students’ responses 
exhibiting this pattern often assumed that if the community managed to collaborate, then everything 
would be fine. For example, consider the contrast between this response to Case 1: 

If the farmers collaborate, they ensure some level of food security and economic security. 
(S7) 

…and these responses (to Case 1 and Case 2, respectively): 

If they collaborate, each farmer will have enough for his on family. (S16)  

If the fishing groups cooperate then they will each get some fish and there will be a 
sustainable population (S20) 

In the first response, the student explicitly reasons that while collaborating will ensure some level of 
food security, it will not absolutely guarantee it. In the last two, the students seem to assume that if the 
farmers or fishermen prevent each other from cheating, everything will be fine. But there are no 
guaranteed ‘happily ever after’ scenarios in the commons, even for communities that share resources 
equitably. Even if everyone gets their fair share, a community can run out of fish or grass if they do not 
solve the long-term, yield-related stock problems. Because of its emphasis on the social dimension of 
the sharing dilemma, we described this pattern as a “social, not ecological” way of thinking. We saw this 
pattern in 9 responses in Case 1, and 8 in Case 2, with four students exhibiting the pattern in both their 
responses to both cases. These responses suggest that students may forefront the social coordination 
problems without taking into account the ecological dimensions of the system. While the social side of 
problems is important, it cannot stand on its own, and future design iterations of our unit will try to 
forefront the ecological side more in an attempt to address this pattern. 

The “Social, Not Ecological” pattern and the “Fixed Flow” pattern share similarities in the features of 
common-pool resource sharing that they background.  In particular, both are focused on concerns about 
equal access to flows at the expense of questions about the sustainability of stocks. However, for us 
they represented different ways of thinking, because of the way they engaged with social dynamics and 
norms.  As we seek to engage groups of learners in broadening their perspectives, these ways of 



Constructionism 2018, Vilnius, Lithuania 

270 

 

thinking represent different entry points and leverage points for the design of activities and learning 
environments. 

The Profit and Competition Pattern 
As we have noted, our student responses focused on short-term, flow-based problems, with almost all 
students in the population mentioning these challenges.  One pattern in students’ characterization of 
these problems had to do with an interpersonal source or motivation for cheating in the commons. This 
pattern grounded reasoning about why people cheat in an implicit or explicit belief that people in groups 
are competitive, such that community members compete over the commons and attempt to generate 
the most individual profit. Responses exhibiting this pattern focused on motivations for cheating that 
pertain to people’s desires rather than their needs. Consider these three responses: 

Farmers would [cheat] to get ahead and water more and more crops to make money. (S12) 

and, 

They want to produce the most and be the best farmer. They want to be known as having 
the best most consistent product. (S6) 

and, 

By cheating in a way like going out to fish earlier than everyone, that group would get the 
most fish and be the most wealthy and profitable. (S13) 

Twelve responses to Case 1 and twelve to Case 2 brought up a competitive profit motive for cheating, 
with 7 students responding in this way to both cases. However, Ostrom’s research shows that 
community members may cheat for a wide variety of reasons beyond the desire to profit over others.  
For instance, community members experiencing temporary financial or health-related difficulties may 
cheat out of necessity.  Alternatively, community members may feel an incentive to cheat if they perceive 
that others are cheating and getting away with it.  Thus, preventing cheating can be a very complex 
matter.  But students exhibiting the “profit and competition” pattern tended to reduce this problem to an 
interpersonal competitive dynamic. 

Ostrom’s work suggests that designing collaboration rules for preventing cheating requires a deep 
understanding of the underlying reasons for why people cheat, as these motivations are what the rules 
must target. Thus, while the “profit and competition” pattern may be productive for reasoning about 
preventing one kind of cheating, it may draw students’ attention away from solutions to other 
manifestations of flow-sharing problems.  

The “Fixed Human Nature” Pattern 
Another prominent pattern in student responses that addressed flow-sharing problems appeared to be 
based in an image of human nature as having essential qualities independent of context or situation. 
This pattern was distinguishable from the “profit and competition” pattern in which the competitive nature 
was seen as coming out of the interactions between people. In contrast, in the “fixed human nature” 
pattern, students downplayed the impact of social arrangements and conditions in preventing cheating, 
and instead saw rule-breaking as inevitable. Humans (or some types of humans) were seen as 
essentially predisposed to pursue antisocial behaviour that would benefit them individually. We provide 
examples of this pattern of thinking from responses to Case 1.  

In some instances, students posited essentialized features of human nature in particular individuals or 
types of individuals within the broader population. For example, the following response indicates a belief 
in the existence of an antisocial element: 

A few rotten apples out of the farming bunch may misuse the water and everyone's fields 
would collapse. (S10) 

In other responses, students expressed essentialized understandings of human nature in general, or 
they bridged from behaviours exhibited by individuals to traits of all people. Consider the following 
response: 



Constructionism 2018, Vilnius, Lithuania 

271 

 

Certain farmers will always ask for more than they need due to the selfish nature of humans. 
(S22) 

Here, while the phrase “certain farmers” suggests a conception about a subset of the population, “the 
selfish nature of humans” points toward a more general human trait. Similarly, in reflecting on the impact 
of variability in the flow resource of water in Case 1, another student remarked: 

I think this because people worry about themselves first and foremost, then secondly comes 
the idea of sharing. (S18) 

Under this conception of human nature, it is possible to make context-independent statements about 
how humans will behave and interact. This pattern in student thinking stands in contrast to an alternative 
conception of human nature, which holds that it is malleable, and that human behaviour is highly 
context-dependent. A “fixed human nature” pattern tends to underestimate the potential for policies, 
rules, and information to alter collective patterns of action. Thus, this pattern may hinder students’ ability 
to conceive of creative responses to the dilemmas and challenges that constitute the “drama of the 
commons,” limiting their capacity to imagine solutions for sustainable common-pool resource sharing 
and management. 

Discussion, Limitations, and Conclusion 

This paper has presented an analysis of high school students’ reasoning about communities sharing 
natural resource systems as part of a 3-week unit on sustainable food production featuring participatory 
simulation activities. Based on our analysis, we identified four patterns across students’ responses. 
These patterns proved to be productive for students to reason about some aspects of the cases, but we 
speculate that they also hindered students in reasoning about other important aspects.  

We have taken a design-based research approach to the iterative construction and implementation of 
this unit, and the design changes to our subsequent iterations have aimed to better identify and address 
the problematic aspects of these thinking patterns. We have implemented the activity sequence 
analysed here two additional times, including the following refinements, responsive to our analysis of 
patterns of thinking. 

In order to address the “fixed flow” pattern, our current design gives students increased access to the 
data produced by the model in order to provide the classroom group with opportunities to explore how 
their behaviours, both as individuals and as a community, effect changes in the “size of the pie” from 
which they are taking equal or unequal shares.  

To address the “social, not ecological” pattern, we have made two changes to the simulation itself. First, 
we reduced the carrying capacity of the system, and second, we have sped up how quickly the 
simulation runs. Both of these changes increase the likelihood that student villages will experience a 
crash, even with a modest number of cows. Our aim with this is to let students discover that even a well-
coordinated community can experience crashes because of scarcity.  

Finally, in order to address the “profit and competition” pattern and the “fixed human nature” pattern, we 
have developed a set of activities within and around the PartSim experiences, in which students run 
collective self-defined “experiments” in and on their commons. While the groups spontaneously thought 
of some of their actions as providing information about their environment even our first-year 
implementation, our subsequent design refinements have amplified this tendency. Data from these 
experiments have allowed student groups to make better decisions about how many cows should be 
allowed to graze, and how many people should repair fences or fertilize the grazing ground each week. 
In addition to serving the more general learning goal of using computer simulations and data to make 
decisions, our hope with these activities is that students can experience both the challenges and 
benefits of working together to manage shared resources and to gauge their success in doing so. 

An important limitation of our study is that our sample of students comes from a predominantly white, 
private, suburban, parochial high school from which 99% of graduates go to college. Importantly, this 
study focuses on reasoning about sharing, and we believe that these students who often come from 
very high-resource homes will have a particular set of experiences of sharing as a result of their 



Constructionism 2018, Vilnius, Lithuania 

272 

 

upbringing, not representative of the high-school aged population as a whole. To address this limitation 
in the makeup of our population, we hope soon to implement our unit in other socio-economic settings.  

In analysing student response data, we identified substantial variation not only across students but also 
within students across the two cases that students reasoned about. However, it is important to keep in 
mind that the two cases are quite different, exhibiting distinctive features of the natural resource systems 
that communities share. In order to tease apart (a) how differences in students’ responses to the cases 
stem from genuine differences or changes in thinking about the cases on the one hand, from (b) 
substantive differences between the social-ecological systems in the cases on the other hand, we are 
varying the order in which students experience each of the two cases.  

Finally, we believe that participatory simulations offer a particularly powerful approach to learning about 
common-pool resource sharing dilemmas in a classroom setting.  PartSims give students the dual 
perspective of individual and group in experiencing social-ecological dilemmas and allow them to 
engage in deliberation about resource systems sharing. Given the importance of this topic to the survival 
of our species and planet, we feel that collective resource systems sharing and maintenance is an 
important area of focus for education research and design. In this paper, we have presented what we 
see as early educational research on this topic.  

ACKNOWLEDGMENTS 

We are grateful for the support from Loyola Academy in Wilmette, IL, USA and all students who 
participated. The authors gratefully acknowledge the support by NSF Grant #1441552. Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the authors and 
do not necessarily reflect the views of the NSF. 

References 

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez, S., & Wilensky, U. (2017). All roads lead to 
computing: Making, participatory simulations, and social computing as pathways to computer 
science. IEEE Transactions on Education, 60(1), 59-66. 

Brady, C., Holbert, N., Soylu, F., Novak, M., & Wilensky, U. (2015). Sandboxes for model-based 
inquiry. Journal of Science Education and Technology, 24(2-3), 265-286. 

Brondizio, E. S., Ostrom, E., & Young, O. R. (2009). Connectivity and the Governance of Multilevel 
Social-Ecological Systems: The Role of Social Capital. Annual Review of Environment and Resources, 
34(1), 253–278. https://doi.org/10.1146/annurev.environ.020708.100707 

Cobb, P., Confrey, J., Lehrer, R., Schauble, L., & others. (2003). Design experiments in educational 
research. Educational Researcher, 32(1), 9–13. 

Gilligan, J. M., Brady, C., Camp, J. V., Nay, J. J., & Sengupta, P. (2015, December). Participatory 
simulations of urban flooding for learning and decision support. In Proceedings of the 2015 Winter 
Simulation Conference (pp. 3174-3175). IEEE Press. 

Guo, Y., & Wilensky, U. (2016). Learning About Complex Systems with the BeeSmart Participatory 
Simulation. In Proceedings of Constructionism 2016. Bangkok, Thailand. February 1-5. 

Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248. 

Klopfer, E., Yoon, S., & Perry, J. (2005). Using palm technology in participatory simulations of complex 
systems: A new take on ubiquitous and accessible mobile computing. Journal of Science Education and 
Technology, 14(3), 285–297. 

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis : an expanded sourcebook. Thousand 
Oaks: Sage Publications. 

NCSS. (2013). The college, career, and civic life (C3) framework for social studies state standards: 
Guidance for enhancing the rigor of K–12 civics, economics, geography, and history. Author Silver 
Spring, MD. 



Constructionism 2018, Vilnius, Lithuania 

273 

 

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, 
DC: The National Academies Press. 

Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. 
Cambridge university press. 

Ostrom, E. (2007). A diagnostic approach for going beyond panaceas. Proceedings of the National 
Academy of Sciences, 104(39), 15181–15187. 

The Drama of the Commons. (2002). Washington, D.C.: National Academies Press. Retrieved from 
http://www.nap.edu/catalog/10287 

Wilensky, U. (1999). NetLogo: Center for connected learning and computer-based modeling. 
Northwestern University, Evanston, IL. 

Wilensky, U., & Jacobson, R. (2014). Complex Systems in the Learning Sciences. In The Cambridge 
handbook of the learning sciences (Vols. 1–2). Cambridge, UK: Cambridge University Press. 

Wilensky, U., & Stroup, W. (1999a). HubNet. Center for Connected Learning and Computer-Based 
Modeling, Northwestern University: Evanston, IL USA,< Http://Ccl. Northwestern. Edu/Ps. 

Wilensky, U., & Stroup, W. (1999b). Learning through participatory simulations: Network-based design 
for systems learning in classrooms. In Proceedings of the 1999 conference on Computer support for 
collaborative learning (p. 80). International Society of the Learning Sciences. 

 

  



Constructionism 2018, Vilnius, Lithuania 

274 

 

Urban Planning-in-Pieces: A Computational 
Approach to Understanding Conceptual Change 
and Causal Reasoning about Urban Planning 

Arthur Hjorth, arthur.hjorth@u.northwestern.edu 
Center for Connected Learning and Computational Modeling, Northwestern University, USA 

Uri Wilensky, uri@northwestern.edu 
Center for Connected Learning and Computational Modeling, Northwestern University, USA 

Abstract  
In this paper, we present a computer-simulation-based classroom unit designed to improve students’ 
causal reasoning about the effects of urban planning. Based on data collected in three separate 
implementations of this unit, we use Association Rule Mining (ARM) to assist in Knowledge Analysis 
(KA) of students’ responses to pre- and post-questions. We first define causal-nodes as a construct, 
and then qualitatively identify distinct causal-nodes in students’ responses. We then validate these 
nodes quantitatively within and between students’ responses. Finally, we compare changes in the 
association rules between these causal-nodes between pre- and post-responses in order to find 
changes in students’ explanations. This paper makes two distinct contributions: first, it shows a 
productive use of an existing computational method to aid in the analysis of conceptual change. Second, 
it contributes towards better understanding how to design for and analyse causal reasoning in social 
science education. 

Keywords  
knowledge analysis; netlogo; social studies; complex systems; causal reasoning; computational 
analysis; computational methods 

Causal Reasoning in the Social Studies 

The College, Career, and Civic Life (C3) Framework for Social Studies State Standards (NCSS, 2013) 
presents a new framework for K-12 social studies, emphasizing ‘student explanations’ and ‘complex 
causal reasoning’ in Social Studies. However, in contrast to a similar move in science education (NGSS 
Lead States, 2013), design and implementation of social studies curricular activities that focus on causal 
reasoning are presently understudied. This leaves two gaps that we think are important in the literature: 
first, how do we design to encourage and strengthen causal reasoning in social studies; and second, 
how do we study this thinking in a social studies context? 

In this paper we hope to contribute to these currently understudied goal by presenting a computationally-
assisted Knowledge Analysis (diSessa & Sherin, 2015) of students’ causal-explanations in response to 
pre- and post-questions as part of a unit of our own design, in which students used a computer 
simulation to learn about urban planning. The simulation and accompanying activities were designed to 
help students think causally about the social impact of urban planning decisions. Analysing students 
pre- and post-question responses, we identify a set of causal-nodes and use Association Rule Mining 
(ARM)  (Agrawal, Imieliński, & Swami, 1993) to look at how, at the classroom-level, these nodes are 
reorganized between pre- and post-responses. Based on our findings and discussion, we claim that 
ARM is a particularly well-suited approach to helping us in the analysis of student reasoning with a 
piecemeal view of knowledge and learning, and that it potentially can help us scale up Knowledge 
Analysis to larger dataset than it has currently been applied to. 

Research Questions 

In this paper, we address the following questions, 



Constructionism 2018, Vilnius, Lithuania 

275 

 

1. How can we design activities that improve students complex causal reasoning about social 
issues? 

2. What are the constituent parts of students’ causal-explanations when responding to questions 
about city planning? 

3. How are these parts assembled into larger explanation-structures, and how can ARM help us make 
sense of change in these explanatory structures? 

Why Association Rule Mining for Knowledge Analysis? 

Knowledge Analysis takes a piecemeal approach to understanding the mental representations of 
knowledge, and views reasoning as the assembly of these pieces in-the-moment (diSessa, 2002; 
diSessa & Sherin, 2015; diSessa & Sherin, 1998; Sherin, 2006; Sherin, Krakowski, & Lee, 2012). The 
purpose of KA is to provide an analytical space for better understanding knowledge and learning: In this 
view, briefly, learning is the acquisition of new knowledge pieces into a learners’ repertoire, and/or 
changes in the assembled constellations of these pieces. An important feature of a single knowledge 
piece, is that it can be combined with other knowledge pieces into essentially different, larger structures, 
and that the meaning of a network of knowledge pieces is an emergent property of these manifold 
structures. 

Likely due to the fine-grained nature of KA, most KA-oriented studies are based on somewhat small 
sample sizes. Recent work has moved to include more computational methods in the Learning Sciences 
(Martin & Sherin, 2013; Sherin, 2013). In contrast to Educational Data Mining’s focus on quantitatively 
assessing student thinking, this work has primarily focused on using computational methods to 
qualitatively better understand the process of learning or the constituent parts of conceptual change 
(Berland, Baker, & Blikstein, 2014; Blikstein, 2011), and on utilizing the power of computation to scale 
up the size of data. In this paper, we propose to use Association Rule Mining for a similar purpose: as 
a method for assisting us in a Knowledge Analysis, both as an approach to validating the causal-nodes 
that we identify in students, and as a way of scaling up KA to help us look at learning at the classroom-
level.  

Association Rule Mining (Agrawal et al., 1993) is a method for understanding co-occurrences between 
elements in a set of data. More specifically, an ARM-analysis takes a set of ‘transactions’ that each 
include some elements, and then calculates, across all these transactions, how well the presence of 
one particular element in a transaction predicts the presence of another element in a transaction. We 
believe that ARM’s focus on looking at the co-occurrence of individual items makes it particularly well-
suited for helping us in analyses of students thinking with a piecemeal view of knowledge: If we view 
student whole explanations as transactions, and knowledge-pieces as the individual elements in these 
transactions, we can use ARM to better understand the changes in students’ reasoning both at the 
individual- and at the classroom-level by calculating if and how these pieces are reassembled over time. 

Previous use of simulation in urban planning education 

Simulations have been used for SimCity in particular has received attention since the early-1990s as a 
teaching tool in formal education that involves urban planning or thinking about cities (Adams, 1998; 
Dorn, 1989; Gaber, 2007; Kolson, 1996; Pahl, 1991).  Early uses of SimCity focused on two different 
aspects. The first sought to make a general case for using commercial computer simulations games in 
education (Shaffer, Squire, Halverson, & Gee, 2004; Shaffer, 2006; Shaffer, 2006; Squire, 2003) and 
sought to show how the well-designed and engaging commercial games would make school fun for 
children. The other focused on simulation literacy (Gee, 2003, 2007; Turkle, 1997), and its specific 
interest was in how (or if) children engaged with the ideological assumptions programmed into the city. 
More recent work has focused using SimCity in formal urban planning education at the college or 
graduate level: how to align SimCity with formal curriculum and use it as an introductory tools at the 
college and graduate level (Bereitschaft, 2016; Devisch, 2008); how SimCity can help urban planning 
students engage with their own creativity (Kim & Shin, 2016); or as a reflective tool to improve on urban 
planning pedagogy itself (Kim & Shin, 2016). 



Constructionism 2018, Vilnius, Lithuania 

276 

 

However, while simulation of causal mechanisms are at the very core of the representational power of 
simulation games  (Frasca, 2001, 2003; Squire, 2003), none of the reviewed work has focused 
specifically on causal reasoning. Thus, while simulations in general and SimCity in particular have seen 
use in education, this work does not address the specific need created by NCSS (2013) for a conceptual 
framework for analysing and measuring learners’ complex causal reasoning. One aim and contribution 
of this paper is to fill out this gap in the literature and explore how to design simulations to help students 
improve on their complex causal reasoning about complex social phenomena. We previously reported 
on qualitative findings from pilot data from this study (Hjorth & Wilensky, 2014a, 2014b; Hjorth & Krist, 
2016), but have now collected enough data to take quantitative approaches like this as well. 

The Design & Study 

The data in this paper come from a unit that we designed on Urban Development and Regional Planning 
and which we implemented during two quarters at the undergraduate level at a mid-sized, private 
research university in a metropolitan area in the American Midwest. The course was called, ‘Introduction 
to Social Policy’ and is required for Social Policy majors. Students were given course credit equivalent 
to one course essay for participating. In this paper, we focus on students’ pre- and post-responses to a 
question about how urban planning affects the distribution of commute times for different income groups. 
Over the span of three implementations, a total of 60 students consented. We sent out the pre-
questionnaire 10 days before class in which we used the model, and we sent out the post-questionnaire 
10 days after class had finished, and students typically responded within two days. Not all students 
responded to our questions, and we had some attrition between pre- and post-, and during students’ 
responding to questionnaires due to technical problems. In the end, we had 41 students who responded 
to both the pre- and the post-question. 

Our Design and Activity 

We designed a unit that ran over the span of two class periods in which students use a NetLogo 
(Wilensky, 1999) simulation to build cities. Before the simulation activity, the professor (who was not 
part of the research team) first led a 45-minute discussion about why people live where they live. The 
purpose of this discussion was to cue students’ causal reasoning about the role of human decisions, 
and how these decisions play a causal role in the emergence of economically segregated 
neighborhoods. Students then worked together in groups of three over a period of about an hour and a 
half, using the simulation. 

The simulation and activity were designed to help students iteratively improve their causal-
understanding. We did this by letting students iteratively articulate a causal-explanation, test it, and 
potentially revise it. This was achieved by designing an iterative, four-phase activity:  

1. The Design Phase 
The primary purpose of the design phase was to prompt students to reason causally about how to 
design a city that meets a set of measurable policy goals. Students were first asked to write a set goals 
for their city. This included specifying which one of three policy outcomes – commute times, local 
neighbourhood school funding, and access to parks & leisure areas – to focus on, and setting 
measurable goals for that outcome. Examples include, “We want everybody to have less than 30-minute 
commute time”, or “We want the poorest 20% to have as much funding for schools as the wealthiest 
20%”. They would then be asked to describe how they would achieve these goals. Students responded 
along the lines of, “We will put highways everywhere so there are enough roads for everybody”, or “We 
will put parks all over the city to make it attractive for wealthy people to live anywhere so their property 
taxes are spread out across the city.” (Schools are primarily funded through property taxes in most of 
the US.) 

2. The Implementation Phase 
During the Implantation Phase, students built their cities inside the simulation. The simulation is 
designed to let students do this in various ways: Students designate zoning in the city, specifying the 



Constructionism 2018, Vilnius, Lithuania 

277 

 

density of dwellings, and making certain areas more or less desirable and relatedly more or less 
expensive to live in. They can also put parks in the city, or build railroads or highways for people to 
commute on. Finally, they designate certain parts of the city as ‘Industrial areas’ where jobs will be 
located. 

3. The Growing Phase 
The purpose of the Growing Phase was to let students see the dynamic effects of their design decisions. 
During the Growing Phase, the computer model simulates and visualize how (AI-based) computer-
agents move into the city that students built. These agents have different income levels and different 
job locations and make decisions about where to live based on affordability, desirability, and distance 
to their job. When agents move into an area, their income is reflected in the house prices of nearby 
areas, so if a wealthy person moves into a neighbourhood, house prices go up, and vice versa. Agents 
also use the roads near them to go to work, and the more agents use a road, the more congested it 
gets, making nearby areas less attractive.  

4. The Data Analysis Phase 
The purpose of the Data Analysis phase was two-fold: first, it was for students to use data as a means 
of assessing the success of their city; and second, for students to potentially revise their causal-
understanding of the model in the cases when their cities did not meet their policy goals. There are two 
different ways in which data can be visualized in the model: one is spatial, and the other is with bar 
charts. They provide different perspectives on the same questions, but it is often necessary to look at 
both in order to really make sense of how the city evolved. Bar charts showed how each income decile 
was affected by each of the three policy outcomes measures, and the map helped students visualize 
the geographic distribution of how people were impacted by the policy outcomes. 

Data & Analysis 

The student responses that we focus on in this paper were all in response to the question,  

“Can you explain why a wealthy person’s income might make their commute time longer than 
a poor person’s?”  

A conventional explanation, consistent with real-world data, could include a variety of factors and sound 
something along the lines of, “In American cities, higher-income people often live in suburbs, because 
they can afford to buy houses there, and because they can afford to own cars that allow them to 
commute between their workplace in the city and the suburbs that often have no public transit options. 
They choose to do so because they want to live in places that they perceive as safe, and have well-
funded public schools. High paying jobs are often located in the downtown areas of cities, and 
consequently high-income people must make the commute in and out, often on congested roads due 
to the number of people who also commute in and out at the same time”. While it is true that some high-
income people live closer to their jobs than some low-income people – in part because they can afford 
more freedom to choose where to live, and where to work – the result is nonetheless that higher income 
people typically have longer commutes, but with a large spread in a bimodal distribution. We were 
curious about how students would reason about it exactly because it contrasts many people’s initial 
assumption that a higher income leads to more desirable outcomes by all measures. 

While some KA-approaches have strict, conceptual selection criteria for the pieces they identify 
(diSessa, 1993), in this study, we take a pragmatic and somewhat promiscuous approach to identifying 
the individual knowledge-pieces. Rather than looking for a particular grain size or ontogenetic origin, we 
used ‘causality’ as a sensitizing concept (Miles & Huberman, 1994) when identifying knowledge-pieces 
in students’ explanations, and looked for parts of their explanation that we could put “because… “ in 
front of. Because our knowledge-pieces relate to students’ reasoning about causality, and inspired by 
Sherin, Krakowski and Lee’s (Sherin et al., 2012) node-mode approach towards a more permissive 
inclusion of students’ knowledge-pieces, in the following, we will refer to them as ‘causal-nodes’. 
Further, we will refer to the process of using a casual-node when constructing an explanation as 



Constructionism 2018, Vilnius, Lithuania 

278 

 

‘activating’ that causal-node, and we call the process of combining causal-nodes into larger explanations 
as ‘co-activating’ those causal-nodes. 

Causal-Nodes and Student Response Examples 

To give the reader a sense of what causal-nodes in our data look like, we provide some examples of 
student responses and connect them to our causal-nodes. The student responses are always 
reproduced in full, and as the student wrote them. Across all 82 responses (41 pre- and post-responses) 
our first round of coding identified 21 different causal-nodes. We iteratively condensed this set twice, 
eliminating similar codes, eventually arriving at a total of 9 different causal-nodes. Table 1 provides a 
description of all nine causal-nodes, grouped by what we think of as three interesting types: the first 
relates to the geographic location of people and their jobs. The next group relates to how a person’s 
income affects their actual commute – either by influencing their available modes of transportation, or 
things that affect their commute speed. The final type relates to the wants or desires of people, and how 
having money better allows high income people to fulfill them.  

As Table 1 (next page) shows, the most frequent causal-nodes were the ones that deal with the 
geographic location of people and jobs. Consider the following response, 

A wealthy person has greater freedom to choose where to live and often wealthier neighborhoods are 
in suburbs away from urban areas. (S2-post) 

In this response, we see two different causal-nodes: first, that money gives people more choice, and 
second, that suburban areas in which wealthy people choose to live are geographically far from urban 
areas. However, the response does not explicate exactly how these two causal-nodes end up resulting 
in longer commute times for higher income people. In contrast, consider this elaborate student 
response, 

Often wealthy people live in a suburb outside of the city because they can afford a house 
out there and the schools are often better. They also often work in the city at a job that is 
paying them enough to be able to afford to live in the suburbs. Another big thing is that more 
wealthy people can afford a car or are able to pay for the train everyday so that they can 
live far away from their work. (S7-post) 

This response contains the same two causal-nodes as the previous response: people with more money 
have more choice, and they choose to live in suburbs. However, we see additional causal-nodes in this 
response: first, the response explicitly states that their jobs can be in the city; second, that this causes 
them to have to travel a larger geographical distance; and finally, that owning a car is expensive and 
that wealthy people can afford to own one (or afford to take commuter trains.) These were somewhat 
typical responses, but they show how he different constellations of casual-nodes can result in different 
responses, or in similar kinds of responses with variations in what students focus on. We also saw 
responses that focused more on practical issues relating to the process of commuting, 

A wealthy person probably commutes by driving his or her own car.  A person in a car is 
subject to traffic from stoplights and other vehicles.  Trains, on the other hand, can travel at 
a quicker rate and also don't have to stop at lights or wait for other vehicles. (S37-post) 

This response does not activate any of the geographic location-related nodes, but focuses purely on 
the commute-related ones. However, we also saw some responses that seemed to activate different 
causal-nodes that included perceived differences between why wealthy people choose to do what they 
do, even in the face of a longer commute time, 

If they choose to live in a suburb or nice area that is farther for work because of the 
neighborhood or home or school system. They also more likely have ways to commute 
comfortably and efficiently. (S23-post) 

Students that reasoned about why wealthy people make the choices that they do often focused on their 
perceived better school systems, more green areas or nicer houses in suburbs. But we also saw a few 
responses that essentialized different characteristics or desires in low- and high-income people. For 
instance, in this response, 



Constructionism 2018, Vilnius, Lithuania 

279 

 

They might have more time to spend on leisure, and might not be in a rush. Since they make 
enough money, they don't have to work as much. (S10-pre) 

Table 1. Causal-nodes and descriptive statistics 

the student seems to construct an explanation around an assumption that higher income people 
somehow don’t feel the same sense of urgency, or that they have a different set of preferences around 
their choices when it comes to commute times.  

As the examples above hopefully illustrate, we saw a large variety in the types of student responses, 
and in the ways in which we see them activate and co-activate various causal-nodes. Some student 
responses only included causal-nodes from one or two of the three causal-node groups, while others 
mixed them across groups.  

Validation: Are these Knowledge-Pieces? 

KA views knowledge as constructed in the moment through the assembly of knowledge pieces. 
However, it does of course not view this process as random. Rather, taking a Knowledge Analysis 
approach to making sense of student reasoning, we would expect to see three different properties 
relating to the consistency of the nodes that we identify: 

Node_I
D 

Causal-Nodes (‘Because…’) Pre-
frequency 

Post-
frequency 

Within-
person 
stability 

Combinability 

Group 1: Geographic/Spatial Location 

0 High income people live in suburbs 
/ low income people live in the 
cities 

0.73 0.83 1.13 8 / 8 

1 Jobs are located in cities, not in 
suburbs 

0.46 0.49 1.19 8 / 8 

2 High income people may live 
further from workplaces / Low 
income people might live closer to 
workplaces 

0.63 0.59 1.12 8 / 8 

Group 2: Commute-Related  

3 Buying/owning a car is expensive 0.1 0.1 5.12 7 / 8 

4 High income people more likely to 
own and commute by car 

0.1 0.05 5.12 5 / 8 

5 Expressways/highways can be 
congested, or driving can be slow 

0.34 0.2 2.56 7 / 8 

Group 3: Desires or Possibilities relating to Income 

6 High income people have more 
choice / low-income people have 
less choice 

0.59 0.59 1.14 8 / 8 

7 Wealthy people care less about 
commute time / are willing to 
commute longer 

0.12 0.07 2.73 6 / 8 

8 People want to live in safe areas or 
places with more space or green 
areas or better schools or nicer 
houses 

0.39 0.34 1.1 7 / 8 



Constructionism 2018, Vilnius, Lithuania 

280 

 

The pieces should be found somewhat frequently in a specific population that reasons about a given 
domain or question (i.e. ‘frequency between people’). This would indicate that these are more general 
thinking-bits, and not only parts of one person’s idiosyncratic way of thinking. 

The pieces should be generatively combinable, meaning they should be combinable into different kinds 
of explanations (i.e. frequency between different explanations). This would indicate that they are truly 
‘pieces’, and not in themselves larger explanations. Finally, 

Even though individuals might acquire new nodes and/or reorganize their existing ones, we would 
expect there to be some degree of stability in the knowledge-nodes that students activate when 
responding to a similar question in a short timeframe (i.e. ‘frequency within people’). This would indicate 
that these are parts of somewhat stable knowledge structures, and not completely randomly selected 
when the student is prompted to answer a question. 

Validating Frequency Between People 
This criterion is straight forward to validate. We calculated the frequency of each node in pre- and post-
responses. The results can be seen in Error! Reference source not found. in respectively pre- and 
post-frequency. We see that even the least frequent of our codes appear in at least 10% of responses 
in either pre- or post. While the exact cut off for this rule is contestable, we believe that seeing the 
activation of a causal-node at some point in time across 10% of responses seems like a reasonable 
number. 

Validating Frequency between Different Explanations 
There are two different ways in which this can be validated. First, a very simple quantitative statistic 
showing with how many of the other 8 causal-nodes that we see each node co-occur. In the 
‘combinability’-column in Error! Reference source not found., we show how many other causal-nodes 
we see each causal-node co-occur with across all responses. Even the least frequent causal-nodes (3 
and 4) are used respectively with 7 and 5 of the other 8 casual-nodes, suggesting that these nodes can 
be mixed and matched in many different ways. Second, as we showed in the previous section, causal-
nodes were combined into different constellations of explanations that changed the function of the of 
the individual causal-node in the larger reasoning structure. In other words, we see this combinability 
both quantitatively and qualitatively. 

Validating Frequency Within People  
Finally, we expect there to be some stability in the causal-nodes individuals activate in their pre- and 
post-responses. What we should address then is, does activating a causal-node in a pre-response 
better predict that a person also activates it in their post-response than we would expect to see if people 
randomly activated causal-nodes in their responses. For each of the causal-nodes, we calculated the 
conditional probability that people who activated it in their pre-response also activated it in their post-
response and divided by the frequency of that causal-node in post-responses. If this ratio is greater than 
1, we see a higher than expected frequency amongst people who also activated the node in their pre-
response. As can be seen in the “stability” column, all causal-nodes had a higher than expected degree 
of stability between pre- and post-responses.  

Findings: Association Rule Changes 

Now that we have identified students’ causal-nodes and hopefully made a convincing argument that 
these are, indeed, knowledge-pieces of some sort, we can run an Association Rule Mining on our data. 
The primary output of an ARM are so-called association-rules. They take the form of, “if a student 
activated causal-nodes X and Y, we observed that they also activated causal-nodes A and B with a 
confidence of P, a support of S, and a lift of L”. ARM calculates the association-rules for all possible 
combinations across all responses. Since we have 10 different codes, and each of them can either be 
present or not, we end up with a total of 2^10 = 1,024 combinations – too many rules to read through in 
any meaningful way. ARM assists us in navigating this large analytical space by providing three metrics, 
confidence, support, and lift, that each help identify interesting and important rules: Confidence 



Constructionism 2018, Vilnius, Lithuania 

281 

 

calculates how well the presence of one set of causal-nodes predicts another set of rules, or more 
formally: the conditional probability that a set of causal-nodes are activated, given the activation of 
another set of causal-nodes. However, confidence does not consider the aggregate frequencies of 
causal-nodes, and thus it often overestimates the confidence with which a less frequent causal-node 
predicts a more frequent one and vice versa.  

Table 2. Two Examples of Association Rules (bolded text indicates why they were chosen) 

Support and lift help us filter out rules in two related ways: support simply calculates how often, across 
the dataset, we see a particular combination of causal-nodes. Lift enhances the confidence 
measurement by calculating the ratio between observed confidence and the expected confidence, given 
the independent probabilities of each of the two sets of codes. (This is the same approach we used for 
calculating the within-person stability in the previous section.)  Consequently, as we are interested in 
looking at changes in how students co-activate causal-nodes, the immediately most important 
measurement is change in lift between pre- and post-responses, but looking at lift isolated in pre- or in 
post- can also help us understand what kinds of constellations of causal-nodes students bring to the 
unit, and which ones they leave with. We ran an ARM for pre- and post-responses separately, and then 
calculated the changes to confidence, support and lift between pre- and post-rules. To find interesting 
and frequent rules, we filtered out rules that had less than .15 support, and included only combinations 
that we observed in at least 7 out of 41 responses in both pre- and post-responses. A full account of all 
interesting rules is outside the scope of this paper, but in the following, we will give two examples of 
interesting rules, explain why we think they are interesting and why we chose them, and discuss what 
they tell us about changes in students’ thinking at the classroom level. 

R1: Connecting Job Location with Choice and Relative Distances 
R1 in Table 2 shows that students who reasoned that jobs are located in cities and not in suburbs were 
much more likely in the post-response than those who said so in the pre-response, to also say that high 
income people may live further from workplaces, and that high-income people have more choice. We 
chose this rule because it had the highest change in delta in our ARM. Of course, even when lift takes 
into account the expected frequencies, this change could have happened simply because fewer people 
activated any of the three causal-nodes in their post-responses, and those that did could be the ones 
spuriously “pulling up” the association rule. However, Table 1 tells us that the frequencies of all three 
codes are fairly stable from pre- to post- at the classroom level, and in Table 2 we even see a modest 
increase in support for R1, showing that in absolute numbers, more people co-activated the three 
causal-nodes in their pre-responses. To us, this indicates that R1 points to a robust change in students’ 
thinking at the classroom level towards connecting the location of typically higher-paying jobs with the 
choice and relative commute distances of higher income. 

Qualitatively, this is a particularly interesting rule to us, because it gets at the part of the question that 
most people find counter-intuitive: that high-income people often have longer commutes that low-
income people. Indeed, one of the reasons we designed the simulation activity was to let students 
change the infrastructure and the zoning of the city – including the relative position of residential zones 
and workplaces – to see how common city design patterns (e.g. dense city centres, “green” suburbs far 
away) lead to this distribution of commute times. While any firm conclusions about causality in this 
change in thinking would rely on a closer analysis of students’ activities during the simulation unit, we 
speculate that the focus on placement of zones in the model helped make this aspect of the 
phenomenon more salient to students.  

Rule 
Lift Confidence Support 

Pre Post Delta Pre Post Delta Pre Post Delta 

R1 1->2&6 0.84 1.17 0.3 0.37 0.40 0.03 0.17 0.20 0.02 

R2 1->0&8 1.21 1.37 0.15 0.47 0.40 -0.07 0.22 0.20 -0.02 



Constructionism 2018, Vilnius, Lithuania 

282 

 

Rule 2: Connecting Job Location & And the Desirability of Suburban Life 
R2 speaks to the relationship between causal-nodes 1, and 0 and 8. We chose this rule for two reasons: 
first, R2 has the highest lift in post-responses that we identified in any rule, and second, it is interesting 
because while we see a positive change in lift, we see a drop in confidence between pre- and post-. R2 
shows that students who said that jobs are located in cities and not in suburbs were more likely than 
expected to also say that wealthy people live in suburbs and that people want to live in places with 
green areas or good schools. However, as mentioned, we see an absolute drop in confidence, or 
predictive power, for this rule between pre- and post-. The drop in confidence on its own could mean 
that more people are activating causal-node 1 in the post-responses without an increase in the co-
activation of causal-nodes 0 and 8 in post-, or that fewer people are co-activating causal-nodes 0 and 
8 in the post-responses without a corresponding drop in the activation of causal-node 1. Table 1 shows 
that we do see an increase in the activation of causal-node 1 and a drop in causal node 8 between pre- 
and post-. However, we see an increase in causal node 0. To us, this is a good example of why looking 
at lift tells a more nuanced story, and why it is sometimes easier to read association rules backwards 
when trying to make sense of them: While slightly fewer people co-activated all three causal-nodes in 
the post-response, the strongest predictor of whether someone did was whether they activated causal-
node 1. In other words, this shows a convergence across the classroom on the inclusion of causal-node 
1 by those who also co-activated causal-nodes 0 and 8. 

Qualitatively, this rule is interesting to us, because it shows how students reason not just about the 
relative position of jobs and residential areas or about high-income people having more choices. It also 
shows how they perform a kind of meta-reasoning or perspective-taking: reasoning about how other 
people reason about where to live, and how students then activate this reasoning with the rest of causal-
nodes. While we do see a strengthening of this particular association rule, we see an overall drop in the 
activation of causal-node 8. We think perspective-taking is important when reasoning about policy 
outcomes, and had hoped that our design would have encouraged more of this thinking. We speculate 
that this might be due to how the underlying logic of the AI agents in the simulation activity was hidden 
from students, and will in future implementations explore how we can forefront the AI and make this 
aspect more visible to students. 

Discussion, Limitations, and Conclusion 

Using Association Rule Mining helped us better identify interesting patterns in changes in students’ 
assembly of causal-nodes into larger explanatory structures, and gave us both some statistics and a 
vocabulary for measuring and discussing which of these changes were interesting and significant. We 
found that students’ responses seemed converge around particular co-activations, and we speculated 
how the collaborative simulation activity might have influenced their thinking, and how we could improve 
on the design. We hope to have provided evidence for our assertion that Association Rule Mining can 
be a powerful addition to the qualitative researchers’ toolbelt when taking a Knowledge Analysis-inspired 
view of knowledge. In particular, we hope to have shown that ARM can be used in combination with 
manual qualitative coding to both validate the knowledge-pieces identified at the level of individual 
students, and show changes in the assembly at the classroom level. 

In contrast to KA’s focus on conceptual change at the level of individuals, we only looked at within-
student changes when we validated the stability of individual causal-nodes. In future work, we hope to 
use ARM to first identify important changes at the classroom level, and then use this as a starting point 
for a more in-depth analysis of the reorganization of knowledge-pieces at the level of individual students. 
In additional contrast to KA, our knowledge pieces are somewhat less fine-grained, and as we 
mentioned previously, we took a very permissive approach to coding students’ responses. We hope in 
the future to apply ARM to a both more fine-grained, and more conceptually coherently uniform set of 
knowledge-pieces. 

Because this use of ARM is new, we have limited understanding of exactly how to interpret the stability 
and change in changes in thinking at the classroom level. Our baseline for comparing changes is always 
the expected outcome, i.e. the general frequency of a set of causal-nodes in the post-responses. 
However, we hope to do similar kinds of analyses on more data from this and other reasoning tasks 



Constructionism 2018, Vilnius, Lithuania 

283 

 

over longer periods of time, and start work on better understanding and measuring the change and 
stability in knowledge structures, and potentially develop more generally applicable measures. 

 An important limitation of this study is that students were all attending a private mid-western 
university, and almost all students reported to have grown up in suburbs. Consequently, the causal-
nodes that we identified should be considered expressions of a particular, and fairly limited experience 
of the world. We hope to expand on this by collecting similar data from other socio-economic or 
geographic groups. 

We do not wish to claim that an ARM can stand on its own as an analysis of student reasoning. But we 
believe that it provides a tool for measuring and discussing changes in thinking at the classroom level 
while still anchoring the unit of analysis in a KA-approach to knowledge and thinking that respects the 
multitude ways in which students can assemble their knowledge. Consequently, we hope that it will find 
an appropriate place in the computational methods toolbelt of the Learning Sciences. 

References 

Adams, P. C. (1998). Teaching and learning with SimCity 2000. The Journal of Geography, 97(2), 47. 

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large 
databases. In ACM SIGMOD Record (Vol. 22, pp. 207–216). ACM. 

Bereitschaft, B. (2016). Gods of the City? Reflecting on City Building Games as an Early Introduction to 
Urban Systems. Journal of Geography, 115(2), 51–60. https://doi.org/10.1080/00221341.2015.1070366 

Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational data mining and learning analytics: 
Applications to constructionist research. Technology, Knowledge and Learning, 19(1–2), 205–220. 

Blikstein, P. (2011). Using learning analytics to assess students’ behavior in open-ended programming 
tasks. In Proceedings of the 1st international conference on learning analytics and knowledge (pp. 110–
116). ACM. 

Devisch, O. (2008). Should Planners Start Playing Computer Games? Arguments from SimCity and 
Second Life. Planning Theory & Practice, 9(2), 209–226. https://doi.org/10.1080/14649350802042231 

diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. 

diSessa, A. (2002). Why “conceptual ecology” is a good idea. In Reconsidering conceptual change: 
Issues in theory and practice (pp. 28–60). Springer. 

diSessa, A., & Sherin, B. (2015). Knowledge Analysis. Knowledge and Interaction: A Synthetic Agenda 
for the Learning Sciences. 

diSessa, A., & Sherin, B. (1998). What changes in conceptual change? International Journal of Science 
Education, 20(10), 1155–1191. 

Dorn, D. S. (1989). Simulation Games: One More Tool on the Pedagogical Shelf. Teaching Sociology, 
17(1), 1–18. 

Frasca, G. (2001). Videogames of the Oopressed  - Videogames as a Means for Critical Thinking and 
Debate (Vol. 2001). Master’s Thesis, Georgia Institute of Technology. 

Frasca, G. (2003). The Video Game Theory Reader. Routledge. Retrieved from 
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0415965799 

Gaber, J. (2007). Simulating planning - SimCity as a pedagogical tool. Journal of Planning Education 
and Research, 27(2), 113–121. 

Gee, J P. (2003). What video games have to teach us about learning and literacy. Computers in 
Entertainment, 1(1), 20. 

Gee, J. P. (2007). Good Video Games and Good Learning (1st ed.). Peter Lang Publishing. 



Constructionism 2018, Vilnius, Lithuania 

284 

 

Hjorth, A, & Wilensky, U. (2014). Re-grow Your City: A NetLogo Curriculum Unit on Regional 
Development. In Proceedings of International Conference of the Learning Sciences, ICLS (Vol. 3, pp. 
1553–1554). International Society of the Learning Sciences. 

Hjorth, A. & Krist, C. (2016). Unpacking Social Factors in Mechanistic Reasoning (Or, Why a Wealthy 
Person is Not Exactly Like a Grey Squirrel). Singapore: International Society of the Learning Sciences. 

Hjorth, A. & Wilensky, U. (2014). Redesigning Your City-A Constructionist Environment for Urban 
Planning Education. Informatics in Education, 13(2), 197. 

Kim, M., & Shin, J. (2016). The Pedagogical Benefits of SimCity in Urban Geography Education. Journal 
of Geography, 115(2), 39–50. https://doi.org/10.1080/00221341.2015.1061585 

Kolson, K. (1996). The Politics of SimCity. PS: Political Science and Politics, 1996(1), 43–46. 

Martin, T., & Sherin, B. (2013). Learning Analytics and Computational Techniques for Detecting and 
Evaluating Patterns in Learning: An Introduction to the Special Issue. Journal of the Learning Sciences, 
22(4), 511–520. https://doi.org/10.1080/10508406.2013.840466 

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis : an expanded sourcebook. Thousand 
Oaks: Sage Publications. 

NCSS. (2013). The college, career, and civic life (C3) framework for social studies state standards: 
Guidance for enhancing the rigor of K–12 civics, economics, geography, and history. Author Silver 
Spring, MD. 

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, 
DC: The National Academies Press. 

Pahl, J. (1991). Finally, a Good Way to Teach City Government! A Review of the Computer Simulation 
Game “SimCity.” The Social Studies, 82(4), 165–166. 

Shaffer, D., Squire, K., Halverson, R., & Gee, J. (2004). Video Games and the Future of Learning. 
University of Wisconsin-Madison. Retrieved from 
http://www.discoverproject.net/italy/images/gappspaper1.pdf 

Shaffer, D. (2006). How Computer Games Help Children Learn (First Edition). Palgrave Macmillan. 

Shaffer, D. (2006). Epistemic frames for epistemic games. Computers & Education, 46(3), 223–234. 

Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. 
Journal of Research in Science Teaching, 43(6), 535–555. 

Sherin, B. (2013). A Computational Study of Commonsense Science: An Exploration in the Automated 
Analysis of Clinical Interview Data. Journal of the Learning Sciences, 22(4), 600–638. 
https://doi.org/10.1080/10508406.2013.836654 

Sherin, B., Krakowski, M., & Lee, V. R. (2012). Some assembly required: How scientific explanations 
are constructed during clinical interviews. Journal of Research in Science Teaching, 49(2), 166–198. 

Squire, K. (2003). Video Games in Education. International Journal of Intelligent Simulations and 
Gaming, 2003(2), 1. 

Turkle, S. (1997). Seeing Through Computers: Education in a Culture of Simulation. The American 
Prospect, March-April 1997. 

Wilensky, U. (1999). NetLogo: Center for connected learning and computer-based modeling. 
Northwestern University, Evanston, IL. 

  



Constructionism 2018, Vilnius, Lithuania 

285 

 

How High is the Ceiling? Applying Core Concepts of 
Block-based Languages to Extend Programming 
Environments 

Sven Jatzlau, sven.jatzlau@fau.de 
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany 

Ralf Romeike, ralf.romeike@fau.de 
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany 

Abstract 
Since the emergence of block-based visual programming languages, they have been developed and 
improved to become increasingly accessible, intuitive, and easy to use. Over the course of this 
evolution, both uncommon and entirely new language concepts have been introduced, such as the 
cloning of objects, or the nesting of sprites. This paper provides a selection of core concepts and 
describes a categorization model. It is proposed that the concepts found in block-based languages are 
the reason they lend themselves to constructionist learning approaches. To illustrate this point, the 
fundamental computer science concept of image nesting will be selected, its background and origin 
explained, and its incarnation in current block-based languages outlined. Following this, the 
constructionist task of modifying a programming environment will be implemented. Using the 
aforementioned concept proves that even high-level solutions according to the “high ceiling”-principle 
can be implemented using the basic concepts of block-based languages.  

Keywords  
visual programming languages; Snap; Scratch; GP; block-based languages; language concepts; 
nesting; composite objects 

Context 

Introduction to block-based languages  
In 2006, the programming language and environment Scratch made its debut. Developed by the Lifelong 
Kindergarten Group at MIT, it represented a new approach to introducing programming to learners: 
based on the ideas of “low floor, wide walls, high ceilings” by Seymour Papert (Resnick, et al., 2009), 
its popularity grew rapidly. At the time of writing, some 32 million projects, guides, animations, and 
games have been shared by a continuously growing user base of 28 million users. In schools, block-
based languages display a similar success: Compared to text programs, block-based environments 
enable students to achieve better results on average (Weintrop & Wilensky, 2015), and while students 
like to shift to text sooner or later, they can nevertheless appreciate that block-based programming is 
equal to text-based programming (Bau, Bau, Dawson, & Pickens, 2015). Block-based languages are 
characterized by a number of common features, such as a stage, and code blocks that snap together 
to create scripts and replace the syntax of text-based languages. These features open up new 
possibilities and approaches to solving problems. In this paper, we give examples for these core 
concepts, and elaborate upon the origins of the image nesting concept in particular. Within this context, 
the proposition that block-based languages enable users to solve problems in new ways will be 
illustrated with an example: extending a programming environment, which may seem to be one of the 
most complicated tasks users could undertake. However, given the possibilities of the core concepts 
found in block-based languages, how complicated will it ultimately be? 

The example reinforces the claim that block-based languages such as Scratch, Snap!, or GP, support 
constructionist ideas, and demonstrates the complexity of projects users can create with them. For this 
purpose, the GP environment itself will be modified and extended (using its easily-accessible source 



Constructionism 2018, Vilnius, Lithuania 

286 

 

code) to include a feature that makes it more meaningful to us: the ability to search for certain blocks 
within the program code.  

Constructionism in programming 
The ideas of constructionism and block-based languages have always been closely linked: the 
programming language Scratch was built on the constructionist principles of Logo and Etoys (Maloney, 
Resnick, Rusk, Silverman, & Eastmond, 2010). The three basic principles “low floor”, “wide walls” and 
“high ceilings” laid the foundation for the way Scratch and its family members behave and are displayed 
to the user (Resnick, et al., 2009).  

However, whether Scratch supports the principle of “high ceilings” (high threshold for more advanced 
programmers (Weintrop & Holbert, 2017)) is a point of frequent discussion: feedback shows that 
learners and educators alike feel as though Scratch is too simple to enable complex, high-level projects. 
For this reason, GP was designed with the idea of enabling users to create significantly more complex 
solutions (Maloney, 2018). 

Core concepts in block-based languages 

Block-based languages, and the environments used to program with them, enable new solutions to 
known problems, while creating the opportunity to produce entirely new tasks and problems. The reason 
for this is that in multiple ways, these languages are fundamentally different from typical text-based 
languages and environments used for teaching programming novices.  

To understand the ways in which these languages are different, it is important to recognize the aspects 
that constitute a programming language. To characterize these aspects, the term “core concept” will be 
used; these core concepts embody the nature of programming environments and languages and make 
them both graspable. They should also be central for the way programming languages are taught. The 
concepts found in these languages separate them from text-based languages used for introductory 
teaching situations. In the following, several examples of new and promising, or less well-known 
concepts will be provided and outlined. These examples were identified inductively by analyzing user 
and developer-made demo projects, and deductively from the programming environments of Scratch, 
Snap!, and GP. 

 Manual control of program flow (abbreviated as “Buttons”) 
Most block-based languages enable the user to start, to stop, and (in some cases) even to 
pause the currently-loaded program. This results in a feeling of directness for the user, 
making it possible for them to stop and observe their program, which offers interesting 
strategies for debugging. 

 Broadcasting 
Sending messages between objects is based on the one-to-many communication model, i.e. 
a single object sends messages to all other objects in a program. Other objects can then 
react to the received message – or not. This type of messaging is commonly used for 
synchronization and signaling purposes, as it ties into the event-driven program paradigm 
(outlined below).  

 Sensing 
In many block-based languages, objects (or “sprites”) are able to detect a number of different 
factors, including their own position on the stage, the direction they are facing, whether they 
are overlapping with any other objects on the stage, or whether a color is touching another 
color.  

This sensing ability makes objects able to react autonomously to different situations, 
alignments, or conditions. 

 Prototyping 
Instead of conceptually abstract classes, many block-based languages utilize a system of 
prototypes and clones of prototypes in order to create new objects. The concept of 
prototyping can be further extended to include prototypical inheritance or “delegation” 
(Lieberman, 1986), a form of inheritance that does not require classes. For this reason, 



Constructionism 2018, Vilnius, Lithuania 

287 

 

prototyping and delegation can be perceived as more intuitive and easy to understand than 
other forms of inheritance. 

 

Event-driven programming 

If an event occurs, the corresponding script is executed. If multiple events occur simultaneously, or if 
multiple scripts react to the same event, multiple blocks are executed at the same time. This behavior 
results in an implicit type of concurrency that is intuitive and simple for learners to grasp. Events can 
originate from the user (i.e. key presses, or mouse clicks), or from within the environment (i.e. an object 
sensing overlap with another object, or messages being received). 

Weak typing 

One variable can hold different types of data; the same variable can store strings of letters, boolean 
values, or integers without being limited to a single type of data that is set at the time of its creation. 

Stage 

Most block-based programming languages feature a stage that can visualize the world of the project to 
the user, showing objects, and their (inter-)actions. Possible applications include using it as a canvas 
for drawing graphs, or as a playing field for various games. 

Delayed execution of code  

Typically, block-based languages slow down the execution of blocks within scripts. This is done for 
visualization purposes: without an inherent delay, objects could fly off the stage instantly without the 
user being able to observe the process. The concept is based on a non-atomic interpreter, and is 
typically found in block-based programming environments for didactical reasons. 

Drag & drop (abbreviated as “D&d”) 

While most of these languages support keyboard editing and input, learners will typically utilize the 
concept of dragging-and-dropping blocks from the sprite palette into the scripting area to create scripts. 
The same process also deletes scripts, moves objects on the stage, and enables the user to resize 
parts of the graphical interface to fit their personal preferences. 

Image nesting (abbreviated as “Nest”) 

The attachment of visual objects to other objects can be compared to the way objects are grouped in 
various software tools (such as Microsoft Powerpoint or OpenOffice Impress). Objects become parts of 
other, greater objects, while still retaining their individual identity. As a real-life example, a hand can be 
considered an attachment to the arm, of which it is a part. When the arm moves and rotates, so does 
the hand. However, both the hand can also still rotate and move (somewhat) independently. Therefore, 
while the hand is part of the greater object “arm”, it retains its individual nature, and can perform actions 
independently (such as rotation, and grabbing). 

Note: this concept does not refer to the idea of nested loops, or code nesting through the use of syntactic 
elements such as brackets; it deals with the visual representation of objects and their composition into 
greater composite objects. 

This is merely a non-exhaustive selection of core concepts found in block-based languages. As they 
make up the foundation of how programming languages function, their impact on teaching needs to be 
considered when designing tasks. These concepts are also the reason block-based languages lend 
themselves to constructionist solutions and tasks. It is important to note that not all of them are entirely 
new ideas; many (such as weak typing) have been part of programming languages and environments 
for decades. 

This paper proposes that the core concepts of block-based languages characterize the way they are 
used and, in the same way, characterize the way they should be taught. 



Constructionism 2018, Vilnius, Lithuania 

288 

 

 

Concepts can be categorized into three overlapping categories: 

Figure 1: Categorization model for core concepts found in block-based languages 

1. Presentation concepts 

“What do users see and how?”  

This category includes all concepts regarding the presentation of the user interface. These 
design choices were made in order to support the learner's ability to interact with the 
environment, and to improve their understanding of the underlying programming concepts. The 
stage, for example, helps learners understand the nature of objects by offering a visual 
representation in the form of sprites.  

While traditional environments make them seem abstract, or “ethereal” to many students, this 
visualization makes them more graspable and concrete. A common trait of most block-based 
languages is that for pedagogic reasons, several blocks (such as loops, all motion blocks and 
broadcasts) have an inherent delay associated with their execution. This delay was implemented 
to slow down program flow and further support its visualization. 

2. Interactional concepts 

“How do users interact with the environment?” 

“How do objects interact with each other?” 

The second category includes concepts concerned with the way users interact with the 
programming environment and its user interface, while also including concepts that deal with the 
way objects interact with each other.  
An example within this category is the buttons a user can use to start, pause, and stop the 
program at any desired point. They enable the user to get a better feel for the program flow. The 
interaction of objects with each other includes concepts such as broadcasting, and sensing. 

3. Programming concepts 

“How do users implement their solutions?” 



Constructionism 2018, Vilnius, Lithuania 

289 

 

This category comprises both typical programming constructs (such as variables, loops and 
conditionals) and consciously-designed language traits that were implemented with accessibility, 
intuitiveness and ease of use in mind. For instance, an event-driven program flow (found in all 
members of the Scratch-family) enables users to implement projects that rely heavily on 
concurrency – intuitively, while encountering fewer of the typical problems and difficulties 
associated with concurrency (such as visibility, race conditions, etc.).  

Certain concepts do not fit a single category. Dragging and dropping blocks to create scripts is a hybrid 
concept: while it fundamentally influences the way users interact with the programming environment to 
create meaningful projects, the possibility of doing so is suggested through the shape, shading, and 
highlighting of blocks. As another example, image nesting fits all three categories: presentation (due to 
the visual connection of nested sprites/objects), programming (after nesting, objects can refer to each 
other as “owner” and “part”), and interactional (as nesting creates a hierarchically-structured part-whole-
relation between two objects). 

The proposition is that these core concepts enable users to implement constructionist solutions easily 
– they are the reason block-based languages support constructionism to the extent they do. To illustrate 
this proposition, the concept of image nesting will be elaborated upon in more detail. 

Image nesting: a core concept 

The concept of nesting visual objects into others is based on the idea of composition. Naturally, the 
composition of individual, smaller parts to form a greater entity is by no means a novel concept; In the 
process of identifying fundamental ideas of computer science, Schwill deemed the idea of structured 
dissection a master idea (Schwill, 1994). Two of its sub-ideas are hierarchization, and the visualization 
as a tree. All these factors are closely related to the concept of nesting, leading to the conclusion that 
image nesting is an essential idea of computer science.  

Despite its basic nature, nesting has the potential to enable very high-level solutions to complex 
problems (“high ceilings”), making it a core concept in block-based languages. As has been shown 
(Resnick, et al., 2009), block-based languages such as Scratch make it simple for users to create 
projects within the framework of constructionism. Commonly-identified traits of such frameworks are 
“low floors”, “wide walls”, and “high ceilings”. For Scratch, these three traits have been expanded to 
include “more tinkerable”, “more meaningful”, and “more social” (Resnick, et al., 2009).  

How do these traits relate to image nesting, and other core concepts of block-based languages? Using 
the core concept of image nesting, a seemingly very complex, high-level task can be achieved: the 
programming environment GP will be modified to include a search feature.  

This search feature, and the algorithm that is used to implement it, rely entirely on image nesting, 
therefore showcasing that block-based languages accommodate the ideas of high ceilings, more 
tinkerable and more meaningful.  

In the following chapter, to gain a more substantial understanding of the concept in question, the origin 
of image nesting will be analyzed in more detail. 

The origin of image nesting: Morphic 
Morphic is a user interface construction environment. Originally developed as part of the language Self, 
it would eventually play a central role in the Scratch-language family: the first versions of Scratch used 
Morphic for the user interface creation, which may be the reason for the existence of nested sprites in 
Snap! and GP. 

The first central principle that acts as the foundation for the entirety of Morphic’s functionalities is the 
morph (Greek for “shape”). Every visual object is graphically represented by a morph (Bouraqadi & 
Stinckwich, 2007), which is the base class of everything that can be displayed in a “world”. As graphical 
entities, morphs are able show behavior and handle events: they can sense and react to user input, 
periodically perform actions, detect their own position and size, and sense overlap with other morphs. 
The second major concept found in Morphic is “composition”. Any morph can be made into a composite 



Constructionism 2018, Vilnius, Lithuania 

290 

 

morph through the attachment of others. The attached morphs are then considered submorphs, which 
keep a pointer to their owner they are part of. When the composite morph moves, turns, is copied, or 
deleted, the same action is applied to all its submorphs – and their submorphs recursively. While they 
depend on their owner in many ways, they retain their individuality: they are given a chance to handle 
events (such as button presses) before their owner does (Maloney & Smith, 1995).  

The entire IDE of Morphic is based on this special structural relationship between morphs. As each 
morph has an owner (be part of a greater composite morph) or can have submorphs (be a composite 
morph), a compositional hierarchy is created. In this tree-like structure of part-whole-relations, the 
“world” is at the root, ultimately containing all the visible morphs within itself (Maloney & Smith, 1995).  

How does Morphic relate to block-based languages? 
Nesting in Snap! and GP is based on Morphic’s structure of composition, owner-morphs and parts. 
Comparing both systems yields the following central aspects: 

 Nested objects behave the same way composite morphs do (act as a single entity when 
performing tasks). 

 Individual parts know their owner, owners know all their parts; both can communicate with each 
other using these connections. 

 Individual parts have a degree of independence from their owner (can perform actions and 
handle events with a higher priority than their owner). 

 Both systems create a part-whole hierarchy between objects, and can therefore be visualized 
by a tree structure 

Due to these similarities, it appears that composition in Morphic was used as the foundation of the way 
nested objects are handled in certain block-based languages; therefore, nested sprites are a new 
incarnation of composite morphs. The central ideas of composite morphs and image nesting are vital to 
understanding of how nesting works and what is meant by it.  

GP particularly adheres to Morphic’s design philosophy. Each part of the user interface is a morph 
attached to an owner: the script editor, as an example, is a composite morph.  

Its components are the individual scripts, which are composite morphs themselves. They are comprised 
of the individual blocks. Blocks consist of several parts: a colored frame, a text label, and typically one 
or more input slots. Blocks react to mouse clicks by running their associated code (the so-called 
“handler”). It becomes apparent that the hierarchical structure and functionality of morphs is part of GP’s 
design.  

In the following chapter, these central aspects of image nesting will be utilized to add a search feature 
to the programming environment GP. The implementation of this feature will demonstrate how image 
nesting, and other core concepts found in these languages, enable new and intuitive solutions to 
previously complex problems.  

How do concepts enable new solutions?  

Block-based languages such as Scratch, Snap!, or GP, enable new solutions to problems due to the 
concepts they use. The very same concepts are also the reason block-based languages lend 
themselves to constructionist learning approaches. To give an example of this proposal, the 
programming environment of GP itself will be modified by utilizing its application of the nesting-concept. 
The implementation will highlight that image nesting enables three aspects in particular: “high ceilings”, 
“more tinkerable”, and “more meaningful”. 

To illustrate this point, we will solve a two-fold problem outlined by the developers of GP: 1) Code 
represented by blocks typically takes up more space than it would with a text-based representation. 
This makes it harder to get an overview of the code at a glance (Mönig, Ohshima, & Maloney, 2015).  

2) The visual stimuli, such as colors, borders and other graphical elements of blocks, can make it harder 
for the user to scan the actual labels of the blocks. These label texts, however, hold most of the meaning.  



Constructionism 2018, Vilnius, Lithuania 

291 

 

Text-based language editors typically solve this issue by providing a search function that can locate 
certain code snippets based on a given search term. For block-based language environments, such a 
feature does not yet exist – even if the user knows the block they need to find in the program, they must 
visually scan the entire scripting area to find it (Note: most block-based environments provide a search 
bar for the blocks palette. This searches the library of available blocks based on a search term; it does 
not search the code blocks in the scripting area).  

The proposed solution to this problem, therefore, is the addition of a “search in class”-function that 
enables the user to find a block containing a given search term within the currently selected class. This 
should operate similarly to the “search”-feature of a text-based language editor, scanning the code 
contained in a project for a matching search term and pointing the user to its location.  

Implementation of a search function in GP 
In this step, the programming environment of GP itself will be extended to include a “search in class”-
function. But what is the role of image nesting for this extension? 

Image nesting as a core concept of several block-based languages applies not only to objects on the 
stage (so-called “sprites”): it can also be found within the graphical interface of GP itself. It is one and 
the same core concept – a hierarchical part-whole relationship between two objects. 

Due to GP’s graphical interface structure relying on image nesting, searching for a specific block label 
only needs to follow a basic algorithm.  

 

However, there are several terms and their relation to each other that need to be clarified (Figure 2):  

 

Figure 2: Interface of GP 

ScriptEditor (red box): The area that contains all the code of a class. The ScriptEditor is a composite 
morph; its parts are the individual scripts (blue box). 

Class (green box): GP uses classes and objects. The ScriptEditor always displays the code blocks for 
the currently selected class; this code is shared among all its objects (or “instances”). The currently 
selected class for the example in Figure 2 is “Grass”. 

Scripts (blue boxes): Any number of blocks (>= 1) attached to each other form a script. Every script is 
a composite morph; among its parts are the individual blocks. The selected class has two scripts: “when 
I receive”, and a method definition for the “initialize”-block. 

Blocks: Parts of a script, internally attached by nesting. The “when I receive”-script has one block 
attached. 

labelText: A part of a block, contains the actual readable text on the block. The labelText of the “delete”-
block is the text string ‘delete’.  



Constructionism 2018, Vilnius, Lithuania 

292 

 

The hierarchical structure of the graphical interface that is created by image nesting can be visualized 
by a tree (Figure 3). This tree shows the position of the label texts in the hierarchy of the graphical 
interface: the texts are nested into the individual blocks, which in turn are nested into the scripts. Finally, 
the scripts are nested into the ScriptEditor, which is the part of the GP interface that holds all the scripts 
of a class. 

 

Figure 3: Hierarchical structure of the interface 

The algorithm below (simplified) is outlined in pseudo code. This representation was chosen due to the 
inevitable simplification of the algorithm in place, although a block-based representation may have been 
more fitting. 

To find the matching string, we need to compare the text labels of all visible blocks. To this end, we 
utilize the concept of image nesting. We will not, however, nest objects into other objects ourselves. 
Instead, we will utilize what happens when code blocks are snapped together: they are nested into one 
another.  

This impacts our approach to a solution significantly: we merely need to descend the hierarchical 
structure (Figure 3) that makes up the graphical interface in order to find the label texts of blocks. 

After the user’s search term has been stored (lines 
1-2), the concept of nesting becomes important.  

Descending the hierarchy of the graphical interface 
is done in lines 4, 5, and 6. In each of these lines, the 
composite object (ScriptEditor, scripts, and block, 
respectively) is prompted for a list of all its parts, that 
means other objects that have been nested into it.  

This hierarchy is followed downwards until the label 
text becomes available (line 7). The algorithm is 
therefore no more complicated than parsing a tree 

and its nodes. 

As an example, breaking down the “delete”-block yields three parts – a blue puzzle-shaped image, the 
label text “delete”, and an image of a black arrow. In this manner, every block of every script shown in 
the ScriptEditor is decomposed into its nested parts in order to find the label text.  

This label text can then be compared to the searchTerm entered by the user. If both strings match, the 
result has been found. The search menu is accessed through the context menu by right-clicking the 
scripting area. After a matching block label has been found, the ScriptEditor scrolls to it and a highlight 
is added to signal its position. 

1 set answer to (ask “Enter search term”) 
2 set searchTerm to answer 
3 
4 for every script of ScriptEditor  
5 for every block of scripts  
6  for every part of block  
7   if (searchTerm == part)  
8    return true 
  

 



Constructionism 2018, Vilnius, Lithuania 

293 

 

Discussion 

The reason for the simplicity of the algorithm described here is the architecture of the user interface: as 
each visible object (like the ScriptEditor, the scripts, the blocks, etc.) is a part of a larger (composite) 
object, and is in turn made up of parts (making it a composite object), a hierarchical structure is created. 
Descending this hierarchy downward to the point where the label text of blocks becomes accessible 
makes it possible to keep the search algorithm simple and intuitive. Therefore, the search algorithm 
makes use of the nesting of images that are used to make up the user interface of GP. Furthermore, it 
also makes use of three central ideas of constructionism in block-based languages: 

 High ceilings: Image nesting enables simple solutions to complex problems: An example could 
be implementing an autonomous car: the task is to create a car that is able to follow a race 
course reliably without user input; the issue is that to turn appropriately, the car needs to be able 
to determine where exactly it touches the edge of the course. In block-based languages, this 
can be implemented simply by nesting sensor objects onto the car; these sensors notify their 
owner if they touch the edge of the race course, to which the owner reacts by turning according 
to the notifying sensor.  
At the same time, however, nesting also enables solutions on a much higher level; as described 

in this paper, the seemingly complex task of modifying a programming environment can be done 

by utilizing its reliance on image nesting.  

 More tinkerable: As GP is open to modifications, the search algorithm described above can be 
implemented entirely in blocks through the usage of GP’s system class browser. 

 More meaningful: By extending the programming environment of GP according to our individual 
needs, we modified it to become meaningful for us (Resnick, 1996).  

The search feature is by no means indicative of the limits to image nesting: with some adjustments and 
extensions, this feature could also be used to parse blocks in a project for various purposes, for 
example, an analysis tool examining the block types users tend to use; the “high ceiling” has not yet 
been hit. Furthermore, while the language of this implementation is specific to GP, the algorithm itself 
is not; the algorithm is based on the usage of image nesting. Therefore, similar implementations are 
possible in other programming environments that utilize nesting to create their graphical interface, such 
as Snap!. 

 

Conclusion 

As the example illustrates, the graphical representation of elements in block-based languages enables 
the reduction of algorithms to their basic principles. For the user, this means that the implementation of 
personally-meaningful, constructionist projects is simplified. In the case of image nesting, which 
originated from Morphic’s composite morphs, the unique part-whole hierarchy it creates between 
objects makes it possible to solve a wide range of different tasks. Among these tasks are typical 
programming projects implemented by novices in introductory courses, such as autonomous cars. Even 
on a higher level (“high ceilings”), however, block-based languages enable constructionist solutions to 
known problems, as has been demonstrated with an extension of the GP programming environment. In 
conclusion to the posed question, “how high is the ceiling?”: we have not hit the ceiling quite yet. With 
even basic concepts such as image nesting, high-level solutions to problems can be implemented in a 
simple manner. Indeed, the particular feature implemented in this paper may be part of future GP 
versions. 

References  

Bau, D., Bau, D. A., Dawson, M., & Pickens, C. S. (2015). Pencil Code: Block Code for a Text World. 
Proceedings of the 14th International Conference on Interaction Design and Children, 445-448. 



Constructionism 2018, Vilnius, Lithuania 

294 

 

Bouraqadi, N., & Stinckwich, S. (2007). Bridging the gap between morphic visual programming and 
smalltalk code. Proceedings of the 2007 international conference on Dynamic languages: in conjunction 
with the 15th International Smalltalk Joint Conference 2007, 101-120. 

Krahn, R., Ingalls, D., Hirschfeld, R., Lincke, J., & Palacz, K. (2009). Lively Wiki A Development 
Environment for Creating and Sharing Active Web Content. Proceedings of the 5th international 
Symposium on Wikis and Open Collaboration , 9. 

Lieberman, H. (1986). Using prototypical objects to implement shared behavior in object oriented 
systems. ACM Sigplan Notices, 21(11), 214-223. 

Maloney, J. (2018). GP: A New Blocks Language for CS Education. Proceedings of the 49th ACM 
Technical Symposium on Computer Science Education, 1110. 

Maloney, J., & Smith, R. B. (1995). Directness and Liveness in the Morphic User Interface Construction 
Environment. Proceedings of the 8th annual ACM symposium on User interface and software 
technology, 21-28. 

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming 
Language and Environment. ACM Transactions on Computing Education (TOCE), 16. 

Mönig, J., Ohshima, Y., & Maloney, J. (2015). Blocks at Your Fingertips: Blurring the Line Between 
Blocks and Text in GP. Blocks and Beyond Workshop (Blocks and Beyond), 2015 IEEE, 51-53. 

Resnick, M. (1996). Distributed constructionism. Proceedings of the 1996 international conference on 
Learning sciences, 280-284. 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . . 

Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM 52(11), 60-67. 

Schwill, A. (1994). Fundamental ideas of computer science. Bulletin-European Association for 
Theoretical Computer Science, 53, 274. 

Weintrop, D., & Holbert, N. (2017). From Blocks to Text and Back: Programming Patterns in a Dual-
modality Environment. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer 
Science Education, 633-638. 

Weintrop, D., & Wilensky, U. (2015). Using Commutative Assessments to Compare Conceptual 
Understanding in Blocks-based and Text-based Programs. 11th Annual ACM Conference on 
International Computing Education Research, 101-110. 

Weintrop, D., & Wilensky, U. (2017). Between a Block and a Typeface: Designing and Evaluating Hybrid 
Programming Environments. Proceedings of the 2017 Conference on Interaction Design and Children, 
183-192. 

  



Constructionism 2018, Vilnius, Lithuania 

295 

 

The Direction and Possibility for Social Justice in 
Informatics Education based on Bebras Challenge 
in Republic of Korea 

Ungyeol Jung, purnagi@gmail.com  
Korea National University of Education, Republic of Korea 

Young-jun Lee, yjlee@knue.ac.kr 
Korea National University of Education, Republic of Korea 

Abstract 
In addition to high interest in computational thinking ability, the 2015 revised national curriculum of 
Republic of Korea has set as an emphasis on revising skills for the 4th Industrial Revolution era through 
the enhancement of the ability, and has made informatics mandatory for the middle school. As a result, 
regional, gender, teacher level, and students' prior knowledge levels are pointed out as important 
environmental variables affecting informatics education and raise of students' computational thinking of 
computing, and as a threat to the social justice of informatics education. 

In this study, based on the tasks and the results of the Bebras Challenge, the applicability of Bebras 
challenge for social justice in informatics education was analyzed from two perspectives (internal and 
external) and suggested implications. As a result of the research, the tasks of the Bebras challenge 
reflected educational elements for social justice. Also, the results of the Bebras contest showed that 
informatics education based on Bebras challenge could contribute to the social justice.   

The results of this study will provide the basis for the direction and possibility of Bebras challenge for 
social justice in informatics education. 

Keywords 
keyword; informatics education, software education; social justice; Bebras Challenge 

Introduction 

The 2015 revised national curriculum of the Republic of Korea was developed on the basis of the 
national and social needs for cultivating creative and convergent talents and the awareness of the 
problems of the 2009 revised national curriculum. Especially, the curriculum provides the education 
paradigm that cultivates talented people with core skills required by the future society and implements 
happy learning by improving the quality of experience for the students’ real life. This means that our 
society is being innovated so as to bring about changes in education. Especially, for the future of the 
nation, the influence of artificial intelligence, internet of things, cloud computing, big data, and mobile 
technology on the social, political, economic, cultural, artistic and educational fields is inevitable. 

Accordingly, in the 2015 revised national curriculum, software (SW) education aimed at cultivating 
computational thinking ability was imposed in the K-12 in order to strengthen the future capacity of the 
students who will live in the intelligent information society brought the 4th industrial revolution. On the 
other hand, it is not the first time that computational thinking was introduced in the 2015 revision 
curriculum in Republic of Korea. Computational thinking has been included as an educational goal 
through the 2009 revised informatics curriculum.  

However, this is limited to secondary schools in in the elective courses, not mandatory. Of course, in 
the 2015 revised national curriculum, only the minimal time and contents of SW education were 
presented without independent subject for elementary school. However, SW education in middle 
schools and high schools is the essential education through informatics for professional and systemic 
education. In particular, since the first national curriculum has been implemented, it is the first case that 
the elective subject has become mandatory. Therefore, the software education as compulsory and 



Constructionism 2018, Vilnius, Lithuania 

296 

 

informatics as mandatory have great significance for educational history in Republic of Korea. The fact 
that the informatics has become a compulsory and mandatory subject leads to the expectation that it 
can cultivate various kinds of abilities such as collaborative problem solving ability and information 
culture literacy as well as computational thinking in various aspects. The role and impact of the national 
curriculum in Republic of Korea is extensive and powerful because the curriculum presents the 
characteristics, goals, content system, achievement standards (content elements, skills), teaching and 
learning methods as well as teaching times of the subject relatively in detail.  

However, unlike this expectation, there is a concern that the effect of SW education varies depending 
on the infrastructure, the capacity of the informatics teacher, the students’ gender and prior knowledge 
level. In particular, the Korean education market is growing because of the concerns of the Korean 
people, who have a high level of education and passion for education. These concerns can be a great 
risk to social justice, a very important value in education. 

Therefore, in this study, we aimed to search and analyse for social justice in informatics education 
through the Bebras challenge, which is developed for the purpose of motivating K-12 students for 
informatics, and promoting their computational thinking ability. The results of this study are expected to 
provide the basis for the direction and possibility of Bebras challenge for social justice in informatics 
education. 

Directions of Social Justice in Informatics Education  
based on Bebras challenge 

Social Justice in Education 
The concept of social justice is closest in meaning to fairness, emphasizing communication and 
understanding, humility, compromise, and tolerance rather than emphasizing one aspect of the public 
good or the private good. Justice is some similar and somewhat different from equality. In other words, 
everyone should be educated without discrimination, but the difference of results should be 
acknowledged only by the factor of the ability. On the other hand, it cannot be denied that the purpose 
of education is to realize social justice, but the ignorance and unawareness of these concepts and 
values have made the view that education is for social inequality. 

Paulo Freire (1970, 2009), who advocated education for social justice, said that students in literacy 
education critically read and critically rewrite the world and that participation for individual liberation is 
important. Applying Freire's liberation to informatics education, students should be taught and prepared 
informatics to think critically about the oppressive part of the social structure or environment through the 
concept or technology of informatics and computational thinking. In this respect, D'Ambrisio (1999) 
stated that students should be taught to apply and infer knowledge of the subject within the social 
context. In other words, we need a curriculum for leading students' interest, curiosity, and creativity. 

Skovsmose (1994) and Frankenstein (1983, 2001) presented the teaching and learning direction of 
social justice in mathematics education in two perspectives. It is 'mathematics for social justice' and 
'critical mathematics' education. 'Mathematics for social Justice' means to understand the world and to 
improve problem-solving ability through mathematics. It can be interpreted as a goal and an effect of 
mathematics education. In addition, 'critical mathematics' means to cultivate positive cultural and social 
identity through learning of mathematics. It means to cultivate critical awareness through teaching 
mathematics.  

Choi (2015) presented the teaching topics and contents for social justice. It is possible to teach 'critical 
mathematics' through the topics and contents focusing on social problems and it is possible to teach 
'mathematics for social justice' the contents focusing on mathematical problem solving. 

Through this literature analysis, 'Informatics for social justice' means that everybody should be able to 
gain the opportunity for computational thinking. In addition, 'critical informatics' means to have a positive 
viewpoint on different races, classes, genders, etc. through learning informatics. 



Constructionism 2018, Vilnius, Lithuania 

297 

 

Bebras Challenge, Informatics Education, and Social Justice 
Bebras challenges are an educational model and an initiative that is designed to motivate K-12 students 
in informatics and to improve computational thinking. The challenge is based on tasks that anyone can 
participate and challenge regardless of gender, region, prior knowledge and so on.  

All the tasks of the Bebras challenge involve interesting and familiar real-life problem situations, and 
participants experience ‘abstraction’ that analyzes problem situations and designs problem- solving 
models as well as automation that develop and apply problem-solving procedures. Through this 
process, logical thinking ability and computational thinking ability can be cultivated. This means that it 
is possible to educate 'informatics for social justice' through teaching and learning informatics based on 
Bebras challenge. 

Jung and Lee (2017) analyzed the educational effects of the Bebras challenge and found its applicability 
to the 2015 revised national curriculum of Republic of Korea. According to them, the Bebras challenge 
can measure whether it is possible to deeply understand and apply the basic concepts of informatics 
beyond simply knowledge acquisition or memorization. It also improve students’ affective ability though 
solving attractive and challenging tasks, motivation, attitude, interest and so on. 

In addition, it is possible to diagnose computing thinking ability, which allows to provide appropriate 
feedback for students. Furthermore it can be applied to various teaching, learning and evaluation 
models based on competition and collaboration and it can improve students’ ICT literacy and 
abstraction, algorithm design, and programming ability through interactive tasks based on IBT with 
visualized and simulated environment.  

All the tasks of Bebras challenges include various multi-cultural elements as they are developed through 
collaborative development and reviewing from the experts of various countries. 

In particular, there is no discrimination against specific countries, classes, and races because they place 
an emphasis on attractive problem situations that ‘everyone’ can challenge. This means that it is 
possible to educate 'critical informatics' education through Bebras challenge. 

Possibilities of Social Justice in Informatics Education 
based on Bebras challenge 

The purpose of this study is to analyze the effectiveness of informatics education based on Bebras 
challenge with the perspective of social justice. To do this, we set up the tasks and the test-results of 
Bebras challenge 2017 in Republic of Korea. The challenge was conducted by Bebras Korea, a 
nonprofit organization composed of Korean experts in the field of informatics education, and 7,208 
students from five age groups, from Group II (Primary) to Group VI (Seniors), participated in the 
challenge. 

The analysis of this research was done in two aspects. The first thing is about the social problem factors 
included in the tasks of Bebras challenge 2017 in Korea so that we explore the possibility of 'critical 
informatics education'. The second is about the participants' results of the challenge so that we find the 
possibility of ‘informatics for social justice’. Therefore, the research problem to be solved through this 
study is as follows.  

 Is Bebras challenge suitable for 'Critical Informatics' education? 
 Is Bebras challenge suitable for 'Informatics for social justice' education? 

Internal Analysis: Bebras Tasks for Social Justice 
In order to figure out whether the Bebras challenge is suitable for critical informatics education, it is 
necessary to analyze whether the tasks of this challenge contain the elements for social justice. 
Therefore, this can be said that the internal analysis on Bebras challenge. 

Choi (2015) and Lim (2017) suggested five important topics and contents for teaching and learning 
social justice. Therefore, it is necessary to search whether the tasks of the Bebras challenge includes 
the following elements for solving the 1st research problem. 



Constructionism 2018, Vilnius, Lithuania 

298 

 

No. Topics or Contents 

1 about Social Unjust 

2 about Equity and Public Virtue 

3 about Consideration of Social Minorities 

4 about Students’ Interests and Concerns 

5 about Multicultural and Global Materials 

Table 1. Topics or Contents for Education of Social Justice 

Frist, The content about social unjust means to construct educational contents in such a way as to find 
out or solve unfair problem situations. The following is a task of Bebras challenge that explores the 
appropriate police actions to catch a pirate (a bad man) under given conditions. 

 

 Figure 1. Pirates (2015-SI-07; Age group: Juniors; Difficulty: hard) 

Students try to catch pirates who are unjust in the solution of this problem, and through this process, 
they become police officers and endeavor to realize social justice. The examples like this task can be 
found in "Find the Thief (2016-BE-02; Age group: seniors; Difficulty: hard)" to search the thief who stole 
a diamond and "Intrusion (2017-DE-03; Age group: cadets; Difficulty: hard) ' to prevent unauthorized 
intruders from the museum. 

Second, the contents about equity and the public virtue refer to educational contents that encourage to 
recognize or solve the problem for the more people. The next task is to find a way to ensure that all 
islands are able to communicate even if one thin cable is cut off. 



Constructionism 2018, Vilnius, Lithuania 

299 

 

 

 Figure 2. Honomakato MC (2017-DE-06a; Age group: Seniors; Difficulty: medium) 

In solving this problem, students try to find ways to create a situation in which everyone can 
communicate equally. The examples like this task can be found in 'Soda Shoppe (2017-CA-07; Age 
group: seniors; Difficulty: easy)' to find ways to drink all your friends' favorite drinks and 'Bebragram; 
Age group: seniors; Difficulty: easy)' to find out how all your friends can buy music. 

Third, the contents about consideration of social minority means the educational contents to recognize 
the problem situation for the handicapped, the elderly and children, or to induce them to solve their 
difficulties. The following is a Bebras challenge task to find a way to make delicious food (twigs) for a 
one armed Bebras. 

 

 Figure 3. One Armed Bebras (2017-CH-08b; Age group: Primary; Difficulty: medium) 

In the process of solving this problem, the students have a desire to help the one armed Bebras. The 
examples like this task can be found in 'Grandmother's jam (2017-RU-04; Age group: Primary; Difficulty: 
medium)' to find a way to help grandmother who want to make jam and 'Bird House (2017-RO-03a; Age 
group: Primary; Difficulty: easy)' to prepare a daughter’s birthday present. 



Constructionism 2018, Vilnius, Lithuania 

300 

 

Fourth, the contents about students' interests and concerns are related to the use of familiar materials, 
pictures, or real-life problems. The following is a task to find a suitable picture combination with a Ninja 
Bebras which is attractive for students. 

 

 Figure 4. Stick and Shield (2017-JP-02; Age group: Cadets; Difficulty: medium) 

Students are interested in the action and facial expressions of cute ninja Bebrass holding a stick and a 
shield in solving this problem. The examples like this can be found in "Irrigation system (2017-AT-05; 
Age group: Cadets; Difficulty: easy)" to fix the real-life problem, and "Color the flowers (2016-SK-04 ; 
Age group: Primary; Difficulty: easy) ' with beautiful flowers. 

Fifth, contents about multicultural and global material means constituting educational contents in the 
way of problematic situation of various countries and races as material. The following is a tasks to find 
ways to change the lighting conditions of skyscrapers. 

 

 Figure 5. Skyscraper art (2017-IT-06; Age group: Cadets; Difficulty: hard) 

In the process of solving this problem, students in Korea will be questioning the beginning of the building 
from ‘0’ (not 1), and realize that this is a difference between culture and custom. There are many other 
problems like this, but the students especially have looked at Beavers’ different shapes, facial 
expressions and color, and clothes from different countries in the tasks and imagine the people of the 
country.  

These results indicate that the elements for critical informatics are included in the tasks of Bebras 
challenge. Therefore, 'critical informatics' education based on Bebras challenge is possible. 



Constructionism 2018, Vilnius, Lithuania 

301 

 

External Analysis: Results of Bebras Challenge 2017 in Korea 
In order to find out whether the Bebras challenge is suitable for informatics education for social justice, 
the focus should be on whether students will be given opportunities to improve their computational 
thinking through the challenge. Therefore it is necessary to analyze the participants and results of the 
participation. These approach is can be called the external analysis on Bebras challenge  

Dagienė & Futschek (2008) and Dagienė & Stupuriene (2016) said that everybody can be participants 
to Bebras challenge regardless of gender, region, or prior knowledge and all tasks of this challenge are 
based on interesting and familiar real-life problems. Thus, participants in the Bebras challenge can be 
motivated for informatics and can enjoy their computational thinking regardless of their different 
backgrounds.  

On the other hand, Jung et al. (2018) presented the points to consider for the informatics by analyzing 
the background factors influencing the secondary school participants’ results (N = 5,874) . The students 
participated in Bebras challenge 2017 in Korea. As a result, the following conclusions were obtained. 

 First, as a result of analyzing the difference in the percentage of correct answers of all participants 
according to their genders, the result of male students was higher than female students. However, 
as a result of analyzing the difference for each group, there were statistically significant differences 
only in Group VI (Seniors), and there was no difference between Group IV (Cadets) and Group V 
(Juniors) 

 Second, as a result of analyzing the difference according to the region, it was found that 'Rural > 
Big city > Small city'. These results are somewhat different from those of previous studies that 
worried about the educational gap between urban and rural areas (City > Rural). 

 Third, there was no statistical difference in the percentage of correct answers according to the 
evaluation areas (ALP, DSR, CPH, COM, ISS) and task-types (Multi-choice, Interactive). However, 
we should pay attention the result that the percentage of correct answers (N = 5874, m = 51.77, 
df = 36.41) in the CPH area was very lower than the overall average (N = 5874, m = 34.49, df = 
18.89). 

In this study, to find out the difference of the percent correct according to the region in more detail, we 
analyzed the difference based on the results of the students of each. The results are as follow. 

 First, the average (avg.) of the big city (N = 221) was 69.05 and the standard deviation (SD) was 
39.84 among the students in the group IV (Cadets). The avg. in the small city area (N = 1443) was 
55.05 and the SD was 37.95. The avg. of rural (N = 91) was 81.14 and the SD was 35.39. The F-
value was 30.46 and p-value was .00 when the significant level of this research was .05. The 
results of the post-hoc analysis (Scheffe) are as follows. This result implies that a statistically 
meaningful interpretation can be made for 'Rural > Big city > Small city'. 

Comparative Group 
(GroupⅣ) 

mean 
difference 

SE p 

Big city vs. Small city 14.01 2.75 .00 

Big city vs. Rural -12.09 4.74 .04 

Small city vs. Rural -26.10 4.11 .00 

Table 2. Results of Post-hoc analysis (GroupⅣ) 

 Second, the avg. of the big city (N = 256) was 40.82 and the SD was 35.10 among the students in 
the group V (Juniors). The avg. in the small city area (N = 574) was 48.94 and the SD was 39.21. 
The avg. of rural (N = 23) was 44.74 and the SD was 26.77. The F-value was 4.12 and p-value 
was .02 when the significant level of this research was .05. The results of the post-hoc analysis 
(Scheffe) are as follows. This result implies that a statistically meaningful interpretation can be 
made for 'Small city > Big city’. However, there was no difference between ‘Big city and Rural’ and 
‘Small city and Rural’. 



Constructionism 2018, Vilnius, Lithuania 

302 

 

Comparative Group  
(GroupⅤ) 

mean 
difference 

SE p 

Big city vs. Small city -8.12 2.84 .02 

Big city vs. Rural -3.92 8.21 .89 

Small city vs. Rural 4.20 8.03 .87 

Table 3. Results of Post-hoc analysis (GroupⅤ) 

 Third, the avg. of the big city (N = 964) was 53.76 and the SD was 34.33 among the students in 
the group VI (Seniors). The avg. in the small city area (N = 2258) was 47.94 and the SD was 34.46. 
The avg. of rural (N = 44) was 54.05 and the SD was 26.70. The F-value was 10.06 and p-value 
was .00 when the significant level of this research was .05. The results of the post-hoc analysis 
(Scheffe) are as follows. This result implies that a statistically meaningful interpretation can be 
made for 'Big city > Small city’. However, there was no difference between ‘Big city and Rural’ and 
‘Small city and Rural’. 

Comparative Group  
(GroupⅥ) 

mean 
difference 

SE p 

Big city vs. Small city 5.82 1.32 .00 

Big city vs. Rural -.28 5.29 .99 

Small city vs. Rural -6.10 5.22 .51 

Table 4. Results of Post-hoc analysis (GroupⅥ) 

These results show that it is difficult to generalize the test-results of Bebras challenge according to 
specific background factors. Instead, it emphasizes the importance of detailed analyzing the individual’s 
computational thinking ability or misconceptions and providing appropriate feedback to help them. 
Therefore, 'informatics for social justice' education based on Bebras challenge is possible 

Conclusion and Discussion 

The purpose of this study is to find out how Bebras challenge can contribute to social justice in 
informatics education based on the analysis of the tasks and the results of the Bebras challenge 2017 
in Republic of Korea. Based on the results of this study, the following conclusions can be drawn. 

First, there are two educational directions for social justice in informatics education. The 'Informatics for 
social justice' education is to provide all students with opportunities to develop computing thinking skills 
that understand the world and solve problems from the perspective of informatics. 'Critical informatics' 
education is aimed at improving positive social and cultural identity for all students. 

Second, the Bebras challenge includes various elements necessary for 'Critical informatics' education. 
This is based on the developing principles and processes of the tasks that allows for consideration of 
diverse cultural and ethical issues. Therefore, it is possible to educate 'critical informatics’ education 
based on Bebras challenge. 

Third, the goals and characteristics of Bebras challenge are appropriate for 'Informatics for social justice' 
education. The results of the challenge 2017 in Korea also show that informatics education is not always 
beneficial to a particular group or subject. In particular, through detailed analyzing, we can practice 
'Informatics for social justice' education. 



Constructionism 2018, Vilnius, Lithuania 

303 

 

 

Figure 6. The directions and possibility for social justice in informatics education  
based on Bebras challenge 

As the number of countries and students participating in Bebras challenge grows, various possibilities 
using Bebras challenge are being discussed. However, considering the goals and characteristics of the 
challenge, we should more focus on the social justice in informatics education based on this challenge. 
Therefore, we hope that this study will be the basis for the direction and possibility of Bebras challenge 
for social justice in informatics education. 

References 

Bebras Challenge. (2018). http://bebras.org 

Choi, J., An, S. and Lee, Y. (2015). Computing Education in Korea-Current Issues and Endeavors. ACM 
Transactions on Computing Education (TOCE) - Special Issue II on Computer Science Education in K-
12 Schools, 15(2), Article 8. 

Choi, S. (2015). Study on the development of elementary school mathematics program with a focus on 
social issues for the mathematically gifted and talented students for fostering democratic citizenship: 
based on the teaching mathematics for social justice. Ph.D. thesis, Ewha Womans University, Republic 
of Korea. 

D’ Ambrisio, U. (1999). Ethnomathematics and its first international congress. Zentralblatt fur Didaktik 
Mathematik, ZDM, 31(2), 50-53. 

Dagienė, V., & Futschek, G. (2008). Bebras international contest on informatics and computer literacy: 
Criteria for good tasks. International Conference on Informatics in Secondary Schools-Evolution and 
Perspectives, 19-30.  

Dagienė, V., & Stupuriene, G. (2016). Bebras-a sustainable community building model for the concept 
based learning of informatics and computational thinking. Informatics in Education-An International 
Journal, 15(1), 25-44. 

Frankenstein, M. (1983). Critical mathematics education: An application of Paulo Freire's epistemology. 
The Journal of Education, 165(4), 315-339. 

Frankenstein, M. (2001). Reading the world with math: Goals for a critical mathematical literacy 
curriculum. Proceedings of the Eighteenth Biennial Conference of the Australian Association of 
Mathematics Teachers, Canberra, Australia. 

Freire, P. (1970, 2009). Pedagogy of the oppressed. New York: Continuum. 

Jung, U. and Lee Y. (2017). The Applicability and Related Issues of Bebras Challenge in Informatics 
Education. The Journal of Korean association of computer education, 20(5), 1-14. 



Constructionism 2018, Vilnius, Lithuania 

304 

 

Jung, U., Kim, H., Lee, M., Lee, H. and Ahn S. (2018). A Study on the Factors Influencing Computational 
Thinking Ability of Secondary School Students in Bebras Challenge 2017. The Journal of Korean 
association of computer education, 21(3), 21-33. 

Kim, J. and Park, M. (2015). The Influences of Teaching Mathematics for Social Justice on Students' 
Interest towards Mathematics and Perceptions of Mathematical Values. Journal of Elementary 
Mathematics Education in Korea, 19(3), 409-434. 

Korea Ministry of Education. (2015). The 2015 revised national curriculum. 

Lee, M. (2017). Computational Thinking: Efforts in Korea. In: Rich P., Hodges C. (eds) Emerging 
Research, Practice, and Policy on Computational Thinking. Educational Communications and 
Technology: Issues and Innovations. Springer, Cham. 

Lim, H. (2017). A Study on the Realization of Contents of Mathematics Education for social justice. 
Master thesis, Ewha Womans University, Republic of Korea. 

Park, S. C. (2012). A Study on Social Justice in Multicultural Education. Center for Educational 
Research, 1-26. 

Seo, K. (2017). A Narrative Inquiry on a Teacher’s Struggle to Teach for Social Justice. The Journal of 
Curriculum Studies, 35(3), 129-156. 

Skovsmose, O. (1994). Towards a philosophy of critical mathematical education. Dordrecht, 
Netherlands: Kluwer. 

 

  



Constructionism 2018, Vilnius, Lithuania 

305 

 

Interconnection between Computational Thinking 
and Digital Competence 

Anita Juškevičienė, anita.juskeviciene@mii.vu.lt  
Vilnius University, Lithuania 

Valentina Dagienė, valentina.dagiene@mii.vu.lt  
Vilnius University, Lithuania 

Abstract 
The European Commission Science Hub has been promoting Computational Thinking (CT) term as an 
important 21st century skill or competence. However „despite the high interest in developing 
computational thinking among schoolchildren and the large public and private investment in CT 
initiatives, there are a number of issues and challenges for the integration of CT in the school 
curricula46.“ From the other side, the Digital Competence (DC) Framework 2.0 (DigCom) is promoted in 
the same European Commission Science Hub portal47. It shows that both topics have may things in 
common. Thus there is the need of research on CT relationship with digital competence. 

The goal of this paper is to analyse and discuss the relationship between DC and CT, and help 
educators as well as educational policy makers to make informed decisions about how CT and DC can 
be included in their local institutions. We begin by defining DC and CT and then discuss the current 
state of both phenomena in education in multiple countries in Europe. By analysing official documents, 
we try to find the underlying commonness in both DC and CT, and discover all possible connections 
between them. Possible interconnections between both approaches components groups is presented 
in Fig. 1.Fig. 1. The interconnections between DC and CT  

 
Fig. 1. The interconnections between DC and CT 

Keywords  
Computational thinking, digital competence, education 

                                                

46 https://ec.europa.eu/jrc/en/computational-thinking  
47 https://ec.europa.eu/jrc/en/digcomp/digital-competence-framework  

https://ec.europa.eu/jrc/en/computational-thinking
https://ec.europa.eu/jrc/en/digcomp/digital-competence-framework


Constructionism 2018, Vilnius, Lithuania 

306 

 

Background 

Computational Thinking (CT) and Digital Competence (DC) are indicated by many education policy 
makers as important 21st century skills. The European Commission Science Hub has promoted CT and 
has launched the Digital Competence (DC) Framework 2.0 (DigCom) in its portal. Nowadays CT and 
DC are essential skills and young generation should learn them for life. 

During the last years, a lot of research work was devoted to the both topics, and enormous amount of 
studies and practical experience have been implemented. Nevertheless, there is the huge need of 
research in these topics on many aspects. One of them is the computational thinking relationship with 
digital competence.  

Digital Competence 

The invention of computer and internet has changed our lives and education sector. It requires 
individuals to improve their competencies, especially be digitally literate. 

Digital competence is the most recent concept describing technology-related skills. Digital literacy is 
often seen as a synonym of digital competence, however there are some stages in development of this 
concept, for example: computer skills -> ICT skills -> digital skills -> digital competences (Ilomäki et al., 
2011; Laar et al., 2017). Some researchers argue that digital skills concept, as a more holistic 
phenomenon, involves more features than digital competence (Pérez-Escoda, Rodríguez-Conde, 
2015).  

The number of content (e. g. media, tools, technologies) in the internet is growing every day. Thus, it 
requires individuals to deal with more abilities. JRC technical report (2012) analysed fifteen frameworks 
on DC and developed the following definition: “the set of knowledge, skills, attitudes (thus including 
abilities, strategies, values and awareness) that are required when using ICT and digital media to 
perform tasks; solve problems; communicate; manage information; collaborate; create and share 
content; and build knowledge effectively, efficiently, appropriately, critically, creatively, autonomously, 
flexibly, ethically, reflectively for work, leisure, participation, learning, socialising, consuming, and 
empowerment”. Being digitally competent implies the particular abilities, such as, understanding media, 
searching for information and be critical about what is retrieved, and communication with others using 
a variety of digital tools. Seven areas of DC were identified: (1) information management, (2) 
collaboration, (3) communication and sharing, (4) content and knowledge creation, (5) ethics and 
responsibility, (6) evaluation and problem solving, and (7) technical operations. The results of that report 
contributed to the DigCom project. Lately, contribution to the better understanding and development of 
DC in Europe was presented as DC framework involving five competence areas (DIGCOMP, 2013): (1) 
information, (2) communication, (3) content creation, (4) safety, and (5) problem solving. These areas 
consist of 21 competences. It was meta-framework for existing frameworks, initiatives, curricula and 
certifications. DigComp 1.0 has become a reference for many DCs initiatives at European and Member 
State levels. DigComp 2.0 keeps the same overall structure of 5 competence areas however slightly 
renamed (DigComp, 2016): (1) information and data literacy, (2) communication and collaboration, (3) 
digital content creation, (4) safety, and (5) problem solving.  

One of the best known frameworks among educators and academics is the European Framework for 
the Digital Competence of Educators (DigCompEdu) which has six areas focusing on different aspects 

of educators’ professional activities: (1) Professional Engagement  organisational communication, 
professional collaboration, reflective practice, digital continuous professional development, (2) Digital 

Resources  selecting, creating, modifying, managing, protecting and sharing digital resources, (3) 

Teaching and Learning  teaching, guidance, collaborative and self-regulated learning, (4) Assessment 

 strategies, evidence analysis, feedback and planning, (5) Empowering Learners  accessibility and 
inclusion, differentiation and personalisation, actively engaging learners, and (6) Facilitating Learners’ 
Digital Competence (DigCompEdu, 2017).  

DC involves the confident, critical and responsible use of, and engagement with, digital technologies for 
learning, at work, and for participation in society. It includes information and data literacy, 
communication and collaboration, digital content creation (including programming), safety (including 



Constructionism 2018, Vilnius, Lithuania 

307 

 

digital well-being and competences related to cybersecurity), and problem solving. The concept “digital 
technologies” is employed as an umbrella term for digital resources and devices, thus comprising any 
kind of digital input: software (including apps and games), hardware (e.g. classroom technologies or 
mobile devices) or digital content/data (i.e. any files, including images, audio and video).  

Computational thinking 

In 2006 Wing presented the concept of CT: “Computational Thinking involves solving problems, 
designing systems, and understanding human behaviour by drawing on the concepts fundamental to 
computer science” [Wing, 2006]. Based on this it can be concluded that CT involves three key 
components: algorithms, abstraction, and automation. However, the rice of this concept can be related 
to Seymour Papert by introducing it in the context of suggesting an alternative, computationally-based 
mathematics education [Papert, 1996].  Thence the researchers are very interested in CT approach and 
its application in education. However, it is still at an early stage of maturity [Lockwood & Mooney, 2017] 
and the steady definition of CT is not provided [Voogt, 2015]. In the attempt to define CT, researchers 
often focus on the core components of CT. As argued in [Voogt, 2015] it is more important try to find 
similarities and relationships in the discussions about CT rather than try to give an ultimate definition. 
They provide the discussion about the definition and core concepts of CT only in the Computer Science 
domain (excluding other domains), examined by covering literature from 2008 to 2013. Similarly, the 
analysis made in 2016 [Kalelioglu et al, 2016] provide the word cloud of CT definitions used in analysed 
papers covering 2006-2014. The generated  ‘Wordle‘ by Kalelioglu and others was based on the 
definitions provided by analysed researchers and not included some core concepts of CT. Additionally, 
CT definitions explained in the analysed papers were analysed and presented in percentage form of the 
words used to describe the meaning of the CT: problem solving (22%), abstraction (13%), computer 
(13%), process (9%), science (7%), data (7%), effective (6%), algorithm (6%), concepts (5%), ability 
(5%), tools (4%) and analysing (4%). Later, 59 definitions were analysed and classified into 7 themes 
in [Haseski et al., 2018] and they concluded that current limitations in the CT definition is that it is shaped 
by technology-aided problem solving. Thus further dimensions needed to be explored especially studies 
on personal, environmental, social, affective, psychological and ethical factors needed to be 
investigated. 
CT definition challenge was analysed also in others domains, such us mathematics and science by 
[Weintrop et al., 2016]. They review the literature on CT and situated it historically till 2013. Thus they 
propose a definition of CT in the form of a taxonomy consisting of four main categories: data practices, 
modelling and simulation practices, computational problem solving practices, and systems thinking 
practices. Additionally, the set of ten CT skills were proposed:  

1. Ability to deal with open-ended problems  
2. Persistence in working through challenging problems  
3. Confidence in dealing with complexity  
4. Representing ideas in computationally meaningful ways  
5. Breaking down large problems into smaller problems  
6. Creating abstractions for aspects of problem at hand  
7. Reframing problem into a recognizable problem 
8. Assessing strengths/weaknesses of a representation of data/representational system  
9. Generating algorithmic solutions  
10. Recognizing and addressing ambiguity in algorithms 

This set was the developed based on literature review on CT with a focus on applications to mathematics 
and science. 
The focus on CT skills rather than definition meaning was presented in [Curzon et al, 2014]. They used 
a simplified set of skills: algorithmic thinking, evaluation, decomposition, abstraction, generalisation and 
implemented them in the developed workshops for teachers on CT themes in order to fill teachers’ 
knowledge gaps about CT and as a useful practical way that they can teach computing to school 
students. Very similar set of CT concepts were used to develop the relationship of CT concepts, student 
activity and curriculum subjects example [Catlin& Woollard, 2014]: abstraction, decomposition, 
algorithmic design, evaluation, and generalizations.  



Constructionism 2018, Vilnius, Lithuania 

308 

 

However the researchers and educators were searching for more CT elements in order to find out how 
CT definition can be interpreted. The literature review made by [Grover& Pea, 2013] showed that there 
are nine core elements widely accepted as comprising CT: Abstractions and pattern generalizations 
(including models and simulations); Systematic processing of information; Symbol systems and 
representations; Algorithmic notions of flow of control; Structured problem decomposition 
(modularizing); Iterative, recursive, and parallel thinking; Conditional logic; Efficiency and performance 
constraints; Debugging and systematic error detection.  
Most of the researchers argue that CT is an activity, often associated with, but not limited to, problem 
solving [Beecher, 2017, p.8; Haseski et al., 2018]. For example, the International Society for Technology 
in Education (ISTE) and the Computer Science Teachers Association (CSTA) define CT as problem 
solving process that (but is not limited to) the following characteristics [CSTA&ISTE, 2011]:  

• Formulating problems in a way that enables us to use a computer and other tools to help solve 
them  

• Logically organizing and analysing data 
• Representing data through abstractions, such as models and simulations  
• Automating solutions through algorithmic thinking (a series of ordered steps)  
• Identifying, analysing, and implementing possible solutions with the goal of achieving the most 

efficient and effective combination of steps and resources  
• Generalizing and transferring this problem-solving process to a wide variety of problems.  

These skills are supported and enhanced by a number of dispositions or attitudes that are essential 
dimensions of CT, including:  

• Confidence in dealing with complexity  
• Persistence in working with difficult problems  
• Tolerance for ambiguity 
• The ability to deal with open-ended problems  
• The ability to communicate and work with others to achieve a common goal or solution 

Additionally, they defined the vocabulary for CT in the purpose to explain the operational definition by 
listing nine CT concepts implicit in the operational definition such as: data collection, data analysis, data 
representation, problem decomposition, abstraction, algorithms and procedures, automation, simulation 
and parallelisation.  
As mentioned previously, CT can be seen as a problem solving process. It is in line with many aspects 
of 21st century competencies such as creativity, critical thinking, and problem- solving [Lye & Koh, 
2014]. Thus it can be seen as one of the constructionist method (like the problem-based learning) which 
allows students to learn about a subject by exposing them to multiple problems and asking them to 
construct their understanding or objects of the subject through these problems. The pioneer of the 
constructivist theory, S. Papertas, has expanded the theory of constructivism by stating that learning is 
best when the learner actively develops objects of the real world (for example, a sand castle, an 
automatic watering system), and not just ideas or knowledge that deliberately engages in design. The 
learning process itself is improved by improving the conditions that learners can construct. 
Additionally, constructionism can be seen as the theory of particular relevance when considering lifelong 
learning. Lifelong learning is defined as "all learning activity undertaken throughout life, with the aim of 
improving knowledge, skills and competences within a personal, civic, social and/or employment-related 
perspective" [CEC, 2001]. Similarly, the CT is nowadays fundamental and children should learn it for 
life because it involves essential digital age competencies. 

CT frameworks and existing practical implementation solutions 

A framework for studying and assessing the development of CT was developed by (Brennan & Resnick, 
2012). Three key dimensions based on studying activity in the Scratch online community and in Scratch 
workshops were identified: computational concepts (the concepts designers engage with as they 
program, such as iteration, parallelism, etc.), computational practices (the practices designers develop 
as they engage with the concepts, such as debugging projects or remixing others’ work) and 
computational perspectives (the perspectives designers form about the world around them and about 
themselves). Based on these three dimensions, the suggestions how to assess learning programming 
were developed. 



Constructionism 2018, Vilnius, Lithuania 

309 

 

The College Board (2017) developed the CT framework for a Computer Science Principles course for 
high schools in the USA. They identify six CT practices: Connecting computing, Creating computational 
artefacts, Abstracting, Analysing problems and artefacts, Communicating, Collaborating. It is believed 
that these practises help students make sense of knowledge in order to accomplish the task, learn 
collaboration and communication principles.  

Computing at School (CAS) presented the conceptual framework of CT by identifying key concepts 
(logic, algorithms, decomposition, patterns, abstraction, evaluation) and approaches (tinkering, creating, 
debugging, persevering, collaborating) involved in CT process as well as techniques (reflecting, coding, 
designing, analysing, applying) employed to demonstrate and assess CT (CAS, 2015). Each of the 
concepts of CT can be identified with approaches and techniques. This gives the opportunity to 
implement CT in classroom.   

Framework for CT as a Problem-Solving Process was developed by (Kalelioğlu et al., 2016). It has five 
main categories of process that consist of the actions extracted from literature analysis. These 
categories are as follows: identify the problem; gathering, representing and analysing data; generate, 
select and plan solutions; implement solutions; assessing solutions and continue for improvement. They 
argue that this framework could help to teach, learn and practice CT and informatics concepts within 
many courses.  

In the book by Krauss & Prottsman (2017), the CT framework of four categories: decomposition, pattern 
matching, abstraction and automation, is presented. Each has subcategories. This framework could 
help plan computer science lessons. The detailed descriptions of lesson plans for each category is given 
as well.  

Scratch, App Iventor, LegoMind Stroms, CS Unplugged activities and various games are widely 
available tools and resources for CT development. CS Unplugged activities are adopted in different 
ways: videos, shows, outdoor activities, competitions. Another adoption is an internationally recognized 
challenge on informatics and CT called by Bebras (Beaver). Recently there have been over 60 
participating countries. The Bebras challenge is an informatics education community-building model 
designed to promote informatics learning and CT at schools by solving short informatics concept-based 
tasks (Dagiene & Stupuriene, 2016). Alongside the initial goal of the Bebras project is to motivate 
students to be more interested in informatics topics, there is a strong intention to deepen algorithmic 
and operational thinking and extended to CT (Dagiene, Sentence, Stupuriene, 2017).  

Interconnection between Digital Competence and Computational 
Thinking  

The characteristics of CT and DC approaches based on results of literature review were analysed. The 
analysis showed that CT skills are overlapping and relatively broad in context. The eight CT’s 
components groups were identified. Additionally, the list of abilities was identified.  

The first CT concepts group - Data analysis & representation (DatAnaRep) involves processes of data 
collection, analysis and representation. The concept of generalization is also included in this group. 
Generalization is a way of gaining extra information by finding similarities between items (Krauss, 
Prottsman, 2017). Thus the concept of pattern recognition also belongs to this group. Because 
generalization can be defined as an activity that identifies patterns among individual sub-problems and 
simplifies them (Beecher, 2017). This group is mostly related to (CSTA & ISTE, 2011) vocabulary and 
framework for CT proposed by (Atmatzidou & Demetriadis, 2016).  

The second group - Computing Artefacts (ComA) involves the creative aspects of computing and is 
developed based on six CT practises framework. It means the process of designing and developing 
computational artefacts as well as applying computing techniques to creatively solve problems. 
Decomposition (Decom) is the third group. This concept is identified in the most of the literature on CT 
and simplified means the process of breaking down the task into smaller manageable parts.  



Constructionism 2018, Vilnius, Lithuania 

310 

 

The fourth group – Abstraction (Abst) can be defined as the solution for a more general problem by 
ignoring certain details (Krauss, Prottsman, 2017). It also involves developing and representing models 
of the real world (Yadav & Hong & Stephenson, 2016).  

The core concept of CT is Algorithms (Algo) and mainly devoted to the process of algorithm design. It 
also involves automation concept as it can be defined as the process of plugging pieces into an 
algorithm to help with a result (Krauss, Prottsman, 2017). Similarly, these two concepts were grouped 
together in (Duncan, Bell & Atlas, 2017).  

The sixth group is Communication & collaboration (ComCon), the ability to communicate and work with 
others to achieve a common goal or solution are essential dimensions of CT. In order to successfully 
design, build, and improve computational artefacts the application of teamwork and collaboration, based 
on effective team practices, is important (College Board, 2017).  

Practice that relates to the influence of computing and its implications on individuals and society is called 
Computing & Society (ConSoc). It can be seen also as responsible use of technologies by 
understanding the impact of computing, connection between society and computing. It involves 
concepts such as cybersecurity concern, privacy, self-protection in the Internet, potential beneficial and 
harmful effects of computing innovation.  

The Evaluation (Eval) group involves the process of ensuring that solution, whether an algorithm, 
system, or process, fit for purpose (CAS, 2015). Simplified: evaluating the appropriateness of the 
proposed solutions and artefacts (College Board, 2017). It can be done systematically (through criteria 
and heuristics) make substantiated value judgements (Catlin & Woollard, 2014). 

Digital competencies selected from the European Framework for the DC of Educators (DigCompEdu, 
2017) were analysed. Facilitating Learners’ Digital Competence area consist of five groups: Information 
and media literacy (InfMedLit), Digital communication and collaboration (DigComCol), Digital content 
(DigCon), Responsible use (ResUse), Digital problem solving (DigProSol). 

Visualization of the interconnection between CT and DC components groups is presented in Fig. 1. 
These interconnections were developed from a matching of relationships between the details of 
components and features of CT and DC gathered from their respective literature reviews. First, 
component groups were identified and definitions collected for CT and DC. Then the related abilities of 
each component group were listed. Based on definitions and abilities, main concepts involved in each 
group were identified.  

 

 
Fig. 1. The interconnection between DC and CT components  

The interconnections presented in Fig. 1 are a visual portrayal of matches identified from analysis of 
interconnections between DC ant CT components. It was quite clear that the Information and media 



Constructionism 2018, Vilnius, Lithuania 

311 

 

literacy group that involves abilities to manage information has interconnections with CT groups that 
involves similar abilities: Data analysis and representation, Decomposition, Abstraction, and Evaluation. 
It is interesting to note that it has interconnection with the Computing and Society group that relates to 
the influence of computing and its implications on individuals and society (College Board, 2017). As it 
was thought, the second group of Digital communication and collaboration which requires learners to 
effectively and responsibly use digital technologies for communication, collaboration and civic 
participation has interconnection with CT groups related to information exchange: Data analysis and 
representation, Communication and collaboration and, Computing and Society. Additionally, it connects 
to Abstraction group that is a way of expressing an idea in a specific context while at the same time 
suppressing details irrelevant in that context (Beecher, 2017) and looks like has nothing in common to 
communication or collaboration at a first sight. The Digital content group involves abilities to deal with 
content development strategies and licenses. It is not surprise that it is interconnected with four CT 
groups related to content procession, development strategies and social wellbeing: Data analysis and 
representation, Computing artefacts, Algorithms and, Computing and Society. Fourth DC group, 
Responsible use involves abilities to empower learners to manage risks and use digital technologies 
safely and responsibly has relation to very similar CT group - Computing and Society. Finally, the last 
Digital problem solving group is interconnected with four CT groups of Computing artefacts, Algorithm, 
Communication and collaboration, and Evaluation, involve abilities that are essential for problem 
solving. Thus it is quite clear that the last, Digital problem solving group, is interconnected with these 
four CT croups. 

The presented interconnections of DC and CT groups were identified from similarities between abilities 
in each group. Patterns were spotted by looking for concrete descriptions, nouns and verbs that 
appeared in both cases. This enabled a simplification of them in order to identify interconnections. The 
findings from the literature review, generalisation and analyses are described below. 

Information & media literacy group has 6 abilities. First Information & media literacy ability is to search 
information, thus ability to gather information is very similar as well as Abstraction ability to information 
filtering for solution development, and in order to articulate information needs the Computing and society 
ability of understanding connections between computing is needed. Second Information & media 
literacy ability to develop search strategies has relation with ability to gather an appropriate information 
and making sense of data. Additionally, in order to update search strategy, the expansion of existed 
solution to cover more cases could be used. Information filtering is needed for personal search 
strategies updating as well as ability to explain connections between computing concepts. The third 
Information & media literacy ability to adapt search strategies has the same interconnections with DC 
abilities as the second Information & media literacy ability. Fourth Information & media literacy ability is 
to evaluate the content. Thus, the analysis and comparison of content is related to patterns finding and 
conclusions making, as well as evolution of proposed solution and appropriateness, correctness 
justification. To organize content in digital environment (sixth Information & media literacy ability) is 
directly related to ability to depict and organize data in graphs, charts, images. The last listed Information 
& media literacy ability - information processing and organizing in structured environment has 
interconnection with two CT abilities. To identify the patterns and commonality between content could 
be one of the steps for information organizing as well as breaking down the content into smaller parts 
to easier manage them. 

The second DC group Digital communication & collaboration has twelve abilities. Eleven of them is 
related to two CT groups, mostly to Communication & collaboration. Of course, ability to interract and 
ability to share content has connection to ability to exchange knowledge. Ability to understand 
appropriate digital communication means for a given context is could be related to ability to explain the 
meaning of a result in context. It is clear, that ability to know about referencing and attribution practices 
ability to participate in society through the use of digital services, ability to create and manage one or 
multiple digital identities, ability to protect one’s own reputation) are connected to Computing & Society 
gruop ability to identify impacts of computing and describe connections between people and computing. 
This ability deals with privacy and security concerns, self protection in Internet, the way people connect, 
computing innovation (social, economic, cultural) effect, benificial and harmful effects of computing 
(College Board, 2017). The sixth Digital communication & collaboration practise to seek opportunities 



Constructionism 2018, Vilnius, Lithuania 

312 

 

for self-empowerment and participatory citinzenship could be related to practise of sharing the workload 
to collaborative effort by providing individual contributions. Seventh Digital communication & 
collaboration ability to collaboratively create content is interconnected with ability to collaborate in 
producing content and problem solving. Ability to foster a constructive collaborative climate by resolving 
conflicts and facilitating the contributions is related to eighth and ninth Digital communication & 
collaboration abilities because in order to foster the constructive collaborative climate one must be 
aware of behavioural norms and cultural diversity. Ability to deal with the data that one produces through 
several digital technologies, environments and services has connection to CT Data analysis & 
representation group‘s ability to deal with data in appropriate formats and Abstraction gruop‘s ability to 
explain how content is represented for computation. 
The third group Digital content has six abilities. First is ability to manage digital content in different 
formats. It is related to ability to create content with a personal intent. Ability to express themselves 
through digital means and to be aware of copyright and licenses application is connected to ability to 
describe people and computing connection. Third ability is partly related to Data analysis & 
representation group’s ability, because in order to modify, refine, improve and integrate information into 
an existing body of knowledge one could find similarities between items as a way of gaining extra 
information. On purpose to create original and relevant content, knowledge (fourth ability) the abilities 
to select appropriate techniques or information-management principles are useful. Sixth ability to 
perform a task or solve a problem by developing a sequence of instructions for computing system has 
four interconnections with abilities to use appropriate algorithmic principles, to identify sequence of 
events, to plug pieces into algorithm and to control a process by automatic means. 

Responsible use group’s all abilities that deal with safety and security understanding, protection and 
privacy, wellbeing in digital environment are interconnected with ability to identify impacts of computing, 
describe connections between people and computing. Digital problem solving group has seven abilities 
that are interconnected with nine CT abilities. First ability to identify and solve problems when using 
devices connected to ability to identify the processes of events. On purpose to identify, select, use and 
evaluate possible technological responses to solve task all Evolution group abilities are needed: 
evaluate proposed solution, correct errors, explain solution functions and justify appropriateness and 
correctness. Fourth ability to create knowledge by using technologies in innovative can be seen as a 
use of technologies with practical, personal or societal intent and appropriate management principles. 
Additionally, in order to create a high quality content, the review and revise of own work is needed. Also 
it is related to competences self-improvement needs recognition and self-development regulation. Sixth 
ability to support others in competence development has connection to ability to facilitate the 
contribution of a team member in a constructive way thus enable their improvement. 

Conclusion and Discussion 

The analysis of possible interconnections shows that both Digital Competencies (DC) and 
Computational Thinking (CT) have a lot of in common. Many abilities and competencies are overlapping. 
Only one of DC listed abilities (Digital problem solving - to adjust and customise digital environments to 
personal needs) has no direct connections to CT abilities. This ability is from personalization research 
area thus it could be concluded that it is out of the CT focus area at the moment. Digital problem solving 
is very important and huge area, so more detailed investigation in connection to CT is needed. 

Five CT abilities were left without connections: ability to explain how abstractions are used in 
computation or modelling; ability to identify abstractions; ability to describe modelling in a computational 
context; ability to describe computation with accurate and precise language, notations, or visualizations; 
ability to summarize the purpose of a computational artefact. These abilities are related to abstraction 
and computation processes, actually, that are included in DC framework indirectly. 

The discussed framework of CT components group and interconnections between DC and CT could be 
further developed, especially the quality research based on interviewing experts is needed. Evaluation 
study of experts’ opinions of different countries for the proposed framework is in our future plans.  

Limitation of this work is that there was no focus on age groups or educational course subject. As argued 
in (Shailaja & Sridaran, 2015) work, CT skills could be grouped by age, e.g. visualization, pattern 



Constructionism 2018, Vilnius, Lithuania 

313 

 

recognition and generalization can be learnt in K-2, abstraction and critical thinking in grade 6 to 8. 
Additionally, deeper investigation should be paid to integration of CT in different subjects. CT can benefit 
students studying in any area, academic and work lives and can be successfully taught in any subjects 
(Lockwood & Mooney, 2017). The similar questions can be applied to DC. 

Acknowledgment 

This research is/was funded by the European Social Fund under the No 09.3.3-LMT-K-712 
“Development of Competences of Scientists, other Researchers and Students through Practical 
Research Activities” measure. 

References 

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55, 832–835. 

Atmatzidou, S., & Demetriadis, S. (2016) Advancing students’ computational thinking skills through educational 
robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661-670. 

Beecher, K. (2017) Computational Thinking: A Beginner's Guide to Problem-Solving and Programming. 

Brennan, K., & Resnick, M. (2012) New frameworks for studying and assessing the development of computational 
thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, 
Vancouver, Canada, 1-25. 

Catlin, D., & Woollard, J. (2014) Educational robots and computational thinking. In Proceedings of 4th International 
Workshop Teaching Robotics, Teaching with Robotics & 5th International Conference Robotics in Education, 144-
151. 

College Board (2017) AP Computer Science Principles. Course and Exam Description. College Board, NY.  

Commission of the European Communities (CEC) (2001) Making a European Area of Lifelong Learning a Reality. 
EUR-Lex. 

Curzon, P., McOwan, P. W. (2017) The Power of Computational Thinking: Games, Magic and Puzzles to Help 
You Become a Computational Thinker. World Scientific. 

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014) Introducing teachers to computational thinking 
using unplugged storytelling. In ACM Proceedings of the 9th workshop in primary and secondary computing 
education, 89-92. 

Dagienė, V., & Stupurienė, G. (2016) Bebras - a sustainable community building model for the concept based 
learning of informatics and computational thinking. Informatics in Education, 5(1), 25-44. 

Dagiene, V., Sentance, S., Stupurienė, G. (2017) Developing a Two-Dimensional Categorization System for 
Educational Tasks in Informatics // Informatica, Vol. 28, No 1, 23-44. 

Duncan, C., Bell, T., & Atlas, J. (2017) What Do the Teachers Think?: Introducing Computational Thinking in the 
Primary School Curriculum. In ACM Proceedings of the Nineteenth Australasian Computing Education 
Conference, 65-74.  

Ferrari, A. (2013) DIGCOMP: A framework for developing and understanding digital competence in Europe.  

Ferrari, A. (2012) Digital competence in practice: An analysis of frameworks. JRC technical report. 

Google for Education. Exploring computational thinking. Retrieved from 
https://edu.google.com/resources/programs/exploring-computational-thinking/#!home  

Grover, S., & Pea, R. (2013) Computational thinking in K–12: A review of the state of the field. Educational 
Researcher, 42(1), 38-43. 

Haseski, H. I., Ilic, U., & Tugtekin, U. (2018) Defining a New 21st Century Skill-Computational Thinking: Concepts 
and Trends. International Education Studies, 11(4), 29. 

Ilomäki, L., Kantosalo, A., & Lakkala, M. (2011) What is digital competence? In portal: Brussels: European 
Schoolnet. 

International Society for Technology in Education (ISTE) (2016) ISTE standards for students. Eugene, OR.  

ISTE, CSTA. (2011) Computational Thinking in K–12 Education leadership toolkit. 

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic 
research review. Baltic Journal of Modern Computing, 4(3), 583. 

Krauss, J. & Prottsman, K. (2017). Computational Thinking and Coding for Every Student. The Teacher’s Getting-
Started Guide. Corwin Press Inc. 

https://edu.google.com/resources/programs/exploring-computational-thinking/#!home


Constructionism 2018, Vilnius, Lithuania 

314 

 

Lockwood, J., & Mooney, A. (2017) Computational Thinking in Education: Where does it fit? A systematic literary 
review. arXiv preprint arXiv:1703.07659. 

Lye, S. Y., & Koh, J. H. L. (2014) Review on teaching and learning of computational thinking through programming: 
What is next for K-12?. Computers in Human Behavior, 41, 51-61. 

Papert, S., (1996) An exploration in the space of mathematics educations. International Journal of Computers for 
Mathematical Learning, 1(1), 95–123. 

Pérez-Escoda, A., & Rodríguez-Conde, M. J. (2015) Digital literacy and digital competences in the educational 
evaluation: USA and IEA contexts. In ACM Proceedings of the 3rd International Conference on Technological 
Ecosystems for Enhancing Multiculturality, 355-360. 

Redecker, C. (2017) European Framework for the Digital Competence of Educators: DigCompEdu (No. 
JRC107466). Joint Research Centre (Seville site). 

Royal Society. (2012). Shut down or restart: The way forward for computing in UK schools. Retrieved from 
http://royalsociety.org/education/policy/computing-in-schools/report/  

Shailaja, J. and Sridaran, R., 2015. Computational Thinking the Intellectual Thinking for the 21st century. 

International Journal of Advanced Networking & Applications, May 2015 Special Issue, pp.39-46. 

Van Laar, E., van Deursen, A. J., van Dijk, J. A., & de Haan, J. (2017). The relation between 21st-century skills 
and digital skills: A systematic literature review. Computers in human behavior, 72, 577-588. 

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: 
Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728. 

Vuorikari, R., Punie, Y., Gomez, S. C., & Van Den Brande, G. (2016) DigComp 2.0: The Digital Competence 
Framework for Citizens. Update Phase 1: The Conceptual Reference Model (No. JRC101254). Joint Research 
Centre (Seville site). 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational 
thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. 

Wing, J. M. (2006) Computational Thinking. Communications of the ACM 49(3), 33-35.  

Wing, J. (2011) Research notebook: Computational thinking—What and why? The Link Magazine, Spring. 
Carnegie Mellon University, Pittsburgh. 

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: pedagogical approaches to 
embedding 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565-568. 

 

  

http://royalsociety.org/education/policy/computing-in-schools/report/


Constructionism 2018, Vilnius, Lithuania 

315 

 

AI Programming by Children 

Ken Kahn, toontalk@gmail.com 
Department of Education, University of Oxford, UK 

Niall Winters, niall.winters@education.ox.ac.uk 
Department of Education, University of Oxford, UK 

Abstract 
The idea of children constructing artificial intelligence programs goes back to the early days of Logo 
(Papert & Solomon 1971; Kahn 1975; Kahn 1977). After decades of little activity recent efforts to support 
students in making AI programs has come from Stephen Wolfram (Wolfram 2017b), Google (Google 
2018a, 2018b), the Machine Learning for Kids website (Lane 2018), and the eCraft2Learn project 
(eCraft2Learn 2018b). Two technological developments underlie the feasibility of these efforts: (1) AI 
cloud services and (2) mainstream laptops and desktop computers that now can run sophisticated 
machine learning algorithms. And all of these developments can be made accessible in a web browser, 
thereby running on many platforms without the need to install software. 

Given appropriate programming tools children can make apps and intelligent robots that rely upon 
speech and image recognition services. They can add custom capabilities to their programs by using 
machine learning training and prediction. In doing so they may learn about perception, language, 
psychology, and the latest empowering technologies. 

We describe the addition of new programming blocks to the Snap! visual programming language 
(Harvey & Mönig 2010) that provide easy-to-use interfaces to both AI cloud services and deep learning 
functionality. Interactive learning materials have been developed and preliminarily trialled with students. 
We anticipate in future trials to observe children creatively using these new blocks to build very 
impressive programs. Children are likely to be even more motivated to program when the results are 
such capable programs. 

Keywords 
Visual programming; machine learning; block languages; Snap!, AI services; cloud services; speech 
synthesis; speech recognition; image recognition 

Introduction to AI programming by children 

From the early days of Logo research (Papert & Solomon 1971; Kahn 1975; Kahn 1977) there was 
interest in supporting children in creating artificial intelligence programs. The decision making, 
perception, learning, and natural language understanding in these programs was very simple due to the 
inabilities of the computers of those days. In the process of programming AI systems one naturally 
reflects on one’s own thinking processes. This provided a very good fit for the constructionist ideas of 
learning through construction and reflection. 

Among the many reasons for supporting AI programming by children are 

1. Students may become better motivated and empowered to produce very capable artefacts 

2. Students may learn about perception, reasoning, psychology, and animal behaviour in the 
process of building perceptive robots and apps 

3. Students may learn about cloud services, machine learning, artificial intelligence, and other 
advanced technologies 

4. Students may reflect more deeply upon their own abilities to hear, see, learn, and respond 
appropriately. 

mailto:toontalk@gmail.com


Constructionism 2018, Vilnius, Lithuania 

316 

 

AI cloud services 
Today’s AI cloud services provide a new opportunity to support a new class of student AI projects – 
those that rely upon state-of-the-art AI “subroutines” (Kahn & Winters 2017). These services include 
speech synthesis and recognition as well as image recognition. Children can design and build 
impressive intelligent artefacts by composing and customising components provided by world-class AI 
teams. 

Several companies are offering AI cloud services via a web connection. These include Google’s 
machine learning services, IBM Watson cloud services, Microsoft cognitive services, and Amazon AI 
services. Many of these services include recognition services for obtaining descriptions of what is being 
spoken or seen. Other services analyse text for content, tone, and sentiment. They all include machine 
learning services that find patterns in data. 

These are commercial services that cost a few dollars for a thousand queries. Fortunately for schools 
with limited budgets, free quotas are provided which allow a hundred recognition queries per day or a 
few thousand a month. 

The service providers support accessing these services from many programming languages. 
Unfortunately, these are complex interfaces designed for use by professional programmers. In this 
paper, we show how to provide easy-to-use interfaces to these services, opening up their potential to 
children who are learning to program. 

Students today are often doing physical computing projects involving micro-controllers such as 
Raspberry Pi, Arduinos, or Micro:bits. They are also often programming pre-built robots. In many cases 
these projects could benefit significantly from the ability to recognize what is being spoken or what is in 
front of a camera. For example, a student could build a robot that when it hears “push the red ball” will 
move to the ball and push it. This could be accomplished by sending the output from a microphone to 
an AI cloud service, picking out the keywords in the response, then repeatedly turning and sending 
images from a camera to a service until the response is that a red ball is in the image and then heading 
in the direction the camera is facing. 

There is a long tradition of children programming language-oriented programs. In the early days of Logo 
children programmed poetry generators, silly sentence makers, chatbots, and more (Papert & Solomon 
1971; Kahn 1975). The appeal of these kinds of projects increases when speech input and output 
replaces reading and typing, an area of research that has been neglected but can now be revisited to 
using the power of cloud-based AI services. In addition, student projects can use other AI services 
including sentiment analysis of what is spoken to respond in appropriate or amusing ways. This opens 
up the potential of AI to children in a simple and interactive manner, an emerging area of research we 
are exploring. 

Machine learning 

AI cloud services are created by large teams of experts using complex algorithms, massive data, and 
very large collections of servers. Systems are trained to recognise speech, images, video, sentiment, 
and more. Clients of these services have no control over the training. The services are black boxes to 
their users. In contrast, when children use machine learning software (Wolfram 2017b; Lane 2018) they 
need to provide the training examples before the system can do any classification or recognition. 
Programs can be created that respond to hand gestures, individual faces, or odd sounds that AI cloud 
services are not trained to recognise. 

While there are cloud services for machine learning, we are not aware of any that have free quotas or 
are inexpensive enough to be used by school children. The Machine Learning for Kids website (Lane 
2018) has a special arrangement with IBM for limited use of their machine learning cloud services. 
Consequently, the site requires registration and limits the number of projects allowed. 

An alternative to cloud services appeared recently (tensorflow.js 2018). Tensorflow.js (formerly named 
deeplearn.js) is an open source JavaScript library that is able to support both training and prediction 
using deep neural nets. It runs in a browser and is accelerated hundreds of times by its use of graphical 
processing units (GPUs). These are now common on modern laptops, desktop computers, tablets, and 



Constructionism 2018, Vilnius, Lithuania 

317 

 

smartphones. For example, a high-end laptop can process up to ten images per second during training 
and make up to twenty predictions per second. Programs using tensorflow.js on devices that run at one 
tenth of that speed can still support a wide range of applications. 

Machine Learning for Kids 
The Machine Learning for Kids website (machinelearningforkids.co.uk) provides an interface where 
users can define a number of labelled buckets and fill them with images, text, or numbers. 

 

Figure 1. Training to classify a hand as rock, paper, or scissors at Machine Learning for Kids 

After the buckets have been filled they are sent off to the IBM Watson servers to generate a model for 
classifying new images. It then adds new blocks to the Scratch programming language (Resnick et al 
2009) that can be used to determine which category a new costume image belongs to. Another Scratch 
block is available to send new data for additional training. 

The Machine Learning for Kids website has many suggested projects. For example, one implements 
sentiment analysis using textual data. Other projects involve learning to play Pac Man or Tic-Tac-Toe 
(Noughts and Crosses) using numerical training data. The Pac Man program learns to play better by 
adding additional training data whenever a human playing the game makes a move. The Machine 
Learning for Kids website and project ideas inspired the machine learning work described in this article. 

Machine Learning in Wolfram Language 
Stephen Wolfram wrote a blog post entitled Machine Learning for Middle Schoolers (Wolfram 2017b) 
about the new extensive section of his Wolfram Language textbook (Wolfram 2017a). (The Wolfram 
language is the language of the Mathematica system.) In this blog post he describes a variety of 
machine learning programming exercises including classification, clustering, text recognition, image 
recognition, feature extraction, feature spaces, and training. The textbook explains how neural nets can 
be defined and visualised. 

Teachable Machine and Model Builder 
Google recently released Teachable Machine (Google 2018c) which demonstrates image training and 
classification in a web page. It directly inspired the machine learning work reported below. 



Constructionism 2018, Vilnius, Lithuania 

318 

 

Google also recently released the Model Builder (Google 2018b). This is a website where one can 
design and train a deep neural net and run experiments on it. While one can learn a great deal about 
machine learning from this site, it doesn’t provide a programming interface for creating apps that use 
the trained models. 

AIY Projects 
Google has begun to release a series of do-it-yourself AI kits they call AIY kits (Google 2018a). The kits 
are based upon Raspberry Pi computers. The first kit enabled one to build a box with a button that can 
do speech recognition and synthesis. It can answer questions the same way “OK Google” does. The 
second kit is for building a box that can do image recognition. Sample programs written in Python are 
provided. 

Creating Child-friendly Programming Interfaces  
Our efforts as part of the eCraft2Learn project are not to create a new programming environment for 
children, but instead to enhance existing ones. We have added speech input and output to ToonTalk 
Reborn (Kahn 2014) and to Snap! (Harvey & Mönig 2010). We have also added image recognition and 
machine learning to Snap!. This paper reports on our Snap! efforts. 

Why was Snap! Chosen? 

Snap! is a superset of the very popular children’s blocks-based programming language Scratch 
(Resnick 2009). It is well-suited to our efforts because 

1. It is a powerful language that supports first-class data structures and functions 

2. It is easy to define new blocks using JavaScript without touching the source code  

3. It runs in every modern browser 

4. There are versions that connect to Arduinos and Raspberry Pis 

Speech synthesis 
All the popular browsers except for Internet Explorer support the Speech Synthesis API. (There is a 
problem with Chromium that no voices are installed.) The API utters the provided text with control for 
the pitch, rate, volume, language, and voice. An issue arises because the API instructs the browser only 
to begin speaking. The new Snap! block that invokes this API returns at once and yet some projects 
need a way to respond to the speech finishing. This was accomplished by passing to the Snap! block 
an optional function that is called when the browser signals the event that the speech has ended. 

 

Figure 2. Simple speak command takes a text argument and an optional continuation function 

More advanced users can use a full-featured ‘speak’ command that exposes most of the Speech 
Synthesis API functionality. While it is more difficult to use, all but the first parameter are optional and 
can be ignored. During testing students were clearly amused by entering different values for the pitch, 
rate, and voice. The underlying API expects the language parameter to be given as a BCP 47 language 
tag. This is a string that specifies the language and dialect. E.g., fr-FR is French as spoken in France 
while fr-CA is the Canadian dialect. This is not very user friendly. We addressed this by providing a 
Snap! reporter that supports search terms for installed voice names (e.g., “English”, “UK”, and “Female” 
in Figure 3). We also defined a way to change the default language for speech synthesis and recognition 
by giving the name of the language in the language or in English. 

 



Constructionism 2018, Vilnius, Lithuania 

319 

 

 

Figure 3. Advanced speak command that exposes nearly all the functionality of the Speech Synthesis API 

Speech recognition 
While speech recognition is part of the Web Speech API, as of this writing only Chrome and Opera 
support it. However, AI cloud services for speech recognition are available from Google, Microsoft, IBM, 
and others. 

 

Figure 4. Simple speech recognition block for receiving text recognised and errors 

(Empty fields here are shorthand for the argument passed to the command. The first one is what was heard and 
the second is the error message.) 

The asynchronous nature of recognition services forces a reliance upon continuations (also called 
“callbacks”). Continuations are ideal from a technical point of view; however, we are concerned that 
student programmers may find them difficult. However, when students learn that the two fields of the 
listen command are simply places to put commands that run when and if the speech is recognised or 
when an error occurs. The combination of handling failures, errors, multiple outputs, and the asynchrony 
make the use of continuations more appropriate than Snap! reporters. 

As an easier alternative to the use of continuations, we also implemented a block using the ‘listen’ block 
that supports event broadcasting and uses global variables: 

 

Figure 5. A block that broadcasts speech recognition results 

The underlying complexity is hidden (but available for ambitious students) so that one needs only to call 
the ‘broadcast speech recognition results’ block and then receive broadcasts when something was 
heard and read a global variable containing the last thing spoken. For example, the following program 



Constructionism 2018, Vilnius, Lithuania 

320 

 

repeats what was spoken, prefaced with “I think I heard”. Besides a questionable reliance upon global 
variables this technique makes it very difficult to respond to an utterance that wasn’t expected with a 
response such as “I don’t understand …”. 

 

Figure 6. Using broadcasting to respond to recognised speech 

For more advanced uses of speech recognition, a user may want access to partial results as one is 
speaking, to receive alternative interpretations of what was said along with their confidence scores. And 
one may want to specify which language is expected. The following block provides this functionality. In 
Figure 7 while speaking partial results are displayed in a thought bubble (unless there is an error). 
French is expected. Up to five alternative interpretations of what was said will be displayed.  

 

Figure 7. A full-featured speech recognition block 

Image recognition 
There are no standard APIs for image recognition so the block we implemented supports the Google, 
IBM, and Microsoft APIs. The simple image recognition block has a parameter specifying which cloud 
provider, a continuation that will receive a description of the image, and a flag as to whether the image 
should be displayed. 

 

Figure 8. A simple block for obtaining a list of labels of what is in front of the camera 

The responses from the vision recognition services are tables containing tables sometimes containing 
tables. And each provider has different structures. We provide blocks for accessing all the information 



Constructionism 2018, Vilnius, Lithuania 

321 

 

a vision service provides. For example, The Google vision API supports more than labelling what is in 
the image. One can access text recognition, face detection, and image properties results as well. 

API Keys 
All the AI cloud vision services require that requests be accompanied by API keys. These keys are easy 
to obtain and entitle the user to a moderately generous free quota of requests. It is not wise to share 
widely a project that contains API keys since the free quota will be exhausted quickly. The first solution 
we implemented was that the keys are provided as URL parameters. This wasn’t very child friendly and 
became too clumsy for projects that rely upon more than one AI service provider. We eventually settled 
on using Snap! reporters to hold the keys. Our Snap! blocks use keys if provided and if they are missing 
offers to take the user to a page documenting how to obtain keys. 

Machine Learning Snap! Blocks 

At the time of this writing the machine learning Snap! blocks are limited to images (and a crude learning 
algorithm for audio) The underlying technology can be enhanced to support audio, video, text, and data. 
The interface to machine learning requires a second browser tab in addition to Snap!’s. Technically this 
is necessary since the machine learning software uses the GPU and Snap! uses it for graphics via 
WebGL. It is also motivated from a user interface perspective since the second tab is well-suited for 
both training and prediction feedback. 

The following command launches a tab for training whether you are leaning to the left or the right. It 
overrides the default text on the page. 

 

Figure 9. Launching a training tab 

The tab created includes buttons for adding new images to the training. It also provides feedback as to 
how confident it is that it can label the current image. 

 

Figure 10. A machine learning training window 

 



Constructionism 2018, Vilnius, Lithuania 

322 

 

Upon returning to the Snap! tab one can send an image from the camera to the training tab to obtain a 
list of the confidences that each label applies to the image.  

 

Figure 11. A block to obtain label confidences 

An alternative to training using the camera is to use blocks that use the costumes of the Snap! sprites. 

 

Figure 12. Blocks to use costumes for training and prediction 

A block has been defined that uses the ‘Add costume …’ block to send all the costumes of a sprite to 
the training tab. These costumes can be drawn, imported, or captured by a camera. Currently the 
underlying library providing the machine learning capabilities (tensorflow.js 2018) has no general way 
to save a model after training so applications need to run training before doing classification.  

Student and teacher guide to AI programming 

An extensive interactive guide to using all of these new Snap! blocks has been created. There is a 
student and a teacher version (though they are over 90% identical) (eCraft2Learn Project 2018b). The 
guides are web pages with dozens of Snap! projects embedded as iframes. Some are simple interactive 
introductions to a single block while some are more complex demonstration programs. 

In addition to the technical content the guides include discussions of how the underlying technology 
works as well as societal impact. They also include exercises and project ideas. 

The guides can be viewed via a local web server. This is useful when the Internet connection is slow or 
intermittent. If there is no Internet connection about half the guide’s interactive elements are still 
functional. The machine learning chapter works fine locally without a network connection. 

Internationalisation 

Google Translate has been integrated with the AI programming guides, documentation, and the training 
tab interface. The speech synthesis and recognition blocks by default use English but there is a block 
for setting the default to any of the many languages that Chrome supports. Snap! itself supports several 



Constructionism 2018, Vilnius, Lithuania 

323 

 

dozen languages. Unfortunately, the labels and help messages of the AI blocks themselves are not 
translated. 

Sample programs using AI blocks 

Currently ten sample programs are available that use these new blocks. They are designed to be 
readable and editable by students. Many of them implement only part of what a full app would contain 
leaving the missing parts for students to add. 

1. Speak with random pitch, rate, voice, and language (Speech synthesis) 

2. Speak commands to a sprite (Speech synthesis and recognition) 

3. Generate funny templated sentences (Speech synthesis and recognition) 

4. Generate template stories (Speech synthesis and recognition) 

5. Talk to Wikipedia (Speech synthesis and recognition) 

6. Report what is in front of the camera (Speech synthesis and image recognition) 

7. Speak what is in front of the camera when a cloud service is asked to (Speech synthesis, speech 
recognition, and image recognition) 

8. After training watch the turtle move depending on which way your finger is pointed or sounds you make 
(Machine learning) 

9. After training watch the turtle move left or right depending on which way you lean (Machine learning) 

10. Play a Rock Paper Scissors game by configuring your hand in front of the camera (Speech synthesis and 
machine learning) 

All of these programs and the new blocks are available at (eCraft2Learn Project 2018b). 

Using NetsBlox (NetsBlox 2018), a Snap! variant that supports multi-player projects, and together.js 
(together.js 2018), a library for creating multi-player JavaScript programs, we created a two-player 
version of Rock Paper Scissors. In the first phase both players connected via the Internet can train the 
same model to recognise whether a hand is showing rock, paper, or scissors. In the second phase the 
program says “1, 2, 3, go” and then the trained model and cameras on both computers are used to 
classify each players moves. Speech synthesis is used to inform the players of the outcome. 

Field testing 

The speech input and output blocks have been tested with 25 Singaporean undergraduate students, 18 
children (aged 7 to 13, Sri Lankan and Singaporean) in afterschool programs and 40 Indonesian high 
school students. This preliminary testing has been very encouraging. The new Snap! blocks were easily 
understood and the users indicated that they enjoyed adding speech to their programming projects. 12 
of the 18 children and all the high school students were also introduced to machine learning Snap! 
blocks and mastered several machine learning programming exercises.  

A formal study of 40 Indonesian high school students using speech synthesis, speech recognition, and 
machine learning has been submitted for publication. Teachers in Finland and Greece have reported 
successfully introducing the Snap! AI blocks. 

Conclusion and Discussion 

We began by describing the history and current efforts to support AI programming by children. We then 
presented programming constructs we have developed that are suitable for use by beginners for speech 
synthesis, speech recognition, image recognition, and machine learning (of images). Artificial 
intelligence is much broader than this and includes common sense, planning, reasoning, understanding 
language, unsupervised learning, translation, and more. The research reported herein is just the start 
of an effort to give children the ability to construct AI applications. 



Constructionism 2018, Vilnius, Lithuania 

324 

 

The goal of this research is to demonstrate that AI programming need not be limited to those with 
advanced degrees. Even young children can be empowered to creatively use AI programming to make 
apps that speak, listen, see, and learn. 

Acknowledgements 

This research was supported by the eCraft2Learn project funded by the European Union’s Horizon 
2020 Coordination & Research and Innovation Action under Grant Agreement No 731345. 

References 

Tensorflow.js (2018) https://js.tensorflow.org/.  

eCraft2Learn Project (2018a) http://www.project.ecraft2learn.eu/.  

eCraft2Learn Project (2018b) https://ecraft2learn.github.io/ai/. 

Google (2018a) AIY Projects. https://aiyprojects.withgoogle.com/. 

Google (2018b) Google Model Builder. https://deeplearnjs.org/demos/model-builder/. 

Google (2018c) Teachable Machine. https://teachablemachine.withgoogle.com/. 

Harvey, B., Mönig, J., (2010) Bringing “No Ceiling” to Scratch: Can One Language Serve Kids and 
Computer Scientists? In Proceedings: Constructionism, Paris, France. 

Kahn, K. (1975) A Logo natural language system. Technical report, MIT AI Lab, LOGO Working Paper 
46. 

Kahn, K. (1977) Three Interactions between AI and Education. Machine Intelligence 8. 

Kahn, K. (2014) ToonTalk Reborn: Re-implementing and re-conceptualising ToonTalk for the Web. In 
Proceedings: Constructionism, Vienna, Austria. 

Kahn, K., Winters, N. (2017) Child-friendly programming interfaces to AI cloud services. In Proceedings: 
EC-TEL 2017: Data Driven Approaches in Digital Education, 10474, 566-570. 

Lane, D. (2018) Explaining Artificial Intelligence. Hello World 4. Raspberry Pi Foundation. 
https://helloworld.raspberrypi.org/issues/4. 

NetsBlox (2018) https://netsblox.org/.  

Papert, S., Solomon, C. (1971) Twenty Things to Do with a Computer, MIT AI Lab, 
http://hdl.handle.net/1721.1/5836.  

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk N., Eastmond, E., Brennan, K., Millner, A., 
Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y. (2009) Scratch: programming for all. 
Communications of the ACM, 52(11), 60-67 DOI=http://dx.doi.org/10.1145/1592761.1592779. 

Together.js (2018) https://togetherjs.com/.  

Wolfram, S. (2017a) An Elementary Introduction to the Wolfram Language, Second Edition. Wolfram 
Media. 

Wolfram, S. (2017b) Machine Learning for Middle Schoolers. Stephen Wolfram blog. 
http://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/. 

  

https://js.tensorflow.org/
http://www.project.ecraft2learn.eu/
https://ecraft2learn.github.io/ai/
https://aiyprojects.withgoogle.com/
https://deeplearnjs.org/demos/model-builder/
https://teachablemachine.withgoogle.com/
https://helloworld.raspberrypi.org/issues/4
https://netsblox.org/
http://hdl.handle.net/1721.1/5836
https://togetherjs.com/
http://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/


Constructionism 2018, Vilnius, Lithuania 

325 

 

VISURATCH: Visualization Tool for Finding 
Characteristics of Teaching and Learning Process 
of Scratch Programmers 

Nobuko Kishi, kishi@tsuda.ac.jp,  
Mari Yoshida,  
Minori Yoshizawa, 
Tsuda University, Japan  

Aoi Yoshida, aoi@si.aoyama.ac.jp 
Aoyama Gakuin University, Japan 

Abstract 
We are developing an interactive visualization tool, VISURATCH, for Scratch projects using Python and 
D3.js. This tool collects a set of programs, or projects, from the Scratch site and reveals each program’s 
characteristics, such as the number of blocks, as a line chart and a heat map. By visualizing a set of 
programs in chronological order of creation, it enhances an instructor’s or a learner’s ability to quickly 
find the characteristics of their teaching and learning process. The tool’s visualization model is based 
on the Visual Information-Seeking Mantra: Overview first, zoom and filter, then details-on-demand. We 
observe that the tool shows some characteristics of a teaching plan when applied to a set of sample 
programs shared in a Scratch studio. Moreover, the tool shows some characteristics of a learner, such 
as the pattern of programming blocks frequently used, when applied to a set of programs specified by 
the learner’s id. 

Keywords 
information visualization; Scratch programming; computer science education 

Introduction 

Teaching children to program or encouraging them to learn to program is becoming a major trend in 
education. However, there are no simple methods for assessing children’s ability with programming or 
computational thinking. In software development classes for adults, we can often evaluate students’ 
skills based on the programs they create. In programming classes for children, we need to focus on 
what they learn, rather than what they create. In the constructionist approach to learning programming, 
we encourage children to create programs meaningful to them, but we need to assess various aspects 
of children’s learning, not just the programs that they create. 

Brennan and Resnick (2012) proposed a general framework for the assessment of computational 
thinking. In their paper, they propose three key dimensions: computational concepts, computational 
practices, and computational perspectives for assessing computational thinking. They also described 
three approaches—project analysis, artifact-based interviews, and design scenarios—and six 
suggestions for further research. 

Our work is motivated by their work, based on their suggestions #3: Illuminating processes. 
Conversations with the learner and real-time observation of their activities are mentioned in their paper 
as possible methods for studying the learning processes. However, it is time-consuming to use those 
methods with many children, or when instructors have limited time.  

We have decided to try a well-known technology, information visualization, to ease the task of finding 
the characteristics of the process of children learning to program. Scratch is an online programming tool 
for children, or for people of any age, developed at the MIT Media Lab. (Resnick, 2009). Scratch projects 
are shared by Scratch users at the Scratch site http://scratch.mit.edu. Various project metadata such 
as a project creation date, modification date, publication data, and the user id of the creator are also 

http://scratch.mit.edu/


Constructionism 2018, Vilnius, Lithuania 

326 

 

available at the Scratch site. By obtaining a set of projects created by a single user from the Scratch 
site and putting them in chronological order, we can get a series of programs in order of creation date 
by the same user. 

In this paper, we first describe the information visualization model we used with VISURATCH. Next, we 
describe its system design and its main function. After that, we report on the findings we obtained with 
the tool in the case studies. Although VISURATCH is still in the development stage, we made several 
interesting observations with the sample programs used in Scratch books and the programs created by 
young learners. Finally, we discuss the possibility of program visualization in assessing the 
programming skills of young learners and future works. 

Information Visualization Model for Scratch Projects 

Information visualization or data visualization is a technology to explore large amounts of abstract data 
by creating images or diagrams to represent a fact or communicate a message. The term information 
visualization originates from the works at Xerox PARC (Card, Mackinlay, Shneiderman, eds., 1999). 
There are a variety of techniques for information visualization, and Shneiderman summarizes it with the 
Visual Information-Seeking mantra: overview first, zoom and filter, then details-on-demand 
(Shneiderman, 1996). We have decided to apply this mantra to a set of Scratch projects that are created 
by a single learner, or to those that are included as sample programs in a Scratch book or online tutorial.. 

A Scratch project 
The Scratch 2.0 programming environment is available as an online programming tool at the Scratch 
site: http://scratch.mit.edu. The Scratch projects, programs written in Scratch, are created by snapping 
graphical programming blocks together at the Scratch site. As of March 31, 2018, the number of Scratch 
projects shared was 30,302,556. These Scratch projects are stored in JSON format and available 
through the Scratch API. Figure 1 shows some of Scratch’s graphical programming blocks, which are 
part of a Scratch project. Figure 2 shows JSON data corresponding these blocks. Each Scratch project 
also contains graphics data and sound data, in addition to the Scratch program. Figure 3 shows an 
online programming screen for a Scratch project. 

 

Figure 1. Scratch programming blocks 

 

Figure 2. Scratch programming blocks in JSON format 

 

http://scratch.mit.edu/


Constructionism 2018, Vilnius, Lithuania 

327 

 

 

Figure 3. A Scratch project 

The Scratch site and studio 

At the Scratch site, the metadata for Scratch projects are also available. By metadata, we mean the 
data about the program author, the program creation date, the modification date, and the date when the 
program was shared. The site also offers mechanisms for sharing projects. When a user id is specified, 
the site shows a list of programs created by that user and made publicly available by the user 
himself/herself. Figure 4 shows an example of the screen that is returned after a user id is specified. It 
shows one featured project and five additional projects from 18 projects shared by a single user. The 
Scratch site also has a studio mechanism that can hold a set of projects created by different users. 

 

Figure 4. Projects created by a single Scratch user 

Overview of Scratch projects. 

By using the Scratch API and the Scratch site, we get two sets of Scratch projects. With a Scratch user 
id, we get a set of projects created by a single user corresponding to that user id. With a studio id, we 
get a set of projects created by a group of users with a common interest, such as creating sample 
programs for a workshop.  

Each Scratch program has the following metadata: 

 “created” date: the date and time when the project was first created 
 “modified” date: the latest date and time when the project was modified 
 “shared” date: the date and time when the project was made publicly available on the community 

site 



Constructionism 2018, Vilnius, Lithuania 

328 

 

To observe the changes among programs over intervals of time, we decided to extract the following 
statistics to characterize the program. 

 The number of each type of block 
 The number of blocks in each category of block 
 Total number of all blocks 
 Total number of sprites 

To get an overview of these data, line charts are used. A line chart shows a trend in the total number of 
blocks, or the number of blocks in each category of block over the dates of creation, modification, and 
sharing. To give a detailed view of each project, a heat map is used to show the use of each type of 
block. In addition, a list of the project title and the thumbnail image of the screen is shown so that the 
user can run the Scratch program easily. Left part of Figure 6 shows an example of the VISURATCH 
main screen. It shows a visualization of the Scratch projects created by a single user, corresponding to 
the ones shown in Figure 4. It shows a line graph in the upper part, a heat map in the bottom left, and 
a project list in the bottom right. When a project in the list is double-clicked, a Scratch project window, 
as shown in Figure 3, is opened and the program can be run in that window. 

System Design 

VISURATCH comprises two main components (Figure 5). One is an analysis tool written in Python. This 
tool obtains Scratch program data by scraping the Scratch site and by using the Scratch API. It then 
analyses the program data and sends the statistics of the program, such as the number of blocks and 
the program creation date, to a web browser in JSON format. The other is a visualization tool 
implemented in JavaScript. It runs on a web browser and uses D3.js, a JavaScript library for visualizing 
data (Bostok, 2017). The term D3 comes from Data-Driven Document. When the statistical data from 
the analysis tool are obtained as a document, the images of the data can be interactively modified. For 
example, scrolling and zooming of a line graph can be done interactively using the brush function (Figure 
6). 

 

Figure 5. VISURATCH system design 

 



Constructionism 2018, Vilnius, Lithuania 

329 

 

 

Figure 6. Zooming and scrolling of line charts using brush function in D3.js 

 

Case Studies 

To evaluate the effectiveness of VISURATCH, we have conducted three case studies. We first studied 
a model user, a hypothetical learner who creates sample programs exactly as given in a website or in 
a book. We then studied Scratch projects created by real learners of Scratch. Although we are aiming 
for visualization of a large set of Scratch programs in the future, we need to start with a small set of 
about 20 programs so that we can study each program in detail. 

Case 1: Scratch tutorial at the Scratch site 
The Scratch site has an online tutorial for beginners, which has a series of sample projects (Figure 7). 
We created all the sample programs and put them in a single Scratch studio. Figure 8 shows the 
visualization of these sample programs specified by its studio id. With the line graph we can see that 
the number of blocks increases over time, but each project is not always larger than the previous project. 
We also notice that some blocks are used rarely. The Pen category blocks are not used at all, and the 
More category blocks are not used until the end of the tutorial. This means the tutorial excludes a sample 
program for drawing graphics using x-y coordinates. It also means that the blocks for creating a function, 
which are the More category blocks, are not used in the beginning part of the tutorial. 



Constructionism 2018, Vilnius, Lithuania 

330 

 

.  

Figure 7. Scratch Tutorial at http://scratch.mit.edu 

 

Figure 8. Visualization of sample projects in Scratch Tutorial 

Case 2: Scratch book on creating a shooting game 
Creating a shooting game is very popular among Scratch learners. A book was published in Japan 
aimed at having the reader learn Scratch by creating a shooting game (Sugiura, 2015). The book author 
made 16 projects from the book available in the Scratch site. Figure 9 shows the visualization of these 
16 projects. We found that the number of the total blocks gradually decreased over time in the line chart, 
and the use of category blocks also gradually decreased in the heat map in chronological order of the 
date of sharing. Figure 10 shows the visualization based on the creation date and modification date. 
We presume that the author uploaded the final project, a complete shooting game, first, followed by the 
rest of the programs in reverse order of their appearance in the book. We also presume that the author 
was very careful that each sample project be created by adding a small set of blocks to the preceding 
sample projects. 

http://scratch.mit.edu/


Constructionism 2018, Vilnius, Lithuania 

331 

 

 

 Figure 9. Sample projects in the order of their being shared 

 

 Figure 10. Sample projects in the order of “modified” date and “created” date 

Case 3: A real learner of Scratch 
A Japanese TV station, NHK, broadcasts a TV program to introduce Scratch to children in Japan (Japan 
Broadcasting Corporation, 2016). On that program, contests are regularly held. One of the contest prize 
winners was a girl with two years of experience with Scratch. She put 18 shared projects on the Scratch 
site. Figures 11 and 12 show the visualization of her projects. We applied a filtering function to the line 
chart to create three line graphs: a purple line for for the number of Looks category blocks, a orange 
line for Control category blocks, and green line for the total number of blocks (Figure 11). We observed 
that these three lines show almost the same trend. This means she used the blocks in the Looks and 
the Control category together quite often. Next, we used the detailed heat map of the blocks in these 
two categories. We found one block, wait x secs, in the Control category (Figure 12), and three blocks: 
say x for y secs, show, and hide in the Looks category (Figure 13) quite frequently. These four blocks 
were often used to change the scenes of the stories in Scratch projects. With this information, we can 
presume that she frequently created stories with Scratch. We confirmed this by running her projects on 
the Scratch site and by observing that many of her projects were story-oriented. 



Constructionism 2018, Vilnius, Lithuania 

332 

 

 

Figure 11. Filtered line charts 

 

Figure 12. Control Category block found by the detailed heat map 

 

 

Figure 13. Looks Category blocks found by the detailed heat map 

 



Constructionism 2018, Vilnius, Lithuania 

333 

 

Conclusion and Discussion 

We have developed a preliminary version of an interactive visualization tool, VISURATCH, for Scratch 
projects using Python and D3.js. We also conducted case studies to evaluate its effectiveness. The 
initial case studies suggested that VISURATCH could help an instructor or a learner of Scratch to 
identify the characteristics of teaching and learning processes. 

After conducting several more case studies, we plan to improve VISURATCH and make it publicly 
available as an online tool. By doing so, we can conduct a data-based evaluation of our visualization 
model at large scale. We hope to improve VISURATCH so that it can be used easily by both instructors 
and learners to understand the learning process. 

We also hope that it can serve as a basis for research on educational data mining in the future. Scratch 
is excluded in the literature review and case studies paper on educational data mining and learning 
analytics (Ihantola, P. et al., 2015), probably because Scratch is not a textual language and is intended 
for children to learn computational thinking, not programming. However, it can be a good starting point 
for educational data mining because it offers a large set of program data with an IDE available to 
everyone. 

References 

Brennan, K., and Resnick, M. (2012). New frameworks for studying and assessing the development of 
computational thinking. Proceedings of the American Educational Research Association (AERA) annual 
conference 

Card, S.K, Mackinlay, J.D. and Shneiderman, B. (Eds.), (1999). Readings in Information Visualization: 
Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA 

Ihantola, P. et al. (2015). Educational Data Mining and Learning Analytics in Programming: Literature 
Review and Case Studies, Proceedings of the 2015 ITiCSE on Working Group Reports, July 04-08, 
Vilnius, Lithuania 

Japan Broadcasting Corporation, NHK (2016). Why? Purograminngu (in Japanese), 
http://www.nhk.or.jp/gijutsu/programming/ 

Resnick, M. et al. (2009). Scratch: Programming For All. Communications of the ACM, Vol. 52 No. 11, 
Pages 60-67 

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information 
Visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages 336-343, 
Washington. IEEE Computer Society Press, 
https://www.cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf 

Sugiura, M. (2015). Scratch de hajimeyou, purograminng nyumon (in Japanese), Nikkei BP, Tokyo, 
JAPAN 

 

  

http://www.nhk.or.jp/gijutsu/programming/


Constructionism 2018, Vilnius, Lithuania 

334 

 

Curriculum Intervention for Learning Programming 
in Python with Turtle Geometry 

Eva Klimeková, klimekova@fmph.uniba.sk 
Department of Informatics Education, Comenius University, Bratislava, Slovakia 

Abstract  
Programming as part of computing education at upper secondary schools in Slovakia has a long 
tradition. When a new trend of teaching programming in Python emerged, many schools adopted it. In 
this paper we focus on deeper understanding of teaching programming basics in the Python language. 
Our aim is to find out how we can help to teacher for easier transformation to new language. We 
designed a curriculum intervention for learning programming in Python in which we decided to exploit 
the motivation of turtle geometry. This supports learning by exploring, creating and discovering. By 
means of it pupils learn the basic concepts and constructs as variables, loops, functions and conditions. 
We developed, implemented and verified our materials iteratively, using design research. In this paper 
we also present the process of development of our curriculum intervention from the first steps of 
collecting initial insight to implementing the materials into practice at upper secondary schools in 
Slovakia. 

 

 Photo of a pupil’s “rose” created by using turtle geometry in Python 

Keywords 
Python; turtle geometry; curriculum intervention 

Introduction 

Computing in upper secondary school education (pupils aged 15 to 18) in Slovakia has a relatively 
strong tradition. Despite the fact that educational reforms often modified the content of the general-
academic subject Informatics, programming is an integral part of this subject for more than twenty years. 
The aims of teaching programming are the development of algorithmic thinking, problem solving skills 
and the acquisition of programming skills. In Slovakia, National curriculum does not explicitly specify a 
particular programming language, therefore the teachers choose the programming language. Currently, 
the most widely used programming language in Slovakia is Pascal (Delphi or Lazarus), previously Logo 
was used. In the last few years Python is more commonly amongst the languages recommended for 
teaching programming basics. Research shows that Python is suitable as the first programming 
language for pupils at upper secondary school (Atteq, 2014; Goldwasser and Letscher, 2008; Krpan 
and Bilobrk, 2011). Manilla and De Raadt (2006) after extensive analysis of programming languages 
concludes that “...the most suitable languages for teaching, Python and Eiffel, are languages that have 
been designed with teaching in mind“. According to Grandell (2006), the benefits of Python fully support 
the aims of teaching programming, the development of algorithmic thinking, and that the characteristics 

mailto:klimekova@fmph.uniba.sk


Constructionism 2018, Vilnius, Lithuania 

335 

 

of this language are consistent with the requirements for the programming language for upper 
secondary schools. Therefore, more and more universities and secondary schools switch to teaching 
programming basics in Python (Hromkovič, 2016; Blaho, 2016; Belan, 2013). However, when we started 
our research there weren’t any official textbooks for learning programming basics in Python in Slovak 
language. Teachers had to develop materials for their own use, where these materials are aimed for 
specific group of pupils (Belan, 2013), or using very similar or identical examples as the ones used for 
Pascal (Delphi / Lazarus) (Kučera, 2016) based on working with the graphical canvas using components 
as an input fields or buttons. However, Python also offers other techniques, such as turtle geometry, 
which promotes learning by exploration and discovery or using command mode which gives immediate 
feedback for pupils. 

Before designing a curriculum intervention is we examined the currently most used textbooks in our 
country, textbooks of the Logo and Pascal (Delphi) languages: Algorithms with Logo and Programming 
in Delphi and Lazarus (Varga, 1999; Blaho, 2012). Both textbooks' major topic is the work with graphics 
while other terms and concepts are explained through it so pupils can visually see the solution of the 
tasks. We have found out that the order of some of the first topics coincide in both textbooks, which 
means that loops, conditions and procedures can be taught both by turtle geometry and graphical 
canvas. When designing our materials for teaching programming basics in Python for upper secondary 
schools, we will base it on the examined textbooks as much as possible and use the tasks created by 
the experienced and respected authors of these textbooks. 

When designing methodological materials, it is advisable to keep in mind the stages of the cognitive 
process defined by Hejný (2009), and also the advice of Linn and Dalbey (1988), whom suggests the 
following learning process of programming: 1. learn elements one at a time; 2. learn design skills by 
combining old and new strategies, and 3. learn general skills to solve problems. In our design process 
we also keep in mind the advice for designing the right materials for learning. Salanci (2011) points out 
that the correct textbooks emphasize that the learner collects the experience, while textbooks are not 
encyclopaedic they gradually explain the basic concepts of programming; emphasizing motivating 
examples and tasks, tracing and the gradual discovery of the algorithmic rules. As we follow the Fuller’s 
spiral taxonomy of cognitive learning (2007) we proceed from basic programming concepts. 

Methodology 

In our research we focus on the teachers. Our aim was to find out how we can help to teacher for easier 
transformation to a new language. The pre-survey showed us that teachers need material in Slovak 
language compatible with our learning system (Mészárosová, 2015). We decided to develop a 
comprehensive curriculum intervention for the Python programing language to teach the basics of 
programming. Our materials will include remarks, tips, and notices that will make it easier for teachers 
to transition from the Pascal programming language, which they have experience with, to Python. Our 
materials will differ from most of the materials for Python by focusing on algorithms and concepts, but 
not on characteristics of the language. Our goal was to minimize the amount of commands pupils need 
to learn and to gain new programming concepts and knowledge so we chose turtle geometry. We also 
wanted to create material that uses didactic methods and tasks that teachers already know and make 
pupils learning easier by using the smallest number of commands. 

Our curriculum intervention consists of methodical materials for teachers and worksheets for pupils. 
These materials contain educational goals, developed competencies by students, selected methods, 
content of lessons with solutions of the tasks and recommendations for the teacher and they are in 
accordance with the National Educational Program of Slovakia. Therefore, we had a research question: 
What should be specific objectives, content and form of curriculum intervention for teaching 
programming basics in Python to help teachers with transformation to this language? 

We used design based research with four iterative cycles (Creswell, 2002) as a main research strategy 
and we used qualitative methods of data collection and data analysis (Lichtmann, 2012), including 
semistructured interview, observation (transcriptions and field notes), and audio-visual materials 
(photographs and recorded videos of pupil’s work and their products). We conducted our research in 
ordinary upper secondary school in capital city of Slovakia. In the first and third iteration of the 



Constructionism 2018, Vilnius, Lithuania 

336 

 

verification we cooperated with the teacher who taught their pupils within compulsory school subject 
Informatics according to our curriculum intervention. The pupils from these iterations haven’t met with a 
textual programming language before. The teacher was experienced with teaching programming in 
Pascal (Lazarus) and C++, but had no experience with the Python programming language. During the 
verification we observed the teacher’s questions about the course and the Python language, as well as 
pupil’s questions, mistakes and misconceptions. The second iteration we performed during our teaching 
activity at an upper secondary school with the pupils of first grade. This group consisted of pupils who 
were selected at the admission process of the school on the basis of stricter acceptance criteria 
(success rate about 1:10). Pupils were also encouraged to work independently, which allowed them to 
learn even faster and solve more challenging tasks. They had experience with childrens programming 
environments of Imagine or Scratch. One pupil had experience with Python (but not turtle geometry) 
and one of them had experience with C#. 

In one group there were from 9 to11 students, aged from 14 to 16. These groups included boys and 
girls in different ratio, see Table 1. 

Iteration Girls Boys Total 

1. 4 5 9 

2. 4 6 10 

3. 9 2 11 

Table 1. Pupils participated in our research 

First steps of designing the curriculum intervention 
Before designing materials, we have gone through several steps of acquiring experience with Python. 
Since, we also transformed to Python language from Pascal, these steps could be in part similar to 
those of teachers when they switched to Python. By having experienced it ourselves, it helped us to 
better understand the situation of the teachers. (Mészárosová, 2016) 

Pedagogical activity 

A PhD study also includes teaching activities of students at the university. During our research which 
lasted about a year and a half (4 terms) we conducted exercises for the subject Programming in Python 
for students of the Applied Informatics unit, each semester in two groups of around 30 students. Thanks 
to this, we gained not only programming skills in Python, but we saw lectures, led by an experienced 
university pedagogue right in practice (Blaho, 2016). Also gained valuable observations about what kind 
of mistakes and bugs that pupils make. Our pedagogical activities continued during further iterations, 
where we continued in practice teaching programming in Python for Computer Science Teacher 
students as well as pupils of an upper secondary school. 

Overview of teaching programming in Slovakia 

Obtaining an overall view of the current state of teaching programming in Python should have helped 
us to better conceive the possibilities of teaching programming in Python at upper secondary schools. 
Within, we talked with teachers who shared their experience of teaching programming basics in Python. 
In this iteration of our research we also implemented a case study aimed at describing of a teachers 
practice while she switched to teaching in Python. Obtaining a general overview of the current state of 
teaching programming in Python in Slovakia should help us to imagine and to better understand the 
possibilities of teaching programming basics in Python language at upper secondary schools in Slovakia 
as well as teacher’s requirements for methodological materials. (Mészárosová, 2015) 

Selecting the motivation of turtle geometry 

After creating a comprehensive overview of teaching programming basics in Python, we have a variety 
of motivations to choose from: 1. Turtle geometry; 2. Using graphical canvas (Tkinter); 3. Task with 
mathematical context without graphical motivation. We have chosen the motivation of turtle geometry 



Constructionism 2018, Vilnius, Lithuania 

337 

 

that supports learning by discovering and exploring. Our goals were to create a curriculum intervention 
for learning programming basics in Python for the pupils in the first year at upper secondary schools. 
We have based on the assumption that pupils coming from lower secondary schools have experience 
with different programming environments for children as Imagine or Scratch. Our goal is that they meet 
a higher level programming language in the upper secondary school, which is suitable for learning the 
programming basics. At the same time, we have tried to find ideas for our materials so that the pupils 
get acquainted with more demanding algorithms in this programming language. 

Selection of the primary resources 

We selected some existing textbooks as guidelines to follow in developing our materials. As the primary 
resource we chose the textbook Algorithms with Logo (Varga, 1999), which is intended for upper 
secondary schools and is using turtle geometry. When choosing the didactic procedure and tasks we 
were motivated by lectures on programming in Python and C# from the Comenius University in 
Bratislava; also by the textbook for Delphi (Blaho, 2012). While these materials are not intended for our 
target group or they focus on another programming language, we were motivated by the selection of 
didactic procedures, methods, approaches and motivations used in these materials. Also we have to 
follow the National Education Curriculum which defines the knowledge and skills pupils have to acquire 
before they graduate. 

Developing and verifying our curriculum intervention 
The process of the materials development contained three iterations of verification in three different 
groups of pupils at upper secondary schools. In one of the groups we took lessons by ourselves and 
also cooperated with a computing teacher who taught the lessons according to our curriculum 
intervention in two different groups. During the verification we followed the teacher’s questions about 
the course and the Python language, as well as pupil’s questions, mistakes and misconceptions. 

1st iteration 

The design of the pilot version partly went on simultaneously with its integration to practice and 
validation, so we were able to respond more flexibly to the needs of the pupils and teachers, and to the 
encountered deficiencies and problems as well. When designing our materials, we mostly followed the 
textbook for the Logo language. However, we encountered a problem with the order of the topics: loops 
and variables. In the pilot design we decided to devote ourselves to the topic of loops first. We prefer 
them because of the lesser level of abstraction than variables, and also because we followed the 
process of learning programming with turtle geometry used in practice. The problem of the variable 
inside of the looping construct still remains even though we were trying to not use the looping variable 
in tasks. After the evaluation we decided to change the order of the topics: variables and loops. A similar 
problem was encountered by researchers Hromkovič et al. (2016), who stated in their publications that 
they have designed a course of programming basics using Logo tutorials with turtle geometry. As one 
of the positive attributes of the Logo language they mentioned the repeat loop, which according to the 
authors, is the simplest loop to learn the looping construct without the looping variables or conditions. 
They solved the problem of how to position the topic of loops without the topic of the variables, by 
implementing the repeat loop into their own programming environment for Python. 

We found out that the materials need to be in two parts: materials for teachers and worksheets for 
pupils. The teachers need an extensive description of the lessons and also to solve the tasks before the 
lessons, so we added the solutions of the tasks to the materials to make this process easier. Materials 
also include the aims of each lesson according to the National Education Curriculum to help teachers 
with school plans and documents. In order to simplify the preparation of the teacher before lessons, we 
added a list of used commands as a brief reminder of commands the pupils already know and the syntax 
of the language.  

We also found out that the teacher who does not have experience with teaching programming in a 
language that is new for her has difficulty finding errors in pupil’s code. Therefore, we have added 
recommendations to the materials on what kind of mistakes pupils can do, so the teacher after reading 
the material was ready to find errors in pupil’s codes. 



Constructionism 2018, Vilnius, Lithuania 

338 

 

2nd iteration 

This iteration of the validation gave us valuable experience with the organization of the lessons and 
provided an insight of the teaching in a group of pupils who have different programming experience and 
also different cognitive abilities than the first group. In this group there were pupils who progressed 
faster than most of the group. This is the reason why we adjusted the pupil’s worksheets to include 
examples intended for a common solution with teacher, while more skilled pupils (in our case, pupils 
who attended other programming courses) did not have to wait for slower pupils. They were also able 
to work independently and when they encountered a problem and needed to know a new command or 
knowledge, they asked the teacher. In this group we met with such internal motivation of pupils, where 
we did not have to give homework, some of the pupils solved the remaining tasks from the worksheets 
themselves at home. 

We were also enriched with an experience of teaching without a projector, using one part of the 
whiteboard for code and the other part for drawings to support explanation. However, we noticed that 
pupils had more negative reactions to the error messages when they ran the code, compared to the 
pupils from the first iteration. In this group, we noticed that pupils asked for help immediately (or faster) 
after the error report, while in the first group they asked for help just after they couldn’t fix the problem. 
These differences between reactions on error messages could be attributed to the fact that while in the 
first group pupils saw on the projector how the teacher corrects bugs in the code, in the second group 
they did not see the teachers’ reaction on the error messages because she wrote the code on the 
whiteboard. In this group, we had to positively support pupils when they encountered error messages 
in order to avoid being scared and individually explained to them how to interpret the error message 
and fix the program.  

3rd iteration 

According to the analysis of frequent mistakes, we have adapted the methodological material so as to 
avoid similar mistakes and misconceptions of the pupils. We have added explanations, reminders and 
also changed the order of some tasks, in which we firstly failed at the determination of the grading. 
During the verification, we had to devote more space to the tasks of using nested loops. Among the 
common mistakes of pupils was that they executed the program only after they implemented the whole 
solution of the problem even in the case of difficult tasks. That is why the program often did not draw 
the desired picture and it was not possible to see directly from the picture in which step the error is (see 
Fig. 1). (Jašková et al., 2017) 

  

Figure 1. Picture on the left: the task; Pupils most common mistakes on the right. 

In case of these errors, pupils needed help from the teacher, but mostly only needed to correct a value 
of a parameter in a command or the number of repetitions. We tried to focus their attention to solving 
difficult tasks by dividing them into smaller parts, to gradually solve and verify their solutions. After 
analysing these observations, we came to the conclusion that it would be more appropriate for the pupils 
to learn functions and solve these or similar tasks using them, instead of using nesting loops. In this 
way, the components of informatics thinking – decomposition and pattern search – would be accessible 
and developed in programming lessons. The solutions themselves would be more comprehensive, 
understandable and would help pupils to find errors easier. In such tasks, where they already used 
functions in solutions, we didn’t meet such problems. 

After analysing the observations from these iterations, we finally enriched the materials with 
recommendations for teachers to eliminate pupil’s errors, for example, specifically, in Python, we need 
to carefully explain the indentation of the commands in loops, conditions and functions. We present 
frequent pupil’s mistakes in the syntax of the language, such as forgetting to enter command parameters 
or skipping parentheses for some commands. We also warn them to keep in mind the work of pupils to 



Constructionism 2018, Vilnius, Lithuania 

339 

 

be able to orient themselves in an environment with three separate windows, using REPL and 
programming mode, or to teach pupils how to read the error messages. 

Results and Discussion  

Before the design of the curriculum intervention we needed to take some steps to get the necessary 
knowledge and collect experience. Without these steps, we may have overlooked some important 
elements. We consider these steps to be important before designing a textbook or methodical materials 
for teaching programming: 

1. Learn the language as much and deep as possible, to recognize the positive and negative aspects 
of the language. Without this step we can easily overlook the strengths of the language and make a 
mistake where we just adapt a book to another programming language without taking advantage of the 
programming language options that would make coding easier and thus focus on algorithms. 

2. Pedagogical experience is necessary to design lessons for programming in a new language. 

3. Literature overview is needed to have insight into what materials exists, to draw inspiration and 
motivation from the best, which is used in our schools, country and abroad for programming courses. 
Didactic knowledge is also necessary for designing valuable materials. 

4. Co-work with teachers and monitor their needs in order to be able to develop a material that is 
helpful for them. During the verification, teachers can point out such problems and mistakes of which 
the creator wasn’t aware. It’s also necessary to verify the materials in groups of pupils with different skill 
level and teachers with a different amount of experience. 

We identified some key elements and features a material should contain to help teachers transform to 
a new language: 

 materials for pupils (worksheets) 
 recommendations for teachers what mistakes are being made by pupils, as one of the most 

challenging elements of teaching in a new language is to find mistakes in the pupil’s code 
 recommendations for the assessment 
 key differences in the new language vs. language used before (in our case Python and Delphi) 
 list of used commands helps the teacher especially at the beginning of the course 

The output for teachers is the created curriculum intervention which we describe in the following section 
of the paper. 

Curriculum intervention 
The materials are divided into six parts by topic (introduction to Python, variables, loops, functions, 
randomness and conditions) and consists of a methodical material for teachers, supplemented with 
worksheets for pupils. In each part of the material we defined the required knowledge and skills of pupils. 
The structure of the lessons (for 45 minutes), pedagogical procedures and the description of its agenda 
are also part of the material, along with tasks for pupils, their solutions and recommendations for 
teachers. When designing tasks, we also tried to select programs that do not need a large set of 
commands such that we don’t unnecessarily burden the students. We focused on the concepts and 
constructions defined in National educational curriculum. In terms of the process of lessons, we follow 
the scheme: Motivation → Collecting experience → Exercising the knowledge, while in the Motivation 
section the teacher, along with the pupils, solves an example at the board. In the other parts the pupils 
work independently on their own computer (that. Tasks had a constructionist approach, pupils got 
pictures which they had to draw using turtle geometry. 

Introduction to Python and turtle geometry 

The aim of these lessons is to familiarize pupils with the Python programing language and its 
development environment IDLE, as well as with the idea of turtle geometry. The first two lessons of the 
course are aimed at learning to work with IDLE – command and programming mode too. They are also 
designed to help pupils to learn basic commands for navigating the turtle. We want to achieve pupils be 
able to control the basic commands automatically in order to make the following lessons, when they will 
meet new constructions and concepts, easier. Working with the three separate windows they encounter 



Constructionism 2018, Vilnius, Lithuania 

340 

 

in this environment can be challenging for some pupils. That is why we have reserved two lessons for 
this topic so that students have enough time to practice and the teacher has the opportunity to make 
sure all pupils are able to navigate through this environment. Another aim of these lessons is to make 
pupils think about the properties of the performer – turtle. Pupils draw simple pictures in these lessons 
which are intended to automate the basic commands for the movement of the turtle (see Fig. 2). 

 

Figure 2. Examples of the tasks for practicing the navigation of the turtle. 

Variables 

For the topic of variables, we designed only a single lesson, but pupils use them in the following lessons 
as well. In explaining variables, we used a didactic method widely used in practice, representing the 
variables by drawing boxes that contain the values stored in these variables. It is important to show the 
process of assigning a value to a variable step-by-step. Our goal was that pupils understand the 
meaning of a variable and its use in Python, learn to assign a value to a variable and later use it, and to 
able to identify from the task, which data must be remembered, respectively vary and therefore require 
the use of variables. 

For loops 

We divided the topic of for loops into five lessons, ranging from loops with enumerated values for the 
control variable, for loops with the function range(value) to loops with the control variable used in the 

body of the loop. The aim of these lessons is that pupils are able to recognize recurring patterns, and 
to generalize and write a solution using loops. Similarly, to the topic of variables, we make reckoning of 
a thorough tracing of the program, with which pupils can search for and find certain patterns. It can also 
be helpful in generalizing. This topic contained two lessons devoted to nested loops, but after analysing 
pupil’s mistakes, we have decided to leave out nested loops from the course and give prepared tasks 
to pupils after the lessons of functions. 

Functions 

The aim of these lessons is that pupils can define and call functions, and also to use functions with 
simple parameters. New concepts and knowledge gained at these lessons are: definition of the function, 
function call, function name, parameters, function body, how the parameters work and the use of 
function parameters inside the function body. We proceed from functions, loops in the function body to 
functions with parameters. In the tasks for functions with parameters we focus on explaining parameter 
delivery, creating a local variable for the function parameter, and the disappearance of the variable after 
the function body has been executed. 

 

Figure 3. Examples of the tasks for practicing functions. 

Turtle position and randomness 

In this topic, we used the motivational example of drawing a starry sky. During this exercise, we taught 
the pupils to change the turtle's position using the setpos(x,y) command and to generate random 

values using the random module. Including this topic in the curriculum intervention made available the 
use of motivational tasks with random values.  



Constructionism 2018, Vilnius, Lithuania 

341 

 

Conditions 

The aim of these lessons is to understand how branching the program behaves, to recognize situations 
and conditions when branching is needed, and what part of the algorithm has to be performed before, 
within, and after the condition. After these lessons, pupils should be able to solve tasks that combine 
loops and branching. Among the tasks, we included known ones as throwing coins or generating a large 
number of dots on the canvas at random positions and colouring them according to their location. 

 

Figure 4. Example of a pupil’s project 

At the end of the course, we included a project to retain the acquired knowledge and for the summative 
assessment by the teacher.  We also give recommendations for teachers for the formative and 
summative assessment over the course. 

Discussion 
The use of Python and turtle geometry have been discussed in the literature rather extensively. The 
authors of papers (Hromkovič, 2016; Cho, 2016; Ayock, 2015; Vidal Duarte, 2016) highlighted the 
strength of learning programming basics using turtle geometry. According to Cho (2016), “Python that 
starts with turtle modules is linked to the exploration of microworlds at primary and middle schools, thus 
serving to lower the entry barrier for students in performing exploration at high schools”. Researchers 
also mentioned CS1 courses starting with turtle geometry, continues with game engine (Ayock, 2016) 
or extensive projects (Vidal Duarte, 2016). In Slovakia, however, turtle geometry is used in earlier 
education (using Imagine Logo), but it is also appropriate for higher education, upper secondary 
schools, where pupils are learning programming in textual programming languages. In our research we 
met with increasing motivation among pupils to learn programming, confirming the suitability of our 
choice of motivation with turtle geometry. 

There are several books and online courses for Python using turtle geometry, but these materials are 
rather suited for self-study, e.g. (Payne, 2016). In the learning process we prefer the scheme: Motivation 
→ Collecting experience → Exercising the knowledge, where we need a motivational example that the 
teacher solves together with pupils by discussion. Consequently, the pupils solve the tasks to exercise 
the new knowledge, where we need a lot of graduated tasks. Our materials also differ from most of the 
materials for Python by focusing on new algorithms and concepts, but not on language characteristics. 
Materials are aimed for teachers and the worksheets for pupils include only tasks without a huge amount 
of text. Our goal was to minimize the amount of commands pupils need to learn and to gain new 
programming concepts and knowledge, we used just a fraction of the commands compared to other 
materials (Belan, 2013; Kučera, 2016). This goal is also confirmed by the fact that during the verification, 
pupils easily remembered the used commands. A similar material exists in Switzerland (Kohn, 2016), 
where researchers created an environment that offers a repeat loop instead of a for loop, therefore the 
material follows a different approach in teaching. 

We distributed the curriculum intervention to computing teachers in Slovakia. We extended the materials 
to teacher’s awareness thanks to the PyCon SK 2017 conference, where we organized a section for 
teachers. On this conference, we gave teachers copies of the materials, and also made it available on 
the internet. Then we asked them to comment the materials. We have received positive feedbacks from 
teachers, such as “I appreciate the performance of the curriculum intervention in my class very 
positively, even though the breaks they have completed their solutions without any other motivation, 
although they did not want to code before.” or “it works! especially in girls I saw increased motivation 



Constructionism 2018, Vilnius, Lithuania 

342 

 

for programming”. Also the fact, that some teachers chose this material for their teaching is positive 
confirmation too. It should be noted though, that they choose the motivation according to the 
characteristics and possibilities of the group of pupils, their style of teaching and habits. This feedback 
is very valuable for us for further development of the materials. 

Conclusion 

In our work, we focused on teaching programming basics in Python. Our goal was to develop a 
curriculum intervention for learning programming basics for upper secondary schools helping teachers 
to transformation to a Python programming language. In it we targeted basic concepts and constructions 
as variables, loops, functions and conditions. We developed the methodical material in iterations, 
realized and verified through the development of three groups of pupils at upper secondary schools with 
teachers who haven’t experienced with teaching in Python before. The material has been distributed to 
teachers and we will continue to collect feedback from them and monitor their experiences with the use 
of the material in practice. When we were developing the curriculum intervention, we cared that we did 
not overburden pupils with too many Python commands, but rather let them learn the basic concepts 
and constructions, and motivate them to further learn programming. Our materials include 
recommendations and notices that will make it easier for teachers to transform from the Pascal 
programming language, they have experience with, to Python. We believe that the materials created by 
us will serve the development of pupil’s algorithmic thinking, important knowledge and skills, and last 
but not least the fulfilment of the educational goals of computing. 

References 

Aycock, J., et al. (2015) A Game Engine in Pure Python for CS1: Design, Experience, and Limits. In 
Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science 
Education (ITiCSE '15). ACM, New York, NY, USA, p. 93-98. 

Ateeq, M., et al. (2014) C++ or Python? Which One to Begin with: A Learner's Perspective. In 
Proceedings of the International Conference on Teaching and Learning in Computing and Engineering 
(LaTiCE '14). IEEE, 64-69. ISBN 978-1-4799-3592-5. DOI: https://doi.org/10.1109/LaTiCE.2014.20 

Belan, A. (2013) Python, eUčebnica pre septimu osemročného alebo 3. ročník štvorročného gymnázia 
(1st. ed.). Druska Books, Bratislava, Slovakia. ISBN 978-80-89646-35-7. 

Blaho, A. (2012) Informatika pre stredné školy: Programovanie v Delphi a Lazaruse (2nd. ed.). 
Slovenské pedagogické nakladateľstvo - Mladé letá, s.r.o., Bratislava, Slovakia. ISBN 978-80-10-
02308-0. 

Blaho, A. (2016) Programovanie v Pythone 1 (prednášky k predmetu Programovanie 1). Retrieved 
September 30, 2016 from http://python.input.sk/. 

Creswell, J.W. (2002) Educational Research: Planning, Conducting, and Evaluating Quantitative 
Research (4th. ed.). Pearson Education, New Jersey, NJ, USA. ISBN 978-81-203-4373-3. 

Cho, H. H. et al. (2016) Math-based Coding Education in Korean School. In Proceedings of 
Constructionism 2016. Bangkok, Thailand, 167-174. ISBN 978-616-92726-0-1. 

Fuller, U, et al. (2007) Developing a Computer Science-specific Learning Taxonomy. SIGSE. Bull. 39, 
4, 2007, s. 152-170. 

Goldwasser, M. H. and Letscher, D. (2008) Teaching an object-oriented CS1 — with Python. In 
Proceedings of the 13th annual conference on Innovation and technology in computer science 
education (ITiCSE '08). ACM, New York, NY, USA, 42-46. DOI: 
http://dx.doi.org/10.1145/1384271.1384285 

Grandell, L. et al. (2006) Why complicate things?: introducing programming in high school using Python. 
In Proceedings of the 8th Australasian Conference on Computing Education - Volume 52 (ACE '06), 52. 
Australian Computer Society, Inc., Darlinghurst, Australia, 71-80. ISBN 1-920682-34-1. 



Constructionism 2018, Vilnius, Lithuania 

343 

 

Hejný, M. and Kuřina, F. (2009) Díte, škola a matematika: konstruktivistické prístupy k vyučování (2nd. 
ed.) Portál, Praha, Czech Republic. ISBN 978-80-7367-397-0. 

Hromkovič, J., et al. (2016) Combining the Power of Python with the Simplicity of Logo for a Sustainable 
Computer Science Education. In Informatics in Schools: Improvement of Informatics Knowledge and 
Perception (ISSEP '16). Springer International Publishing, 155-166. ISBN 978-3-319-46746-7. DOI: 
https://doi.org/10.1007/978-3-319-46747-4_13 

Jašková, Ľ., Mészárosová, E. and Winczer, M. (2017) Skúsenosti z úvodného kurzu programovania v 
Pythone na gymnáziu. In: DidInfo and DidactIG 2017- Banská Bystrica : Univerzita Mateja Bela, 2017. 
- S. 174-178.  ISBN 978-80-557-1216-1 

Krpan, D. and Bilobrk, I. (2011) Introductory Programming Languages in Higher Education. In: 
Proceedings of the 34th International Convention (MIPRO '11). IEEE, 1331-1336. ISBN 978-1-4577-
0996-8. 

Kohn, T. (2016) Python: Eine Einführung in die Computer-Programmierung. Retrieved from 
http://jython.tobiaskohn.ch/PythonScript.pdf. 

Kučera, P. (2016) Programujeme v Pythone (1st. ed.). Bratislava, Slovakia. ISBN 978-80-972320-4-7. 

Linn, M. C. and Dalbey, J. (1988) Cognitive consequences of programming instruction. In Elliot Soloway 
and James C. Spohrer (ed.) Studying the novice programmer Lawrence Erlbaum Associates Inc., New 
Jersey, NJ, USA, 57-82. 

Lichtman, M. (2012) Qualitative Research in Education: A User's Guide (3rd. ed.). SAGE Publications, 
Thousand Oaks, CA, USA. ISBN 978-1-4129-9532-0. 

Mannila, L. and de Raadt, M. (2006) An objective comparison of languages for teaching introductory 
programming. In Proceedings of the 6th Baltic Sea conference on Computing education research: Koli 
Calling 2006 (Baltic Sea '06). ACM, New York, NY, USA, 32-37. DOI: 
http://dx.doi.org/10.1145/1315803.1315811 

Mészárosová, E. (2015) Is Python an appropriate programming language for teaching programming in 
secondary schools? [ed.] Pavel Kapoun. 2, Ostrava : University of Ostrava, 20. Máj 2015, International 
Journal of Information and Communication Technologies in Education, Zv. Volume 4, s. 5-14. ISSN 
1805-3726. 

Mészárosová, E. (2016) First steps of developing a methodology for teaching programming 
fundamentals in Python . Ostrava. In: Proceedings of Information and Communication Technology in 
Education, 2016. ISBN 978-80-7464-850-2. 

Payne, B. (2015) Teach Your Kids to Code: A Parent-Friendly Guide to Python Programming (1st. ed.). 
No Starch Press, San Francisco, CA, USA. ISBN 978-1-59327-614-0. 

Salanci, Ľ., et al. (2011) Ďalšie vzdelávanie učiteľov základných škôl a stredných škôl v predmete 
informatika - Didaktika programovania pre SŠ 2. Štátny pedagogický ústav, Bratislava, Slovakia. ISBN 
978–80–8118–090-3. 

Varga, M., et al. (1999) Informatika pre gymnáziá: Algoritmy s Logom (1st. ed.). Media Trade, spol. s. 
r. o., Bratislava, Slovakia. ISBN 80-0802965-X. 

Vidal Duarte, E. (2016) Teaching the First Programming Course with Python's Turtle Graphic Library. 
In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science 
Education (ITiCSE '16). ACM, New York, NY, USA, 244-245. DOI: 
https://doi.org/10.1145/2899415.2925499. 

 

  



Constructionism 2018, Vilnius, Lithuania 

344 

 

The Impact and Effectiveness of Technology 
Enhanced Mathematics Learning 

Einari Kurvinen, emakur@utu.fi  
University of Turku, Finland 

Valentina Dagienė, valentina.dagiene@mii.vu.lt  
Vilnius University, Lithuania 

Mikko-Jussi Laakso, milaak@utu.fi  
University of Turku, Finland 

Abstract  
What happens inside the classroom is crucial for pupils’ learning. Mathematics is mostly hard work and 
only small portion is accounted by talent. However emotions and enjoyment can facilitate the hard work 
and make it easily done. We can use technology to help pupils to complete more exercise, make 
practicing more interesting and motivate pupils, which in turn will improve learning performance and 
learning results. 

A 15-week research study was conducted by research team of University of Turku, Finland and Vilnius 
University, Lithuania. Three schools were selected for this study. From each school we had two 3rd 
grade classes, one with control group and one treatment group. There was altogether 140 pupils 
(N=140) of which 69 (N=69) formed the treatment group and 71 (N=71) formed the control group.  
Figure 1 describes the research setup. The test started with a pre-test and was followed by 15 week 
research phase. The research was concluded with a post-test. During the research period, pupils from 
treatment group had one mathematics lesson per week transformed into technology enhanced 
mathematics lesson using a virtual learning platform called ViLLE. The control group followed typical 
teaching without any changes.  

 

Figure 1.  Research setup 

Identical tests for pre-test and post-test were used in the study. The test consisted of two parts. The first 
part measured mathematics performance in topics taught in 3rd grade. The second part was an 
arithmetic fluency test that measures how fast pupils can solve basic arithmetic facts. The study clearly 
showed that the treatment group outperformed the control group pupils with statistical significant 
difference both in mathematics performance and in arithmetic fluency. When we combine these results 
with our previous findings there is solid evidence that the digital learning path in ViLLE makes a radical 
improvement to pupils’ math learning. What makes it more amazing that we only replaced one lesson 
in a week. 

Keywords 
gamification; mathematics; primary education; technology enhanced learning; TEL 



Constructionism 2018, Vilnius, Lithuania 

345 

 

Introduction 

Using technology to help students learn is complex. Technology enhanced learning (TEL) provides an 
interesting addition to traditional teaching methodologies (Goodyear & Retalis, 2010). We are going to 
use the term TEL as umbrella, but other terms, such as computer-aided learning (CAL), or e-learning 
carry similar connotations. There are many tasks where computers excel against humans. For example, 
assessing unambiguous tasks, asking repetitive random questions or giving feedback to multiple pupils 
at the same time. Using TEL enables educators to duplicate parts of their pedagogical knowledge and 
take the burden of simple time consuming tasks from teachers whose time is valuable and scarce.   

Mathematics is at the core subject of science, engineering and technology. The 2015 results of the 
OECD Programme for International Student Assessment (PISA) show that many countries need to 
improve mathematics education in schools (Gurria, 2016). Too many students in schools still perceive 
mathematics as an educational stumbling block. How can educational technologies influence 
mathematics education and improve pupils’ mathematical skills? First, technologies can improve 
students’ technical skills in mathematics. By technical skills, we consider the know-what and the know-
how. For example, students recognize formulas and notation (know-what) and apply procedures to solve 
different types of problems (know-how). How could be possible to improve the traditional learning 
outcomes in mathematics that are expected by most policy makers, and, at the same time, develop 
other important skills for innovation, such as reasoning, understanding, posing problems?  

In this paper, we provide evidence that TEL strategies are effective both for traditional and for complex, 
unfamiliar and non-routine math problems. According to Goodyear and Retalis (2010), TEL activities 
that promote active learning are considered constructivist. When pupils are active, they are involved in 
the learning process, more motivated and interactive with the material provided. These aspects make 
learning deeper instead of superficial strategies. 

We report the experiences in Lithuania utilizing a digital learning path in mathematics in Finnish learning 
platform called ViLLE. The aim of this research was to find out how regular, weekly technologically 
enhanced ViLLE-lessons affect the learning performance and arithmetic fluency of Lithuanian 3rd 
graders compared to pupils receiving traditional instructions. ViLLE provides ready-made weekly 
lessons with interactive and gamified exercises supporting the Finnish math curriculum that can be 
easily adapted into any curriculum. We have conducted multiple studies in Finland (e.g. Kurvinen et al., 
2015a, 2015b) with success.  

This paper is organized as follows: First we introduce previous research in the field of TEL and previous 
findings using ViLLE in Finland. Methodology, tests and content used by the pupils are introduced in 
research setup, which is followed by results. Finally, this paper is finished with conclusions and 
discussion. 

Previous Work 

The research community has studied TEL for years. Most researchers seem to agree, that using 
Information and Communication Technologies (ICT) in teaching and learning can have a positive effect 
on learning. Still, there is room for doubt, and some researchers demand for more robust methodology 
and evidence for benefits of TEL (e.g. Drijvers, 2016).  

There are multiple meta-analyses conducted on TEL in education, all showing a positive impact on 
learning, motivation and confidence of the pupils (e.g. Edwy & Vodanovich, 2017; Vogel et al., 2006; Li 
& Ma, 2010). Li and Ma (2010) found out that there is a statistically significant positive effect of using 
educational technology, especially in primary education. However, the researchers remind us that 
introducing technology does not automatically yield for better results, but there must be a well-planned 
strategy on how to utilize them in teaching and learning. For example, in drilling-based games it is 
typically easy to just try different answers without thinking. Pupils relying on this superficial “learning 
strategy”, will probably not learn much. Li and Ma divided technology enhanced solutions into two 
categories. First category is traditional approach, which means teacher-centered whole-class 
instruction. The second category is constructivist approach, which is student-centered. This approach 
puts more emphasis on active learning of the individual student through problem-based and discovery-

http://www.oecd.org/pisa/keyfindings/pisa-2012-results.htm
http://www.oecd.org/pisa/keyfindings/pisa-2012-results.htm


Constructionism 2018, Vilnius, Lithuania 

346 

 

based learning. They found out that both approaches lead to positive effect, but the constructivist 
approach leads to significantly and consistently higher impact on learning.  

Repetition and immediate feedback are two strong factors which are easily implemented in TEL and 
can clearly provide great improvement in learning. Brosvick, Dihoff, Epstein and Cook (2006) studied 
automated feedback and its effects on learning. They used paper-based automatic feedback and 
compared that to immediate feedback given by an educator. Both were found to be effective and there 
was not significant difference between the two methods. Based on this, we can draw a conclusion that 
the feedback does not have to come from a human being to be effective, and the same effect can be 
provided automatically by software. Humans are of course able to give more in-depth feedback in 
various topics but on the other hand computers are tireless and will offer feedback for as long as you 
require. The researchers concluded that immediate feedback increases interest and involvement in 
assessment, helps drilling to be more effective and promotes active learning by maximizing time on task 
(Brosvic et al., 2006). In addition to this, Attard and Curry (2012) found that immediate feedback helps 
building pupils’ self-confidence, thus making pupils feel safer to make mistakes and try again. This helps 
building pupils’ persistence. 

Pilli and Aksu (2013) conducted a three month study on fourth graders in North Cyprus. They assigned 
26 pupils into a control group and 29 into a treatment group. Their research setups are similar to the 
research setup presented in this paper. They also compared TEL to traditional teaching and verified 
their results with identical pre- and post-tests. In final results, the pupils using technology outperformed 
the control group in multiplication and division of natural numbers. In fractions the difference was not 
statistically significant. They concluded that computer-assisted instruction, or TEL in this context, is a 
good supplementary method compared to traditional mathematics instruction. 

In previous studies conducted in Finland, we have found similar positive effects on learning by using 
TEL. We have conducted several studies in primary schools of using ViLLE for one weekly lesson for 
mathematics teaching. We have followed a similar research setup in all cases. The test starts with a 
pre-test, which is followed by the research period, where one technology enhanced mathematics lesson 
in each week (accompanied with homework) is utilized. This technology enhanced lesson is a traditional 
mathematics lesson transformed into an electronic lesson, thus the treatment group is not provided any 
extra instruction. After the research period, a post-test is conducted and the results are determined by 
comparing the treatment group and control group between the two tests. 

One of our earliest studies is on first graders. Two classes participated in a 10 week research period. 
The improvement of the treatment group in post-test was statistically significant (Kurvinen et al., 2014). 
Another 18-week long study was then conducted on four first grade classes from two different schools. 
Again, the treatment group achieved statistically significantly better results in the post-test, while no 
significant difference in the pre-test was seen (Kurvinen et al., 2015b). During the same time, we also 
conducted a similar study on third graders. Two classes participated in the 18 week long study. Again, 
without a statistically significant difference in the pre-test, the treatment group achieved statistically 
significantly better results in the post-test (Kurvinen et al. 2015a).  

Virtual learning environments for learning mathematics 

There are many virtual learning environments for learning and some are specialized in mathematics. 
Many publishers have their own learning environments to supplement exercise books. One of the most 
famous non-profit platforms is Khan Academy (https://www.khanacademy.org/). Another famous 
system is Mathletics from Australia (Stephan, 2017; Nansen et al., 2012). Mathletics did not provide 
statistical significant improvement on standardized tests, but it was said to improve pupils’ motivation 
and make differentiation easier for teachers (Stephan, 2017). Brasiel et al. (2016) compared 11 
platforms to supplement mathematics teaching in K12 education in Utah. They found out, that all the 
platforms, except for one, had a positive impact on learning. However, only two platforms (ALEKS and 
i-Ready) had a statistically significant impact, but only when pupils were using the platforms on 
recommended level.  

The problem of using virtual learning environments is more about choosing a proper one than just finding 
existing solutions. Many solutions provide only the platform without any content. Others provide some 

https://www.khanacademy.org/


Constructionism 2018, Vilnius, Lithuania 

347 

 

content but the content might not be customizable or compatible with local curriculum. Because there 
are so many solutions already available, the choice is usually made by seemingly small features that in 
teachers’ everyday life make huge impact. For example, compatibility to national curriculum, localization 
or the scope of the content are crucial for teachers.   

ViLLE is an exercise-based digital learning platform, developed at the University of Turku, with over 100 
different exercise types. Most of the exercise types are automatically assessed and give immediate 
feedback to pupils. The progress made by pupils is stored by ViLLE and comprehensive statistics and 
learning analytics based on pupils’ answers are presented to the teacher. ViLLE provides all necessary 
tools for teachers to create their own content in any subject they choose in ViLLE (Laakso et al., 2018b.)  

We have created a gamified digital learning path for mathematics for grades 1-9 (ages 7-15). The path 
has one digital mathematics lesson for each school week and it covers all the topics in the national 
curriculum in Finland (POPS, 2014). Altogether, the path contains more than 15 000 exercises. Each 
lesson contains 25-30 exercises that are customizable by the teacher. This path can be easily 
customized and tailored to meet needs of different national curriculums. Exercises in the digital learning 
path have been created in close co-operation with teachers, to ensure the suitability and quality of the 
exercises.  

The path is gamified ie. the pupils collect points from the exercises and we give trophies for achieving 
certain amount of points. The general guideline is that the pupils’ goal is to achieve at least 50% of the 
points available in each lesson. If the goal is not met during the lesson at school, pupils continue the 
work at home. We provide four different trophies as markers for goals for pupils. By default, the limits 
are set as follows: bronze is the first trophy (50%), then silver (75%), gold (90%) and diamond (100%). 
Limits can be customized by the teacher either for the whole class or for individual pupils. Customizing 
limits per pupil offers an easy way to differentiate pupils. We also provide two exercise categories, called 
warm-up exercises and bonus exercises to further differentiate pupils. If a pupil is added to either of 
previously mentioned groups, they will see also differentiated tasks in addition to the normal lesson 
content. In some exercises pupils have the opportunity to choose from three difficulty levels (easy, 
normal, hard). Selected difficulty level does not affect scoring but the choice is recorded for the teacher.  

Typically each exercise contains 10-15 problems or tasks. Most of the exercises have adaptive 
capabilities. If a wrong answer is given, the same question is asked again from the pupil. Besides 
remembering wrong answers, all answers are recorded and automatically analyzed to identify typical 
misconceptions in mathematics.  

ViLLE has build in mechanism for group work. One or more pupils can work together on one device 
collecting points for their own account. After learning session, pupils can continue their work individually. 
We have very good results working in pairs from university level programming courses (e. g. Kaila et 
al., 2016). Anecdotal evidence from observation in class rooms show that working in pairs is also 
beneficial for primary education. Pupils are able teach one another and discuss about the problems.  

Exercises used in the mathematics learning path can be divided roughly into two categories: (1) game-
based exercises and (2) more traditional exercises. Figure 2 shows an example of both of these 
exercises. The first one is gamified multiple choice question, which has a time limit. Pupils choose the 
correct lane to answer the question shown in the blue container. The question in the figure translates 
into “Which number is greater than six”, and the pupil should select the rightmost option “8”. On the right 
side of Figure 2 is a traditional columnar addition. The exercise has 6 steps, each step containing a new 
problem to be solved. 



Constructionism 2018, Vilnius, Lithuania 

348 

 

  

Figure 2. Examples of two different kind of exercise types used in mathematics learning path 

At the moment of writing this paper, ViLLE has over 120 000 users, mostly in Finland. The number of 
users has more than doubled during the last year (Laakso et al., 2018a). The number of users is growing 
at huge pace, mostly by mouth of words marketing among teachers in Finland.  

Research Setup 

The research was conducted as a joint project between University of Turku, Finland and Vilnius 
University, Lithuania with support of UPC (Lithuanian Education Development Centre). UPC had a 
project with 10 schools around Lithuania. Three schools were selected to take part in this research. 
Schools were selected based on two criteria: the school should have enough IT-resources to participate 
and at least two classes on third grade. 

Two classes from each of the three schools participated in the research - one class being randomly 
assigned as the control group and the other the treatment group. Altogether we had three control 
classes and three treatment classes. Independent variable is the use of ViLLE in one weekly 
mathematics lesson. Study was started in November during week 45 (2017) by conducting the pre-test 
with all classes. Treatment groups also had their first ViLLE-lessons during that week. The post-test 
was conducted during week 12 (2018) in March. Note that the time period includes Christmas and winter 
holidays, so we used 15 weekly ViLLE-lessons in total in treatment group. All pre-tests were conducted 
on the same week, but different schools had tests on different days. Post-test were conducted in the 
same manner. In all schools both groups conducted the test at the same time. A single 45 minutes 
lesson was used for pre-test and later for post-test. 

During the 15-week time period teachers in treatment groups replaced one mathematics lesson a week 
with a ViLLE-lesson, meaning there was no extra time allocated for teaching in treatment groups 
compared to control groups. Pupils in treatment group also got homework in ViLLE. In total, pupils 
completed 15 lessons in ViLLE. All lessons were translated from Finnish to Lithuanian. Participating 
teachers, together with UPC personnel, selected suitable contents for Lithuanian third graders based 
on the Finnish 3rd grade mathematics content. Lithuanian pupils worked on the same exercises as 
Finnish pupils, except for the translation and localization of content. 

Participants 
All together 140 third grade pupils participated in the research. Treatment classes had altogether 69 
pupils (N=69) and control classes 71 pupils (N=71). Number of pupils in each class is shown in Table 
2. Before starting the research, research permission was asked from guardians. One pupil from control 
group did not get permission and the results were hence excluded from the study.  

 

 



Constructionism 2018, Vilnius, Lithuania 

349 

 

Table 2. Number of students in each class 

School N (Treatment group) N (Control group) 

School 1 20 24 
School 2 25 26 
School 3 24 21 

 

Content in ViLLE 
We selected the content used with pupils together with teachers. The content used by Finnish third 
graders was used as a template. Teachers were requested to choose and arrange 15 out of 48 lessons 
so that they would match topics they were going to teach pupils during the research period. Each lesson 
contains approximately 25-30 exercises and each exercise contains approximately 10-15 problems.  

Table 3.2 Lessons selected by teachers 

# Lesson  Number of 
exercises 

Number of 
exercise visible 

1 Numbers 0-1000: Revision of addition and subtraction 44 30 
2 Revision of multiplication tables 2, 3, 4, 5 and 10 44 26 
3 Numbers 0-1000: Columnar addition and subtraction 1 44 25 
4 Multiplication: multipliers 10 and 100 44 26 
5 Multiplication tables 6 and 8 42 25 
6 Multiplication tables 7 and 9 43 27 
7 Multiplication: Order of operations 47 26 
8 Clock: Application 42 25 
9 Columnar multiplication: No carrying, carrying once 45 26 
10 Division: Multiplication and division 47 27 
11 Division: Order of operations 41 26 
12 Measurement: Counting with units 43 26 
13 Measurement: Unit conversion 43 27 
14 Geometry: Perimeter, area 44 26 
15 Numbers 0 - 10 000: Columnar addition and subtraction 44 26 

 

The research was designed to measure the actual impact of ViLLE on learning performace and fluency. 
For the scope of this research, teachers did not create any new material, but used exercises designed 
by Finnish teachers and researchers. 

. Participating teachers had all the tools teachers would normally have, including hiding exercises or 
revealing more, if needed. Teachers also had the possibility to assign easier tasks for some pupils, if 
they thought it was necessary.  

Pre-tests and post-test 
Effects of using weekly ViLLE-lessons were evaluated by using a two-part test. We used identical tests 
in pre-test and post-test to ensure comparability between them. All tests were conducted traditionally 
on pen and paper, thus the treatment group was not favored in tests. 

First part of the test was an arithmetic fluency test. The test, called “a 3-minute test”, contains 160 basic 
arithmetic facts (addition, subtraction and multiplication with operands from 0-10). Pupils had 3 minutes 
to solve as many calculations as they could. Papers were given to pupils upside down. When the time 
started, they turned the papers and started solving calculations. After three minutes, they wrote in their 
names as well. For the results, we counted the number of correct answers and wrong answers. Each 
correct answer was worth one point. 



Constructionism 2018, Vilnius, Lithuania 

350 

 

Second part of the tests was a mathematics performance test. The test used in this research is based 
on a standardized test that we have been developing. The test has been previously used with Finnish 
3rd graders (Kurvinen et al., 2015a). The test measures topics mentioned in Finnish mathematics 
curriculum for third graders (Table 4.33). Some topics are more advanced than basic requirements for 
third graders, for example decimal numbers. Before conducting the pre-test, the math performance test 
was tested on seven pupils. After testing we also collected feedback on how well the test measures 
topics taught in Lithuania for 3rd grades. In the pre-test we found that the test should be difficult enough 
to use in both pre-test and post-test. Pupils completed the mathematics performance test right after the 
arithmetic fluency test and they had time until the end of the 45-minute lesson. Only two pupils from the 
treatment group would have needed more than 45 minutes to finish the test in time.  

The mathematics performance test contains nine exercises. Table 4.34 describes each of the exercises 
and gives one example.  

Table 4.3 Exercises used in pre-test and post-test. 

# Type Example  

1 Arithmetic calculations (addition, subtraction, multiplication, 
division). Order of operations 

(5+2)*7; 120*3 

2 Calculations with decimal numbers and order of operations 0.8+1.1; 500/2+3*12 

3 Addition and subtraction in columns 597+484 

4 Multiplication in columns 142*9 

5 Missing numbers (find the value of symbol)  @+@ = 6 

@+# = 8 

#+& = 12 

6 Continue number sequence 1012, 1009, 1006, ___, ___, ___ 

7 Convert units (length, time, volume)  2cm = ___ mm 

8 Circle the greatest (integers, decimals, fractions, currency) 1€ 9c 1,5c 

9 Rounding 17 to nearest tens 

 

Exercises 3 and 4 were open problems in the Finnish version of the test. To make assessment easier, 
the exercise was converted into a fill-in-the-missing-numbers exercise. Exercise 5 is a new exercise. All 
problems are not part of 3rd grade curriculum in Finland or in Lithuania, but the test was designed to be 
a difficult one to measure how much even the best pupils can improve their results. 

Each separate task in the test was assessed as correct or incorrect. Each exercise was then assessed 
with regards to the percentage of the tasks the pupils answered correctly. For example, the first exercise 
has 10 calculations. If pupils got 7 correct and 3 incorrect, the total score would be 0.7 (as in 70%). The 
maximum score from the whole test was therefore 9 points. The internal validity of the test was 
measured with Cronbach’s alpha (α=0.88).  

Results 

Identical tests for pre- and post-tests were used. This enables us to compare groups using absolute 
means and the differences between each pupil’s pre-test and post-test performance. The results section 
is divided into two sections. The first section presents the results for the second part of the test, 
mathematics performance test (skills), and the second section presents students’ results in arithmetic 
fluency, which was the first part of the test.  



Constructionism 2018, Vilnius, Lithuania 

351 

 

Mathematics performance 
Each exercise in the test was scored between 0 and 1 based on the correctness. The test has nine 
exercises, meaning the maximum score is 9 points. Table 5 lists the pre-test results from each school 
separately and all control groups and all treatment groups combined.   

Table 5. Pre-test results. C=control group, T=treatment group 

Group Mean p Median Min  Max Std. dev. 

School1 C 3.13 
 

2.99 0.94 6.35 1.19 

School1 T 2.50 0.06 2.77 1.01 4.14 0.88 

School2 C  3.49 
 

3.45 0.82 5.73 1.34 

School2 T 3.66 0.65 3.41 0.63 6.57 1.34 

School3 C 2.72 
 

2.89 1.23 4.00 0.90 

School3 T 3.17 0.15 3.07 0.56 6.57 1.27 

Control All 3.14 
 

3.10 0.82 6.35 1.20 

Treatment All 3.17 0.88 3.07 0.56 6.57 1.27 

 

An independent samples t-test was conducted to compare the mathematics performance in the pre-test 
between two groups, in each school and in total. There are no statistically significant differences 
between any of the classes. There is a near-significant difference in School 1. From minimum and 
maximum scores we can see that both control group and treatment group have high-achieving and low-
achieving pupils. Best-achieving pupils got over two thirds of total score in pre-test. There was no 
statistically significant difference in scores between control group and treatment group (p=0.88, p>0.05). 
The results show that the pupils are on average equally skilled and there is no difference between 
treatment and control groups. Figure 3 shows this result in a more graphical way, showing the average 
score achieved by each group.  

 

Figure 3. Average score by groups in pre-test 

Figure  shows clearly that School 1 and School 3 have the biggest differences between control and 
treatment groups. In School 1 the control group achieved higher scores on average and in School 3 the 
treatment group achieved higher scores. All control groups and treatment groups combined, the 
difference is very small. 

The post-test was conducted 17 weeks after the pre-test (15 lessons). The post-test was identical 
compared to the pre-test. Table 6 combines results from the post-test. In addition to absolute test 
results, the improvement of individual pupils between the tests is included. The improvement is 
calculated by subtracting pre-test result from post-test result. Difference was only calculated, if the pupil 

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00

School 1 (C) School 1 (T) School 2 (C) School 2 (T) School 3 (C) School 3 (T) Control group Treatment
group

Mean



Constructionism 2018, Vilnius, Lithuania 

352 

 

had completed both tests. In control group there were 63 pupils (N=63) with both tests and 60 pupils in 
treatment group (N=60). 

Table 6. Post-test results. (*=statistical significance) 

Group Mean p Median Min  Max st. dev. Mean (difference) p (difference) 

School1 C 4.49 
 

4.54 1.63 6.76 1.34 1.30 
 

School1 T 4.00 0.35 4.18 1.30 6.24 1.58 1.61 0.38 

School2 C  4.37 
 

4.73 1.98 7.37 1.44 0.89 
 

School2 T 5.25 0.051 4.85 2.58 8.61 1.61 1.55 0.032* 

School3 C 3.44 
 

3.62 1.12 5.23 1.23 0.81 
 

School3 T 4.73 0.0097* 4.87 1.41 7.21 1.61 1.86 0.0019* 

C 4.17 
 

4.31 1.12 7.37 1.44 1.00 
 

T 4.72 0.049* 4.85 1.30 8.61 1.66 1.66 0.0006* 

 

When the absolute post-test results from individual schools are combined, the only statistically 
significant difference is between the treatment and control groups in School 3 (p=0.0097, p<0.05). The 
difference in School 2 is statistically near-significant. When all groups are combined, there is a 
statistically significant difference between control group and treatment group (p=0.049, p<0.05). It is 
worth noting, that the treatment group from School 1 decreased the difference between the two groups, 
by decreasing the statistical significance from nearly significant (p=0.06) to not significant (p=0.35). 
These results show that the treatment group achieved higher scores from post-test with statistical 
significant difference. Because the pre- and post-test is the same test, more proper measure to use is 
to compare the difference in score (post-test score – pre-test score). 

The effectiveness of ViLLE is solid when we compare the improvement of pupils between tests. Every 
treatment group has greater improvement than the control group. The difference is also statistically 
significant in schools 2 and 3. All groups combined, the improvement is statistically very significant 
(p<0.001), meaning pupils using ViLLE have greater learning in results than pupils not using ViLLE. 
Figure  visualizes the difference between all groups. 

 

Figure 4. Improvement between tests 

Figure  shows clearly the greater improvement in all treatment groups. On absolute scale the overall 
improvement of the pupils between the groups was 11.7%. However, the improvement in the treatment 
group was 39.8% higher than the improvement in the control group.  

0,00
0,20
0,40
0,60
0,80
1,00
1,20
1,40
1,60
1,80
2,00

School 1 (C) School 1 (T) School 2 (C) School 2 (T) School 3 (C) School 3 (T) Control group Treatment
group

Improvement



Constructionism 2018, Vilnius, Lithuania 

353 

 

Arithmetic fluency 
In addition to skills in mathematics, we also tested the arithmetic fluency of the pupils. We used a 3-
minute test, which has 160 basic arithmetic facts. Pupils solved as many calculations as they could in 
three minutes. Only correct answers were counted, but errors were also tracked. Table7 presents the 
results from the pre-test.  

Table 7. Pre-test, arithmetic fluency (*=statistical significance) 

Group Mean Median St. Dev p Errors on average 

School1 C 60.91 59.50 12.58 
 

0.77 

School1 T 53.35 55.00 16.62 0.1 2.90 

School2 C 62.00 60.00 15.77 
 

0.80 

School2 T 60.96 60.00 14.01 0.8 1.00 

School3 C 49.33 51.00 10.58 
 

0.95 

School3 T 59.30 59.00 13.61 0.01* 2.22 

C 57.74 57.50 14.29 
 

0.84 

T 58.16 59.00 14.82 0.86 1.97 

 

There was a statistically significant difference between treatment and control group only in School 3 
(p=0.01). With all treatment groups and control groups combined, there is no statistically significant 
difference between the two groups (p=0.86). On average, the pupils are on same skill level in both 
groups. Every treatment group made more errors and pupils from treatment groups made on average 
twice as many errors in calculations than pupils from control group. 

In the post-test we compared the absolute results and improvement between the two tests. Post-test 
was identical to the pre-test. Table 88 describes the post-test results from arithmetic fluency test. 

Table 8. Post-test, arithmetic fluency (*=statistical significance) 

Group Mean Median St. Dev. p Errors on average  Mean (difference) p (difference) 

School1 C 69.48 67.00 18.48  1.74 8.14  

School1 T 69.83 69.50 15.63 0.95 1.33 17.50 0.014* 

School2 C 75.12 76.00 19.67  1.29 12.54  

School2 T 78.92 78.00 19.57 0.5 0.50 17.96 0.056 

School3 C 61.11 62.00 13.95  0.78 13.17  

School3 T 83.37 87.00 16.06 0.00007* 0.42 27.11 0.00037* 

C 69.35 67.00 18.60  1.31 11.25  

T 77.62 77.00 17.96 0.01* 0.72 20.57 0.000005* 

 

Differences between groups were tested using independent samples t-test. In School 1, there is no 
statistical significance (p=0.95). In pre-test there was a statistically significant difference (p=0.01), which 
means that there is no more difference between groups in School 1. Using ViLLE had enabled the pupils 
to catch up to their peers in arithmetic fluency. In School 2, there is no statistically significant difference 
(p=0.5). However, in School 3 the difference between control group and treatment group is statistically 
very significant (p<0.01). Difference between all control groups and all treatment groups is statistically 
significant (p=0.01), which clearly shows that using ViLLE improves arithmetic fluency. 



Constructionism 2018, Vilnius, Lithuania 

354 

 

Like in mathematics performance, also in arithmetic fluency, the difference between using ViLLE and 
not using ViLLE is solid, when we compare the improvement of pupils between the two tests. The 
improvement was higher in treatment groups in all schools. Only improvement which was not statistically 
significant, was in School 2 (p=0.056). Even this result is statistically near-significant. When the groups 
are put together, the difference between control group and treatment group is statistically very significant 
(p<0.001). This result shows solid evidence that pupils working with ViLLE clearly improved their 
arithmetic fluency.  

In every school, pupils in the treatment group made less errors on average than pupils in the control 
group. The situation is the opposite when compared to pre-test. Pupils in treatment group solved on 
average 20.6 calculations more in post-test than in pre-test. In control group the corresponding 
improvement was 11.3 calculations, making the treatment group’s improvement 45.3% higher. The 
treatment group solved on average 8.3 calculations more in the post-test than the control group. This is 
10.7% improvement on absolute scale. 

Conclusion and Discussion 

This study provides solid evidence that regular usage of carefully planned and designed TEL improves 
learning performance. Statistically significant improvement is observed both in mathematical skills and 
arithmetical fluency.  

During the 15 weeks of the research, teachers were instructed to use ViLLE to replace one traditional 
mathematics lesson a week and give homework for pupils. Before the research project, we had agreed 
on the contents together with all the teachers participating in this research. Otherwise teachers of the 
treatment groups had the freedom to customize the exercise set as they saw fit. Customizing in this 
context means hiding some exercises or revealing others. Teachers were also able to assign easier 
tasks for certain pupils. Both of these features are standard tools in ViLLE to enable teachers to match 
the content to their pupils needs. In other words, it gives teachers the pedagogical freedom to fine tune 
the learning experience for their pupils. Due to the scope of this paper we did not track the 
customizations made by teachers or their effect, only the overall progress made by pupils.  

Teachers worked independently with ViLLE during the research. They had the possibility to ask 
technical or pedagogical questions from the research team. The same possibility is available for all 
ViLLE teachers. During the 15 weeks, one researcher visited the treatment groups in total four times. 
First to conduct the pre-test, two times in the middle of the treatment period and last during the post-
test. The idea of the visits was to ensure there are no technical issues and to observe the local school 
culture and how well the Finnish model fits in the Lithuanian schools. 

The results presented in this paper clearly indicate that regular usage of ViLLE can improve learning 
performance, arithmetic fluency and even improve pupils’ arithmetic fact accuracy. In the pre-test all the 
pupils were on average equal in skills. After the 15 weeks, the pupils in the treatment group were on 
average statistically significantly better than pupils in the control group. This result is in line with previous 
results and further strengthens the assumption that carefully designed content combined with TEL can 
lead to better learning results. We consider the pedagogical approach of ViLLE to be constructivist and 
student-centered, in context of how Li and Ma divided the usage of educational technology (Li & Ma, 
2010). One of the key ideas we promote is active learning. The better learning results can be explained 
by increased amount of practice the pupils got, but the quality of practice is also important. As previously 
stated, immediate feedback can be a very encouraging and engaging element in TEL (Brosvic et al., 
2006; Attard & Curry, 2010). ViLLE gives pupils immediate feedback in all automatically assessed 
exercise types, thus shortening the feedback loop for pupils. In traditional exercise book practicing, it 
might take days for pupils to receive feedback on their answers. When receiving feedback takes a long 
time, it increases the risk of learning wrong strategies and facts. 

The verbal feedback from teachers further strengthens these results. With less need for preparation 
they got more time to encounter pupils individually and they got more data on the pupils’ learning.  
According to the feedback received from teachers, the pupils were motivated and eager to work with 
ViLLE. According to our previous anecdotal experiences, this also shows that the teachers had proper 



Constructionism 2018, Vilnius, Lithuania 

355 

 

methods for motivating pupils and boosted their confidence and they knew how to use ViLLE in a 
pedagogically sound way.   

Most pupils had the opportunity to complete ViLLE exercises from home. However, every school had 
arranged the possibility to work on the exercises also in school, either during breaks or after school 
hours. This was not considered to be a problem.  

We selected applicable content together with the teachers for the 15 lessons covered in this study. The 
mathematics performance test used in pre-test and post-test is based on general math skills and it has 
been used in various studies. To ensure the suitability of the test, it was tested on seven pupils before 
the actual pre-test. The test is designed to measure general mathematics skills. The arithmetic fluency 
test is based on general mathematic tasks. The study clearly showed that regular usage of ViLLE will 
also improve fluency in basic arithmetic tasks.  

To conclude our findings, the results shows that with regular usage of ViLLE, we motivate pupils to 
practice more and improves their learning performance statistically significantly. For teachers this does 
not require extra work and we can actually save teachers’ time from assessment and lesson 
preparations. 

The new Finnish national curriculum in mathematics includes programming in mathematics. At the 
moment ViLLE exercises integrates exercises for computational thinking and programming in 
mathematics. Further integration of even more computational thinking contents and research in that 
field could be fruitful.  

Acknowledgments 

The authors gratefully acknowledge the support of the Nordic Research Council through the NordPLUS 
programme of transverse actions. In particular the funding of the two year project “Culturally Diverse 
Approaches to Learning Mathematics and Computational Thinking”, the project code NPHZ-
2018/10063. 

References 

Attard, C., & Curry, C. (2012). Exploring the Use of iPads to Engage Young Students with Mathematics. 
Mathematics Education: Expanding Horizons: Proceedings of the 35th Annual Conference of The 
Mathematics Education Research Group of Australasia; Dindyal, J., Cheng, L.P., Ng, S.F., Eds.; 
Mathematics Educaion Research Group of Australasia: Singapore, 2012, 75-82. 

Brasiel, S., Jeong, S., Ames, C., Lawanto, K., Yuan, M., & Martin, T. (2016). Effects of Educational 
Technology on Mathematics Achievement for K-12 Students in Utah. Journal of Online Learning 
Research, 2(3), 205-226. 

Brosvic, G. M., Dihoff, R. E., Epstein, M. L., & Cook, M. L. (2006). Feedback facilitates the acquisition 
and retention of numerical fact series by elementary school students with mathematics learning 
disabilities. The Psychological Record, 56(1), 35-54. 

Drijvers, P. H. M. (2016). Evidence for benefit? Reviewing empirical research on the use of digital tools 
in mathematics education. In: Ball L., Drijvers P., Ladel S., Siller HS., Tabach M., Vale C. (eds) Uses of 
Technology in Primary and Secondary Mathematics Education. ICME-13 Monographs. Springer, Cham, 
151-175. 

Edwy, R., & Vodanovich, S. (2017, April). The use of 21 st century technology in New Zealand primary 
schools: A systematic literature review. In Computer Supported Cooperative Work in Design (CSCWD), 
2017 IEEE 21st International Conference on, 109-114 (IEEE). 

Goodyear, P., & Retalis, S. (2010). Technology-enhanced learning. Rotterdam: Sense Publishers. 

Gurria, A. (2016). Pisa 2015 results in focus. PISA in Focus, (67), 1. Read 1.5.2018 from 

https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf 

https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf


Constructionism 2018, Vilnius, Lithuania 

356 

 

Kaila, E., Kurvinen, E., Lokkila, E., & Laakso, M. J. (2016). Redesigning an object-oriented programming 
course. ACM Transactions on Computing Education (TOCE), 16(4), 18. 

Kurvinen, E., Lokkila, E., Lindén, R., Kaila, E., Laakso, M., & Salakoski, T. (2015a). Automatic 
Assessment and Immediate Feedback in Third Grade Mathematics. In Proceedings of Ireland 
International Conference on Education ISBN 978-1-908320-67-4, 89-95. 

Kurvinen, E., Lindén, R., Lokkila., E., & Laakso, M-J. (2015b). Computer-Assisted Learning: Using 
Automatic Assessment and Immediate Feedback in First Grade Mathematics. EDULEARN15 - 7th 
International Conference on Education and New Learning Technologies, 2303-2312. 

Kurvinen, E., Lindén, R., Rajala, T., Kaila, E., Laakso, M. J., & Salakoski, T. (2014, November). 
Automatic assessment and immediate feedback in first grade mathematics. In Proceedings of the 14th 
Koli Calling International Conference on Computing Education Research, 15-23 (ACM). 

Laakso, M-J., Kurvinen, E., Enges-Pyykönen, P., & Kaila, E. (2018a, May). Designing and Creating a 
Framework for Learning Analytics in Finland. Accepted to Proceedings of 41st International Convention 
MIPRO 2018, 771-776. 

Laakso, M-J., Kaila, E., & Rajala, T. (2018b) ViLLE – collaborative education tool: Designing and utilizing 
an exercise based learning environment. Educ Inf Technol. https://doi.org/10.1007/s10639-017-9659-1 

Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ 
mathematics learning. Educational Psychology Review, 22(3), 215-243. 

POPS (2014). Opetushallitus, Perusopetuksen opetussuunnitelman perusteet (The national curriculum 
of Finland). Accessible in various formats:  

http://www.oph.fi/saadokset_ja_ohjeet/opetussuunnitelmien_ja_tutkintojen_perusteet/perusopetus 

Nansen, B., Chakraborty, K., Gibbs, L., Vetere, F., & MacDougall, C. (2012). ‘You do the math’: 
Mathletics and the play of online learning. New Media & Society, 14(7), 1216-1235. 

Pilli, O., & Aksu, M. (2013). The effects of computer-assisted instruction on the achievement, attitudes 
and retention of fourth grade mathematics students in North Cyprus. Computers & Education, 62, 62-
71. 

Stephan, K. P. (2017). Does Mathletics, A Supplementary Digital Math Tool, Improve Student Learning 
and Teaching Methods at Three Private Catholic Schools in Florida?-A Mixed Methods Study (Doctoral 
dissertation, Creighton University). 

Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M. (2006). Computer 
gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing 
Research, 34(3), 229-243. 

 

http://www.oph.fi/saadokset_ja_ohjeet/opetussuunnitelmien_ja_tutkintojen_perusteet/perusopetus


Constructionism 2018, Vilnius, Lithuania 

357 

 

Constructionist Approaches to Computational 
Thinking: A Case of Game Modding with ChoiCo 

Marianthi Grizioti , mgriziot@ppp.uoa.gr 
National and Kapodistrian University of Athens, Educational Technology Lab, School of Philosophy, 
Faculty of Pedagogy, Greece 

Chronis Kynigos , kynigos@ppp.uoa.gr 
National and Kapodistrian University of Athens, Educational Technology Lab, School of Philosophy, 
Faculty of Pedagogy, Greece 

Abstract  
Computational Thinking (or CT) involves a wide range of mental processes like problem solving, 
recursive thinking, abstract thinking etc, which are considered necessary supplies for the 21st century 
children. However, despite the wide attention that CT has received, there is still limited research on 
pedagogical designs and strategies that can promote the acquisition and development of such skills. In 
this paper, we discuss how constructionist approaches can inform and benefit the cultivation of 
computational thinking by exploring the case of modifying and sharing digital games. In this context 
game modding is implemented as a constructionist activity that enables students’ progressive 
engagement in computational thinking through their interaction with various affordances such as coding, 
data processors, graphics editors, etc. To further investigate this approach, we present the results of a 
design-based research in which junior-high school students modified games with the digital tool ChoiCo. 
ChoiCo (Choices with Consequences) in an online platform that integrates three different affordances 
for designing and modding digital games: a map-based (GIS) game scene, a simplified database and 
block-based programming editors. The research focused on a) the computational thinking skills that 
emerge and the meanings that are generated through students’ engagement with the three affordances 
and b)  

Keywords 
Computational thinking; game modding; block-based programming; progressive engagement 

Game Modding for Computational Thinking 

Computational Thinking (or CT) was firstly described by Wing as a new way of thinking that drives from 
fundamental concepts of computer science but it is applicable to a wide spectrum of scientific fields and 
to everyday activities. It includes a set of thinking skills, habits and behaviours that are integral to solving 
complex computational problems, such as conditional logic, debugging and error detection, algorithmic 
thinking, process of information etc. However, despite the big attention that CT has received, there is 
still ongoing discussion about its definition and the set of skills that it encloses (Brennan & Resnick, 
2012). While not exclusive, many researchers across the literature consider the following four skills as 
an important part of CT (Barr et al, 2011, Krauss & Kiki, 2017, Grover & Pea, 2013): a) decomposition 
which refers to the process of breaking down a problem into smaller parts that are more manageable 
and easier to be solved, b) pattern recognition in the terms of identifying and matching similarities 
(patterns) between different instances as a way of gaining extra information for them c) abstraction 
referring to the process of generalizing from specific instances by ignoring unnecessary details and 
keeping only their essentials so that a generic set is created and d) algorithm design, which refers to 
the ability to create a specific and effective process with step-by-step instructions, intended to be 
executed by a machine or even by another human.  

Despite the long discussion and debate that has been done on grounding the theoretical basis of 
computational thinking, little attention has been given to the exploitation of known pedagogical theories 
for fostering its skills. In most cases, the development of CT is associated solely with closed coding 
activities and puzzles in which the ‘making’ element is limited or non-existing. However, this is a quite 

mailto:kynigos@ppp.uoa.gr


Constructionism 2018, Vilnius, Lithuania 

358 

 

strict approach if we consider that CT includes the cultivation of thinking skills and behaviors.  To this 
end, we approach Computational Thinking through the constructionism lens, in which coding is seen as 
an expressive medium that enables the design, creation and sharing of complex personal artefacts 
(Papert 1980, Kynigos 1995). We also argue that constructionist designs that integrate coding with other 
affordances in a meaningful way (i.e. dynamic manipulation, robotic design, graphics creation etc), can 
become powerful tools for the acquisition and development of CT skills.  One strategy that seems to be 
able to address the above challenge, but still has not been studied in the context of Computational 
Thinking is that of game modification or game modding.  

Game Modding and Constructionism 
Modding is a term coming from the world of gamers and refers to the process of modifying specific 
elements of a digital game to create a little or completely different version of it, which is called ‘mod’ (El-
Nasr & Smith, 2006, Moshirinia, 2007). From a pedagogical point of view, modding shares a lot with 
constructionism.  According to constructionism theory, students build their own knowledge structures 
as they are engaged in constructing a public entity (Pappert, 1991). These structures are seen as 
externalized expressions of ideas and thoughts which, through the sharing of the artefacts are becoming 
objects for discussion and change (Kynigos, 2015). Similarly, during the modding process students 
explore, decompose and analyse the game structure (i.e. the code, the skins, the mechanics etc) 
acquiring the necessary knowledge to make changes. Then they apply this knowledge to create and 
share a personalized artefact that depicts their own ideas and perceptions on the game. This game is 
then played, evaluated and discussed by others, probably leading to another cycle of modifications. We 
believe that this process can support students to generate and share meanings about the concepts 
involved in the game and also promote the development of skills like critical thinking, communication, 
abstract thinking etc. One difference from other constructionist activities is the process of deconstruction 
that precedes the construction. In game modding, students firstly break down the game structure to 
meaningful entities (i.e. the code, the skins, the mechanics etc) for analysis which then are modified 
and composed again for the creation of the mod. The process of deconstruction can put an added value 
to the learning process in the sense that children will use the deconstructed entities as building blocks 
to construct the personal knowledge which may differ from the original one (Boytchev, 2015).  

A strong advantage of game modding compared to designing a game from scratch is that the modder 
can use the game’s structures (code, database, media etc) as a starting point for understanding its 
development, eliminating in that way the learning curve which can be quite big in the case of game 
design. Moreover, the ‘modder’ is already familiar with the original gameplay and starts modifying it with 
a specific plan in mind. Depending on the type and the depth of the modifications, modding can require 
quite complex actions like analyzing the game structure, identifying the essential parts of the original 
game and those that can be modified, designing new game strategies and rules that are in line with the 
original gameplay etc. Several studies have explored the educational potentials of game modding. As 
the studies indicate, through game modding activities students acquired and implemented knowledge 
about several programming concepts (variables, event-handling, Boolean logic etc), but also from other 
fields like mathematics (3D geometry, vectors), art and physics (rotation, movement). In addition, 
students developed a number of skills like teamwork, iteration and refinement, debugging and error 
prediction etc. However, even though game modding seems a promising approach for promoting CT 
skills, limited related research has been done so far.  

Progressive Engagement in CT skills  
In order to design students’ engagement in game modding activities, we adapted the three-stage 
progression pattern ‘Use-Modify-Create’ proposed by Lee et. al. (2011) for engaging youth in CT skills 
within rich computational environments. In this pattern, children are gradually engaged with the 
affordances of the environment transforming from users to creators. The approach is based on the idea 
that ‘scaffolding increasingly deep interactions will promote the acquisition and development of CT’ (Lee 
et. al. 2011). In this way, students tackle progressively higher design challenges as their skills and 
capacities increase. We argue that for a meaningful involvement in CT skills, game modding process 
should also follow a similar model of gradual engagement that would start from playing the original 
game, succeeded by small modifications or corrections and end up to the creation of the final mod which 



Constructionism 2018, Vilnius, Lithuania 

359 

 

can stand as a separate version of the game. Based on the model of Lee we propose a three stages 
model for progressive engagement with game modding: “Use-Fix-Mod Creation” (Figure 2).  

In their model Lee et.al describe the “create” stage as an iterative process of testing, analysing and 
refining until the final artefact is created.  We argue that a similar cycle is also followed in game modding 
during the stages of Fix and Mod Creation. We see the creation of a mod as an iterative process of 
several modifications each of which involves a cycle of the 4 steps: Test (Play the modified game) – 
Evaluate (evaluate the game for further modifications) – Analyse (analyse the game’s structure and 
components) – Modify (implement the new modification). After one modification is completed the same 
series of steps will be repeated until the final mod is created. 

 

Figure 2. Three-stages of progressive engagement in game modding 

In order to achieve the transition from “Play” to “Fix” and finally to “Create” stage, we are using the 
approach of “half-baked” microworlds which was introduced by Kynigos (2007) and refers to exploratory 
digital environments conceived, by design, to call for modification and change. Similarly, according to 
Kynigos & Yiannoutsou (2018), a “half-baked” game is designed with some characteristics that provoke 
students to modify it because they don’t like it. In our case, the ‘buggy behaviour’ of the game works as 
a trigger mechanism for engaging the students with the different game elements and urge them to make 
changes to them.  

Related Work 

Computational Thinking seems to consolidate its place in educational curricula around the world. A lot 
of countries, like Israel, Russia, New Zealand and Australia, recently revised their K-12 curriculum so it 
includes computational thinking (Grover & Pea, 2016). In addition, several groups are trying to make 
Computational Thinking accessible to everyone. For instance, in 2014 ISTE in collaboration with 
Computer Science Teachers Association developed the ‘computational thinking toolkit’, a complete 
collection of CT resources, from presentations to surveys and graphical animations, free to be used by 
anyone who wants to learn more about or to advocate for CT. Moreover, popular game design 
environments like Scratch and Alice, have been used lately for the development of computational 
thinking. For instance, the iGame after-school program aims to engage students in CT by designing 
their own computer games using Storytelling Alice (Lee et al. 2011). In addition, recent studies have 
been focused on the development of skills related to CT through students’ engagement in constructionist 
designs. For instance, Weintrop and Wilensky explore the emergence of programming abstractions 
through RoboBuilder, a constructionist video game in which the player uses block-based coding in order 
to play.  Similarly, the tool eXpresser has been used for studying students’ engagement in generalization 
processes (Geraniou & Mavrikis, 2012). Finally, in some cases instead of designing a game from 
scratch, it is followed the approach of game editing or ‘remixing’. The term remix in game design has 
been widely implemented by the Scratch community referring to the process of building on an existed 



Constructionism 2018, Vilnius, Lithuania 

360 

 

Scratch project and repost it (Brennan & Resnick, 2012). Depending on the depth of remixing, it can 
require a high degree of sophistication and CT skills (Kafai & Bruke, 2014). 

However, especially in the context of game design, there is still lack of research that studies 
computational thinking in the context of a) game modding and b) rich computational environments that 
integrate a number of affordances like graphics and media editors, data representations, coding etc. 

ChoiCo: A constructionist tool for game design 

Based on the above context we designed and developed ChoiCo (Choices with Consequences), an 
online authoring tool for designing and playing choice driven simulation games (Grizioti & Kynigos, 
2018).  In ChoiCo games the player revolves around different map-based settings making selections 
(these can be items, buildings, actions etc) each of which has specific consequences to a number of 
game attributes (Money, Health, Fun etc). The final target may vary, depending on how the game has 
been developed.  For example, perfect-Ville (Yiannoutsou et. al, 2014) is a SimCity-like ChoiCo game 
which includes a set of city-sites such as “restaurant”, “library”, “work” etc. The player is a citizen of a 
city and has six attributes (Energy, Money, Hygiene, Fun, Social and Health) which should remain within 
specific limits.  Every time that the player selects to ‘visit’ a site these attributes change accordingly until 
the game is over.  

The modding features of ChoiCo 
In ‘Design Mode’ the user can design a new game from scratch or modify an existed one. This 
environment is based on a carefully designed structure that aims to support computational thinking skills 
in multiple levels. More precisely the game design area is divided into 4 tabs each of which implements 
a core game element (Figure 3).  

 

Figure 3. Modding of Game Interface in the Game Design Mode of ChoiCo 

The first tab, called “Game interface” (Figure 3) contains the game scene, which is a map-based 
interactive tool and the game database, which contains information for all the items (rows) and how they 
affect the game attributes (columns). By using these two tools the user can make changes to the 
graphical interface of the game such as: change the background (which can be either a static 
representation or a map tile), add and modify items, add new areas and new player’s attributes etc. The 
three other tabs enclose the code for the game rules and behaviours in the form of block-based 
programming. Specifically, in the second tab is implemented the initial code which is executed only 
when the game begins i.e. the initial values of the player’s attributes. The third tab contains the code 
that describes the gameplay and it is executed every time the player selects an item. This code includes 
rules for manipulation of the items, transition between layers, feedback to the player etc (Figure 4). 
Finally, the fourth tab contains the ending rules of the game.  



Constructionism 2018, Vilnius, Lithuania 

361 

 

 

Figure 4. The "Gameplay Rules" in the Game Design mode of ChoiCo 

The programming language of ChoiCo has been developed with Blockly Javascript library and apart 
from the basic programming structures it also contains blocks designed especially for game 
programming such as game over, hide/show item, set background, set active layer etc. The available 
blocks are divided into 6 categories( ‘Conditions’, ‘Variables’, ‘Maths’, ‘Game Actions’, ‘Map Actions’ 
and ‘Initialize’) in order to ease the modding of different game elements. Thus, for example in category 
‘Map actions’ there are blocks for modifying the game scene and its objects such as ‘hide item’, ‘set 
active layer’ etc. 

Pilot Study: Context and methodology 

In order to investigate how computational thinking skills emerge within game modding activities, we 
organized a pilot study with Junior High school students in which they modified a game created with 
ChoiCo. The main research questions we wanted to investigate with this study were:  

1) Which computational thinking skills emerge and what meanings are generated during students’ 
engagement in game modding activities with ChoiCo? 

2) How students’ computational thinking skills are being developed through the three different 
stages of engagement?  

In the presented study we applied the method of Design-Based Research which includes the design of 
a pedagogical intervention and its evaluation in real classroom settings with the aim to refine the initial 
pedagogical design and to develop new theories (Barab & Squire, 2004). The research was carried out 
through three repeated cycles of design and implementation, utilizing every implementation as an 
opportunity for data collection, evaluation and review. 

The ‘half-baked’ game and the modding activity 
For supporting students’ progressive engagement in modding activities we developed a ‘half-baked’ 
game in ChoiCo which was called “Eating out”. The game represents a neighbourhood of an imaginary 
city with a number of different places to eat. Each place also contains a number of food choices. The 
aim is to keep the attributes ‘Hunger’, ‘Health’, ‘Money’ and ‘Joy’ between specific red lines that the 
player has to discover while playing. In order to give this game a ‘half-baked’ characteristic, we added 
on purpose the following two buggy behaviours in relation to its rules: A) An inconsistent item behaviour. 
The item “House of Granny” increases money by 15 without causing any damage to the other attributes. 
This behaviour is in contrast with the pattern of all the other items which will cause both positive and 
negative results to the score in order to keep a balance in the game flow. Thus the player can select 
this item unlimited times to get money with no consequences, giving to it a ‘cheaty’ role. B) A missing 



Constructionism 2018, Vilnius, Lithuania 

362 

 

ending rule. We didn’t include a check condition for the attribute ‘Hunger’ in the code that implements 
the ending rules of the game. This is also contradictory with the game rules for the rest attributes.  

We expected that these problematic behaviours would trigger students while playing the game to fix it 
and extend it. In addition, the detection and fixing of them require actions related to CT skills like 
recognizing patterns in items’ behaviour, debugging and changing the algorithm for the ending rules 
etc. Regarding the modding process, it was divided into three main phases based on the three stages 
of progressive engagement described before. First students play the original game, then they make 
small changes and finally through repeated modifications they create their own mod. At the end of the 
second (fix) and the third (create) sessions, every team played the game of another in order to give 
feedback but also to discuss and exchange ideas about their artefacts.  

Participants 
The study was divided into three 3-hour sessions and took place in a public Junior High School as an 
after-school activity. The participants were 13 students, mixed boys and girls, from the third grade, aged 
14-15 years old. They worked collaboratively in small groups of 2-3 in the school’s computer laboratory 
using one computer per group. All of the students had little previous experience with block-based 
programming in Scratch. The ChoiCo tool had been presented to them during a math class.  

Data collection and analysis 
During the study, we collected qualitative data which included screen capturing files, audio recordings 
of each group and the files of students’ modified games in different stages. Moreover, we followed the 
approach of artefact-based interviews for assessing CT skills and strategies (Brennan & Resnick, 2012). 
At the end of each session we did a semi-structured interview with every team aiming to urge discussion 
around three points: a) the changes that they had done so far to the game b) their involvement to 
computational thinking skills and c) their opinion and suggestions for the ChoiCo tool. Some 
representative questions are for instance: ‘Did you change the number of layers and why?’, ‘Did you 
group your items in a specific pattern?’, ‘What difficulties did you face in programming the rules?’ etc. 
Finally throughout the study students filled out a worksheet with their modding plans, their decisions 
and their final implementations.  

For the analysis of the data, a qualitative analysis method was followed. More precisely, the transcripts 
of audio files and interviews were analyzed with the tool Atlas.ti using a set of codes divided into three 
main code categories a) computational thinking skills, b) modding ideas and c) interactions with the tool. 
The unit of analysis was the critical episode, which refers to representative moments that indicate 
students’ engagement in one or more of the above three categories. In addition, students’ games were 
analyzed according to the progression of the implemented modifications across the different modding 
stages. This data was compared with students’ replies in their worksheets about their modding progress 
and plans. 

Findings 

At the end of the study, there were five different mods created, one by each team. The mods are briefly 
presented in table 1 with a short description and the modifications they had. It is worth mentioning that 
in their final mod all teams had made significant changes to the game elements with the buggy behaviour 
in the initial half-baked game: The Items’ Values and the Ending Rules. This fact shows that the half-
baked elements of a game are possible to affect the modifications that students will decide to make. 
Moreover, four of the mods had new attributes, while in three of them the students also added new 
layers and designed a new setting or story. Despite the big or small changes they made, all of the teams 
maintained some elements from the initial game especially in the code and in the game attributes, which 
helped them compare and evaluate their games both with other teams’ and with the initial one.  



Constructionism 2018, Vilnius, Lithuania 

363 

 

Table 1. The 5 mods created by the students 

Mod Name Game description/Attributes Modified Elements 

Eating out 2 Choose between different restaurants in your city. 
Attributes:  Joy, Money, Health, Hunger 

Items Set, Items’ Values, Ending 
Rules 

I am hungry Make the right food choices.  

Attributes: Joy, Money, Health, Hunger, Free Time 

Items Set, Items’ Values, Ending 
Rules, Game Attributes 

Travelling in 
Europe 

Visit as many European cities as possible.  

Attributes: Joy, Money, Tiredness  

Items Set, Items’ Values, Ending 
Rules, Game Attributes, Layers, 

Game Concept 

School 
Survival 

Make the right choices in order to survive a school 
day. Attributes: Joy, Boredom, Health, Knowledge, 

Danger 

Items Set, Items’ Values, Ending 
Rules, Game Attributes, Layers, 

Game Concept 

Our School Get in different school classes without getting 
bored. Attributes: Joy, Education, Health, Stress 

Items Set, Items’ Values, Ending 
Rules, Game Attributes, Layers, 

Game Concept 

The data analysis indicated the emergence of CT skills during the three stages of engagement. Table 2 
depicts the CT skills that were detected in each stage according to the results of the data analysis. Even 
though the skill of decomposition was mostly present during the third stage of mod creation, for the 
three other skills there was evidence of a progressive development from the first to the third stage. As 
progress, we don’t consider a numeric increase in the number of related critical episodes, even though 
there was one, but a gradually deeper and more meaningful engagement with CT skills during the 
modding process.  To further explain this we present this progress through characteristics example for 
each of the three CT skills, pattern recognition, abstraction and automation. 

Table 2. Emerging Computational Thinking Skills across the three-stages of progressive engagement in game 
modding 

 

 

 

 

 

 

 

 

From Pattern Recognition to Pattern Construction 
Since patterns play an important role in games, and especially in ChoiCo games, students’ engagement 
with them was present throughout the study. While they were playing the game, all groups recognized 
patterns related to the behaviour of the items in the game and how they affected their score. For 
instance, some patterns expressed by students of groups 2 and 3 are “Health is decreased inversely 
with Joy”, “All the tasteless foods increase your health but reduce the joy, while the tasty ones do the 
opposite”. Three of the five groups also detected the problematic behaviour of the ‘house of granny’ 
choice which they described it as an inconsistency of a related pattern. Maria from group 3 mentions as 
she plays the game “Look! None of the other buildings gives you money except the house of granny. 
That’s a cheat!”. She recognizes a common behaviour of all the buildings in the game (pattern) and 
since ‘house of granny’ is a building should also follow. George, a student from group 1 says to his 
teammates “We can go in and out from the house of granny forever and never lose! Unlike all the other 
items of the game, this one has only positive effects on your score!”. George describes a different pattern 
from Maria which should also have been followed by this item as it is a pattern for all the items of the 

Stage Emerging CT skills 

Use Pattern Recognition, Automation 

Fix Pattern Recognition, Pattern Implementation,  
Automation, Abstraction 

Create Pattern Recognition, Decomposition, Pattern 
Implementation, Abstraction, Automation 



Constructionism 2018, Vilnius, Lithuania 

364 

 

game. Both students realize that even if a single item doesn’t follow the designed game pattern, it can 
easily destroy the gameplay. During the Fix stage students corrected these patterns in the data table 
values while some of the groups experimented with the patterns of other attributes. In this stage, they 
progressively passed from pattern recognition to pattern implementation which in the third stage became 
pattern construction. In the stage of mod creation, three of the groups constructed new patterns in the 
database values. One example comes from group 2 who created two categories of patterns as shown 
in Figure 5. The first category included patterns for each attribute by item category i.e. “The city points 
will have zero effect on the Joy variable. Hotels will increase it a lot, but Hostels or Motels will decrease 
it. Tourist sites will increase it a little bit“. For the design of this pattern, they modified accordingly all the 
values of one column (attribute) in the database and that’s why we called them ‘Vertical Patterns’. The 
other category included patterns of relations between attributes either for an item category or for all the 
game items. For instance ‘Tiredness will be Money/10 so that they are proportional’. These are the 
‘Horizontal Patterns’ as students applied the pattern to the related cells for each row (item) of the 
database. 

 

Figure 5.2 Patterns created in the database values (translated version of the game) 

From specific items to abstract classes 
In the beginning, students used the skill of abstraction combined with pattern recognition to identify 
categories of game elements such as items categories or code functions.  Later during the stage of 
creation, they firstly designed and then implemented their own abstract categories (classes) of items 
and layers in the game. We will present as an example the mod ‘School Survival’ from group 1. In this 
game, the player is a high school student and has to make choices related to school behaviour 
(miss/attend a class, sleep, solve an exercise, talk with a classmate etc.) Every choice may reduce or 
increase the five attributes: Joy, Boredom, Health, Knowledge and Danger. When this group was 
planning their mod, they described on their worksheet a region category with the name “Classroom”. 
Then they explained in the interview that “Classroom” is an abstract model that will help them for the 
creation of the school classroom layers because all classrooms must have some common 
characteristics. These were:  A background image that represents students in a classroom, 3 choices 
of actions an 1 point ‘Exit’ for returning to the corridor region. Moreover, the entrance to a classroom 
reduces the ‘Danger’ attribute. Students used this model to create three different classroom instances 
(Figure 6).  



Constructionism 2018, Vilnius, Lithuania 

365 

 

 

Figure 6. The 3 instances of the abstract category "Classroom" in the game 'School Survivor' 

In addition, they created three abstract categories for the actions according to their consequences, 
before they add the actual actions in the game. These were: High Risk Actions (They increase a lot the 
attribute Danger, decrease the attribute Knowledge but also increase the attribute Joy), Low Risk 
Actions (They increase a little the attribute Danger and decrease the Boredom) and Good Student 
Actions (They increase knowledge but also boredom and decrease Danger but also Joy). Then, when 
they wanted to add a new action they created it according to these three categories. They also tried to 
keep a balance between these three categories in the game.  

From simple descriptions to complex algorithms 
From the first to the last stage, students applied algorithmic concepts in order to describe, modify and 
develop game rules, with the most common being conditional statements (if..else), logical expressions, 
the sequence of commands, and variables in the form of game attributes. An important outcome for all 
groups is the gradual transition from a verbal description of game rules to their implementation with 
programming blocks. This process led students to generate meanings about programming and 
algorithmic concepts, but also to develop their automation CT skill. To elaborate on this outcome we will 
(again) use group 2 as an example who created the mod ‘Travelling in Europe’. During the first stage 
students detected and wrote down to their worksheet the basic rules of the game such as «If your health 
is lower than three you lose» «Every time you make a choice, it will reduce some of your four needs. If 
some of them become lower than zero then you lose». In this stage, students make a free description 
of the algorithmic sequence and of the conditional statement. Then in the Fix stage, they matched these 
rules to the relevant blocks of the game code. In this stage, they also made some small changes to the 
existed rules including modifications to logical conditions and the addition of an extra rule for the variable 
‘Hunger’. In this stage, they transit from the free algorithm description to the recognition and modification 
of the corresponding parts of the code. Finally, during the Create stage, they constructed new rules 
based on those they had already explored and modified. Some of the new rules were even more 
complicated than the initial ones regarding the use of the conditional statement. Figure 7 summarizes 
this gradual engagement in algorithm building.  



Constructionism 2018, Vilnius, Lithuania 

366 

 

 

Figure 7. Progressive engagement with the conditional statement 

During the create stage there was another interesting outcome for the algorithm building CT skill. While 
students were designing their mod they imagined and sometimes tested, possible scenarios of play to 
improve the game rules and flow. This led them to think the gameplay as an algorithm and to apply 
coding techniques such as event handling and error prediction both to the code but also to the database 
values. This was a complex and extensive procedure which required students to continuously switch 
between the three affordances (map, database and code) but also switch between the roles of designer, 
player and evaluator.  

In the example below, students of group 1 discuss the initial and limit values of the attribute “Danger”.  

S1: So, what should be the initial value of Danger (tab 2) 

S2: Let’s set it to 0 

S1:  But if you start with 0 and you choose the point ‘leave school’ first you will immediately 
lose…because…look (switch to the 1st tab)… “Leave School” gives +5 to Danger 

S2:   Yes ok. And why will you lose? 

S1: Because here (switch to 4th tab) we have programmed it to lose if Danger is greater or equal 
to 5 

S3: Well ok. We can just change the condition and make it greater or equal to 100 

S1:  Yes but not 100! It is too high. (Switch to 1st tab) All the items increase or decrease danger 
by 5-10 units. It is too hard for a player to reach 100. Make the limit 50.  

In the above episode, students switch between the three tabs trying to predict the possible sequence of 
play, thus possible executions of the game algorithm. Then they discuss on algorithmic concepts which 
apply to their program aiming to create a meaningful game. This process indicates a progress in 
automation skills and algorithmic thinking. Students not only have the knowledge to use the conditional 
statement, but they also express their ideas for it and implement it in a meaningful form for them.  

Conclusions and Discussion 

In this article, we explored the emerging computational thinking skills through the process of game 

modding with ChoiCo tool. We presented a case study in which students were progressively engaged 

in the three stages of modding “Use – Fix- Create Mod”. The modding activity was developed around a 

half-baked game, designed with two intentional bugs to urge students to change and extend it. The 

results of the data analysis revealed some significant outcomes regarding CT. First of all, it seems that 



Constructionism 2018, Vilnius, Lithuania 

367 

 

this gradual engagement in construction process acted as scaffolding for the development of some 

important computational thinking skills. While students are transforming from players to creators so does 

the way they apply CT skills. In the first stage students used CT skills to understand and analyze the 

game structure (pattern recognition, categorization) which in the next stages utilized for meaningful 

constructions (pattern generation, the creation of abstractions). Moreover, the analysis showed that the 

half-baked approach can contribute to game modding activities in terms of motivation but also guidance 

for the modifications. Especially for the transition from play to fix stage, the half-baked elements of the 

game worked as ‘trigger’ mechanisms for the students. After detecting the problematic behaviour they 

wanted to fix it according to their own solutions and to even to improve it with new ideas.  It also urged 

them to focus on specific game elements and guided them on avoiding the same mistakes in their mods.  

As emerged from the analysis, all of the three affordances of ChoiCo environment played a significant 

role in the development of students’ CT skills. The use of the map-based tool for the modification of the 

game scene, items and regional layers seemed to foster students’ perception and implementation of 

abstractions. In addition, the representation of game items and their properties in the form of a simplified 

database urged students to use, process and handle a big number of data. This led them to discover, 

match and apply patterns, reinforcing pattern recognition and pattern generation skills. The block-based 

programming involved students with algorithmic thinking and automation. The categorization of blocks 

according to their role in game design as well as the feature of special game blocks, facilitated the 

creation of complex programming structures for automating the game rules. The analysis also revealed 

some limitations which need further investigation. Students applied the skill of decomposition only during 

the third stage, even though it could have emerged earlier. Even in the third stage its presence was 

quite restricted and not by all teams. With respect to coding, even though students made extent use of 

the conditional structures, the use of other programming structures like repetition or internal variables 

was very limited. These outcomes indicate the need for redesigns in the modding activity with more 

focus given on the specific aspects.  

This study showed that game modding has significant potentials as an educational approach for 

fostering computational thinking skills. However, more research needs to be done in this field that would 

examine how the game genre and the game elements that are modified affect the development of such 

skills. Moreover, the results revealed that the integration of different affordances can provide a rich 

context for the development of CT skills. Thus, further research is necessary for designing and utilizing 

integrated designs for computational thinking, not only in the field of game modding but also in other 

areas that engage students in design.   

Acknowledgements 

This research has been financially supported by the General Secretariat for Research and Technology 
(GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 531) 

References 

Barab, S., & Squire, K. (2004). Design-Based Research: Putting a Stake in the Ground. Journal of the 
Learning Sciences, 13(1), p. 1–14. https://doi.org/10.1207/s15327809jls1301_1 

Barr D., Harrison J. & Conery L. (2011). Computational Thinking: A Digital Age Skill for Everyone. 
Learning & Leading with Technology 38(6), p.  20–23. 

Boytchev, P. (2015). Constructionism and Deconstructionism. Constructivist Foundations, 10(3). 

Brennan K. & Resnick M. (2012). New frameworks for studying and assessing the development of 
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational 
Research Association, Vancouver, Canada. p. 1-25. 



Constructionism 2018, Vilnius, Lithuania 

368 

 

El-Nasr M.S., and Smith B. K.. (2006). Learning through Game Modding. Computers in Entertainment 
(CIE) 4(1) p. 7. 

Geraniou, E. and Mavrikis, M. (2015). Building Bridges to Algebra through a Constructionist Learning 
Environment. Constructivist Foundations, 10(3), p. 321-330. 

Grizioti M, Kynigos, C. (2018) Game Modding for Computational Thinking: An Integrated Design 
Approach. In: Proceedings of the 2018 Conference on Interaction Design and Children. ACM, 2018 

Grover S., and Pea R. (2013). Computational thinking in K–12: A review of the state of the field. 
Educational Researcher 42(1), p. 38-43. 

Kafai B. Y & Burke Q. (2014). Connected code: Why children need to learn programming. Mit Press. 

Kynigos Chronis. 1995. Programming as a Means of Expressing and Exploring Ideas in a Directive 
Educational System: Three Case Studies. Computers and Exploratory Learning, diSessa, A, Hoyles, C. 
and Noss, R. (eds), Springer Verlag NATO ASI Series, 399-420.  

Kynigos Chronis. 2007. Half-baked logo microworlds as boundary objects in integrated design. 
Informatics in Education 6,2: 335–359. 

Kynigos, C., & Yiannoutsou, N. (2018). Children challenging the design of half-baked games: 
Expressing values through the process of game modding. International Journal of Child-Computer 
Interaction. Krauss J. & Prottsman K. 2017. Computational Thinking and coding for every student: The 
Teacher’s Getting-Started Guide. Corwin Press. 

Lee I., Martin F., Denner J., Coulter B., Walter A., Erickson J., Joyce M., and Werner L.(2011). 
Computational Thinking for Youth in Practice. Acm Inroads 2(1), p. 32–37. 

Moshirnia A. (2007). The Educational Potential of Modified Video Games. Issues in Informing Science 
and Information Technology 4, p. 511–521. 

Papert, S. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books. 

Yiannoutsou Nikoleta, Kynigos Chronis and Daskolia Maria.  (2014). Constructionist Designs in Game 
Modding: The case of learning about Sustainability, in: Proceedings of Constructionism 2014. 19-23 

Yucel, I., Zupko, J., & El-Nasr, M. S. (2006). IT education, girls and game modding. Interactive 
Technology and Smart Education, 3(2), p. 143–156.  

Weintrop, D., & Wilensky, U. (2014). Situating programming abstractions in a constructionist video 
game. Informatics in Education, 13(2), p. 307. 

Wing J. M. (2006). Computational thinking. Communications of the ACM, 49(3) p. 33-35. 

Wing J.M.(2008). Computational thinking and thinking about computing, Philosophical Transactions of 
the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(188), p. 3717–372 

 

  



Constructionism 2018, Vilnius, Lithuania 

369 

 

Programming Approaches to Computational 
Thinking: Integrating Turtle Geometry, Dynamic 
Manipulation and 3D Space  

Marianthi Grizioti , mgriziot@ppp.uoa.gr  
National and Kapodistrian University of Athens Educational Technology Lab, School of Philosophy, 
Faculty of Pedagogy, Greece 

Chronis Kynigos , kynigos@ppp.uoa.gr  
National and Kapodistrian University of Athens Educational Technology Lab, School of Philosophy, 
Faculty of Pedagogy, Greece 

Abstract  
During the last decade, coding has come to the foreground of educational trends as a strong mean for 
developing students’ Computational Thinking (or CT). However, there is still limited research that looks 
at coding and Computational Thinking activities through the lens of constructionism. In this paper, we 
discuss how the knowledge we already have from other thinking paradigms and pedagogical theories, 
such as constructionism and mathematical thinking, can inform new integrated designs for the 
cultivation of Computational Thinking. In this context, we explore students’ engagement with MaLT 
(Machine Lab Turtle-sphere)48, an online environment of our design that integrates Logo textual 
programming with the affordances of dynamic manipulation, 3D graphics and camera navigation. We 
also present a study on how the integration of the above affordances can promote constructionist 
learning and lead to the development of CT skills along with the generation of meanings about 
programming concepts.   

Keywords  
Logo geometry; computational thinking; programming; dynamic manipulation; 3D graphics 

Introduction 

Programming as skill and as a learning activity is connected to technological changes (the shift from 
web to web 2.0, society’s acquaintance with technology) and to cultural trends. Back in the 80’s, many 
schools showed great enthusiasm in teaching their students computer programming, while by the mid-
1990s schools turned away from programming, mainly because of a lack of subject-matter integration 
and a lack of qualified instructors (Noss & Hoyles, 1996). When software tools with dynamic 
manipulation and icon-driven technology appeared, programming was seen as a kind of unnecessary 
noise to doing interesting things with digital media (Kynigos, 2015). However, during the last decade, 
we are facing a big comeback of programming (Kafai,Bruke & Resncik, 2014) in a new context in which 
it is considered as an integral part of a new computational literacy.  An advanced view about computer 
programming has become popular; that every child can and should learn to write code as a way to 
develop their computational thinking. The idea of computational thinking that Wing described in 2006 
as ‘a set of thinking skills, habits and approaches that are integral to solving complex problems using a 
computer and widely applicable in the information society’, is now considered as a necessary supply for 
the 21st-century students (Barr, 2011; Kafai,Bruke & Resncik, 2014; Lee et.al. , 2012). However, there 
is still need for exploring pedagogical approaches and strategies for the acquisition and improvement 
of its skills (Brennan & Resnick, 2014).   

In this paper we argue that the challenge remains, both for designers and educators, to consider what 
kinds of learning processes and to what end students may engage with the new programmable media. 
It seems to be a good time, with all this enthusiasm surrounding computer programming, to utilize these 

                                                
48 http://etl.ppp.uoa.gr/malt2/  

mailto:mgriziot@ppp.uoa.gr
mailto:kynigos@ppp.uoa.gr
http://etl.ppp.uoa.gr/malt2/


Constructionism 2018, Vilnius, Lithuania 

370 

 

new opportunities for learning to code, with a constructionist approach, based on Papert’ s generic 
vision and ideas for learning (Papert, 1980). Constructionist design approaches for educational tools, 
aim to engage users of all ages in the construction of personally meaningful artefacts through 
programming (diSessa, 2001; Papert & Harel, 1991). To this end, we propose the approach of integrated 
constructionist designs in which programming is combined with other affordances forming a meaningful 
and enriched computational environment. The affordances are selected and implemented in a way that 
they engage students with scientific concepts and at the same time promote the development of wider 
skills, like these included in CT. In integrated designs, students use the different affordances, including 
coding, as means for self-expression, communication of ideas and design of personal artefacts. 

Rethinking Programming Approaches to Computational Thinking 
All this recent enthusiasm around Computational Thinking and ‘coding for all’, has led to a wide 
development of new educational software and applications that aim to engage students of all ages with 
programming. Block-based programming tools such as Scratch, Alice, ToonTalk and apps like Kodu 
and LightBot have become very popular and have attracted many young people, but also teachers and 
adults, to write simple programs with them. At the same time campaigns like the ‘Hour of Code’ and ‘EU 
code week’ are organized every year to introduce young students to programming.  

The research on computational thinking points out the importance of active engagement, construction 
and exploration in programming activities (Brennan & Resnick, 2014; Resnick, 2014; Stager 2014). In 
many cases though (with the exceptions of Scratch and Alice), students’ engagement with programming 
is attempted through a series of closed quizzes and puzzles with the “making” and the social elements 
being limited. In addition, block-based programming can also have significant limitations for older or 
more experienced students (Weintrop & Wilensky, 2015). On the contrary, former pedagogical designs 
like textual programming are left aside regarded as obsolete. This is confirmed by the fact that there is 
still limited research focusing on the Computational Thinking skills that can be promoted with textual 
programming like i.e. Logo language.  

The question that arises is how these ‘obsolete’ but yet deeply studied approaches, can contribute to 
the design of new coding tools by providing a strong theoretical background. For instance, a large 
number of studies have shown the benefits of Logo textual programming and the effectiveness of turtle 
geometry in offering rich mathematical experiences and encouraging the construction of meaning 
(Clements et al. 2007, Kynigos 1995, Papert 1996). We argue that if coding is seen as a new kind of 
expression and mediation of meaning, then it may be worthwhile investing on designing ways to make 
formalism functional and meaningful through its connection to other representational forms in a 
dependent way. New educational tools for programming could for instance maintain the basic design 
principles of conventional Logo-based designs and be enhanced with new technologies in parts which 
are meaningful for the learning process such as dynamic manipulation, a variety of what is programmed 
(e.g. robots, devices, digital objects with properties, behaviours and interactions in diverse fields), 3D 
representations etc.  In such tools, the development of learner’s skills would be achieved through 
authentically creative and constructionist activities and coding will be seen a vehicle to enhance them.  

Towards an integrated approach 
Computational Thinking is strongly connected with other known thinking paradigms such as 
mathematical thinking, engineering and scientific thinking and algorithmic thinking (Wing 2008, Hu 
2011). Thus, for the development of the integrated designs described above, it is quite important to 
investigate how grounded implementations and approaches from these paradigms may contribute.  

Let’s take for example the element of abstraction. Abstraction is considered by many researchers an 
important CT skill and the ‘mental tool of computing’ (Wing, 2006). However, the concept of abstraction 
and abstract thinking is not new at all. Abstraction and generalization are core concepts of mathematics. 
Despite the differences that mathematical and programming abstraction may have (Wing, 2008), the 
long year research and the theoretical constructs from mathematics education, can be a strong basis 
for the development of tools and methods that foster students’ abstraction skill.  An interesting method 
that comes from the world of the Dynamic Geometry Environments (DGE’s) is the dynamic manipulation 
of geometrical constructions. Dynamic manipulation helps students to understand the properties of 



Constructionism 2018, Vilnius, Lithuania 

371 

 

geometrical objects and generalize their rules and the relationships between them (Goldenberg & Cuoco 
1998, Psyharis & Kynigos, 2009). This is particularly interesting with respect to thinking about 
abstraction as a process of defining or approaching a construction as 'how it behaves when manipulated 
dynamically'. We argue that dynamic manipulation could also be beneficial in the context of 
programming abstractions and Computational Thinking, even though it has not yet been studied 
enough.  

Another example from mathematics that requires a number of mental skills is that of creating and 
manipulating 3D geometrical shapes. When students interact with 3D models they have to use spatial 
thinking which includes complex mental processes like the capability of understanding and recognizing 
the location and shapes of the objects, their relations to each other and their movement in space 
(Hauptman, 2010; Kynigos, 2007). To achieve that they usually apply skills like pattern recognition or 
decomposition which are also included in CT (Lee et al. 2011). Thus the programming and manipulation 
of 3D geometrical objects in a digital environment could also be a technique for supporting the cultivation 
of such skills.  

The above examples indicate that the integration of digital affordances and concepts from other fields 
like mathematics can possibly be beneficial for CT skills. In our research, we try to investigate and reveal 
the common elements between mathematical, algorithmic and computational thinking paradigms and 
study their possible development through such integrated designs. In the presented study we focused 
on four skills which are considered by many researchers across the literature, as an important part of a 
learners’ skillset (Lee et. Al. 2011; Krauss & Prottsman, 2017). These are a) decomposition, b) pattern 
recognition, c) abstraction and d) algorithm design. 

MaLT: Logo Programming of 3D dynamic representations 

In order to investigate the benefits of such integrated approaches to both programming knowledge and 
CT skills, we organized a study with MaLT (Machine Lab Turtlesphere), an online Logo-based 
application of our design that allows the creation, exploration and dynamic manipulation of 3D 
geometrical models with textual programming.  MaLT provides a learning environment that endorses 
the benefits and the strong theoretical basis of Logo programming but also extends it with new 
technological features in such ways that could enhance the development of CT skills.  

More precisely it implements the classic Turtle Geometry of Papert, extending it with the integration of 
the following three affordances: 1) The turtle becomes a sparrow. The designed Logo language supports 
the coding of 3D drawings by navigating a sparrow (instead of a turtle) in a 3D spherical space. This 
feature broadens the range and the complexity of objects that can be programmed with the Logo 
language. 2) The drawings become alive. MaLT implements a dynamic manipulation system for the 
Logo variables, allowing the animation of any 3D model that has been created by a parametric 
procedure (i.e. cube :x).  To use the dynamic manipulation the user clicks on any drawing on the scene 

and activates the “sliders” tool. This tool contains a number of sliders, one for every parameter of the 
Logo procedure that creates the clicked model, which can be varied between a max and min limit. The 
variation of each slider, will result in an immediate re-execution of the Logo procedure with the new 
input and thus to an animation of the model on the scene. The aim of dynamic manipulation in MaLT is 
to reinforce the process of abstraction by means of kinaesthetically causing the continuous 
transformation to a structure described formally as parametric to make better sense of how this may 
represent a generality, such as e.g. a property of a geometrical figure 3) The view becomes periscopic. 
The application allows navigation in the 3D space where the avatar moves with a periscopic camera. 
The navigation in 3D space requires a number of skills like perceptual constancy (the ability to recognize 
some properties of an object regardless of its size, position or color), spatial orientation (the ability to 
realize how an object would seem from a different point of view and recognize it even if it has been i.e. 
rotated or dispositioned), visual discrimination (the ability to compare multiple objects in space and 
recognize similarities and differences between them) and the perception of spatial relationships 
(Kynigos & Latsi, 2012; Lohman 1988).  



Constructionism 2018, Vilnius, Lithuania 

372 

 

 

Figure 2. The different affordances of MaLT: Logo programming, 3D graphics, Dynamic Manipulation and 
Camera Perusal 

There are three basic elements that comprise the MaLT environment are: The “command editor”, the 
“3D scene” and the” variation tool” (Figure 2). In the command editor, the user can write programs in 
order to navigate the avatar on the scene. The programming language of MaLT is based on MSW 
Berkeley Logo expanded with the feature of 3D graphical representations, including special commands 
for changing sparrow’s direction in the 3 dimensions (e.g. up 90), importing 3D objects while moving in 

space (e.g. cube 100), changing pen color and thickness (e.g. setpenwidth 4) etc.  The 3D scene is 

where the sparrow moves as the commands are executed, with the same logic as Papert’s turtle moves 
and draws on a 2D canvas. The scene contains a periscopic camera, with which the learner can 
navigate in the 3D scene and observe the created models from different points of view.  With the 
variation tool, the user can provoke dynamic changes to shapes created by the execution of a 
parametric command (e.g pyramid x w). The tool provides a number of sliders, one for every parameter 

of the specific procedure, which can be varied between a max and min limit. The above features make 
MaLT a rich computational environment which extends turtle geometry beyond classic 2D designs and 
uniquely leads it to the modern world of online sharing, 3D graphics and animation.  

The pilot study 

The integration of the above affordances can provide a new constructionist context for the development 
of computational thinking skills through the engagement with programming and mathematical concepts. 
To further investigate this we organized and conducted a study in a Greek junior high school. The aim 
of the study was to answer the following questions:  

 How the integration of the three affordances with Logo programming contributes to students’ 
development of computational thinking skills. 

 How students use and construct meanings about programming concepts while they 
collaboratively create and share artefacts with the above affordances. 

The total duration of the study was 9 hours divided into three 3-hour sessions and it was organized as 
part of the school’s mathematical club. In the study participated 9 students aged 13-15 years with small 
previous experience in Logo programming, high experience and interest in mathematical problems and 
no previous experience in 3D geometry. The students worked collaboratively in 4 groups of 2-3 in the 
school’s computer laboratory using one computer per group.  

The research method we used is that of Design-Based Research which is evolved from design 
experiments (Cobb et al, 2003) and includes the design of a pedagogical intervention and its evaluation 
in real classroom settings with the aim to refine the initial pedagogical design and to develop new 
theories. The research was carried out through repeated cycles of design and implementation, utilizing 



Constructionism 2018, Vilnius, Lithuania 

373 

 

every implementation as an opportunity for data collection, evaluation and review for the next design. 
Design-Based Research focuses mainly on the collection and analysis of qualitative data as the 
objective is to identify the main characteristics and the different facets of the designed intervention when 
implemented with students. 

Description of the activities 

For the purposes of the study, we designed a set of activities with MaLT which aimed to foster students’ 
computational thinking skills through creative construction with all of the three affordances. The activities 
were divided into main three phases.  

The first phase is more of an introduction to the environment, aiming to get students familiar with MaLT 
environment and its affordances through simple Logo coding tasks. They begin by designing shapes in 
2D, like a square, and create new functions. Then they pass to 3D space by using their 2D models to 
create 3D ones, like a cube. After that, they design ‘give life’ to their models by adding one or more 
parameters to their procedures so that they can manipulate them with the sliders of the variation tool, 
creating animations. 

At the second phase students design and program a dynamic cube model that animates smoothly from 
a 2D cube net to a 3D cube. Through this activity, students investigate the transition from two to three-
dimensional design and implement both mathematical and computational concepts. With respect to the 
mathematics, they have to use the concept of angle and rotation in space. With respect to programming, 
they explore the role of variables and constants in a program. They also have to think in an abstract 
way in order to design an algorithm that will produce the correct model for every input. The way they 
will follow to construct the model is open to the students and they have to decide it through 
experimentation with the environment and communication in their teams. There were no instructions 
given to them and the role of the teacher was more supportive. 

Finally, the third phase is quite more open as students have become familiar with the tool. Students use 
parametric procedures as building blocks to design a 3D animated drawing of their choice. This is the 
phase where we expect students to express their personal ideas and meanings through programming. 
To implement their idea they would need to use more complex programming concepts and also 
recognize and combine properties of different 3D objects. 

Data collection and analysis 

During the study, a set of data was collected for analysis that included screen capturing files, audio 
recordings of each group, teacher and researcher observation notes and files of students’ code at the 
middle and the end of each session. A qualitative analysis method was followed for the evaluation of all 
the data. More precisely, the transcribed audio files and observation notes were analyzed in Atlas.ti tool 
with a set of codes related to a) the computational thinking skills of abstraction, pattern recognition, 
decomposition and algorithm design, b) mathematical and programming concepts of the activities 
(variable, parameter, angle etc) and c) students’ interaction with the three affordances (i.e. slider use, 
creation of new function, camera rotation etc). From the analysis clusters of critical episodes emerged. 
As a critical episode, we consider as representative moments of the student’s interaction with MaLT 
affordances and of their engagement with CT skills. Moreover, the Logo codes of students were 
analyzed by comparing their progression from the first to the last session with respect to abstraction, 
pattern recognition and use of variables and repetition structures. 

Findings 

The analysis revealed that students applied the skills of abstraction, pattern recognition and 
decomposition especially during the second and third phases of the study. All of the teams recognized 
and implemented patterns related to the 3D shapes both in the scene and in the Logo code.  In addition, 
they deconstructed 3D complex models to smaller parts or to 2D shapes (i.e. the cube to squares) which 
then used again to create other models (i.e. a square pyramid). Finally, they programmed and designed 
abstract models which, with the help of the sliders, could generate a number of successive instances 
creating an animation on the scene.  



Constructionism 2018, Vilnius, Lithuania 

374 

 

Moreover, the students used and discussed programming concepts, with the most common being the 
variable as a parameter, the procedures and sub-procedures and the error handling of different inputs. 
Students made an extended use of the sliders tool for debugging their code but also for experimenting 
with the graphical outcomes of multiple parametric procedures on the scene. In this section, we present 
some characteristics examples from the analysis regarding both the emerging CT skills and also the 
applied programming concepts. In the presenting episodes we don’t use the real names of the students 
but randomly selected aliases.  

Uses of abstraction 

In the context of computational thinking, abstraction is described as the process of defining patterns, 
generalizing from specific instances and capturing of common characteristics or actions into one set 
that can be used to represent all other instances (Kafai, Bruke & Resnick, 2014, Krauss & Prottsman, 
2017). In our case, abstraction was detected mainly in the following cases:  

a) When students used the sliders to animate an existed parameter of their model 

b) When students decided to add a new parameter of animation to their drawing 

One characteristic example occurred during phase 2 when students designed a dynamic cube net that 
would be able to transform from 2D to 3D space by dragging the sliders. At this moment all groups had 
already programmed non-parametric 3D cubes and 2D cube nets. Thus, they had to find a more abstract 
solution that would combine the 3D and 2D model to one. According to the video and audio analysis, 
students worked in two ways.  

 

Figure 3. Transition from cube instance to cube net with the use of variation tool 

Two of the groups decided to start by analysing the 3D cube shape on the scene and how it can be 
‘unfold’, while the two others begin by the code of the 2D cube net. One example of the first case comes 
from group 1. In that group students first recognized two important properties of the created cube shape: 
its size and its dihedral angle (the angle between cube edges) which is always 90 degrees. After that, 
they mapped these two properties to the commands of ‘cube’ program mentioning that the commands 

forward 100 and square 100 are related to cube’s size while the command up 90 is related to its 

dihedral angle (Figure 3). Then they replaced the number 90 with the variable :y in all the up 90 

commands because as S1 said: “By changing the up angle we will be able to unfold the cube”. However, 
their initial cube was created by only 4 squares resulting to a wrong cube net. Thus they added two 
extra squares to the procedure.  

In this approach, we can see the implementation of abstraction both in the categorization of the cube’s 
properties (size, angle) and also in the replacement of the appropriate numbers with variables. Students 
mapped the properties of the 3D representation to the code and decided what is important and what is 
not for the model they wanted to design.  They also realized that the outcome of a procedure may seem 
right for a specific input (cube) but not for all the others (cube net).  

Two of the groups followed a different method for the same problem, starting with the static 2D cube 
net instead of the cube. They analysed the shape of the scene and the code on the editor, in order to 
decide where in their code should add an extra command. As Helen from group 2 mentions “we should 
add an up command right before every square so that the bird would turn up some degrees before it 



Constructionism 2018, Vilnius, Lithuania 

375 

 

draws the next square”.  Helen and her teammate tested their idea by adding the up 90 command in 

their code, then change it to up 0, and then to up 45 to see if their model is correct for different angles. 

When they had found the correct model they generalized their algorithm by replacing the numbers of 
up command with variables.  

T: Why did you write up 45? 

H: Because when we wrote up 90 we couldn’t see clearly what’s wrong 

A: And with the up 0 it was 2D and the problem was not visible. 

H: Yes… And with that number, we can see better how it would fold when it will animate with the slider. 

 

Figure 4. Creating an abstract model of the cube that would be able to animate in space 

The two girls try to build an abstract cube model, by creating and comparing different instances of the 
same cube, like the frames of an animated picture. Then they create an abstract parametric procedure 
that generates all of these instances and they test it by sliding the slider of the parameter. 

In both cases, the final result, which was a parametric procedure that produces any possible form of the 
cube model between 2 and 3 dimensions, is a product of abstract thinking as students had to create a 
general model from two static instances (cube, cube net). This process demands to recognize the 
variable properties of the graphical model, match the properties with the commands in the code and 
generalize the appropriate commands with the use of variables. In addition, through that process, they 
realize that in an abstract representation, the outcome should be correct for any possible input. During 
this process, students made an extended use of the variation tool in order to change the values of the 
parameters and to cause the animation to their 3D model. 

Pattern Recognition 

Pattern recognition as a skill of computational thinking is the ability to identify and match similarities 
(patterns) between different items as a way of gaining extra information. In our study students 
recognized and used patterns with respect to the objects’ properties and behaviours in the 3D space.  

After Helen and Alice had finished with their dynamic cube net model, they had some extra time and 
the teacher asked them to decide what they want to do next.  

 H:  “I was thinking to make a pyramid… I tried to create one at home but it was difficult with the 
angles etc” 

 A:  “We could try to make the net of a pyramid first which is easier and then put a variable to fold 
it like we did with the cube” 

In the above conversation, Alice finds common patterns between the two 3D objects: their dihedral 
angle that transforms them from 2D to 3D space.  

The presence of pattern recognition was even more visible during the third phase when students had 
to combine different 3D models as building blocks to program a 3D scenery. We will use as an example 



Constructionism 2018, Vilnius, Lithuania 

376 

 

the 3D house that was created by group 3 as part of their scenery. For the creation of the procedure 
house, students used as building blocks the procedures “pyramid :x :w”, with :x being the size of 

pyramid’s base and :w  the pyramid’s height, and “cube :a”, where :a was the size of cube’s edge. 

First, they programmed a non-parametric procedure for the house in which they used the sub-
procedures pyramid and cube with specific numbers as inputs. However, as they continued with their 
drawing they decided that a parametric house procedure would be more appropriate for implementing 
their ideas.  Thus, they used the sliders to recognize the common patterns between the parameters of 
the two sub-procedures and how they could use them in their code. During this experimentation with 
the sliders, they realized that the  cube’s parameter :a and the pyramid’s parameter :w should be the 
same variable in the house procedure because the base of the pyramid was attached to the top side of 
the cube. They also added a variable for the height of the house so that they could create a house of 
any size in their drawing.  

G: Ok lets put some variables to animate the house. Let's write 

here… pyramid…what is the first parameter of the pyramid 

procedure? 

C: Move the sliders to see what each parameter does 

George moves the sliders of pyramid procedure 

C:       So, the first one is the base and the second the height 

G Ok.. so… the pyramid’s base must be the same with the side 

of the cube 

C It is cube 70 

George points on the shape with the mouse 

G This must be variable :a for example and this must also be :a. 

Do you understand? 

C They are both 70 

G Yes that’s what I am saying. To replace the 70 with the same 

variable 

 

 

Figure 5. Experimentation with the variation tool for the pyramid function 

In the above process, we can see the presence of both abstraction and pattern recognition skills. 
Students observe the common properties of cube and pyramid models (patterns) and then generalize 
them to the form of variables in order to create a relation between the two 3D models. What is important 
in the above episode is that George recognizes the pattern by looking at the drawings in the 3D scene 
(“the pyramid’s base must be the same with the side of the cube”) while Christina notices the pattern in 
the code (“They are both 70”). This indicates that the different affordances that MaLT offers can urge 



Constructionism 2018, Vilnius, Lithuania 

377 

 

students’ abstract thinking by allowing the recognition of patterns simultaneously in the Logo code, the 
3D scene and the sliders tool. 

The concept of parameter 

The combination of Logo programming, 3D graphics and dynamic manipulation tool seemed to urge 

students generate and discuss meanings about programming concepts. More precisely, students 

engaged extensively with the concepts of procedural programming and the use of a variable as a 

procedure’s parameter. Two group also used a repetition structure (repeat) and one group implemented 

a counter by using a local variable.  Below we present a characteristic episode that occurred during 

phase 3 with respect to the use of parameters. At that moment George and Christine from group 3 had 

already programmed a parametric procedure named “house :width :height” which created a 

dynamic house by calling the sub-procedures “pyramid :x :y” and “cube :a”. At the moment they 

called the sub-procedures as “pyramid :width :height” and “cube :width”. In the following 

dialogue, students express their ideas about combining the input parameters of the two sub-procedures. 

C: I was thinking to make the height of the pyramid to be proportionate with the height of the cube. 

Like pyramid :width :height and cube :height*2 

G: No…I don’t think it’s a good idea because then we could not do much…we wouldn’t be able to 

create a big variety of houses with the animation 

C: Oh! What about not having two parameters in the house but only one, the width one? And then 

call the pyramid with both inputs as  :width? 

G: Or…Maybe the one :width and the other :width/2 

C: Yes and then the roof would be related to the cube like the double of it width*2 or the half 

width/2, width/3 etc … And it would look nice with the sliders’ animation 

In this example, we can see the two students expressing ideas around the concept of the variable which 

is quite important in programming parametrical procedures. They seem to situate the concept of passing 

variables as inputs between procedures and how in that case variables maintain their numerical value. 

They also experimented by merging two parameters in one and creating the same procedure with a 

different number of parameters but with the same output. It is interesting how the dynamic manipulation 

affordance affects their discussion by providing an imitate animation of all the procedures.  In the end, 

they created four alternates of the procedure “house” which had the exact same code and differ only on 

the number of their parameters and how they called the sub-procedures. The graphical result on the 

scene included four animated houses each one with different properties, as they are depicted in the 

table below.  

 

 

  

2 Variables  
To house1 :width 
:height 
cube :width 
pyramid  :width 
:height 
end 

2 Variables 
To house2 :width 
:height 
cube :width 
pyramid :width/2 
:height 
end 

1 Variable 
To house3 :width 
cube :width 
pyramid :width  : 
width  /2 
end 

1 Variable  
To house4 :width 
cube :width 
pyramid  :width/2 
:width 
end 

Figure 6. Different uses of parameters for the creation of four different house models 

 



Constructionism 2018, Vilnius, Lithuania 

378 

 

Discussion and Conclusion 

In this paper, we explored an integrated design in which Logo programming is combined with 3D 
geometry, navigation in space and dynamic manipulation of the parametric models. Our aim was to 
investigate how this integration of programming and mathematical concepts can be beneficial for the 
development of important CT skills.  In this context, we conducted a 9-hour pilot study with 7 junior high 
school students who got engaged with programming activities in MaLT digital environment. During the 
study students designed from simple to more complex dynamic 3D models and drawings using the 
different affordances of the environment. The analysis of the data showed that the combination of the 
three affordances of MaLT urged students to apply CT skills in an authentic context and to connect them 
with different representations. For instance, during the design of the animated cube net, students 
engaged with the concept of abstraction not only in their code (replacement of constants with variables) 
but also in the animation of the 3D model with the sliders (by moving any slider the model should animate 
smoothly between the instances of a cube). Furthermore, the dynamic manipulation feature of the 
sliders offered a strong tool for code debugging, as it allowed students to experiment with an unlimited 
number of inputs and immediately connect the algorithm result to the real-time animated model.  

However, apart from the use of variables as parameters, there were limited results related to other 
programming concepts such as iteration or conditionals. In addition, even though students used 
programming concepts in all of the three activities, the majority of critical episodes related to CT skills 
emerged during the third activity in which students freely designed their personal 3D drawing. This fact 
indicated the need for including more open and creative activities to our next study. This is also an 
interesting outcome for other designs and activities that aim to reinforce students CT skills and 
reinforces the limitations of closed tasks and quizzes.  Our future plans include a large-scale study 
which will focus on the emerging CT skills from students’ engagement in a variety of activities with 
MaLT. We also plan to include block-based programming in the same environment so that we can make 
a comparison between the two coding approaches.  

We believe that the integration of different affordances can be a strong vehicle for the development of 
CT but also a new way to combine programming and mathematics in a meaningful context. The results 
of this study may inform other integrated design, contributing to the ongoing seek of strategies for 
promoting Computational Thinking for all students.   

Acknowledgements 

This research has been financially supported by the General Secretariat for Research and Technology 
(GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 531) 

References  

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what 
is the role of the computer science education community?. Acm Inroads, 2(1), 48-54. 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of 
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational 
Research Association, Vancouver, Canada (pp. 1–25). 

Clements, D. H., Battista, M. T., Sarama, J., Swaminathan, S. 1997. Development of students' spatial 
thinking in a unit on geometric motions and area. The Elementary School Journal, 98(2), 171-186. 

Cobb, P., Confrey, J., diSessa, A., Lehrer, P.,Schauble, L. Design. (2003). experiments in educational 
research. Educational Researcher, 32(1), 9–13. 

diSessa, A. 2001. Changing Minds: Computers, Learning and Literacy. USA: MIT Press. 

Goldenberg, E. P., & Cuoco, A. 1998. What is Dynamic Geometry? In R. Lehrer, & D. Chazan (Eds.), 
Designing Learning Environments for Developing Understanding of Geometry and Space (351-368). 
Mahwah, NJ: Lawrence Erlbaum Associates.  



Constructionism 2018, Vilnius, Lithuania 

379 

 

Hu, C. (2011). Computational thinking: what it might mean and what we might do about it. In 
Proceedings of the 16th annual joint conference on Innovation and technology in computer science 
education (pp. 223–227). ACM. 

Kafai, Y. B., Burke, Q., & Resnick, M. (2014). Connected code: Why children need to learn 
programming. Mit Press. 

Krauss J.& Prottsman K. (2017). Computational Thinking and coding for every student: The Teacher’s 
Getting-Started Guide. Corwin Press. 

Kynigos, C. (1995). Programming as a Means of Expressing and Exploring Ideas in a Directive 
Educational System: Three Case Studies. In diSessa, A, Hoyles, C. and Noss, R. (Eds) Computers and 
Exploratory Learning, , Springer Verlag NATO ASI Series, 399-420. 

Kynigos, C. (2015). Constructionism: Theory of Learning or Theory of Design? In Selected Regular 
Lectures  from the 12th International  Congress on Mathematical  Education Sung Je Cho (Eds) 
417- 438, Springer International Publishing Cham Heidelberg New York Dordrecht London, Switzerland 
2015. 

Kynigos, C., & Latsi, M. (2007). Turtle’s Navigation and Manipulation of Geometrical Figures 
Constructed by Variable Processes in a 3d Simulated Space, Informatics in Education,  6(2), p.1–14 
Institute of Mathematics and Informatics, Vilnius. 

Lee I., Martin F., Denner J. et.al. (2011). Computational thinking for youth in practice Acm Inroads, 2(1), 
32–37.. 

Lohman, D.(1988), Spatial abilities as traits, processes and knowledge , in R. J. Sternberg (Ed.), 
Advances in the psychology of human intelligence (Vol. 4). Hillsdale, NJ: LEA. 

Noss, R., Hoyles, C. (1996). Windows on Mathematical Meanings. Netherlands: Kluwer academic 
Publishers. 

Papert, S. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books.  

Papert, S & Harel, I. (1991). Situating Constructionism. In: Papert, S, Harel, I. (Eds) Constructionism 
Norwood, NJ: Ablex Publishing.  

Psycharis, G. , Kynigos, C. (2009). Normalising geometrical figures: Dynamic manipulation and 
construction of meanings for ratio and proportion. Research in Mathematics Education, 11(2). 149-166 

Resnick, M. Give P’s a chance: Projects, peers, passion, play. In: Constructionism and creativity: 
Proceedings of the 3rd International Constructionism Conference. Austrian Computer Society, Vienna. 
2014. 13-20 

Stager, G. (2014). This is Our Moment In: Constructionism and creativity: Proceedings of the 3rd 
International Constructionism Conference. Austrian Computer Society, Vienna. 2014. 

Weintrop, D., Wilensky, U. (2015). To block or not to block, that is the question: students' perceptions 
of blocks-based programming. In Proceedings of the 14th International Conference on Interaction 
Design and Children 199-208. ACM. 

Wing J. M. (2006). Computational thinking. Communications of the ACM, 49(3) p. 33-35. 

Wing,J.M. (2008) Computational thinking and thinking about computing, Philosophical Transactions of 
the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (1881) 3717–372  



Constructionism 2018, Vilnius, Lithuania 

380 

 

Modeling Time 

Kit Martin, kitmartin@u.northwestern.edu  
Northwestern University, USA 

Gabriella Anton, gabriellaanton3.2020@u.northwestern.edu  
Northwestern University, USA 

Abstract 
We held a two-day workshop where eight 5th graders constructed historical simulations in Unity. We 
situate the work in the theoretical positions of constructionist history, figured worlds, and narratives. We 
find that students could use Unity to make figured worlds, discussing their construction and the origins 
of the sources they used to make the environments. This constructionist learning environment 
highlighted aesthetics and collaboration.  

Keywords 
History; constructionism; unity; learning environment 

Introduction 

Many people are interested in history, it just may not be the history presented in classrooms (Kelly, 
2013; Matthews, 2016). Educational researchers argue that what individuals believe about the past is 
informed by experiences outside the class (Wineburg, 2001). Regardless of their interests, research 
has shown students can benefit from an investigative inquiry-based approach to studying history 
(VanSledright, 2002). This approach differs from Lee and Dickinson’s (1996) depiction of teaching 
history in primary school, where the primary focus was on the veracity of facts. Their research brought 
timely attention to the purpose and quality of history teaching, what students should attain, and in what 
order, along with realistic expectations of children studying the past. They concluded that the focus on 
facts can distract from the more important work of validating historical arguments. Common Core 
Standards in History/Social Studies has advanced history education through integration of standards 
regarding key ideas, craft and structure, and integration of knowledge and ideas (Common Core, 2010). 
These advocate that students should progressively analyze, evaluate, and critique the perspective, 
claims, and reasoning of historical authors. While these standards situate learners as critical consumers 
of history, they do not encourage learners to produce their own historical texts or arguments 
(Herrenkohl, and Cornelius, 2013). In short, historical pedagogy traditionally focused on the veracity of 
facts, but with the move to online fan-based history, and the idea that history is made, not known, 
pedagogy should shift towards validating arguments and be led by investigative inquiry.  

Current trends in New Media studies seek to capture the everyday practices of people engaging with 
historical content, often focusing on the ways that historical media is understood, critiqued, 
deconstructed, and reimagined (Matthews, 2016). These studies showcase the ways in which people 
actively construct personal narratives using historical media and texts, and then share these narratives 
in online communities. Other scholars studying everyday practices focus on the ways in which people 
engage in historical content through historically themed video games, like Civilization, Assassin's Creed, 
or Call of Duty (Squire, 2004). Researchers have shown that players can meaningfully engage with 
historical content through playing historically situated games (Squire, 2004; Bogost, 2007; Chapman, 
2013). Ultimately, both threads suggest that new media content that are historically themed provide a 
means of creating shared artifacts that allow people to build their own understanding that they can share 
with others and thereby people together and can craft historical understanding.  

In this paper, we extend the argument for engaging with history through new media, suggesting that 
construction of historical artifacts with new media can be conceptualized as a historical practice situated 
in the constructionist history tradition we describe below. We present a constructionist design and study 
of an informal learning environment, in which learners were encouraged to construct historical 
simulations using the Unity game engine. We argue that a constructionist design facilitates 



Constructionism 2018, Vilnius, Lithuania 

381 

 

constructionist history practices, including historical sourcing, the development of mental models or 
figured worlds, and the creation of personal historical narratives, through the construction of artifacts 
that externalize mental models and necessitate learners to concretize their thinking.  

Constructionist History 
In this paper, we present historiography from the constructionist history lens as studied by Wineburg 
(1998), White (1982), Lowenthal (1992), Davis (1975), and Foucault (1970). Historians, like children 
working in a constructionist learning environment (Papert, 1980), use mental models to produce 
intuitions about their subject matter (Schnotz & Bannert, 2003; Schnotz and Kuschner, 2008). White 
argued that putting yourself in the shoes of agents lets you see the world from their perspective: 

The imagination, however, operates on a different level of the historian's consciousness. It is present 
above all in the effort, peculiar to the modern concept of the historian's task, to enter sympathetically 
into the minds or consciousnesses of human agents long dead, to empathize with the intentions and 
motivations of actors impelled by beliefs and values which may differ totally from anything the historian 
might himself honor in his own life, and to understand, even when he cannot condone, the most bizarre 
social and cultural practices. (White, 1982, p. 123) 

Long dead agents seem to be better understood when one takes their perspective. The process of 
putting oneself into agents’ perspectives motivates constructionist thought. For example, students 
practice geometry from the perspective of the agent: drawing triangles by directing an agent to take a 
series of turns (Papert, 1980). In history, this is called “putting oneself in the place of past agents” (White, 
1982, p. 123). Natalie Zemon Davis (1975) said in order to defend taking historical agents’ perspectives, 
“We, current historians of popular culture in preindustrial Europe, have a strong streak of interest in the 
people. But I am not sure we really respect their ways very much; and this makes it hard for us to 
understand their lives, just as it was for our learned forebears” (p. 266). Cronon posited that “to recover 
the narratives people tell themselves about the meanings of their lives is to learn a great deal about 
their past actions and about the way they understand those actions (p. 1369). Baron (2016) put the use 
of contextualization pragmatically when he argued that through the use of prior knowledge stimulated 
by historical imagery in concert with new information, college students — and other historians, we would 
contend — build mental models of historical eras (Baron, 2016, p. 17). Foucault (1970) argued that 
these narratives are what give order to the past: “History gives place to analogical organic structures, 
just as Order opened the way to successive identities and differences” (p. 219). That historians and 
constructionist tinkerers are both engaged in this same perspective-taking is a powerful motivator to 
build an immersive constructionist historical learning environment. 

Frames and Discourse 

When children make games, as in Vygotsky’s (1978) depiction, they assign new meanings to common 
objects. For example, behind the couch becomes the robbers’ den. The broomstick becomes the 
cowboy’s horse. Through these sign manipulations, meanings of one social setting are mapped onto 
another imagined place. This remapping is the heart of the notion of figured worlds (Holland et al, 1998). 
The process also has a dissociative element. People learn to “detach themselves” (Holland et al, 1998, 
p. 50) from their experienced physical surroundings and enter an imagined play world. In this world, 
people use collectively developed signs and symbols (Vygotsky, 1978). For example, a prop as simple 
as a stick might launch a child into a world as a cow wrangler riding horseback. For us, these imagined 
worlds are similar to the historical practice of stepping into the historical agents’ shoes. In our 
implementation, we can see these symbolic remappings (figure 1) as children remixed digital artifacts 
to make imaginative use of visual primitives, such as a Malian town, an ancient Chinese palace available 
for free online, or a simple golf ball model becoming boulders. 



Constructionism 2018, Vilnius, Lithuania 

382 

 

 

Figure 1. Mali, Ancient China, rolling hills of an imagined landscape decorated with tennis balls as boulders, and 
Ancient Egyptian monuments were some of the historical primitives students used in their constructs. 

Narratives 

These figured worlds can be contested. Cronon (1992) shows that narrating the primary sources affects 
those documents’ meaning. Narrative choice matters because the same events can have different 
meanings. Cronon uses the example of different perspectives on the Dust Bowl. He shows how the way 
“facts” are presented legitimized and discredits. Historical narrative “sanctions some voices and silences 
others” (Cronon, 1992, p. 1350). Moreover, the narrative modes people use to order stories have a 
subtle effect. Particular archetypes of story affect the presentation of history. Cronon presents the two 
archetypes of improvement and tragedy that were noticeable in depicting the Dust Bowl. Improvement 
narratives argue that the march of civilization, though ever upward, has some setbacks, but will improve. 
The tragic type of story argues that society needs to act differently, otherwise calamities like the ones 
presented will happen again. From the same set of historical sources, historians of the time narrated 
both types of stories. 

These types of stories order genres of depicting the past, such as the long struggle to settle the west 
that erases the Native American experience and demands continuous improvement. These are 
ascending and descending narrative voices, and they order not just individual authors, but generations 
of writers. He points out that the progressive narrative was opposed in the Dust Bowl by New Deal 
thinkers, who used tragedy in their tale to “construct their stories so as to place themselves on the center 
stage” (Cronon, 1992 p. 1361). This pitted notions of linear progress against statist constructs of 
centralized control. Cronon uses these examples to argue for the power of history to “reframe the past 
so as to include certain events and people, exclude others, and redefine the meaning of the landscape 
accordingly” (p. 1364).  

Like sculptors cutting stone, historians choose which parts to leave in, how to shape them, and how 
best to present the subject.  Though history may not be intrinsic to the universe, it is fundamental to 
how we humans organize our experience (Cronon, 1992 p. 1368). Cronon gets to the fundamental 
challenge of postmodernist thought on viewing the past. If our choice of narrative reflects just our power 
to choose a proffered version of reality on a past event, an event that has no ability to prevent our 
interpretation, then what is left of history? From this question he poses three axioms that good history 
must follow — and we see these applying regardless of modality — (1) history does not lie intentionally, 
(2) history exists within the natural world, and the rules of that system form a natural check on what we 



Constructionism 2018, Vilnius, Lithuania 

383 

 

can tell (without obvious fabrication), and, (3) good history exists in a community that others with more 
knowledge than ourselves can critique our artifacts and therefore there is a community check. As 
Cronon (19’92) said, “We tell stories with each other and against each other in order to speak to each 
other” (p. 1374). Lived worlds then are organized around figured worlds, and figured worlds grant 
influence to players that they can use in either one (Holland et al, 1998). 

Constructionist Digital History Learning Environment  
Throughout history, humans have consulted artifacts, such as manuscripts and statues side-by-side 
with the orally passed concepts to construct history. From Aristotle to Howard Zinn, we have looked to 
sources of information about the past to develop new ways of viewing our humanity, our present, and 
our future. This practice’s importance to history is clear from the focus of common core standards on its 
accurate and proficient implementation.  

Ever since we started discovering our ancestors’ cave paintings, we have questioned our past: Who 
drew it? What does it mean? These questions lead us to even more questions about what happened 
before us, and we use this information to rhetorically justify our future actions. The battle over who owns 
history is endless; because we spend so much time with rhetoric, we sometimes forget its powerful 
sway over our lives. In the rest of this paper, we present a pilot implementation of a constructionist 
learning environment of history where students can practice the skills of considering, comparing, and 
validating historical sources. This implementation rests on the idea that Historiography is a contest over 
what history is, why it matters, and for and through who. It asks, on whose authority? In other words, in 
this curriculum we posit a design that leverages a fact of history. It is constructed (White, 1982; Cronon 
1992; Davis, 1975; Lowenthal, 1998; Foucault, 1970). We argue utility in highlighting the constructed 
nature of history and in providing venues for learners to construct and share their own narratives of 
historical events. This classroom design builds on earlier attempts to make history in digital 
environments (Squire, 2004; Bogust, 2007; De Freitas, 2006; Chapman, 2013; Spring, 2015; Uribe-
Jongbloed, Scholz, Espinosa-Medina, 2015). To support this intervention, we will explore how students 
engaged with the past and how they collaboratively built history. This work acknowledges historians’ 
traditional apathy for digital history (Chapman, 2013). 

Design of the History Simulation Course 

From a computer or a textbook, to a pencil and a compass, or a curriculum and a teacher, people use 
tools to learn. Constructionism flips the traditional way of learning, by looking at how creating the tool, 
or artifact, helps the builder form a deeper understanding than simply engaging with the learning tool. 
Papert (1987) coined the name constructionism as mnemonic to describe a species of constructivist 
thought. It focuses on the benefits of learning from the external construction of an artifact beside the 
internal construction of a mental model or framework. Papert explored its deep connection to computer 
programming especially how taking a perspective improves learning and facilitates deeper thinking. The 
field advanced and extended the approach (Papert and Harel, 1991; Wilensky, 1999; Wilensky 2001; 
Peppler and Kafai, 2007; Blikstein and Wilensky, 2009; Ares, Stroup and Schadmen, 2008; Eisenberg 
2007; Worsley and Blikstein, 2013).  

The ideas came into the public eye after Papert published his seminal work Mind Storms: Children, 
Computers and Powerful Ideas (1980). Since this time, constructionist principles contributed to many 
powerful tools for education (i.e., Wilensky, 1999; Resnick et al. 2009). For instance, designers deploy 
these environments to make mathematics and scientific exploration tools that afford learners the ability 
to act in sequence or simultaneously on multiple representations of a phenomena (Schwarz and 
Hershkowitz, 2001; Kaput, 1992). This approach allows for the comparison of different analogies or 
meanings, which allows students to derive their own order to their knowledge, which is deeper than 
isolated facts.  A motivation for this work is that “Research has shown that many of children’s best 
learning experiences occur when they are engaged in designing and creating things, especially things 
that are meaningful to themselves or others around us” (Papert, 1993). In other words, open-ended 
play, around complicated ideas, restructures the means learners employ to acquire knowledge. 
Therefore, the flipped approach can aid in knowledge acquisition. 



Constructionism 2018, Vilnius, Lithuania 

384 

 

We approached the design of the environment by leveraging the power within constructionist learning 
environments. We use the pedagogical approach to reimagine history education. More so, we argue 
that the combination of the two may allow learners to more meaningfully engage with history, as they 
can virtually construct the figured worlds of history through computer modeling/game design. 

In designing the course, we created design principles taken from these two fields. First, we sought to 
provide learners the opportunity to construct models and games in the context of history with granularity 
and structure of their choosing. Second, we sought to constrain the experience through the “primitives” 
that students could access during their exploration. Third, we sought to support flexibility in how learners 
used primitives (Figure 1). Fourth, we aimed to provide learners an authentic tool that would allow them 
to create high-fidelity representations of their figured worlds of history.  

We selected the Unity Game Development Engine as the software for the course. While there are other 
game development engines or software available for the construction of new media, Unity provides the 
opportunity for learners to use community developed 2D and 3D assets, or visual primitives, in their 
constructions. David Helgason, Nicholas Francis, and Joachim Ante created Unity. Now it is one of the 
world’s largest creative communities and the number one game development platform as measured by 
installations worldwide. The environment is free and has all the tools for students and educators to 
produce high quality simulations fast and move on. Though intended for production, the authoring 
environment itself is a highly constructionist learning space in which builders can see their vision quickly 
using prefabricated assets. The ones we used were mostly free and coupled with easy-to-use code. 

To construct a historical time period, participants in our intervention chose periods of time they found 
interesting, sought out images of their period of time using Google Image search, and searched Unity 
3D’s online asset store for free 3D assets that aligned with their understanding of the period. Though 
students’ understanding of the time period is subject to misunderstanding, this plethora of 
historiographical views is exactly what the Common Core standards advocate are required in a 
competent historian. Though the intervention was short, in this constructionist project students 
participated in historical practice: evaluating and incorporating sources to present their understanding 
of a historical period. We present our immersive historical simulation as one way to create a 
constructionist history learning environment.  

Methodology 

The historical modeling course took place over a weekend enrichment program. We collected pre-, mid-
, and post-interviews. Additionally, we captured video of the entire two-day intervention. We had 
students screen capture pictures and videos of times during their construction they found 
interesting.   We collected the games they created, and screen shots of their process. We conducted 
interviews with students to understand their motivations as they built in paper, in the video game engine, 
and with each other. Additionally, we coded the data to find moments where students engaged in the 
core themes including constructionism, collaboration, and use of historical sources. 

Day 1  

• Intro to History, Games, Modeling  

• 2D platformer game  

• Phase 1: building level 

• Phase 2: adding historical images 

Day 2 

• Introduction to 3D games  

• Physical modeling of game environments 

• 3D design  

• Showcasing Constructions 



Constructionism 2018, Vilnius, Lithuania 

385 

 

Results 

We will look first at the results our constructionist design approach afforded. Students created playable 
games that allowed flexible exploration of the concept. They were active in requesting additional 
information and this allowed students to build on each other’s work, but each created with an individual 
twist. Then we will look specifically at the way students used sources in their design and implementation. 
The results will show that some students engage historical practices, including evaluating sources, to 
construct their history simulation in pairs using free resources online, such as Google Images for 
references of pyramids and free 3D assets. 

Constructionism Environment 
Learners were successful in creating playable games of varying aesthetic, mechanic, and dynamic feel. 
The experience with Unity required more scaffolds or constraints than a software explicitly designed for 
use with novice designers but also allowed for flexible design and provided dynamic feedback. Students 
could amend their work directly after visual inspection of their creations if they discovered a bug or if 
something in their design did not look as expected. 

The scaffolding of the course provided learners with shared basics and the flexibility to explore 
components of the game. Seen in Figure 2, L created a platformer with a focus on narrative. She sent 
a robot back to prehistoric time to thwart evil, time-traveling scientists’ attempt to kill the dinosaurs.  

 

Figure 2. L coded a narrative into her game: a time traveling robot saves the dinosaurs from evil scientists. 

This narrative touches on the death of the dinosaurs and added the element of a time-traveling villain. 
In order to create her time-traveling robot, L sought out support with coding text when the character got 
to particular key frames in her platform. This is one example where a student wanted to introduce a 
narrative into the simulation world through code.  



Constructionism 2018, Vilnius, Lithuania 

386 

 

 

Figure 3. Stylized prehistoric era where the appeal of jumps was paramount in design. 

Meanwhile, M designed a platformer with a natural aesthetic. In her platformer high-resolution trees 
rustle in the wind as the time-traveling robot climbs a prehistoric hill (Figure 3). She enjoyed the natural 
elements in the world she created and spent a lot of time timing jumps so that when the robot moved it 
was the most visually appealing. Both of these creators largely worked independently after the teacher’s 
initial introduction to the world of Unity game creation. Innovatively, M’s use of 3D elements such as the 
rustling trees into the 2D design created a spectacular bridging between the primitives she could 
download from the Unity asset store and her own sense of aesthetics.  

S focused on the mechanics of the gameplay, working out how to use a 3D character controller in his 
games to change his character’s appearance. He frequently sought out information about how best to 
approach his tasks, and then diligently worked independently towards his goals. He was a continuous 
source of inspiration to his classmates as he shared ideas, techniques, and exciting breakthroughs he 
made in his own Unity world through micro-sharing. 

P created a tragic narrative: a world in which humans have exhausted all the natural resources and left 
behind only now-defunct robots. She used little pink tree primitives from the ancient China package 
(Figure 1) to build the very last spot of nature in the world (Figure 4).  

 

Figure 4. The haunting construction of a post environmental collapse world. 

The haunting construction, like the Dust Bowl era historians (Cronon, 1992) evokes a sense that we 
must take action to save the planet.  P shared knowledge with peers who were less confident or didn’t 
know how to approach the problems. This activity allowed her to present herself as an expert that others 
in the class seemed to consult when they got stuck. This role both made her feel good when she was 
asked questions, but also made her feel uncomfortable to raise her own questions when she got stuck. 

Use of Historical Sources 
In constructionism, we are rarely concerned with where the materials come from. We do not ask the 
origin of straws for building or code for writing. We are interested in the ways the items are used to 
construct a physical manifestation, an artifact, that felicitously builds a mental model that a builder uses. 



Constructionism 2018, Vilnius, Lithuania 

387 

 

Whereas in history, while we are interested in the construct that emerges through historiographic 
reasoning — traditionally the manuscript — we also care very much about the origins of the materials 
drawn on to make that manuscript. Historians argue about the historical validity of constructs and the 
source materials. As a result, we chose to look at the way students engaged with sources separately 
from whether students engaged with the constructionist design principles of the intervention. 

Halfway through the intervention we requested participants to construct their own 3D historical model. 
During this process some students consulted sources to determine if what they were building appeared 
like ancient Egypt. In this process we first demonstrated how to make a 3D prototype of a historical 
period. We gathered around a table with a piece of poster pad paper. To demonstrate the process, the 
students imagined what existed in the Ice Age: “Huts,” one called. “Ice,” another said. “Saber-toothed 
cats.” We wrote the ideas in diagrammatic form on the large poster paper without interrogating their 
notions. Afterward, we asked the students to pick their own time period that they wanted to model and 
follow this same process to get their ideas down. A1 and J1 chose ancient Egypt.   

A1 and J1 constructed 3D versions of ancient Egypt. J1 started the process by placing Post-it notes on 
his large sheet of paper indicating where to construct 3D temples and pyramids (Figure 5a).  

 

Figure 5. Designing historical simulation on paper referring to Google Images for sources. 

Working from his memory of the referenced Google Images sources, he placed them in an arrangement 
on what he called the desert. Meanwhile, his partner A1, engaged in a high fidelity rendering of one 
pyramid; he drew each block in a multi-story 2D representation. 

The design process took place mostly in silence. Fifteen minutes into the activity, the two of them pulled 
up images of ancient Egypt on Google Image search (Figure 5). Scrolling through the images, they took 
conceptual inspiration deciding what to include in their world and in their simulation. Taking turns, they 
pointed at images on the screen they found relevant to their task and kept scrolling. A1 found the image 
of the Sphinx particularly interesting. When we asked, “What are you looking at?” A1 responded simply, 
“Pictures.” When we asked them, “What for?” A1 responded, “Trying to show what ancient Egypt looked 
like.” When I asked, “How do you know which are real?” J1 flippantly pointed at a cartoon, “That one’s 
real.” A1 more cautiously responded, “I guess (which one is real)." Continuing "You have to decide" 
(somehow). This moment is an example of considering what counts as history. 

At this point, we asked the participants to start building their prototype in Unity 3D. When J1 asked, 
“How will I build this in 3D?” the first author responded, “First, build a terrain and then place objects on 
it.” Oh yeah,“ he responded, as if it was obvious. He then logged into the Unity asset store and started 
searching for an ancient Egypt model set. When he found one, he celebrated. “Freeeeeeee!” he 
shouted. He said, I need to search “free”, noting that many assets on the store cost money, but quickly 
noted he can use keyword search to discover free resources. J1 started his first download. A1 came 
over, having finished his high fidelity drawing of a pyramid.  Appearing to speak to no one in particular 
J1 said “We are going to make a pyramid.”  Then bragging loud enough the whole room could hear “I 
have such a big pyramid!” demonstrating that he is beginning to feel pride and ownership in his 
construction. 

Right before lunch, with our guidance, J shared the 3D pyramid resource he had found with J1, and 
then J1 started chanting “cobra” as he added large 3D stone cobras to his simulation. A1 turned his 
computer toward J1 and started viewing what J1 was making. After consulting the screen, he turned his 
screen a bit more toward J1 so as to indicate, ‘Look what I’ve made.’ A1 did not lift his eyes from his 



Constructionism 2018, Vilnius, Lithuania 

388 

 

screen. J1 said to no one in particular, “Look what this thing gave me,” and rotated his computer toward 
A1. They now seemed to begin a partnership to build their ancient Egypt (Figure 6). 

 

Figure 6. Ancient Egypt as built by two collaborative 5th graders. 

Conclusion and Discussion 

Within a two-day course, eight students constructed playable video games, engaged in discourse 
around what to include, and generated two genres and four contexts. While we admit that the 
constructions in this short course were not accurate representations of the past, we argue that the 
process students employed to include sources into their environment were accurate historical practices 
(Matthews, 2016). Students created a historical agent in each of these worlds, and through the view 
they generated, began to enter sympathetically into the minds of humans long dead. We do not think 
they began the second part of White’s (1982) activity of beginning to understand, even honor, beliefs 
and values that differ completely from their own. That being said, the students pragmatically engaged 
— primed by prior knowledge and historical imagery — with contexts they created which formed mental 
models of how the past may have worked. We found this work ordered their analogues, which opened 
the way to the possibility of new successive identities. This process accords with how Foucault (1970) 
argued history organizes identity. 

Through the process of playfully imagining the past, students engaged within this class in a practical 
approach that could be implemented in another classroom. Though the two authors of this paper learned 
to use Unity over the past two years, the features we used and had students implement are teachable 
in a teachers’ training in a few hours. We did see more question-asking by students at the beginning of 
the course than in a traditional classroom, but by the end of the second day students were mostly 
independent as they disseminated their technical skills through the classroom through micro-
showcasing. This distributed skills sharing, as individual students took on the role of competence, was 
prevalent.  

In the open-ended learning environment our classroom provided, students formed partnerships to build 
playable games. These partnerships helped some of the students to work from sources to construct 
their understanding of the past. Often times, these designs were engaged with diligently and mostly 
silently. This resulted from the way we organized the design process. This process allowed students to 
engage in laying out their historical understanding, reference sources, and integrate and evaluate 
multiple sources of information presented in a variety of formats and media to address a question or 
solve the problem of constructing a past Egyptian pyramid and surrounding environment (as required 
by Common Core State Standards, English Language Arts Literacy RH.11-12.7).  

This work was engaged in both individually and solitarily. The process allowed each student to add an 
individual twist to their constructs while bringing together the various sources. The process supported 
friendship formation. For instance, that S sat close to J1 and A1 allowed for easy micro-showcasing. 
These results came from the open-ended nature of play. Likewise, the flexibility of the design facilitated 
students to create playable games. This happened in a dynamic feedback environment provided by 
Unity. We looked at both the historiographic and constructionist implications of this short intervention. 
We found the environment a useful means of teaching historiographic principles through a 
constructionist learning environment for three reasons: the level of production, the students’ 
engagement, and the vitality of the learning environment. We look forward to scaling the approach to a 
longer course. 



Constructionism 2018, Vilnius, Lithuania 

389 

 

The design of the learning environment provided the opportunities to engage in these activities. The 
class allowed students to make history simulations through the provision of scaffolding constraints to 
the otherwise very open Unity authoring environment. This was done through an authentic tool, which 
affords high-end aesthetics and functionality so students could foreground aesthetics to express 
themselves. 

For Vygotsky, fields of human action were games. As a result, social worlds are organized around 
figured worlds which influence the participants in dialogically contextual constrained world. Different 
voices, from Google Images, to online assets, to students’ own prior understanding of Egypt merge 
together in these constructs of children in our short course. From the ice-swept slopes of E and L, to 
the pyramid-spotted deserts of A and J, 5th grade students constructed histories in a professional game 
design software. 

P’s games mobilized arguments for a particular past. As Cronon (1992) pointed out, narrating sources 
affects those sources’ meanings. The historical narrative is a sanctioning of some sources’ and voices’ 
meanings. Discourse in these games legitimized views of the past by the way the place was laid out. 
We showed sanction’s subtle effect, emerging through people talking and deciding what to include in 
their past. We noted in P's dystopia a particular ordering of the tools representing Cronon's archetype 
of tragedy. This narrative structure was similar to the way Cronon (1992) argued political interests 
marshalled documents to describe the environmental disaster of the Dust Bowl to motivate action. This 
employment of a tragic archetype motivates viewers to action to save the planet before we 
environmentally destroy it. We also saw how genres of discourse swept through the authors in our 
course: two made the Ice Age, two made ancient Egypt, and two made the Stone Age. They came 
together to agree on what was cool. Like Cronon suggests historians do, our students took the license 
to include some voices and exclude other voices. This practice is crucial in the study. We find that the 
main gain of this approach to history-learning arises through discussing constructing the past in a new 
mode. Though history may not be intrinsic to the universe, it is fundamental to how we humans organize 
our experience (Cronon, 1992 p. 1368). We saw students organize their understandings of the past 
through the process, drawing on the sources available to them. 

When children played the game of “what if I was traveling to the past,” they constructed representations 
of the past. They assigned new meanings to the digital authoring space available in Unity to turn it into 
ancient Egypt, the Stone Age, ancient Mali, the future, and Revolutionary War America. They chose to 
go there in their play. This reassignment is very much like how Vygotsky saw students turn the area 
behind the couch into the robbers’ den. They used collectively developed signs to detach themselves 
(Holland, 1998) and enter an imagined world of play. 

We organized this experience in a constructionist learning environment. We found many affordances to 
opening up the play. We created an opportunity for students to engage in a process of history-making 
that aligns with history class standards such as CCSS.ELA-LITERACY.RH.11-12.7. The design afford 
the opportunity by mixing this environment with the modern understanding of history as a socially 
constructed artifact. This design built on the promise that video game design may soon change how 
history is taught and advanced, while keeping an eye on the traditional wariness of history teachers to 
embrace digital methods. 

Acknowledgements 

This work emerged from working with Jolie Matthews in her New Media class in 2015 and without her 
help it could not have developed. Additionally, we would like to thank the Uri Wilensky and the Center 
for Computer Based Modeling, and the School of Social Policy at Northwestern who provided us many 
resources in this work. We would also like to applaud Chastity West, and her copious feedback. Finally, 
we would like to thank US Department of Education, Institute of Education Sciences, Multidisciplinary 
Program in Education Sciences, Grant Award # R305B140042 for supporting this work. 



Constructionism 2018, Vilnius, Lithuania 

390 

 

References 

Ares, N., Stroup, W. M., & Schademan, A. R. (2009). The power of mediating artifacts in group-level 
development of mathematical discourses. Cognition and Instruction, 27(1), 1-24. 

Baron, C. (2016). Using Embedded Visual Coding to Support Contextualization of Historical 
Texts. American Educational Research Journal, 53(3), 516-540. 

Bogost, I. (2007). Persuasive games: The expressive power of videogames. Mit Press. 

Chapman, A. (2013). Is Sid Meier's Civilization history?. Rethinking History, 17(3), 312-332. 

Common Core State Standards Initiative. (2010). Common Core State Standards for English Language 
arts & literacy in history/social studies, science, and technical subjects. Retrieved from http://www 
.corestandards.org/assets/CCSSI_ELA%20Standards.pdf 

Cronon, W. (1992). A place for stories: Nature, history, and narrative. The Journal of American History, 
78(4), 1347-1376. 

Davis, N. Z. (1975). Society and culture in early modern France: eight essays. Stanford University 
Press. 

Eisenberg, M. (2007, March). Pervasive fabrication: Making construction ubiquitous in education. In 
Pervasive Computing and Communications Workshops, 2007. PerCom Workshops' 07. Fifth Annual 
IEEE International Conference on (pp. 193-198). IEEE. 

Foucault, M. (1970). The Order of Things... Transl. 

Harel, I., & Papert, S. (Eds.). (1991). Constructionism. Norwood, N.J.: Ablex Publishing.  

Herrenkohl, L. R., & Cornelius, L. (2013). Investigating elementary students' scientific and historical 
argumentation. Journal of the Learning Sciences, 22(3), 413-461. 

Holland, D., Lachicotte, W., Skinner, D., & Cain, C. (1998). Figured worlds. Identity and agency in 
cultural worlds. Cambridge: Harvard University Press. 

Lowenthal, D. (1998). The heritage crusade and the spoils of history. Cambridge University Press. 

Kafai, Y. B., Peppler, K. A., & Chiu, G. M. (2007). High tech programmers in low-income communities: 
Creating a computer culture in a community technology center. In Communities and Technologies 2007 
(pp. 545-563). Springer London. 

Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of 
research on mathematics teaching and learning (pp. 515–556). Reston, VA: National Council of 

Teachers of Mathematics.  

Kelly, T. M. (2013). Teaching history in the digital age. University of Michigan Press. 

Lee, P., Ashby, R., & Dickinson, A. (1996). Progression in children's ideas about history. BERA 
DIALOGUES, 11, 50-81. 

Matthews, J. C. (2016). Historical inquiry in an informal fan community: Online source usage and the 
TV show The Tudors. Journal of the Learning Sciences, 25(1), 4-50. 

Nilsen, A. P. (2016). Navigating windows into past human minds: A framework of shifting selves in 
historical perspective taking. Journal of the Learning Sciences, 25(3), 372-410. 

Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple 

representation. Learning and Instruction, 13(2), 141–156.  

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36, 1-11. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.. 

Papert, S. (1987). Constructionism: A New Opportunity for Elementary Science Education.  



Constructionism 2018, Vilnius, Lithuania 

391 

 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. 
(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67. 

Schnotz, W., & Kurschner, C. (2008). External and internal representations in the acquisition and use 

of  knowledge: Visualization effects on mental model construction. Instructional Science, 36, 175–190.  

Schwarz, B. B., & Hershkowitz, R. (2001). Production and transformation of computer artifacts toward 
construction of meaning in mathematics. Mind, Culture, and Activity, 8(3), 250–267.  

Spring, D. (2015). Gaming history: Computer and video games as historical scholarship. Rethinking 
History, 19(2), 207-221. 

Squire, K. (2004). Replaying history: Learning world history through playing Civilization III. Indiana 
University, Indianapolis, IN. 

Wineburg, S. S. (1991). Historical problem solving: A study of the cognitive processes used in the 
evaluation of documentary and pictorial evidence. Journal of educational Psychology, 83(1), 73. 

Wineburg, S., Mosborg, S., & Porat, D. (2001). What can Forrest Gump tell us about students' historical 
understanding?. Social Education, 65(1), 55-55. 

White, H. (1982). The politics of historical interpretation: discipline and de-sublimation. Critical Inquiry, 
9(1), 113-137. 

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and 
Computer-Based Modeling, Northwestern University. Evanston, IL. 

Wilensky, U. (2001). Modeling nature’s emergent patterns with multi-agent languages. In Proceedings 
of EuroLogo Linz, Austria (pp. 1–6).  

Worsley, M., & Blikstein, P. (2013, April). Towards the development of multimodal action based 
assessment. In Proceedings of the third international conference on learning analytics and knowledge 
(pp. 94-101). ACM. 

VanSledright, B. (2002). In search of America's past: Learning to read history in elementary school. 
Teachers College Press. 

Vygotsky, L. S. (1978). Mind in society: The development of higher mental process. 

  

http://ccl.northwestern.edu/netlogo/


Constructionism 2018, Vilnius, Lithuania 

392 

 

Ant Adaptation: A Complex Interactive Multitouch 
Game about Ants Designed for Museums 

Kit Martin, kitmartin@u.northwestern.edu  
Northwestern University, USA 

Michael Horn, michael-horn@northwestern.edu  
Northwestern University, USA 

Uri Wilensky, uri@northwestern.edu  
Northwestern University, USA 

Abstract 
This paper describes visitor interaction with an interactive tabletop game on the topic of evolutionary 
adaptations of social insects that we designed in collaboration with a large Midwestern museum. Our 
exhibit, called Ant Adaptations, takes the form of an agent-based modeling game (ABMG) that 
integrates complex system learning with gameplay. We video recorded 38 groups (114 participants) 
playing the game and conducted pre- and post-interviews. We propose a methodology, constructivist 
dialogue mapping (CDM), to monitor the group-level knowledge as it emerged through interaction with 
the exhibit. CDM is useful for analyzing the short session times typical of museums. Our results show 
that visitor groups collaborated effectively to discuss and elaborate on their understanding of emergent 
ant behavior. 

Keywords 
Ants; complex systems; informal learning; constructionist epistemology; methodologies; tools and 
technologies; innovative computing education 

Introduction  

97% of children play video games at some point in their lives (Lenhart et al., 2008).  By encouraging 
open-ended engagement and exploration, games can support learning across a wide variety of topics 
and contexts, providing a powerful way for learners to construct new knowledge and understanding 
(Harel & Papert, 1991). Constructionist learning games try to strike a balance between open-ended play 
and targeted treatment of learning content (Holbert, Weintrop & Wilensky, 2014). Constructionist video 
games employ traditional game structures infused with constructionist ideals to create a game 
experience that both encourage exploration and engages desired content (Egenfeldt-Nielsen, 2006). 
For this research, we develop a means to research this informal education, constructivist dialogue 
mapping (CDM).  In this paper we describe the design and evaluation of a constructionist learning game 
called Ant Adaptations that we developed in collaboration with The Field Museum. The exhibit presents 
visitors with the opportunity to create an interactive digital ant ecosystem that allows learners to better 
understand the world of ants by exploring a microworld (Papert, 1980; Edwards, 1995). We then present 
findings to answer two questions. First, how can interactive, agent-based, complex-system-based 
tabletop games best be designed for museum settings? Second, how can effect and efficacy of such 
interactions in museums best be analyzed?  

Research within the museum space could provide a fecund location for future educational game 
interventions that employ a model-based inquiry of complex systems. Our past work with agent-based 
models of social insects and microworlds has been effectively used for classroom teaching, but less so 
in informal museum settings. Examples of this classroom use including: Ant Food Grab, a yearlong 
block-based programing curriculum with ants (Martin, Sengupta & Pierson, 2018; Sengupta et al, 2015), 
and Beesmart, a curriculum about the hive-finding behavior of honey bees (Guo & Wilensky, 2014a; 
Guo & Wilensky, 2014b). These insect Microworlds allowed students to construct their own 
understandings of science through exploring and adapting models in a classroom setting. Like other 
complex systems interventions, the students build their understanding of complex systems and 

mailto:kitmartin@u.northwestern.edu
mailto:michael-horn@northwestern.edu
mailto:uri@northwestern.edu


Constructionism 2018, Vilnius, Lithuania 

393 

 

recursion in natural systems (Danish, Peppler, Phelps and Washington, 2011; Blikstein & Wilensky, 
2009; Klopfer, 2003; Levy & Wilensky, 2009; Wilensky & Reisman, 2006; Sengupta & Wilensky, 2009; 
Wagh & Wilensky, 2012; Wilensky, 1997b; Wilensky & Resnick, 1999; Yoon et al., 2013; Wilensky & 
Novak, 2010). However, there is much less work that leverages the pedagogical value we discovered 
in these earlier microworld based interventions in museums (Horn et al., 2014; Strohecker, 1995a, 
1995b), a dearth our present work addresses. 

Although microworlds can be useful for learners to explore about complex systems, developing robust 
understandings of complex systems can be challenging. Wilensky & Resnick (1999) describe the 
difficulties people have in “thinking in levels”, exhibiting “levels confusion” and difficulties with distributed 
control and stochastic processes. Not only do learners have a hard time thinking across multiple levels 
such as disease of the whole body resulting from microscopic pathogens, but they also tend not to think 
about phenomena such as the flow of ink dropped into water as the processes of collectives of agents 
interacting (Chi, Roscoe, Roy & Chase 2012). If the glass of water changing color is explained by the 
individual parts of ink interacting with H2O than the process becomes more intuitive. Most people, 
however, are not familiar with ink particles. Building off earlier work in classrooms (Martin, Pierson and 
Sengupta 2018), we posit that thinking about ants is a powerful way to address both of these challenges 
in museum learning. The game scaffolds thinking in levels such as between the colony and the individual 
ant, and seeing success and failure of the colony as a result of ants interacting through processes. To 
research this claim, this paper explores how a user made sense of the self-organization of ant colonies 
in competition.  

Theory: studying learning in informal learning through constructivist dialogue 
mapping 
We developed a way to study learning in an informal environment based in on constructivist theory. In 
constructivist theory, a learner’s mental model drives his or her construction of understanding and 
internal cognitive structures. This process includes accommodation and assimilation (Piaget, 1952) and 
maintaining a balance between stability and change, continuity and diversity, and closure and openness 
(Ackerman, 2001) when exploring the world. For Piaget, children are not just incomplete adults. Their 
ideas function very well for their current context and as a result, their mind changes through experience. 
As Ackerman (2001) said, children’s’ conceptual changes are like those of scientists: they happen 
through “action-in-the-world” (p. 3) to accommodate for experiences, and most likely through a host of 
internal cognitive infrastructures. “Knowledge is not merely a commodity to be transmitted, encoded, 
retained, and re-applied, but a personal experience to be constructed” (Ackerman, 2001, p. 7), like 
sitting with safari ants.  

Mental models are built out of theories of how the world works, or in other words, the sum of lessons 
learned from thinking passed obstacles. D’Mello and Graeser  (2012) showed how people learn when 
they encounter system breakdowns, which cause a cognitive disequilibrium or obstacle. These 
moments allow for reflection and reordering of their dynamic memory (Schank, 1999). DiSessa and 
Cobb (2004) argue that from Newton, to Einstein, and Darwin, theories embody generalizations to 
organize overly abundant data that is subsequently viewed as part of a new theory. In this way diSessa 
and Cobb (2004) posit theory as a lens, “teaching us how to see” (p. 4). How we see the world, is the 
crucial bit about these theories since the lenses constructed through experience take actual form. Just 
as “[t]he world is not just sitting out there waiting to be to be uncovered, but gets progressively shaped 
and transformed through the child's, or the scientist's, personal experience” (Ackerman, 2001), 
constructionist thought highlights transformation and molding as the work of mental models. 



Constructionism 2018, Vilnius, Lithuania 

394 

 

This theory led us to construct a 
methodological innovation that is highly 
useful for the short, interactions typical of 
museums. We develop concept maps 
(Chi and Koeseke, 1983) as they emerge 
through transcript data. At one level, these 
maps represent what players said. At this 
level, we captured ideas about the 
understanding of science players 
demonstrate during play in a constructivist 
map inspired by Minsky’s society of mind 
(1986). For Minsky (figure 1), the human 
mind works through a cognitive map of 
agents. In adapting Minsky’s frame, we 
present simplified concept maps of 
players elaborating their ideas about 
agents through observation and 
interaction we call constructivist dialogue 
maps (CDM). Thus, maps will visually 
depict the ideas players share through 

what they say and how they interact with the game. We posit that we can research what people conserve 
(that is, learn through accommodation) by filling in a map with what people say and do during play. 
Constructivist dialogue mapping allows us to track how people’s words and actions indicate learning 
through short play periods. 

Ant-Based Modelling 
Early work on agent-based modeling was inspired by the behavior of social insects (Resnick & Wilensky, 
1991; Wilensky & Resnick, 1993, Langton, 1997). Their behavior has inspired games; SimAnt 
(McCormick & Wright, 1991), which is based on Hӧlldobler and Wilson’s (1990) The Ants.  The collective 
behavior of ants has been simulated using agent-based models (ABM) many times. StarLogo was used 
to model the collective behavior of social insects (Resnick & Wilensky, 1992, 1993). Wilensky (1997a; 
1990) modeled food source preferences resulting from pheromones, as well as the formation of ant 
trails (Wilensky, 1997b). Bonabeau investigated the role of ABM in pattern formation (1997), and, more 
broadly, looked at swarm intelligence (Bonabeau, Dorigo & Theraulaz 1999). Prat et al. (2005) modeled 
collective nest selection of Temnothorax albipennis also using an ABM. Sumpter and Pratt’s joint work 
explored the importance of group decision making with quorums (2009). Their work showed that when 
choosing a destination together, cooperation reduces the probability that an individual will suffer 
predation. Robinson, Ratnieks, and Holcombe (2008) used an ABM to explore attractive and repellent 
pheromones in pharaoh ants. Likewise, frameworks, such as Anthill, have been used to support the 
design, implementation and evaluation of technical systems, such as peer-to-peer networks (Babaoglu, 
Meling, and Montresor, 2002). Their work drew on examples of complex adaptive systems to justify 
engineering and user applications because complex adaptive systems exhibit resilience, adaptation, 
and self-organization that are seen as valuable in social applications. While these earlier models 
provided insights and enjoyment, none of them delivered their lessons in the short interaction times 
typical of museums. Taking this previous use of ants as a means to understand, research, and teach 
complex systems, we designed a complex system model to deliver complexity learning in the short, 
opened interactions normal for museum educational experiences without the mess of installing 20 
million safari ants in the Midwest. 

The Game: Ant Adaptation, agent-based modeling in museums 
In order to provide context for our analysis below we review the game. In the game we created, Ant 
Adaptation, ants go out to collect food and return to the nest. As they return to the nest ants lay down a 
pink pheromone that attracts others nearby. Other ants walk toward the strongest chemical smell, which 
in most cases is where the first ant just arrived. When ants find a flower, their food source, they return, 

Figure 1. A calendar is an order of processes. Each process 
has subprocess that are learned through time. So that a 

meeting has the "begin", "discuss", and "end" subprocesses. 



Constructionism 2018, Vilnius, Lithuania 

395 

 

lay down more pheromones, and thus reinforce the pink trail. This creates an emergent feedback loop 
that routes more and more ants to successful sites of forage. As the ants exhaust a food source they 
must find new locations, and thus repeat a cycle. When two or more ants of opposing colonies encounter 
each other, they fight or scare each other away, also leaving chemicals that attract more ants. Ants 
either fight and kill each other, or they scare each other away. For the winner, this works to protect the 
food source from competing colonies. The ant queen reproduces when the ants in her colony collect 
enough food. The player interacts with this complex system by adding pheromone trails that the ants 
follow, as well as adding sources of food (i.e., flowers) to the system, thus changing amount of food in 
the game. Through interacting with the system, students form a functional understanding of the entities 
and their mechanisms of action (i.e. agents and their rules) in the model.  

This setup scaffolds experimentation. Players must simultaneously make choices. Players can touch 
the screen to add pheromone the ants will follow. Alternatively, at the flick of a switch, they can add 
more flowers anywhere they like in the game, acting like an ant or a seed, but with a bird’s eye view.  
Lastly, they can choose to apply vinegar, which erases trails. Erasing trails was used by some game 
players (like Thomas discussed below) to get ants out of a feedback loop that was leading them 
nowhere. For players with a bird’s eye view to achieve their goals in the competitive environment 
requires they understand the emergent consequences of simple ant behavior. Their finger is both a 
single agent, and systemic agent.  

Furthermore, each player can decide how big its ants are and how aggressive they are. When the size 
of ants increases, they become slightly faster and stronger in a fight. Each level of increase adds up. At 
the highest levels they are thirteen times stronger. When players make their ants more aggressive, it 
increases the radius in which ants detect opposing ants and thus the probability that they will attack. 
Increasing either the size or the aggressiveness also increases how much food is required to raise an 
ant, so the largest ant requires thirteen times as much food to feed to adulthood. This gamification 
impacts how much food ants must collect to make a new baby ant. Increases in either of these 
parameters reduces the expected population of the colony, though it increases their likelihood of fighting 
and winning through emergent interactions of parameters and agent actions. This sets up the main 
action of the game as a series of strategic choices: to decide whether to pacifically collect food, thereby 
increasing the population, or, to go on the warpath where big, aggressive ants conquer their opponents. 
Either method of play could lead to high populations or the elimination of the opponent through better 
controlled food resources. For example, after learning about the consequences of strategic choices 
through gameplay, players strategize by increasing ants’ size, aggressiveness, or both.  This might lead 
them to win the game by annihilating the other group’s ant colony. However, bigger and/or more 
aggressive ants consume more food to reproduce, and potentially reduce the colony’s population size. 
Thus, a player might strategize by adding more flowers and pheromone tracks around the colony to 
help the larger ants survive. This learning and strategy cycle interweaves the learning into the gameplay. 

The game has four affordances that support three learning objectives. In Ant Adaptation, playing with 
parameters allows the player to (1) construct their colony in competition with an opponent, (2) share 
strategies through comparison, (3) discuss what is happening through observer scaffolding such as 
parents’ intervention, or interaction between players,  including taunts, and (4) learn about the emergent 
impacts of colony behavior arising from individual ant behavior in a complex systems game. This 
approach allows visitors to learn (1) the impacts of adaptation on ant colony life, (2) how attractants 
such as pheromones work in ants’ organization. 

Designing digital multi-touch tables for museums 
Prior research on building interactives in museums informed our design. Current research on multi-
touch tables for museums suggests several key design elements (Horn et al., 2016; Davis et al., 2015) 
such as enjoyment, comparability, and productive conflict. Enjoyment, expressed through affect words 
such as “whoa”, “wow”, “cool”, and “hah,” is significantly correlated with learning measures considered 
by Horn et al. (2016).  Facile comparability aided learning in the case of a tree of life game where players 
who drew comparisons between lineages learned more easily and were more likely to use terms of 
interest in open-ended questions on post-tests. Block et al. (2015) and Horn et al. (2015) found that 
dyads spend more time at an exhibit and engage more with scientific content than groups of three or 



Constructionism 2018, Vilnius, Lithuania 

396 

 

more. Finally, conflict can be productive.  Davis et al. (2015) and Falcão and Price (2011) argue that 
interference between users on, and across, a multi-touch interface can be productive for learning when 
it triggers argumentation and collective knowledge construction.   

To answer our first research question—how to design for the museum context—from our review of this 
literature, we hypothesized that to design interactive, agent-based, complex system tabletop games for 
museum settings that expedite learning in these short interaction times, designers should encourage 
discussion and comparison in a competitive game mode where the biology and complexity science 
weave into the experience. As a result, (1) we implemented turns into the play, as Block et al. (2015) 
found that groups who take turns spent longer times, and engaged more with biological content, in the 
tree of life exhibit. Taking turns both increased the use of learning terms and comparisons with the 
biological content. (2) Our design included two teams which allowed players to explore the game’s 
possibilities and compare between strategies. These two design elements facilitated comparison and 
discussion between teams. Exploration involves moving their bodies and hands across a digital tabletop 
to engage in a game. This process engages the group at play more than mousing at a keyboard; we 
guessed that a body in motion, talking out ideas would create a rich discussion and a problem-solving 
mindset. The game includes hampering the competing colony through players’ dexterity, or at times, 
physically blocking other players’ hands to develop another colony’s strength following on earlier work 
on productive conflict (Falcão and Price, 2011). This competition is mediated through the luck of the 
stochastic system. Trade-offs of adaptations and complex systems thinking are woven into the game, 
which allows users to explore and learn about complex systems and ants by making strategic choices 
both in the digital microworld and while standing in the museum. The design encourages talk and 
comparison to maximize learning about ant behavior, a complex system, in a short (expected 2 minute) 
interaction at the museum. In this paper, we demonstrate this design’s learning gain through a novel 
methodology. The argument is that highly engaged play with a compelling complex biological systems 
model taught a person about ants in a very short period of open ended play.  

Agent-based modeling game design framework 
By combining the classroom work and general ant-based-models, refined through rigorous testing, we 
designed an ant-based modeling game that effectively builds on prior successful implementations of 
complex systems models for the context of museums. An ABGM is a game environment that adopts 
principles of microworlds to 1) actively engage students in an authentic challenge, 2) help them 
understand a model of agents, and 3) to let them explore through the construction of their own colony 
and ultimately understand ant colonies. The ABGM fuses a long research line (Egenfeldt-Nielsen, 2006).  
ABMG’s allow players to explore a representation of the life of an ant colony and learn by interacting 
with the microworld, thus getting to know its limits through  playful exploration and experimentation. 

Method: constructionist dialogue mappings 

In this study, we applied a mixed methods approach to the observations we made during this pilot 
(Clampet-Lundquist, Edin, Kling & Duncan, 2011). In addition to observing visitors’ interactions with the 
display and taking ethnographic field notes, we conducted a pre-post semi-structured interview protocol 
with participant groups. The protocol asked about groups’ background knowledge about ants, complex 
system notions, and feelings about the role of adaptations in ant colony life. This protocol provided a 
wider view of Ant Adaptation players in order to make between-player comparisons (Small, 2011) as 
well as better understand what they learned about the complex system through playing with the 



Constructionism 2018, Vilnius, Lithuania 

397 

 

interactive tabletop ABMG. 
From these two sources, we 
qualitatively coded the types 
of their interactions (described 
below), their frequency, and 
how they elaborated on their 
understanding of the 
phenomena (the entities they 
recognized and their actions) 
presented during gameplay.  

To answer our second 
research question—how to 
analyze the effectiveness and 
efficacy of interactions in 
learning more about ants in 

museums—we developed a 
novel map of ontological entities 
in the game (i.e., agents). The 

maps were constructed by building a hierarchical map of players’ utterances (Figure 2) before, during, 
and after play. Change in ontological maps over time can be compared, and learning shown as the 
change. The coders proceeded through the transcript utterance by utterance. When an entity was 
named, such as an ant, the coder added a box. When other entities were named—such as six legged 
or carries a lot of weight—they determined what that concept modified. If, as in figure 2a, they modified 
ant unambiguously, then the coders added subordinated boxes below ant. In our coding, we broke the 
transcript into a pre-interview, a game play portion, and a post interview. We analyzed the change in 
how the identified entities receive subordinate boxes. For example, in Figure 2, we would look at how 
the person changed from describing ants as six legged (Figure 2a) to six legged ants that carry 50x 
their weight and follow trails to find food (Figure 2d). This change over time is our measure of learning 
during the intervention.  

We performed this mapping instead of measuring change through responses to a more classroom-style 
question about biological facts because people learning in a microworld learn what is allowed in a 
system, rather than memorizing. “In this picture, the participants are active theorizers. They gather new 
evidence and devise methods to test their theories. Instead of accepting classifications as given, they 
see these classifications as provisional theories that are constantly reassessed and reconstructed in 
light of the dialogue between theory and evidence” (Wilensky & Reisman, 2006, pp 172). We sought to 
capture how talk changes based on interactions with the learning environment of Ant Adaptation. We 
propose that learning is demonstrated by what students added to their discussions while playing. This 
elaboration is demonstrated by coding their interactions with a CDM. 

Results 

We tested the game in a major 
natural history museum outside of a 
large, popular, temporary exhibit. 
The game was used over a six-day 
period by 114 museum visitors (87% 
White, 4% Black, 5% Asian, 3% 
Latino). Of the players, 60 were male 
(53.57%) and 54 (48.21%) were 
female. This contrasts with the 
museum-wide attendance 
demographics of 70% White 
(difference of +16.61% points), 5% 

Figure 3. Histograms of play time show the most players 
engaged for 400 seconds. The average age was 20 with a 
sizable number of players under 10 and some as old as 55. 

Figure 2. Constructivist dialogue mapping provides a simple interactive 
way of mapping ontological entities, to their functions as demonstrated by 

players in short interaction. 



Constructionism 2018, Vilnius, Lithuania 

398 

 

Black (difference of -0.54% points) and 14% Latino (difference of -11.32% points). Figure 3 shows 
players ranged in age between 5 and 55, with the age distribution skewed to lower ages. The average 
length of time people played was 6:27 minutes as opposed to a museum-wide average interaction time 
with digital interactives of 1:45 minutes (as a reported by internal museum evaluations). The result 
indicates that the design was a better than average interactive experience in the context of the museum. 
Unlike Block et al. (2015) and Horn et al. (2015) we found groups of three or more spent more time at 
an exhibit than dyads. Worryingly, the design seemed to appeal to certain demographics. When we 
bifurcated playtime by race and gender, however, we find that non-white users who engaged with the 
game were some of the most engaged users. As shown in figure 4, fourteen of the seventeen non-white 
users engaged with the game for longer than 4 minutes. In other words, though most players in our 
sample were white museum patrons, non-white users engaged with the game longer. Because players 
could stop playing whenever they want, unlike a standardized test, this longer engagement is an 
interesting proxy for interest.  More study is required to understand the implications of the design on 
audience. 

Dialogue elaboration through play 
For brevity, we present one demonstrative case of the 38 groups interviewed. Our interrater reliability 
with two codes was 85%, coding 20% of the transcript data following the CDM method. Looking at how 
one group engaged with this game for seven and a half minutes, we examine four White youth in the 
remainder of this section: Thomas, age 7; Ed age 12; Mary, age 9; and Sam, age 6 (names changed 
for anonymity). The four players were slightly more engaged than the average player of Ant Adaption, 
along several measures: 100% of the group members touched the screen, smiled during play, and 
worked to maximize their ants’ colony population count. This as in contrast to the wider sample where 
81% (92 people) touched the screen, 43% (49 people) smiled during play, and 41% (46 people) tried to 
maximize their colonies’ population during play. As their was no guidance on the goal of the interaction, 
it was surprising to us that so many of the groups chose maximizing their population of ants as their 
primary goal. In the open ended environment, they could just have easily drawn smily faces with their 
fingers, or planted a flower garden. We think this goal was so popular because of the competive 
arrangement of the exhibit. More study is required to investigate this outcome, which we will do in the 
analysis of the ramaining groups in future work. 

Pre-Interview 
During the pre-interview, we established a 
player’s prior understanding of ants 
through a semi-structured interview. As 
shown in figure 5, during the questions he 
said ants carry 50x their weight. In 
response to probes about how ants control 
traffic, he offered the explanation that ants 
make physical paths, to control traffic, 
which he later rescinded after playing the 
game. Protocol questions on aggressive 
roles prompted the seven-year-old to 
guess that being aggressive simply 
increases an ant’s likelihood of getting hurt 
or even killed. A claim he later amended.  

Interviewer: Okay. And then imagine 
you're an ant. How do you think being 
aggressive affects your life? 

Thomas: Uh, if you're aggressive, like, 
you- you're ... Uh, how do we explain this? 
If you're aggressive, like, you- since you 
go for more things you have a greater risk 
of getting hurt or killed, I guess. 

Figure 4. Heat Map of players by race and gender. We see 
the majority of players, in the middle were white males and 

females. Notably, of the 17 nonwhite players (0-0-0.0, 0-0-1, 
1-0-0.0 and 1-0-1), 14 played for the twice the average 

engagement time in museum interactives. 1-1-1.0 means 
non-black, non-white, male. 



Constructionism 2018, Vilnius, Lithuania 

399 

 

In response to questions about how ants know what to do, Thomas offered animal instinct, or, a 
command and control understanding when ants get orders through antenna and/or from their queen. 

Interviewer: Okay. That's fair. And then, how do ants know what to do? So you said they- they pick 
up leaves, or they scavenge, but how do they know to do that? 

Thomas: Um, animal instincts. 

Interviewer: Animal instincts. 

Thomas: Or the queen tells them to, if there's a queen ant. we don't know. 

Interviewer: So what's the diff- How does the queen tell them to? 

Thomas: It's something with their antennas. 

Interviewer: Okay. 

Thomas: I think. 

Additionally, he said that ants scavenge food from the ground or maybe eat leaves. 

Thomas: Like, they can like go hunt for food. They can like, um, try like, get to some, like, maybe 
some food on the ground like in the city or like in a park, or they can just eat a leaf. 

After we explained how the game worked, players broke into two teams, Thomas and Ed versus Mary 
and Sam. At the beginning, the younger Sam and Mary chose to have maximum-sized, not very 
aggressive ants (10% aggressive). Thomas and Ed chose to have medium sized though not very 
aggressive ants (2% aggressive). 

 

Figure 5. Pre-play cognitive dialogue map of four players’ understanding of ants. For instance, 
they think ants (entity) can carry 50 times their own weight (mechanism). 



Constructionism 2018, Vilnius, Lithuania 

400 

 

 

Near the beginning, players agreed through conversation on what strategies matter. Soon, Thomas 
informed the older Ed how to play: “add flowers close to the nest.” From this we add a new ontological 
entity, flowers, into the group’s constructivist dialogue map and put a mechanism ‘close to the nest’ 
under it because the players started planting flowers in close proximity. The players then established 
the connection between collecting flowers and increasing ant population. They offered this as the way 
to win.  

Post- Interview  
From the game, Thomas seemed to develop an understanding of the feedback cycles inherent in Ant 
Adaptation:  

Thomas: Yeah, you had to figure it out and the- you have to have some flowers, see, and then you 
put the chemicals and lead it to there, then they'll bring it back, and like, if you want to 
get rid of the chemicals you use the vinegar. So, um, you put some sunflowers down, 
then you get the chemicals and lead it to the sunflowers and if- if there's too much then 
the ants aren't getting the sunflowers and you- then they'll just like, then you use the 
vinegar and erase it. But if- if you just do one path that leads to the sunflowers it'll just 
get the energy and just keep going back and forth and back and forth. And that's how we 
got 21 [ants]. 

In the post-test players’ concept maps became more elaborate (highlighted in the red boxes in Figure 6). 
More importantly, he takes on a more cyclical understanding of the role of ants’ paths to attract each 
other to flowers. Thomas argued that ants follow chemicals to bring food to “get to 21” ants. He also 
saw that sometimes ants can get trapped in their own chemicals or “white spots.” He used vinegar to 
clear excess chemicals. Predictions of population level effects emerging from the ants’ simple rules 
indcated an understanding of intra agent action. The action’s multiscale (Wilensky and Reisman, 2006) 
effect was learned through play with the game. Thomas leveraged this new understanding to use the 
macro-level effects of population size to lead his ants to victory by making predictions based in the agent 
based model’s simple rules. Thomas employed complex systems thinking learned in the short interact 
to reach his goal of maximizing population. He set this goal in communication with his teamate, in the 
open-ended constructionist learning environment afforded by our design of Ant Adaptation.  

Through play the player learned that (entities) ants’ (have a mechanism) lay trails to attract other ants 
to flowers in a cycle by recursively following the chemicals. The player also realized that sometimes this 
process can lead ants astray as shown by his use of vinegar to redirect them. He also found that the 
food source’s (flower entities) proximity to the colony (mechanism) increased the ant population by 
increasing food intake. Interestingly, after he stated as much, the other side started placing flowers close 
to their nest. 

Ants

Carry 50X weight Scavenge

Eat a leaf

Find food on 
ground

Animal Instinct
Recieve orders 
from queens

Orders through 
antenas

Make paths

to control Traffic

Smaller ants are 
weaker and more 

vulnerable
Aggressive

Increases your 
likelihood of 

getting hurt or 
killed

Figure 6. post-play cognitive map of four players. Came to the cyclical understanding of pheromones 
in food foraging and a more contextual understanding of the role of adaptions utility. Red Boxes 

indicate elaboration. Grey ideas that were not mentioned again.  

 



Constructionism 2018, Vilnius, Lithuania 

401 

 

Conclusion and Discussion 

Through the presentation of a single case, from our 38-group sample, we show that a player added to 
his understanding of ant colonies through the elaboration of discussion about a complex system. He 
started using vinegar to eliminate local optima where the ants got trapped. Simultaneously, he used the 
feedback of pheromone trails to organize his colony’s foraging and adjust adaptations to changing 
circumstances.  

When working in museums, the short informal interactions with digital interactives changes the 
relationship between mediating object and the learner. Users can engage with these learning tools how 
they like. We developed CDM to measure learning in these less structured environments, and from our 
first test of the method here, it is an efficient and reliable way of tracking what a person says, and how 
the content of their statements changes during group interactions with a digital interactive. We think this 
method has potential for measuring informal learning in other spaces, such as maker spaces, and 
museum exhibits. 

The design of the experience drew users in, with people playing for up to a quarter of an hour with 
average play times over twice the normal interaction times of exhibits in the natural history museum. In 
light of the success of this pilot, we conclude it reasonable to extend the design principals of Ant 
Adaptation and create complex systems arcade for natural science learning in informal settings. The 
approach developed here can allow us to identify and describe learning by examining how players 
reconstruct provisional theories considering dialogue between theory and evidence (Wilensky & 
Reisman, 2006). Through this approach to teaching natural history in short interactions, we can bring 
theory building to players, who can, like Newton, Einstein or Darwin, organize abundant data as part of 
the theory they are building (DiSessa and Cobb, 2004). 

The approach to game-play in Ant Adaptation scaffolded player theories through the learning objectives. 
(1) Construction of their own colonies in competition with an opponent afforded comparisons which 
allowed for dynamic theory validation: Thomas proposed proximity of flowers to the nested aided 
population growth, the other player also started planting flowers close to the nest. (2) Sharing strategies 
allowed players to update their operating theory. (3) The social aspect of the multi-touch interactive 
allowed discussion to guide the theory exploration. (4) Taken together, these scaffolds facilitated players 
exploration and learning about the complex system. People have argued that learning about complex 
systems is hard (Chi, Roscoe, Roy & Chase 2012), and for an individual it is. When groups of people 
each engage part of a complex system, and attempt their best theories in real time, and received 
dynamic feedback from the computer and each other, the overly abundant data gets fit into a theory 
that the people test in mediation with the machine and themselves and finds regularities and break in 
to the system.  These learning moments may happen most when they notice breaks where to get out 
of there confusion, learners must engage in effortful problem-solving activities (D’Mello and Graeser, 
2012). That effortful solving activity is the process of science, and that is the process players in Ant 
Adaptation took. While Thomas vocalized most of the learning, the other players tested approaches, 
and in future work, we hope to better share the joint sense making mediated through technology and 
each other. 

The decision built into the main action of Ant Adaptation — whether to peacefully collect food or go to 
war to eliminate their opponent — sets up a crucial engagement where the uncertainties make the 
testing immediate and productive (D’Mello and Graeser, 2012). The theory building exercise at the heart 
of the game was engaged with in the process of this motivated play. The Game afforded that type of 
play to happen. This work in short expedites the activities found in earlier agent-based modeling and 
theory building exercises that have been used in schools and with swarm intelligence researchers. The 
design allowed us to work in a novel context: super-fast interaction times typical in informal learning 
environments.  

The constructivist dialog map (CDM) approach introduced in this paper was able to capture changes in 
a player’s understanding of agents’ actions (entities’ mechanisms), learning complex ant systems 
through playful interaction with our agent-based modelling game (ABMG). The use of this design was 
associated with comparisons and elicited talk, that was associated with learning like our first research 
question hypothesized. CDM captured the changes as utterances occurred during a short interaction. 



Constructionism 2018, Vilnius, Lithuania 

402 

 

By analysing changes in talk pre and post, we found that a player learned about feedback, and 
employed that learning at multiple levels to maximize an ant population. The elaboration took place by 
forming and testing theories with the ABMG, Ant Adaption. Thus, an agent-based modeling game of 
ants can be used to learn about social insects in a short intervention, in an informal learning setting. 
This method of developing a learning environment has the potential to change how we develop natural 
history museum interventions. The ABGM design approach is a scalable means to bring a microworld’s 
affordances to informal settings and teach targeted content through games that 97% of children play. If 
future designs in this space are attached to powerful ideas (Papert, 1980) that help children understand 
their world, agent-based modeling games can create a powerful means for people to learn about the 
complexity in the world.  

Acknowledgements 

We would like to thank Robert Grider who wrote NetLogo multitouch for this project. Also, Corrie Moreau 
and the Field Museum’s Ant Lab, that gave amazing feedback and support throughout the design of the 
exhibit as well as their welcome to and assistance at the Field Museum. We would also like to thank the 
IEF for their generous support of this work, Multidisciplinary Program in Education Sciences for funding 
the project (IES: Award # R305B090009). 

References 

Ackermann, E. (2001). Piaget’s Constructivism, Papert’s Constructionism: What’s the difference? 

Babaoglu, O., Meling, H., & Montresor, A. (2002). Anthill: A framework for the development of agent-
based peer-to-peer systems. In Distributed Computing Systems, 2002. Proceedings. 22nd International 
Conference on (pp. 15-22). IEEE. 

Blikstein, P., & Wilensky (2009). An atom is known by the company it keeps: A constructionist learning 
environment for materials science using multi-agent simulation. International Journal of Computers for 
Mathematical Learning, 14(1), 81-119. 

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems 
(No. 1). Oxford university press. 

Bonabeau, E. (1997). From classical models of morphogenesis to agent-based models of pattern 
formation. Artificial life, 3(3), 191-211. 

Chi, M. T., Roscoe, R. D., Slotta, J. D., Roy, M., & Chase, C. C. (2012). Misconceived causal 
explanations for emergent processes. Cognitive science, 36(1), 1-61. 

Chi, M. T., & Koeske, R. D. (1983). Network representation of a child's dinosaur 
knowledge. Developmental psychology, 19(1), 29. 

Clampet-Lundquist, S., Edin, K., Kling, J. R., & Duncan, G. J. (2011). Moving teenagers out of high-risk 
neighborhoods: How girls fare better than boys. American Journal of Sociology 

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and 
Instruction, 22(2), 145-157. 

diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. 
Journal of the Learning Sciences, 13(1), 77–103.  

Danish, J. A., Peppler, K., Phelps, D., & Washington, D. (2011). Life in the hive: Supporting inquiry into 
complexity within the zone of proximal development.  Journal of science education and technology, 
20(5), 454-467. 

Edwards, L. D. (1995). Microworlds as representations. Computers and exploratory learning 

Egenfeldt-Nielsen, S. (2006). Overview of research on the educational use of video games. Nordic 
Journal of Digital Literacy, 1(03), 184-214. 



Constructionism 2018, Vilnius, Lithuania 

403 

 

Guo, Y., & Wilensky, U. (2014a). Beesmart: a microworld for swarming behavior and for learning 
complex systems concepts. Paper presented at the Constructionism 2014 Conference, Vienna, Austria.  

Guo, Y. and Wilensky, U. (2014b). NetLogo BeeSmart – Hive Finding 
model.  http://ccl.northwestern.edu/netlogo/models/BeeSmart-HiveFinding. Center for Connected 
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 

Guo, Y. & Wilensky, U. (2016). Small bugs, big ideas: Teaching complex systems principles through 
agent-based models of social insects. In C. Gershenson, T. Froese, J. M. Siqueiros, W.  Aguilar, E. J. 
Izquierdo & H. Sayama (Eds.), Proceedings of the Artificial Life Conference 2016 (pp. 664-665). 
Cambridge, MA: The MIT Press  

Horn, M. S., Brady, C., Hjorth, A., Wagh, A., & Wilensky, U. (2014). Frog pond: a codefirst learning 
environment on evolution and natural selection. In Proceedings of the 2014 conference on Interaction 
design and children (pp. 357-360). ACM. 

Klopfer, E. (2003). Technologies to support the creation of complex systems models—using StarLogo 
software with students. Biosystems, 71(1), 111-122.  

Langton, C. G. (Ed.). (1997). Artificial life: An overview. Mit Press. 

Lenhart, A., Kahne, J., Middaugh, E., Macgill, A. R., Evans, C., & Vitak, J. (2008). Teens, Video Games, 
And Civics: Teens' Gaming Experiences Are Diverse and Include Significant Social Interaction and Civic 
Engagement. Pew internet & American life project.    

Martin, K., Pierson, A., & Sengupta, P. (2018). Ant Food Grab: Integrating Block Based Programming 
and Biology in 8th Grade Science. NARST 2018 Conference, Atlanta, United 
States. http://www.vimapk12.net/ - 8 

McCormick, J., & Wright, W. (1991). SimAnt. Orinda, CA: Maxis Inc 

Minsky, M. (1986). The society of mind. Simon and Shusier, NY. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.. 

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11. 

Piaget, J. (1952). The origins of intelligence in children. International Universities Press, Inc.  

Resnick, M., & Wilensky, U. (1992, June). Starlogo. Workshop presented at the Artificial Life III. 

Resnick, M., & Wilensky, U. (1993, April). Beyond the deterministic, centralized mindsets: New thinking 
for new sciences. Paper presented at the annual conference of the American Educational Research 
Association, Atlanta, GA. 

Robinson, E. J., Ratnieks, F. L., & Holcombe, M. (2008). An agent-based model to investigate the roles 
of attractive and repellent pheromones in ant decision making during foraging. Journal of Theoretical 
Biology, 255(2), 250-258. 

Schank, R. C. (1999). Dynamic memory revisited. Cambridge University Press. 

Small, Mario. 2011. “How to Conduct a Mixed Methods Study: Recent Trends in a Rapidly Growing 
Literature.” Annual Review of Sociology, 37: 57-86.  

Sengupta, P. & Wilensky, U. (2009). Learning Electricity with NIELS: Thinking with Electrons and 
Thinking in Levels. International Journal of Computing and Mathematical Learning, 14, 21-50.  

Sengupta, P., Dickes, A., Farris, A. V., Karan, A., Martin, K., & Wright, M. (2015). Programming in K-12 
science classrooms. Communications of the ACM, 58(11), 33-35. 

Strohecker, C. (1995a). A Model for Museum Outreach Based on Shared Interactive Spaces. In ICHIM, 
Multimedia Computing and Museums (pp. 57-66). 

Strohecker, C. (1995b). Embedded microworlds for a multiuser environment. Archives & Museum 
Informatics, 57-66. 

http://ccl.northwestern.edu/netlogo/models/BeeSmart-HiveFinding
http://www.vimapk12.net/#8


Constructionism 2018, Vilnius, Lithuania 

404 

 

Sumpter, D. J., & Pratt, S. C. (2009). Quorum responses and consensus decision making. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 364(1518), 743-753. 

Wagh, A. & Wilensky, U. (2012). Breeding birds to learn about artificial selection: Two birds with one 
stone? In Proceedings of ICLS 2012, Sydney, Australia.  

Weintrop, D., Holbert, N., Wilensky, U., & Horn, M. (2012). Redefining constructionist video games:  
Marrying constructionism and video game design. In Proceedings of the Constructionism 2012 
Conference. Athens, Greece. 

Wilensky, U. (1997). NetLogo Ants model. http://ccl.northwestern.edu/netlogo/models/Ants. Center for 
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.  

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through 
constructing and testing computational theories—an embodied modeling approach. Cognition and 
Instruction, 24(2), 171–209.  

Wilensky, U., & Resnick, M. (1995, April). New thinking for new sciences: Constructionist approaches 
for exploring complexity. Paper presented at the meeting of the American Educational Research 

Association, San Francisco.  

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense 
of the world. Journal of Science Education and technology, 8(1), 3-19. 

Wilensky, U. & Novak, M. (2010). Understanding evolution as an emergent process: learning with agent-
based models of evolutionary dynamics. In R.S. Taylor & M. Ferrari (Eds.), Epistemology and Science 
Education: Understanding the Evolution vs. Intelligent Design Controversy. New York: Routledge.  

  

http://ccl.northwestern.edu/netlogo/models/Ants


Constructionism 2018, Vilnius, Lithuania 

405 

 

Enabling Collaboration and Tinkering: A Version 
Control System for Block-based Languages 

Tilman Michaeli*, tilman.michaeli@fau.de 
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany 

Stefan Seegerer*, stefan.seegerer@fau.de 
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany 

Ralf Romeike, ralf.romeike@fau.de 
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany 

Abstract 
Version control systems are essential for coordinating teamwork when working in projects. They support 
computational thinking approaches such as collaboration and tinkering. Yet, when using block-based 
languages, which are an excellent choice for novice programmers, there is no adequate solution that 
allows this form of collaboration. This paper presents a concept for a simple and easy to use web-based 
version control system as well as an exemplary implementation for the popular language Snap!. This 
concept is based on an analysis of existing version control systems and their use in Computer Science 
Education. Furthermore, possible use cases for such a version control system in classroom 
environments will be outlined.  

Keywords 
version control system; block-based languages; Snap!; computational thinking; collaboration; tinkering 

Introduction 

Collaborative learning based on the work of Vygotsky integrates social aspects into constructionistic 
learning. Much has been written about the advantages of working in groups early on (e.g. Chase & Okie, 
2000). Using Projects and project-based-learning (PBL) is one way to enable collaborative learning and 
a typical method of CSE. PBL is suitable for novices as well as for more advanced learners (Kastl & 
Romeike, 2015). When carrying out programming projects, one of the recurring challenges is that often 
arises that different versions of code have to be managed, project groups need to coordinate and merge 
their code. To work together efficiently, professionals use version control systems. Such systems enable 
collaboration by allowing teams to work together on the same project by sharing corresponding files. 
Furthermore, they keep track of revisions and, therefore, make it possible to go back to old versions, to 
track changes, to fix bugs, or to work in branches, which enables experimenting and tinkering in a 
sandbox. In a PBL context, such a version control system therefore enables collaboration and tinkering, 
which are approaches to Computational Thinking (CT) (Barr & Stephenson, 2011). Collaboration is an 
important aspect of working as a computer scientist. It includes factors such as decomposition of tasks 
or communication among each other and promotes motivation and commitment. When sharing or 
discussing their actions, learners can learn from, reflect and build on the work of others (Laurillard, 
2009). In CSE, collaboration is considered to be important early on as well as throughout the whole 
curriculum. For example, the new ACM/CSTA standards for K12 education (Computer Science 
Teachers Association, 2017) require collaborative work already in Level 1b (Grades 3-5). Tinkering 
needs a risk-free environment that supports trial and improvement and fosters confidence, creativity 
and independent learning (Resnick & Rosenbaum, 2013). 

The use of a professional version control system in the classroom is generally possible, but it is suitable 
only for text-based programming languages and comes with a lot of overhead. Even graduate students 
are often overwhelmed by the sheer complexity of professional tools (Haaranen & Lehtinen, 2015). For 
a lot of purposes, only a few functionalities like version history, merging and committing are needed. 

                                                
* These authors contributed equally to this work. 



Constructionism 2018, Vilnius, Lithuania 

406 

 

For novice programmers in Java, the integration of SVN and Git in BlueJ aims to reduce this overhead 
(Fisker, McCall, Kölling, & Quig, 2008).  

Block-based languages like Scratch or Snap! are very popular in lessons with novice programmers for 
multiple reasons. As an example, they enable students to build creative programs without needing to 
worry about syntax (Maloney et al., 2004). Collaboration can take place in two dimensions. Currently, 
block-based languages only support collaboration in a sequential sense, by supporting and emphasizing 
remixing (Monroy-Hernandez, 2012). However, there are only limited solutions to enable parallel 
collaboration in the sense of working on one project at the same time. In a day-long workshop on agile 
project management with 9th to 12th graders, we recently had a team consisting of three programming 
pairs working in Snap!: Every time they wanted to put together their program pieces (e.g. for a 
prototype), every pair had to export their project and download it. Then they needed to transfer the XML 
files to one PC, e.g. via memory stick, cloud drive or e-mail. Afterwards, they had to import each project 
in Snap!, manually assemble their scripts, sprites, etc., test and fix bugs on this PC. Hence, the whole 
team sat in front of one computer to finish the prototype. This is not efficient, the same counts for 
redistributing the code to all team members. Afterwards, they needed to export the new project status, 
download it and share it to the other two computers so that everyone was up to date. They also had to 
manage the versions properly in order to be able to use an old version if necessary. Experience has 
shown that this often causes problems. As one might expect, the students named these as major 
downsides to the workflow in the concluding reflection phase.  

In order to address this problem, we decided to design a version control system for block-based 
languages. Therefore, a review of existing professional and didactically adapted version control systems 
and their use in CSE was carried out with the goal to identify important findings and adapt those for 
block-based languages. Using an exemplary implementation for the block-based language Snap!, the 
proposed concept is demonstrated and its benefits are highlighted. 

Context and Background 

Versions control systems 
Version Control systems offer a variety of functions important to collaborative practices. First of all, they 
document changes and their reasons by providing a history for each file under version control. Each 
change can be described and summarized by the user through comments. Furthermore, version control 
systems offer the possibility to restore older versions. This way, unwanted or problematic changes can 
be reverted. Besides that, they enable coordination by offering features to resolve conflicts with multiple 
users working on the same file simultaneously. These features include locks to prevent multiple users 
from editing the same file at the same time, the automatic merge of concurrent edits or support for 
manual merges, if needed.  

All files under version control are located in a repository. If a user adds new files to the repository and/or 
changes old ones, they commit their changes. Each commit contains awareness information, which 
describe the commit and can be divided into two categories.  Internal awareness information includes 
changes made, time and date of changes, revision numbers, or names of committing users. This 
information is generated automatically. On the other hand, there is explicit awareness information, which 
is stated explicitly by the user. It requires explicit action. One example is a commit message, in which a 
user describes the changes he has made (Fisker, McCall, Kölling, & Quig, 2008). If no one else changed 
any files in between the last commit and the new one, this results in a new version, also known as a 
revision, of the project without any additional action. If someone else has made changes to files in 
between, but they are not in conflict to each other, these changes are automatically merged. If there is 
a conflict, when e.g. the same line of source code was changed by more than one person, it must be 
solved manually by choosing for each conflict the version which should be in the new revision. Changes 
between revisions (added through commits) can be viewed via diffs. Old revisions can be viewed or 
reverted to at any time. Furthermore, modern version control systems offer the possibility to branch. A 
branch is an alternative path starting from a certain revision, so that changes can be made in parallel. 
Branches are used for development of new features or experimenting, without impacting the current 



Constructionism 2018, Vilnius, Lithuania 

407 

 

product and state of the project. A branch can be merged into the master/production branch again later 
on, e.g. if the new feature is fully implemented and tested.  

Version control systems can be divided into centralized systems (like CSV or SVN) and distributed 
systems (like Git or Mercurial). In centralized systems, the repository is kept on a remote server 
everyone has access to. Whenever a user wants to introduce changes, they retrieve the latest version 
from the server first. As commits are transmitted to the remote server immediately, any recent changes 
must be merged, and conflicts have to be resolved before the commit. In contrary, distributed systems 
store the whole project history locally on every computer but also on a remote server. Therefore, each 
commit will initially be registered locally. To make changes by a commit available for other people as 
well, they have to be pushed to a server. From there, they can be pulled by each collaborator to be 
available locally. This way, merging and conflict resolution are not necessary for commits, but when 
interacting with the server (pushing and pulling). Distributed version control systems are dominant 
nowadays. Their main advantages are the local “sandboxes” which enable local changes, reverts etc. 
for every user offline, the easy branching and merging, and the independence from just one location 
where everything is stored (Somasundaram, 2013). 

Version control in the classroom 
Version control systems are used both at school and university level. At universities, control version 
systems are used frequently. Typical use cases include the provision of course materials or the 
submission of homework. Throughout literature, advantages of the use of control version systems can 
be divided in organizational and pedagogical ones. Organizational ones are the easy way to post 
assignments and give feedback, the possibility to start with skeletons, revert changes and work 
remotely, as well as having timestamps for submissions (Lawrance, Jung, & Wiseman, 2013). The 
pedagogical advantages include easier collaboration, the possibility to assess individual contribution, 
making the development process visible for the teacher and data security in the sense of a backup (cf. 
Reid & Wilson, 2005, Lawrance, Jung & Wiseman, 2013, Glassy, 2006). Overall, it is reported that 
version control systems are considered useful by students and teachers alike (e.g. (Isomöttönen & 
Cochez, 2014)). Just like the advantages, further experience and especially problems in the use of 
control version systems are reported. These hint at obstacles that must be addressed in a pedagogical 
version control system. One reported problem is a non-iterative workflow with long periods without a 
commit. This is an obstacle especially at the beginning and takes a lot of the advantages away (Glassy, 
2006). Overall, professional version control systems are reported as hard to learn (cf. Isomöttönen & 
Cochez, 2014, Haaranen & Lehtinen, 2015). Students sometimes damage repositories so that tutors 
need to repair them, or misuse features, e.g. repeated checkouts instead of updates in SVN (Reid & 
Wilson, 2005). In some cases students even accessed third-party repositories (Reid & Wilson, 2005). 
From a student's point of view, conflicts and their resolution are the most complex and difficult tasks 
(Isomöttönen & Cochez, 2014). If the students always work in the centralized repository they have more 
problems than when they work in their own branches and merge when finishing a subtask (Lawrance, 
Jung, & Wiseman, 2013). In addition to students, teachers also need significant competencies to use 
version control systems successfully in the classroom. They need to set them up and configure them, 
and also support the students, e.g. when fixing broken repositories. 

Brichzin and Rau (2015) give an overview of typical problems that can be addressed by the use of a 
version control system in a school context that matches our experiences. One problem is the pupils 
name convention and versioning practice – e.g. filenames like game, game_2, game (copy), game 
(working). This is an obstacle for collaboration as well as identifying the current state of the project to 
work on after holidays or a longer break. If the students make no backups of the current or former status 
of the project, there is always the danger of deleting the work of up to several weeks by accident. The 
next problem they mention is merging partial programs in PBL together regularly, no matter whether it 
is an agile project with iterations or a traditional waterfall project. Using a version control system 
facilitates regular merging and therefore helps to identify interface problems at an early stage of the 
project and address them accordingly. Another typical problem within the school context is that an entire 
team gets blocked because a student has forgotten the current code at home or they lack access to his 
account while the student is sick. Furthermore, enthusiastic students can't continue to work on the 
project at home, because the code is stored on the schools’ machines. 



Constructionism 2018, Vilnius, Lithuania 

408 

 

However, the introduction of a professional version control system is associated with a large overhead. 
Pupils must develop an understanding of the functionality of version control systems, familiarize 
themselves with the respective commands and working procedures. The complexity of this task poses 
problems even for entry-level professionals and graduate students. Therefore, Fisker et al. (2008) 
enabled group work support in the form of a simplified SVN and Git integration for the IDE BlueJ. One 
design principle for this was making awareness information available. This is important for group work 
and to keep track of others’ progress. Another explicit focus was simplicity by reducing overhead: files 
no longer need to be added to version control manually. Furthermore, many of the powerful but not 
essential features (such as branching, tagging, revert, single file functions) of SVN resp. Git are not 
available via the BlueJ IDE to ensure easy access. The same goes for the graphical user interface, 
which is kept basic and simple. Functionalities such as commit or update are made clearer but still 
contain the standard terminology (e.g. “Update from Repository”) 

Block based programming 
Traditional text-based programming languages have been used for introductory programming or 
computer science courses but are considered to be major entry barriers. Block based languages take 
away users' responsibility to take care of precise syntax compliance. They allow for easier realization 
of creative projects and give direct feedback by visualizing the current program’s state. Known examples 
of block-based languages are Scratch, Snap!, or GP. Most block-based languages are capable of 
running in the browser. Hence, they do not require an installation on student devices, making them a 
reasonable choice for educators. Those languages are used in schools and university courses, 
especially for novices. Using block-based languages with a traditional version control system is 
unsuitable: Traditional version control systems are built to manage multiple source text files, whereas 
in block-based programming environments, students interact with their project in a graphical way. In 
Snap!, objects are represented as so called “sprites”. Due to this, each object is represented graphically. 
Sprites have scripts, which are a sequence of several connected blocks (see Figure 1). 

 

Figure 1. Snap! user interface 

 



Constructionism 2018, Vilnius, Lithuania 

409 

 

Certain block-based applications such as Kanto, Blockly, or Netsblox already allow multiple students to 
remotely collaborate on a project (Broll et al, 2017, Ohshima, Freudenberg & Amelang, 2017). However, 
they lack essential features that version control systems offer, such as version history, branches, or 
commits, which are considered essential in PBL settings. 

A version control system for block-based languages 

Since existing tools of version control systems cannot be used for block-based languages, we have 
developed a solution based on research regarding the use of version control systems in the classroom. 
Therefore, we conducted a didactic transposition of professional version control systems with explicit 
attention to specific characteristics of block-based languages and needs of programming novices. It 
follows two guiding ideas: 

 Visualization. The project status should always be visible at a glance. For this purpose, it should 
be displayed in a graphical way. 

 Easy to use. The number of functionalities should be reduced, and unnecessary settings 
removed. The usage should be simple for both students and teachers. The latter usually having 
little experience with professional software development tools necessitate this guideline even 
more.  

The second objective is consistent with the goals for version control realization in BlueJ (Fisker, McCall, 
Kölling, & Quig, 2008). In contrast to their solution, however, the operation is further reduced, and more 
simplifications are offered even for teachers. In the following, we describe the concept of the version 
control system and use images of our concrete implementation for Snap! to illustrate the concept. 

 

Figure 2. Graphical visualization of a project 

Conception 
A version control system for block-based languages needs to be web-based. A project is represented 
by a graph similar to a Git tree. A node corresponds to a revision of version control systems (see Figure 



Constructionism 2018, Vilnius, Lithuania 

410 

 

2). It can be classified as a special case of a centralized version control system: there is only one project 
status stored centrally on a server. However, each user always works in their own branch, which is the 
norm for distributed version control systems. That means, if a user starts editing a revision, they implicitly 
start their own branch. If two or more users start working on the same revision, one individual branch 
per user is automatically created. Therefore, changes to the same revision cannot lead directly to a 
conflict. This also means that there is no explicit master branch. This addresses the experiences 
described by Lawrance that students had fewer problems when using their own branch for each sub-
task (Lawrance, Jung, & Wiseman, 2013). 

To create a project, users can either use an empty project or upload their own templates (e.g. with 
predefined blocks or sprites). It is also possible to upload additional files later on. As the version control 
system runs in the browser, there is no need to set up an individual server to use the version control 
system or configure existing services. This allows the teacher to use version control systems without 
specific knowledge in a very flexible way.  

Double-clicking a node in the graph opens the respective revision directly in the corresponding 
programming system (e.g. Snap!). In doing so, an additional button is inserted into the menu of the 
programming system. Clicking this button commits every change made by the user directly. By enabling 
a commit with only one command directly from the user interface, the described problem of few commits 
during long work periods is counteracted. The user is prompted to enter a commit message. In this way, 
students are motivated to briefly summarize their changes. Additional implicit awareness information 
such as timestamps, number of sprites or scripts added and removed, and total number of sprites or 
scripts are provided for each node. These make it easier for other group members to track changes in 
the project. Reverting to an old revision is done simply by opening the specific node and beginning to 
work from there. 

 

Figure 3. Merge process 

The process of merging multiple revisions is initiated by selecting several nodes. If the selection is 
confirmed, the merge takes place. As long as there is no conflict, the system will merge automatically, 
similar to a professional version control system. This is the case if neither sprites nor scripts have been 
changed or only one user has made changes. The more recent version is identified by the ancestor 
relationship in the graph. Therefore, no interaction on the student side is necessary, unless several 
students have edited the same script. If this is the case, there will be a conflict. To resolve this conflict, 
we use a merge view providing all alternatives of the conflicting scripts side by side with comments 
attached. The students can then select the appropriate version or compose a suitable solution. For an 
example, see Figure 4: Bob and Susi edited the same script. In addition, Bob added another script. The 
new script will be merged automatically, while the existing script they both edited will raise a merge 
conflict. Therefore, both scripts are added to the merged version providing commentary details. 



Constructionism 2018, Vilnius, Lithuania 

411 

 

 

Figure 4. Merge view 

Features such as add, push or status, which are known from professional VCS, are not necessary, 
because the structure of the version control system and block-based languages make these features 
obsolete. The only activities that students must actively do and learn are commit and merge.  

The user guidance and interface are deliberately kept simple. The same applies to terminology, which 
must be tailored to the target group. Only two essential features need to be named. In discussions with 
computer science teachers, the use of the term commit was rated as difficult. The term merge, on the 
other hand, was considered suitable for students of all grades. Accordingly, the original term was used 
in this case, whereas the term post to <<project_name>> was introduced for commit. This term provides 
a suitable analogy for commit, comes from students’ daily life and is appropriate for all ages. 

In summary, key features provided are: 

 visualization of the project and its history in a graph 

 automatic branching for each editor of a revision 

 opening each revision directly in the respective programming system in the browser 

 easy commit from within the programming system used 

 merging by selecting the respective nodes 

 visualizing conflicts in a merge view 

 providing implicit and explicit awareness information for each revision 

 support for multiple templates and starting nodes 

Exemplary Implementation: smerge 
With “smerge” (derived from the terms “Snap!” and “merge”), we provide an exemplary implementation 
of the described concept. The tool is implemented in Python 3 and JavaScript using the Django 
framework49 and cytoscape.js50. For running a separate instance, only a server running Apache, Nginx, 
or similar is needed51. Instead of handling plain source code as with traditional version control systems, 
block based languages require a different approach due to their structure. Therefore, we utilize the XML 
file structure of Snap! projects, which differs from languages like Scratch or GP. On opening a certain 
revision, the associated XML project file is passed to a Snap! instance. In this step, a custom block 
containing the commit functionality (written in JavaScript) is injected. On commit, the current state of 

                                                
49 https://www.djangoproject.com/ 
50 http://js.cytoscape.org/ 
51 A running instance can be found at smerge.org, the source at github.com/manzanillo/smerge. 



Constructionism 2018, Vilnius, Lithuania 

412 

 

the project is exported in XML format and sent to our servers. As soon as the user triggers a merge, the 
corresponding project files are analyzed and compared on XML level. While conflict detection is easy 
when comparing source code in text form (usually line by line), once more a new solution for block-
based languages is needed. Our solution regarding this conflict detection problem is based on sprite 
names and script coordinates. For conflict resolution, revisions and their ancestors are compared on 
XML level according to the auto-merge concept described above. 

 (How to) smerge in the classroom 

In the following, we will describe a possible workflow in smerge when using it in PBL. One way to 
implement PBL in the classroom is agile projects, which have already been used for PBL successfully 
(Kastl & Romeike, 2015). In doing so, agile practices such as user stories, standup meetings, pair 
programming, sprints or prototypes are adapted for the use in schools (Romeike & Göttel, 2012). We 
will use this framework to describe an exemplary workflow for smerge in PBL (see Figure 5). 

For constructionist learning in school projects, students first create their own initial draft. Therefore, each 
group creates their own smerge project. In this way, they have created a place where all changes to the 
code are stored centrally. Each programming pair continuously works on one user story at a time. With 
the auto branch feature of smerge, every user story or feature is realized in its own branch. Pupils are 
therefore encouraged to work on tasks in parallel and can focus on a single feature each. Each pair has 
its own sandbox in which they can experiment and tinker. 

 

Figure 5. Smerge workflow 

This type of workflow also promotes a more realistic form of collaboration in projects. At the end of a 
sprint, at the latest, the students will assemble their subprograms into a new prototype by using smerge 
to merge their branches. With smerge, every programming pair can then test the resulting prototype on 
its own as opposed to the described problem of all group members in front of a single pc. The merge is 
a ritualized team activity. A project also involves constantly improving the inner structure of the program 
through continuous refactoring. Smerge supports this with its merge view. By contrasting the individual 
parts from different sources with each other in the merge view, smerge motivates students to think about 
possible refactoring. For example, in order to make their own code easier to read, students tend to 
outsource redundant parts of the code into custom blocks. During the process, the visual representation 
of smerge, in addition to a possible project board, helps teachers and students keep track of the 
progress of the project. 

The version control system can also be used highly flexibly in teaching outside of PBL. In the following, 
we will describe a lesson to introduce broadcasting in lower secondary education. In this scenario, every 
student will create his/her own individual instance of a prototype given by the teacher. Let's assume we 
want to make a group of penguins dance to a given beat. The beat is determined in a sprite created by 
the teacher and is delivered to the students via broadcasts. The students’ task is to create their own 
penguin and let it react to the different bars of the music. For this purpose, the teacher provides a 
template with a simple penguin sprite. The students then rename their own sprite, design its looks and 
implement an individual behavior on the rhythm. After the students have finished their task, all individual 
solutions are to be combined into a complete work to emphasize the concept of broadcasts with more 



Constructionism 2018, Vilnius, Lithuania 

413 

 

receivers. Without such a tool, it would require teachers to collect all students’ solutions and combine 
them manually. In smerge, this combination is reduced to nothing more than the click of a button. 

In addition, smerge can be used for a longer teaching sequence. In doing so, students develop multiple 
small programs to learn specific CT concepts. The class, or each student, can collect all these sub-
projects within one smerge project. Every lesson, the students receive a new template in which they 
complete a specific task. After several units, the subprojects are combined to form an overall project, 
and a greater coherence becomes apparent. One example is the game Breakout, where the paddle, 
the ball and the bricks can be considered three sub-projects. So, handling user input, movement and 
bouncing of walls as well as list for placing bricks are main topics for individual lessons. 

It would also be conceivable to use several templates for differentiation. Teachers can provide different 
templates for different types of learners. By providing weaker students with other tasks or more support, 
e. g. through given blocks, within the framework of a project, they can be supported individually. In 
addition, the process of tracking students’ progress and assisting them accordingly is enhanced using 
smerge. 

Conclusion 

In conclusion, this concept addresses all the initially described school-specific use-cases such as 
managing files and problems like blocked teams with code forgotten at home or sick students. It offers 
organizational advantages such as the possibility to share templates and skeletons in an easy manner, 
to start with multiple skeletons for different groups, to revert changes or work remotely from home. 
Teachers can concentrate on the pedagogical aspects of their lesson concept, as they are no longer 
involved in organizational activities such as setting up a server for a version control system. Regarding 
pedagogical advantages, both the current status of the project as well as its development process and 
progress become visible to both teachers and students. Because of the graphical visualization and the 
possibility to directly open, execute and test each node directly, this goes much further than professional 
version control systems. It allows for great flexibility and a constructionist way of teaching and learning:  
it supports PBL, differentiation, decomposing a greater whole in small learning lections, or class-wide 
collaboration. 

The outlined concept for a version control system enables collaboration in block-based languages. The 
version history provides a risk-free environment that invites users to experiment and tinker. Features, 
design and interface are reduced and adapted to the target group of novice programmers and based 
on existing research and experience regarding the use of version control systems. Smerge as an 
exemplary implementation of the concept offers all these features and is ready to be used in CSE. 

References 

Barr, V., & Stephenson, C. (2011, March Volume 2 Issue 1). Bringing computational thinking to K-12: 
what is Involved and what is the role of the computer science education community? ACM Inroads, pp. 
48-54. 

Brichzin, P., & Rau, T. (2015). Repositories zur Unterstützung von kollaborativen Arbeiten in 
Softwareprojekten [GERMAN]. INFOS 2015 - Informatik allgemeinbildend begreifen (pp. 73-82). Bonn, 
Germany: Lecture Notes in Informatics (LNI), Gesellschaft für Informatik. 

Broll, B., Lédeczi, A., Volgyesi, P., Sallai, J., Maroti, M., Carrillo, A., Weeden-Wright, S., Vanags, C., 
Swartz, J., Lu, M. (2017). A Visual Programming Environment for Learning Distributed Programming. 
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 81-
86). New York, NY, USA: ACM. 

Chase, J. D., & Okie, E. G. (2000). Combining cooperative learning and peer instruction in introductory 
computer science. SIGCSE '00 Proceedings of the thirty-first SIGCSE technical symposium on 
Computer science education (pp. 372-376). New York: ACM. 

Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards, Revised 
2017. Retrieved from http://www.csteachers.org/standards 



Constructionism 2018, Vilnius, Lithuania 

414 

 

Fisker, K., McCall, D., Kölling, M., & Quig, B. (2008). Group Work Support for the BlueJ IDE. 
Proceedings of the 13th annual conference on Innovation and technology in computer science 
education (pp. 163-168). New York, NY, USA: ACM. 

Glassy, L. (2006, Volume 21 Issue 3). Using version control to observe student software development 
processes. Journal of Computing Sciences in Colleges, pp. 99-106. 

Haaranen, L., & Lehtinen, T. (2015). Teaching Git on the Side: Version Control System as a Course 
Platform. Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer 
Science Education (pp. 87-92). New York, NY, USA: ACM. 

Isomöttönen, V., & Cochez, M. (2014). Challenges and Confusions in Learning Version Control with Git. 
Information and Communication Technologies in Education, Research, and Industrial Applications 
Communications in Computer and Information Science : 10th International Conference, ICTERI 2014 
(pp. 178-193). Kherson, Ukraine: Springer International Publishing. 

Kastl, P., & Romeike, R. (2015). "Now they just start working, and organize themselves" First Results 
of Introducing Agile Practices in Lessons. Proceedings of the Workshop in Primary and Secondary 
Computing Education (WiPSCE '15) (pp. 25-28). New York, NY, USA: ACM. 

Laurillard, D. (2009). The pedagogical challenges to collaborative technologies. International Journal of 
Computer-Supported Collaborative Learning. 4(1), pp. 5-20. 

Lawrance, J., Jung, S., & Wiseman, C. (2013). Git on the cloud in the classroom. SIGCSE '13 
Proceeding of the 44th ACM technical symposium on Computer science education (pp. 639-644). New 
York, NY, USA: ACM. 

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A Sneak 
Preview. Proceedings of the Second International Conference on Creating, Connecting and 
Collaborating through Computing (C5 '04). IEEE Computer Society (pp. 104-109). New York, NY, USA: 
ACM. 

Monroy-Hernandez, A. (2012). Designing for remixing: Supporting an online community of amateur 
creators. Cambridge, MA, USA: Doctoral dissertation, Massachusetts Institute of Technology. 

Ohshima, Y., Freudenberg, B., & Amelang, D. (2017). Kanto: a multi-participant screen-sharing system 
for Etoys, Snap!, and GP . Proceedings of the 3rd ACM SIGPLAN International Workshop on 
Programming Experience (pp. 7-10). New York, NY, USA: ACM. 

Reid, K. L., & Wilson, G. V. (2005). Learning by Doing: Introducing Version Control as a Way to Manage 
Student Assignments. SIGCSE '05 Proceedings of the 36th SIGCSE technical symposium on Computer 
science education (pp. 272-276). New York, NY, USA: ACM. 

Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey, & D. E. Kanter, Design, 
make, play: Growing the next generation of STEM innovators (pp. 163-181). New York, NY, USA: 
Routledge. 

Romeike, R., & Göttel, T. (2012). Agile projects in high school computing education: emphasizing a 
learners' perspective . WiPSCE '12 Proceedings of the 7th Workshop in Primary and Secondary 
Computing Education (pp. 48-57). New York, NY, USA: ACM. 

Somasundaram, R. (2013). Git: Version control for everyone. Birmingham, UK: Packt Publishing Ltd. 

  



Constructionism 2018, Vilnius, Lithuania 

415 

 

Racket Programming Material for Finnish 
Elementary Math Education 

Tiina Partanen, tiina.s.partanen@tampere.fi 
City of Tampere, Finland 

Pia Niemelä, pia.niemela@tut.fi 
Tampere University of Technology, Finland 

Timo Poranen, timo.t.poranen@uta.fi 
University of Tampere, Finland 

Abstract 
Programming is becoming a part of basic education in number of countries. 2014 Finnish National 
Curriculum (FNC-2014) for K-9 education embeds programming into the subjects of mathematics and 
crafts. The change in the curriculum challenges teacher training and causes a demand for appropriate 
teaching materials. This paper introduces a free Racket programming material for grades 5 to 9 fully 
integrable with mathematics lessons. Racket is a general purpose multi-paradigm programming 
language especially fit for education. The material consists of theory sections, corresponding exercises 
and answers. Covered math topics comprise natural and rational numbers, arithmetic operations, the 
order of operations, rounding, percentage calculations, scaling, polynomials, truth values, coordinate 
systems, geometric shapes, angles, etc. We evaluate the material by comparing the math concepts with 
the ones in FNC-2014.  

Keywords 
Racket programming material; computational thinking; computer science education; spiral curriculum; 
grades 5-9; mathematics 

Introduction 

In Finnish schools, programming has been mandatory since August 2016 (The Finnish National 
Curriculum, 2014). This retrospective change in teachers’ job descriptions challenges the education 
system and creates an urgent demand for in-service training and training material. Unlike a number of 
other countries, Finland decided to add programming into the existing mathematics syllabus without 
granting time to cover the new material. This approach mandates tailoring the material to be as math-
supportive and mutually beneficial as possible: while mathematical concepts ought not to be 
compromised, the learned programming concept subset should still be as expressive and exploitable 
as possible. As a further complication, the FNC-2014 requirements for programming are on a high 
abstraction level and defined only for certain grades (i.e., grades 2, 6, and 9; others were left to be 
specified locally), which impedes application.  

In 2016, to support mathematics teachers in the elaboration of FNC-2014 requirements, the Finnish 
Association for Teachers of Mathematics, Physics, Chemistry and Informatics (MAOL) initiated a project 
to develop programming material for mathematics lessons. In 2017, the same material was used in a 
two-day hands-on in-service teacher training in fifteen cities all-around Finland. This paper presents the 
contents of the created Racket material concentrating on grades 5-9. We present the learning trajectory 
of the programming concepts and how they were integrated into the mathematics curriculum. The 
underlying research questions are: 

1. Which kind of programming theory, material and exercises are foreseen beneficial for learning 
mathematics? 

2. How do the introduced exercises comply with FNC-2014 and its underlying learning theory? 
 

This study follows the principles of educational design research, where the feedback is used for 
incremental improvements (Akker et al., 2006). The rest of this paper is organized as follows. First, we 



Constructionism 2018, Vilnius, Lithuania 

416 

 

introduce the learning theory behind FNC-2014. Second, we review the programming requirements for 
Finnish schools. Third, the Racket programming material is introduced and followed by the comparison 
and evaluation with FNC-2014. Then we evaluate the material based on feedback received from teacher 
training. Finally, we give some directions for future research. 

Constructivism 

Learning theory of FNC-2014 
The FNC-2014 is based on the constructivist theory of learning underpinning a large family of related 
theories. All emphasize an individual’s responsibility of his own learning in structuring knowledge as 
consistent constructions, i.e., as schemas and other elaborations. As the most prominent schema 
building theory, Piaget and Duckworth (1970) launched the theory referred to as cognitive 
constructivism. Piaget studied a child’s cognitive development and described learning as the formation 
of mental data structures as cognitive models, i.e., schemas. When a child faces a new concept, he will 
place it in the schema: ’assimilation’ strengthens the schema a new concept is a snap to the sketch. 
Inconsistency in schema forces to reconstruct the data structures into a new one, i.e., the schema needs 
’accommodation’. In particular, Piaget’s genetic epistemology addresses the meaning of knowledge and 
forming schemes by employing reflective abstraction, the whole process being supported by self-
regulation skills (Piaget and Duckworth, 1970). In summary, learning can be characterized as changes 
in one’s schemata.  

As an extension of student-centred learning, the new winds of phenomenon-based learning are blowing 
in FNC-2014. Even if as a concept of phenomenal learning is quite new, it complies with the long 
tradition of experimental and active learning traditions, such as ’learning by doing’ (Dewey, 1902) and 
’learning by making’ (Papert, 1980). Both of these educational luminaries, Dewey and Papert, 
emphasize the affective side of learning and aim first at motivating students with engaging exercises. 
According to Dewey, the gained experiences must be relevant to a student in order to meaningful 
learning to take place. This view is seconded by Papert, who increments the idea with the cultural 
resonance, i.e., ’the topic must make sense in terms of a larger social context.’  

Papert spent four years working under Piaget at the International Centre of Genetic Epistemology. Thus, 
Papert counts among a number of later development psychologists that own to Piaget.  Papert’s 
constructionism is founded on Piaget’s cognitive constructivism, which Papert felt being too tightly 
personified to Piaget's constructivism often reads ’Piagetism’. However, constructionism shares 
constructivism’s connotation of learning as ‘building knowledge structures’, but increments it with 
experiential learning, in other words, ’learning by making’. According to Kolb (2014), gaining experience 
is yet alone not enough, but the experiences must be elaborated with reflection and analysis to 
deliberately built deeper knowledge, the process of which Piaget refers to as reflective abstraction. 
Experimental and phenomenon-based learning has now-a-days strong advocates in particular in the 
discipline of science, its development being based on well-planned experiments. 

Constructionism in math 

Piaget’s influence has diffused widely into different disciplines, in particular math. More systematically 
than other academic subjects, the syllabus of math relies on the consistent learning progressions and 
cumulative learning; topics proceed in consecutive steps by constructing on what has been learned 
previously. In a comprehensive school, the math syllabus can be divided into such main syllabus areas 
as arithmetic, algebra, and geometry, each of which can be examined separately by applying 
constructivist theories. First, the gradual possession of algebra fundamentals exemplifies the process 
of reflective abstraction. Next, geometry demonstrates evolving spatial perception. Last, Euclidean 
geometry is expanded as computational turtle geometry by Papert, who regards computers as highly 
valuable learning tools, in compliance with his theory about constructionism incrementing constructivism 
with computer-based exercises.  

In the context of algebra, Piaget’s genetic epistemology has suited as the action-process-object-schema 
(APOS) theory (Dubinsky and McDonald, 2001). The theory hypothesizes the subsequent steps of 
reflective abstraction started by simple actions of, e.g., counting or ordering, which are transformed as 



Constructionism 2018, Vilnius, Lithuania 

417 

 

more complex processes when they are recognized to share common patterns. Learning continues with 
the encapsulation of objects once APOS processes are abstracted as functions that contain mutable 
numbers as variables. The ultimate target is a constitution of flexible schemas based on the processes 
and objects, and fitting these schemas to the larger schemata of a learner.  

In geometry, Van Hiele (1999) observed the deepening levels of spatial understanding. Analogously to 
APOS, Van Hiele levels of geometry consist of similar learning progressions: a student starts by 
recognizing the shape, then the patterns, i.e., analogies in shape properties, and comparison of the 
properties triggers an informal deduction phase, where students produce definitions in their own words; 
later these initial deductions are formalized. ’Rigor’, the last van Hiele level, anticipates the maturity of 
transferring and applying the knowledge in different systems, which is often exemplified by the switch 
from ordinary Euclidean to non-Euclidean geometry. Van Hiele criticizes attempting too much too early 
in reference to the deteriorated learning results of the ’New Math’ movement. Instead, the best learning 
outcomes are reached by adjusting the material appropriate to the level of children’s thinking.  

While proofing the theory of van Hiele levels of geometric thinking, Clements and Battista (1992) 
suggest a new zero level without any conditions referred to as ’pre-recognizing’, where children perceive 
geometric shapes, but attend to only a subset of a shape’s visual characteristics. In addition, their study 
implicates that the levels are not as discrete as described, rather ’there was instability and oscillation 
between the levels in several cases … Continuity rather than jumps in learning was frequently 
observed.’ For an early exposure to spatial thinking, a computer is an excellent instrument. In an attempt 
to combine the affective and cognitive sides of learning, Papert (1996) launched turtles to stimulate both 
learning geometry and simultaneously exercise computing. To get a turtle to move in a desired direction 
and to draw the aimed geometric shapes, children are subtly exposed to the classifications and 
properties of shapes. Intendedly, turtle exercises are visually pleasing and capable of engaging 
students.  

A number of Papert’s principles overlap with Hungarian math referred to as the Varga-Nemenyi method 
that, e.g., Tikkanen (2008) introduces in her dissertation. For instance, to use learning tools, a lot of 
hands-on experiences and multisensory exercises that are refined as logic-mathematical conceptions 
when students progress along the ’way of abstraction’. In the same tune, Papert promotes a more playful 
way of nurturing computing basics and practice math in sync. According to his interpretation, computing 
is applied mathematics, and playing with turtles provides a gentle way of practicing it and strengthening 
a child’s self-efficacy. 

In essence, motivation and self-efficacy are accurate predictors of successful learning (Bandura, 2006). 
Thus, the instructional setup should focus on the affective side of learning instead of concentrating on 
mechanical routine work. Regrettably, in Finland, math attitudes deteriorate throughout the whole 
comprehensive school (Tikkanen, 2008), and the gap between poor and good students’ skills to further 
widens, which is called Matthew effect, i.e., stronger students become stronger compared with poorer 
students (Lampinen and Korhonen, 2010). In contrast, the development in mother tongue is opposite 
so that the differences over time are reduced. Likewise, Papert is worried about the increasing number 
of math-phobic students that label themselves as too stupid to learn. He hypothesizes that this trend is 
a consequence of a too stiff way of solving problems and the pressure of getting it right at the first 
attempt, or in his words, the ’technology of grading’. Because of this phobia, self-efficacy-impaired 
students are mathematical under-performers. Programming experiments can be interpreted as a 
counteract of previous stiff problem-solving procedures criticized by Papert. 

Programming in Finnish Schools 

Programming syllabus emphasizes problem solving, algorithmic and logical thinking in particular. In 
addition, identifying the importance of math as the foundation for information and communication 
technology is a learning goal: future work and economy are dependent on the technological 
development and digital skills. FNC-2014 emphasizes digital competence as an interdisciplinary skill 
throughout all grades. The curriculum excerpts below mention programming explicitly in the objectives 
of two subjects, mathematics and crafts: 
 

Grades 3-6 



Constructionism 2018, Vilnius, Lithuania 

418 

 

● Digital competence: ”Students learn to program and become aware of how technology 
depends on decisions made by humans.” 

● Mathematics: ”Students plan and implement programs using a visual programming language.” 
● Crafts: ”Students practice programming robots and/or automation.” 

 

Grades 7-9 
● Digital competence: ”Programming is practiced as part of various other subjects.”  
● Mathematics: ”Students should develop their algorithmic thinking and learn to solve problems 

using math and programming. In programming, students should practice good coding 
conventions.” 

● Crafts: ”Students use embedded systems, plan, and apply programming skills in order to 
create products.” 

 
The mathematics syllabus has been rather stable over the recent years. The syllabus relies on the 
consistent and cumulative learning: topics proceed systematically by constructing on what has been 

learned previously. Traditionally, mathematics follows a spiral curriculum (Bruner, 2009), e.g., each year 

students learn some more geometry, and arithmetic and algebra related contents. However, FNC-2014 
does not mandate the grade in which specific topics are to be introduced, instead, this can be decided 
at the local level.  

As a new approach, FNC-2014 emphasizes a general skill-set, which students should acquire during 
primary education. Each subject should promote the development of transversal skills, such as, thinking 
skills, multiliteracy including digital literacy; ICT competence; working skills and entrepreneurship. In 
addition, FNC-2014 requires each school to provide cross-disciplinary learning modules that integrate 
multiple subjects, increase project- and phenomenon-based learning, and employ multiple learning 
environments also outside the school premises.  

Racket Programming Material 

Teachers must follow both national and local curricula, otherwise, they are free to select teaching 
methods and material. A few major school book publishing companies provide text book series. Due to 
the programming addition, the publishers started to update their math books. So far, the range of 
programming languages covers Scratch, Python and Processing. Free Racket online courses for 
teachers exist as well (Partanen et al., 2017).  

To design, create and publish open programming material for math teachers, MAOL (2018) applied 
funding from the National Board of Education and from the Technology Industries of Finland Centennial 
Foundation. The founded working group consists of five experienced comprehensive school teachers, 
a university researcher and a freelance coder. For grades 1-6, the group developed material for Scratch 
(grades 1-6), ScratchJr (grades 1-2) and Lego Mindstorm (grades 3-4).  For grades 5-9, the working 
group decided to exploit Racket (2018) language, the justification being the close conceptual linkage 
between algebra and functional paradigm. Racket is pure functional if limited to the Beginning Student 
language only. In addition, it has a strong pedagogical basis for computer science, and a versatile 
support for Windows, Mac OS, Linux and browser-based use. Moreover, the working group knew it well 
and had gained a strong experience.  

The material was implemented in compliance with the following design principles: i) theory and 
exercises should be related to corresponding mathematical concepts, ii) based on FNC-2014, material 
for grades 5-6 should cover about 12 hours and the same amount for grades 7, 8, and 9 each, iii) the 
emphasis on ‘learning by doing’, iv) freely available material, except the answers which will be shared 
with teachers only, and v) exercises ranging from easy to difficult to enable differentiation. Racket 
material was published piecewise starting from fall 2016, and the latest additions were made at the end 
of 2017 (MAOL Racket, 2017). Altogether, it consists of 37 pages for grades 5-6, 54 for grade 7, 31 for 
grade 8, and 55 for grade 9 in print.  

FNC-2014 mandates grades 3-6 to learn graphical programming. Complementarily, the material 
provides textual programming basics for grades 5-6 to foster fluency with keyboard, mouse, file saving, 



Constructionism 2018, Vilnius, Lithuania 

419 

 

and file system browsing – by and large, such practical skills they are often observed lacking. For these 
grades, learning targets familiarization with programming environment and basic syntax rules, arithmetic 
operations, functions for drawing simple geometric shapes, comparisons and their truth values, and 
variables for storing data. These concepts were integrated with math exercises, such as calculating 
percentages, fractions and decimals, and problem solving in geometric contexts. The content in more 
detail and the related curriculum specifications for grades 5-6 can be found in Table 1. 

The material for grade 7 was built with no requirement of prior Racket knowledge. Often, grade 7 classes 
are formed of students coming from schools that have used different material, time, and languages for 
programming. If necessary, the previous grade 5-6 material can be used as a tutor for these students: 
programming content for 5-6 and 7 is analogous, but the grade 7 covers more advanced math problems 
including negative numbers, absolute value, powers, square root, a circumference of a circle, etc. Turtle 
geometry serves as a means to study the geometric properties of lines, polygons (especially triangles), 
a coordinate system, and the concepts of reflection and mirroring (see Fig. 1). 

grade 7 geometry grade 8 geometry grade 9  geometry 

  
 

Figure 1. Exercise material on drawing Turtle images in grades 7-9 

Fig.1 exemplifies geometry knowledge that gradually deepens starting from free drawings and 
advancing to more formal 2D shapes and 3D shapes whose properties are examined to induce the 
underlying mathematical rules. This gradual abstraction and formalization process demonstrates 
deepening van Hiele levels; visiting the same topics in a yearly basis manifests the spiral curriculum 
approach. Good coding conventions include a descriptive naming of variables, adding comments, and 
indenting code to improve its readability. The content in more detail and the related curriculum 
specifications for grade 7 can be found in Table 2. 

The grade 8 material introduces plenty of core programming concepts such as truth values (binary 
values), comparisons, predicates and conditional expressions, function definitions, function parameters 
as variables, validity tests for user input, and error messages for invalid input. The listed programming 
content is practiced with polynomials (user-defined, tested with different arguments) and with geometry 
calculations, such as perimeter and area. User input is validated with conditions to eliminate negative 
side lengths and zero dividers, for example. In addition, material exploits turtle geometry to scaffold 
perceiving shapes that require repetition (circle) and/or parameterization. 

Good coding conventions include descriptive naming for function and parameters, as well as a proper 
function signature (domain and range). The content in more detail and the related curriculum 
specifications for grade 8 can be found in Table 3. 

The material for grade 9 covers more advanced topics such as lists, higher-order functions and 
recursion. The math topics origin from statistics (mean, mode, median, proportional frequencies, 
drawing bar charts), algebra (study of linear and quadratic functions and graphs), and arithmetic 
(calculating values using recursion, such as number sequences, loan payment schedules). In geometry, 
more advanced turtle graphics illustrate 3D shapes. A couple of quiz-style programs are provided for 
customization. Quiz applications could be implemented as math concept reviews, such as volumes of 
3D-shapes, for example.  



Constructionism 2018, Vilnius, Lithuania 

420 

 

Table 1. Racket-material concepts in grades 5 and 6. 

Module Programming 
concepts 

Math concepts FNC-2014 

Arithmetic: 
Introduction to 
programming 

- types (numbers, 
strings) 
- function call 
(arguments) 
- simple syntax rules for 
expressions 
- nested function calls 

- natural numbers  
- arithmetic 
operations (+, -, *, /)  
- order of operations 

Practice basic arithmetic 
operations in varying situations 
and using needed tools. 

Algebra: 
Variables  

- defining variables 
(constants) 
- expressions using 
variables 
 

- positive rational 
numbers (decimal 
number) 
 
 

Familiarize with the notion of 
unknown. Examine equation and 
find solutions heuristically. Study 
decimal numbers as a part of 
numbers in decimal system and 
practice calculations using them. 

Logic: 
comparisons 

- truth values 
- comparison operations 
(<, >, =) 
- decimal numbers 

- truth values of 
propositions 
- equality and 
inequality 
 

 

Geometry: 
Image 
programming 

- library 
- calling a function with 
different arguments to 
get a different output 
- pixel graphics 
- combining images 
from smaller images 

- function machine 
(input, output) 
- measures in 
rectangles (width, 
height) 
- area and perimeter  
- reflecting with 
respect to an axis  
- axial symmetry  

Practice skills in finding 
similarities, differences and 
patterns. Design and implement 
programs in graphical 
programming environment. 
Measure and calculate the area 
and perimeter of different 
geometric shapes. Observe axial 
symmetry.  

Arithmetic: 
Fractions and 
percentages 

- fractions 
(improper/mixed 
fractions) 
 

- rational numbers 
(improper/mixed 
fractions) 
- percentage 
(calculating 
percentage of a 
number) 
- presenting fractions 
visually as images 
- ratio of distances in 
the context of scaling 
images 
(smaller/bigger) 

Learn the notion of fractions and 
practice arithmetic operations in 
different situations. Create the 
basis for understanding 
percentages and percentage of a 
value, practice calculating these. 
Use the relations between 
fractions, decimal numbers and 
percentages. Familiarize with ratio 
of distances and use it in the 
context of reduction and 
enlargement.   

Table 2. Racket-material concepts in grade 7. 

Module Programming 
concepts 

Math concepts FNC-2014 

Arithmetic - integers, decimal 
number, fractions 
(improper/mixed) 
- function call 
(arguments) 
- simple syntax rules for 
expressions 
- evaluation of 
expressions 
- nested function calls 

- rational numbers  
- arithmetic operations (+, 
-, *, /)  
- order of operations 
- approximating result 
- rounding 
- exponentiation 
- square root 
- absolute value 
- remainder 

Practice arithmetic operations also 
with negative numbers. 
Strengthen numeracy in the 
context of fractions and learn 
multiplication and division with 
fractions. Deepen the know-how of 
decimal number operations. 
Familiarize with the notion of 
multiplicative inverse and absolute 
value. Strengthen understanding of 



Constructionism 2018, Vilnius, Lithuania 

421 

 

- rounding (floor, ceiling) 
- math functions (expt, 
sqrt, abs, modulo, 
random) 

- random numbers the difference between exact and 
approximate numbers and 
rounding. Practice calculating 
powers and exponents with integer 
indices. Learn the principle of 
square root and its use in 
calculations.  

Algebra: 
Expressions 

- definition of variables 
(constants) and 
expressions using 
variables 
- expression evaluation 
- comments 

- variable expressions 
- value of expression 
- areas and/or perimeters 
of rectangles,  triangles 
and circles 
- angles in triangles and 
of intersecting lines 
- word problems 

Learn the concept of variable and 
how to calculate the value of an 
expression.  
 
Study qualities of lines, angles and 
polygons.  
 

Strings - types (numbers, 
strings, images) 
- string operations 
- type conversions 

  

Geometry: 
Images 

- library 
- calling a function with 
different arguments to 
get a different output 

- measures in basic 
shapes (circle, square, 
rectangle, triangle) 
- points and lines in 
coordinate system  
- rotation and scaling 

Study qualities of lines, angles and 
polygons.  
 

Geometry: 
Turtle 
geometry 

- loading a library 
extension 
- using library functions 
- defining a list of 
drawing functions in 
correct sequence 

- angles and side lengths 
in polygons 
- different triangles (right 
triangle, isosceles 
triangle, equilateral 
triangle) 
- parallel and 
perpendicular lines 
- coordinate system 
- reflecting with respect to 
an axis and mirroring 
relative to a point 

Understand concepts of point, line 
segment, line, angle [and study the 
concepts of path and half-open line 
segment].  
Practice geometric constructions. 
Observe axial symmetry. 
Study the first quarter of the 
coordinate system and extend it to 
contain all quarters (grades 3-6) 

Good 
coding 
conventions 

- descriptive naming of 
variables, code 
indentation 

 Program and practice good coding 
conventions. 

 

Table 3. Racket-material concepts in grade 8. 

Module Programming 
concepts 

Math concepts FNC-2014 

Algebra: 
Function 

- function definition 
(names of function and 
parameters) 
- function output with 
different input 
- understanding error 
messages 

- polynomials 
- function (polynomial 
function) 
- calculating the value of a 
function with different 
arguments 

Learn the concept of 
variable and how to 
calculate the value of an 
expression. Familiarize with 
the concept of polynomials. 

Logic: 
Truth values 

- bits 
- truth values 
- comparison operations 
(<, >, =, <=, >=) 
- Boolean operators (and, 
or, not) 

- binary and decimal 
systems  
- truth values 
- propositional logic 
connectives (and, or, not) 
- defining intervals in 
number line (0 < x < 4) 

Practice logic thinking such 
as finding rules and 
dependencies and 
presenting them 
appropriately. Ponder and 
study the number of 
alternatives.   Practice 



Constructionism 2018, Vilnius, Lithuania 

422 

 

- predicates (number?, 
even?) 
 

- parity  logical thinking by reasoning 
truth values of propositions.  

Logic: 
Conditional 
structure 

- conditional structure (if-
else) 
- testing the validity of the 
input and giving relevant 
error messages 
- nested if-expressions 
and multiple selection 
(cond) 

- defining domain and 
range for a function 
- detecting undefined 
situations: division by zero, 
square root of negative 
number, negative radius 
- calculating percentage 
(progressive tax of income)  
- naming angles 

Practice calculating 
percentage of the whole.  

Geometry: 
Plane 
geometry 

 -area of geometric shapes 
(rectangle, parallelogram, 
circle) 
-circumference of 
geometric shapes (square, 
rectangle, circle) 
-Pythagorean theorem 
(right triangle) 

Adopt usage of a larger 
number set (real numbers). 
Learn to use Pythagorean 
theorem and inverse 
Pythagorean theorem. 
Calculate perimeters and 
areas of polygons. Practice 
calculating the area and 
circumference of a circle, 
the area of a sector and the 
length of its arc. 

Geometry: 
Turtle 
geometry 

- repetition  
- function that returns a list 
as output 

- regular polygons 
- approximation of a circle 
as a regular polygon  
- arcs 

Study qualities of lines, 
angles and polygons. 

Good coding 
conventions 

- descriptive naming of 
functions 
- function signature e.g. 
input and output types 

 Program and practice good 
coding conventions. 

 

The rest of the material is targeted for the students who seek more challenge. The exercises include 
basic algorithms: recursion (list processing), search (binary search), sorting (bubble sort), and 
optimization (greedy algorithm and dynamic programming). Good coding conventions in grade 9 include 
writing unit tests for functions. The content in more detail and the related curriculum specifications for 
grade 9 can be found in Table 4. 

Table 4. Racket-material concepts in grade 9. 

Module Programming concepts Math concepts FNC-2014 
Statistics: 
Lists and 
statistics  

- list and list operations 
- nested lists 
- range 
- higher order functions 
(apply, map) 
- sorting 
- filtering 

- arithmetic sequence 
- a bar chart 
- mean, mode, median, 
frequency, relative 
frequency 
- divisibility 
- prime numbers with 
Aristoteles sieve  

Deepen skills for gathering, 
classifying and analyzing 
information. Understand the 
concept of mean, mode and 
median. Practice finding 
frequency, proportional 
frequency and median.  
Study and create different 
diagrams. Learn about the 
divisibility of numbers to 
their prime factors. Deepen 
skills to study and form 
number sequences.  

Algebra: 
Functions 
and graphs 

- loops 
- vector 
- recursive functions 
- test cases for functions 
- local parameters (let) 

- graphs of functions 
(first and second order) 
- number sequences 
(arithmetic and 
geometric) 

Describe dependencies 
using both graphs and 
algebra. Study the concept 
of a function.  



Constructionism 2018, Vilnius, Lithuania 

423 

 

- creating a list recursively 
 

- interest (calculating 
loan payment schedule) 
- compound interest 
- random numbers 
- factorial 

Draw lines and parabolas in 
coordinate system. Learn 
the principles of slope and 
constant. Study graphs.  
Practice calculating 
percentage of the whole. 

Geometry: 
Turtle 
graphics 

- using higher order functions 
and range to create lists 

- division of geometric 
shapes into similar 
regions 
- number sequences in 
images (spirals etc.) 
- 3D shapes (cylinder, 
cone, cube) 

Deepen skills to study and 
form number sequences. 
Learn to use Pythagoras 
Theorem and trigonometric 
functions. Study 3D shapes.  

Applications: 
a quiz game 
and 
calculator for 
geometric 
properties  

- user interactions (usage of a 
simple GUI library) 
- modifying a readymade code 
to serve a new purpose 
- dividing code into helper 
functions 

- quiz on any suitable 
math related topic (for 
example functions, 3D-
geometry or unit 
conversions) 
- formulas to calculate 
area and/or volume of a 
3D-shape 
- rounding 
- units for area/volume 

Apply self- or ready-made 
programs into math studies.  
Learn to calculate surface 
areas and volumes of 
sphere, cylinder and cone. 
Ensure and enlarge the 
mastery of units of measure 
and unit conversions.   

Good coding 
conventions 

- test cases for functions  Program and practice good 
coding conventions. 

Evaluation 

A part of this material was exploited in the series of in-service math teacher trainings. The majority of 
course participants were math teachers (95.7%), female (78.1%) and teaching in grades 7-9 (92.4%). 
In general, the participants had quite long work histories: >15 years (38.3%), 6-15 years (39.5%), 0-5 
years (22.2%). The majority of the participants had some previous programming experience (55%) or 
lots of experience (6.4%), however, 38.6% had no experience at all. 

On the first day of the training, the following material was used: i) Introduction to programming 
environment (grades 5-6); ii) Image programming (grade 7); and iii) Functions, Truth values and 
Conditional structure (grade 8). On the second day, the material was: iv) Lists and statistics (grade 9); 
and v) Turtle geometry (grades 7-9). The participants were assigned to give a programming lesson to 
their students in-between the course dates by exploiting the material. After the second day, the course 
participants (N=329) assessed the material in a five-point Likert scale. The statements were: i) The used 
material is articulate, ii) The material is well suited for teaching purposes, iii) The material is 
comprehensive, and iv) The material contains enough exercises suitable for different types of students. 

 

Figure 2. Racket material feedback after in-service training 

Based on the feedback, the comprehensiveness scored the best, in addition, the material was 
considered rather articulate, suited for teaching purposes, and to include a sufficient number of 
exercises for differentiation. However, the review of the FNC-2014 requirements revealed the lack of 
integrative programming projects. In addition, some mathematics topics are still missing, such as: 



Constructionism 2018, Vilnius, Lithuania 

424 

 

- Interpretation and production of mathematical texts, basic proofs.  
- Changed and base value, change- and comparison percentages.  
- The addition, subtraction and multiplication of polynomials. 
- The reduction of exponentials 
- Linear, partial quadratic, simultaneous equations, roots. 
- Graphical and algebraic solving. 
- First-degree inequalities. 
- Proportion in problem solving; direct and indirect proportionality. 
- Concepts of similarity and congruence. 
- Inscribed and central angles [in circles] and Thales's theorem. 
- The concept of dispersion, probability. 

Conclusion and future work 

The examined Racket programming material for grades 5-9 was successfully used in teacher training 
and it received positive feedback from the math teachers. Further research should evaluate the current 
utilization of the material by the course participants and other mathematics teachers, collect feedback 
systematically and analyse students’ learning outcomes both in math and programming, also in 
comparison with other corresponding materials. After the analysis, the content could then be revisited 
and developed further in correspondence. 

References 

Akker, J.V., Gravemeijer, K., McKenney, S. and Nieveen, N. (eds.), (2006) Educational design research. 
London, Routledge. 

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., and Weller, K. (2013) APOS 
theory: A framework for research and curriculum development in mathematics education. Springer 
Science & Business Media. 

Bandura, A. (2006) Guide for constructing self-efficacy scales. Self-efficacy beliefs of adolescents, vol. 
5, no. 307-337. 

Bruner, J. S. (2009). The process of education. Harvard University Press. 

Clements, D. H. and Battista, M. T. (1992) Geometry and spatial reasoning. In Handbook of research 
on mathematics teaching and learning, pp. 420 – 464. MacMillan. 

Dewey, J. (1902) The child and the curriculum. University of Chicago Press, no. 5. 

Dubinsky, E. and McDonald, M. A. (2001) APOS: A constructivist theory of learning in undergraduate 
mathematics education research. In The teaching and learning of mathematics at university level. 
Springer, pp. 275 – 282. 

The Finnish Association for Teachers of Mathematics, Physics, Chemistry and Informatics (2018) 
MAOL ry., http://www.maol.fi. 

Finnish National Board of Education (2014), Finnish National Curriculum 2014 (FNC-2014).  

Kolb, D. A. (2014) Experiential learning: Experience as the source of learning and development. FT 
Press. 

Lampinen, A. and Korhonen, H. (2010) Suomessa opitaan matematiikkaa Varga-Neményi -menetelmän 
mukaan. Dimensio, vol. 74, no. 2, pp. 24 – 28. 

MAOL Racket (2017) Programming in primary school mathematics, in Finnish, MAOL, 
https://peda.net/yhdistykset/maol-ry/materiaalit/kpm  

Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. Basic Books. 

Papert, S. (1996) An exploration in the space of mathematics educations. International Journal of 
Computers for Mathematical Learning, vol. 1, no. 1, pp. 95 – 123. 

http://www.maol.fi/
https://peda.net/yhdistykset/maol-ry/materiaalit/kpm


Constructionism 2018, Vilnius, Lithuania 

425 

 

Partanen, T., Niemelä, P., Mannila, L. and Poranen, T. (2017) Educating computer science educators 
online - A Racket MOOC for Elementary Math Teachers of Finland. In Proc.: 9th International 
Conference on Computer Supported Education 2017, pp. 47-58. 

Piaget, J. and Duckworth, E. (1970) Genetic epistemology. American Behavioral Scientist, vol. 13, no. 
3, pp. 459 – 480. 

Racket (2018) Racket programming language, http://racket-lang.org/ 

Tikkanen, P. (2008) ”Helpompaa ja hauskempaa kuin luulin”: matematiikka suomalaisten ja 
unkarilaisten perusopetuksen neljäsluokkalaisten kokemana. Jyväskylä studies in education, 
psychology and social research 337. University of Jyväskylä. 

Van de Walle, J. A., Karp, K. S., and Bay-Williams, J. M. (2004) Elementary and middle school 
mathematics. Boston: Allyn and Bacon. 

Van Hiele, P. M. (1999) Developing geometric thinking through activities that begin with play. Teaching 
children mathematics, vol. 5, no. 6, p. 310. 

  

http://racket-lang.org/


Constructionism 2018, Vilnius, Lithuania 

426 

 

Using Agent-based Modelling of Collaboration for 
Social Reflection 

Evgeny Patarakin, patarakined@mgpu.ru 
Moscow City University, Russia 

Abstract 
This paper presents techniques that unite the production aimed at creation of  mutual stories with  the 
research activity based on the analysis of the relationship between the participants of the productive 
activity. The production is delivered through different mediums where all actions of the participants are 
recorded in an electronic log. Log records are used as a base material (substrate) to build sociograms, 
which are the start for the research activity. Different cycles of collaboration  based on the usage of 
social objects are described in the paper.  

Keywords  
Collaboration; ABM; Netlogo; wiki; social reflection 

Introduction 

Social networks, data on relations between collaboration participants, social network analysis 
techniques are hardly used for inquiry-based learning. It comes from the impression that the data is 
hard to access or the methods are too complicated. In this paper we present simple methods of learning 
analytics based on the data on collaboration as well as on the dynamic NetLogo models. The source 
material for the research is log records which are a by-product of digital storytelling creative process. 
The side results of productive activity are used as a feed substrate for the network research based on 
the analysis of sociograms. It provides an advanced pathway to developing learning programs that 
utilize the science of complex networks as a vehicle through which students can learn analytical skills 
for network-oriented data analysis. 

Agent-based modelling of collaboration 

Immersing school students in the field of network science begins with the study of maps that are based 
on data from different areas of research. For example, science maps for kids are based on the 
avalanche of data generated by scientific research today. These maps invite students to see, explore, 
and understand science (Börner et al., 2009). Introducing students and teachers to the network science 
may begin with mapping their own activities in the networked communities. The advantage of this 
approach is a network lens is used to understand situations in which students and teachers are drawn 
into. Consequently the network science shows its strength in the areas of immediate experience and 
students and teachers become researchers of their own activity. The desired future of modern learning 
can be described as a situation where teachers and students are active agents that produce knowledge. 
A necessity of formation participant’s agency requires mentors of learning to put special attention to the 
problems of self-control and self-determination of behavior of participants. Schwartz (Schwartz, 1999) 
termed this formulation «productive agency», because it emphasizes production through the 
environment. Schwartz defined productive agency as a recursive system where people take advantage 
of their available means to produce outwardly, and they see their ideas embodied and modified by the 
material or social world. Production distinguishes between situations that involve external production 
and those that do not and in this regard productive agency is akin to constructionism. Constructionism 
argues that learning occurs best when constructing a public artifact. 

Constructionism shares constructivism's connotation of learning as `building knowledge structures' 
irrespective of the circumstances of the learning. It then adds that this happens especially felicitously in 
a context where the learner is consciously engaged in constructing a public entity, whether it's a 
sandcastle or a theory of the universe... (Papert & Harel, 1991). 



Constructionism 2018, Vilnius, Lithuania 

427 

 

Public entity or a public artifact can be not only examined or discussed but it can also be used by other 
people. That is to say a public artifact is inherently shareable. 

Comparing the known learning communities close to the constructionism theory allows us to see that 
almost all of them use the idea of a cycle or a spiral of actions performed by agents over objects of 
actions: 

 In the Letopisi.org (Y. Patarakin & Shilova, 2015) teachers and students perform the following 
actions with wiki pages: Read -> Create -> Edit -> Connect -> Share -> Read. 

 In the Globaloria Social Learning Network (Reynolds & Caperton, 2009) students perform the 
following actions with computer games: Play -> Plan -> Prototype -> Program -> Publish. 

 In the Scratch Social Learning Network (Brennan, Hernández, & Resnick, 2009) students perform 
the following actions with Scratch projects: Imagine -> Create -> Play -> Share. 

 In the NetLogo Modeling Commons (Lerner, 2014) NetLogo modelers perform the following 
actions with NetLogo Models: Create -> Run -> Share -> Comment -> Modify -> Create variations. 

 In the StarLogo TNG Social Learning Network there are two linked circles (Klopfer, Scheintaub, 
Huang, Wendel, & Roque, 2009) and StarLogo TNG modelers perform the following actions with 
StarLogo Models. Research circle: Observe/Collect Data -> Generate Questions -> 
Test/Tinker/Play -> Observe/Collect Data. Design circle: Design -> Build -> Test/Tinker/Play -> 
Design. 

 In the Looking Glass Social Learning Network (Kelleher & Pausch, 2007) 3D modelers perform 
the following actions with Alice Models: Create -> Animate -> Remix –> Share. 

In all the above mentioned communities there is a definite social object  (Engeström, 2005) – a page, 
game, a story, a model or other “virtual chips” over which agents perform their actions. Objects or actions 
can be different, but all agents are permitted to carry actions over one and the same object. If agents 
perform actions over one and the same object, they become indirectly connected by the social object. 
The links are similar to those between movie actors, or scientists creating an article, or Wikipedia editors 
working on a page together. 

Diagrams methodology help to analyze and discuss situations that develop during a network 
collaboration in different domains. A sociogram is a powerful analysis tool, helping researchers identify 
points of interest and other structural properties that otherwise would not be obvious in numeric data. 
We make maps not just of the physical world but also of our social worlds (Mehra et al., 2014).  

The study of dynamic networks greatly benefits from visualizations that can illustrate ideas and concepts 
not immediately visible in a static sociogram. Moody and others’ research illustrates the need to 
visualize how networks develop and change over time (Moody, Mcfarl, & Bender-demoll, 2005). Among 
the tools developed in the complexity field, agent-based modeling and network analysis are very 
important in sustaining the process of bringing complexity to bear on the policy world. The combination 
of the two methods can increase enormously the potential of complexity-based policies (Fontana & 
Terna, 2015). Since agent-based modeling is inherently dynamic, the problems with static networks are 
overcome naturally. Agent-based modeling permits the desired richness of behaviors and attributes that 
might bridge the gap between agent-nodes and the real world. 

Termites with Logs 
It was mentioned in the previous section that actors perform actions over same objects becoming 
interlinked via this social object in many various situations. Simple actions that students perform over 
objects of actions in learning communities are very much alike the procedures performed by turtles in a 
famous Termites model: search-for-chip -> find-new-pile -> put-down-chip 

As Resnick wrote (Resnick, 1997) each individual termite should obey the following rules: 

If you are not carrying anything and you bump into wood chip, pick it up. 

If you are carrying a wood chip and you bump into another wood chip, put down the wood chip you're 
carrying. 

Each turtle performs a sequence of steps in procedures search-for-chip find-new-pile put-down-chip 
which leads to the result when chips scattered randomly over the screen are gradually gathered into 



Constructionism 2018, Vilnius, Lithuania 

428 

 

one round pile. Termites model seems most optimal because it contains chips as objects for 
collaboration. Experimenting on this model we can get a deeper understanding of collaboration 
phenomenon. Let’s imagine that termites record their labor actions over chips in a log. I.e. if an actor 
performs a meaningful action on a chip, he leaves a record on this in the log. To understand how we 
can benefit from collateral records we have modified the original text of Termites model by adding new 
variables and rules. We have inserted a variable called list WIKILOG where turtles make records of their 
actions. There also have been made some additions to the procedures search-for-chip and put-

down-chip (E. D. Patarakin, 2017). 

The interface for the modified model is shown in Figure 1. Logs_to_sociogram button switches all the 
chips off the screen and only shows linkage between agents carrying one and the same chip. 

 

Figure 1. Interface of Termites with Logs model 

Termites with Log Model was implemented in NetLogo language 5.2 and its source code is available on 
the Internet http://modelingcommons.org/browse/one_model/4749 

This simplest model for sociograms creation based on the actions with social objects can be applied to 
various collaboration situations. In all cases when actors perform actions over shareable objects, the 
log for these actions can help build sociograms as well as conduct social research.Full history can be 
presented as a record of a game, consisting of many moves. Each move in a game contains three 
required elements: 

Agent ID| Object ID| Type of an action 

Every action of an agent towards an object leads to the formation of a link between them. If the agents 
perform action over one and the same object they become agents of the collaborative activity, indirectly 
linked with one another by the mutual object of activity. The collaborative activity network could be 
presented as the bipartite graph combining agents with objects of collaborative activity. 

Our second learning analytics application was implemented in NetLogo language 5.2 and its source 
code is available on the Internet as Dynamic Wikigram Model  
 http://modelingcommons.org/browse/one_model/4769 



Constructionism 2018, Vilnius, Lithuania 

429 

 

The use of NetLogo allowed us to present the collaboration as a dynamic diagram in which each actor 
can interact with each other tens of thousands of actors. The created model used NetLogo features 
such as breeds and agentset. Interface of Dynamic Wikigram Model presented in Figure 2 

 

Figure 2. Interface of Dynamic Wikigram Model 

Dynamic Wikigram Model can be used as a simple and illustrative tool of analysis. During his/her 
research, a student uses the technique of dynamic agent-based sociograms to: 

 Trace how and based on what objects’ links between participants of collaborative productive 
activity are formed. 

 Identify key players and stable biggest cliques, which serve as cores that support the operation of 
network communities 

Key players are those elements in the network that are considered important, in regard to certain criteria. 
One of the most popular criteria is the betweenness centrality of vertex. The betweenness of an edge 
is the number of these paths running through it. It is clear that, when a graph is made of tightly bound 
clusters, loosely interconnected, all shortest paths between nodes in different clusters have to go 
through the few interclusters connections, which therefore have a large betweenness value. A node 
with high betweenness centrality is responsible for connecting many pairs of nodes via the best path, 
and deleting that node should cause many pairs of nodes to be more distinctly. The idea behind 
betweenness centrality is that being in between actors makes actor powerful because he may be able 
to control the flow of information between them (Borgatti, 2006). Nodes with high betweenness centrality 
are often called key-players. To calculate the betweenness centrality of a Netlogo turtle, you take every 
other possible pairs of turtles and, for each pair, you calculate the proportion of shortest paths between 
members of the pair that passes through the current turtle. The betweeness centrality of a turtle is the 
sum of these. Top ten key players are determined in NetLogo as  

sublist reverse sort-on [norm-betweenness] users 0 9 

Key players are important in themselves and as nodes that connect communities. Qualitatively, a 
community is defined as a subset of nodes within the graph such that connections between the nodes 
are denser than connections with the rest of the network (Radicchi, Castellano, Cecconi, Loreto, & 
Parisi, 2004). The detection of the community structure in a network is generally intended as a 
procedure for mapping the network into a tree. For the divisive class of algorithms one starts with the 
whole graph and iteratively cuts the edges. The crucial point in a divisive algorithm is the selection of 



Constructionism 2018, Vilnius, Lithuania 

430 

 

the edges to be cut. Girvan and Newman have introduced an “edge betweenness algorithm” where the 
selection of the edges to be cut is based on the value of their edge betweenness centrality (Girvan & 
Newman, 2002). The single step of the edge betweenness algorithm consists in the computation of the 
edge betweenness for all edges in the graph and in the removal of those key players with the highest 
score. The iteration of this procedure leads to the splitting of the network into disconnected subgraphs, 
until the whole graph is divided in a set of isolated nodes. At each step of the edge betweenness 
algorithm NetLogo model created the sociogram, which was used to discuss the role of a key players 
(Figure 3). 

 

Figure 3. Wikigram with key player in the center 

A clique is a subset of a network in which every node has a direct link to every other node. A maximal 
clique is a clique that is not itself contained in a bigger clique (Figure 4). Cliques containing more than 
N members are determined in NetLogo as  

nw:maximal-cliques [if (count ?) > N  



Constructionism 2018, Vilnius, Lithuania 

431 

 

 

Figure 4. Sociogram of maximal cliques 

The projected system of the collaborative network activity gives extra possibilities not only for the 
productive activity but also for the analysis and reflection on the processes inside the system. The tools 
should open the possibility to assess from the network point of view both the position of each participant 
and the degree of the whole system development as the learning network. The analysis of the activity 
of each participant inside the acting community combined by mutual story or mutual game, allows us 
linking the act of activity and the development of one participant with the development of the whole 
community. 

We have successfully used NetLogo wikigram application to support several socio-educational projects. 

Letopisi.org In Russian education MediaWiki is represented first of all by Letopisi.org project and its 
regional clones in several teaching colleges and universities. Letopisi - http://Letopisi.org is the national 
educational project with international participation and has continued for more than twelve years. The 
leading idea of the Letopisi concept is that the collaborative network activity and the network cooperation 
of the learning agents are aimed at the creation of various types of learning products which in general 
could be marked by a widely recognized term “digital story”. The basic scheme of the concept is the 
following: the digital story and the constituent elements of it could be used by other participants of the 



Constructionism 2018, Vilnius, Lithuania 

432 

 

collaborative activity in creation of new stories. In the Letopisi.org students and teachers perform the 
following actions with wiki pages: 
Read -> Create -> Edit -> Connect -> Share -> Read 

Preobra.ru - collaborative environment for creation, improvement and promoting bills within public and 
legislative projects (Burov, Patarakin, & Yarmakhov, 2012). Enacting a new law means that a community 
devises out new rules which help it to become more efficient. In the general case, the web site contains 
a complete text of the document, which chapters and items were split in small segments. The project 
participants can create their own segment versions and vote for segments created by other participants. 
Public construction of a document aiming at complex cloud issues has high educational value. This 
collaborative practice helps not only produce a quality document and build a community of people 
interested in its implementation, but promote the innovative document, maintain a new level of its 
understanding and perception by the society. In the Preobra.ru teachers perform the following actions 
with parts of document: Writing, Editing, Voting 

Google Apps or G suite. Information environment of the complex of schools that share Google Apps 
domain. Participants can create, view, and edit digital objects of various types. Participants vary by 
positions, teaching subjects and campuses they work in. Learning analytics and diagrams methodology 
help to analyze and discuss situations that develop during a network collaboration and build school 
communities of practice. The data, required for such a research can be extracted from a school domain. 
Netlogo package contains all the features, needed for such data analysis. Our research has shown 
clusters of most connected teachers and staff and located collaborative documents that play the role of 
boundary objects, connecting clusters of school administrators, classroom teachers and staff 
membersNetLogo allows you to define different breeds of turtles and breeds of links. Once you have 
defined breeds, you can go on and make the different breeds look differently and behave differently. 
We have used various breeds of agents to separate the subjects and objects of activity, as well as to 
separate the actors into different classes. An agentset Netlogo is exactly what its name implies, a set 
of agents. But what's powerful about the agentset concept is that you can construct agentsets that 
contain only some turtles or some links. Due to this we are able to identify network characteristics that 
are typical for certain groups of actors. For example, only administrators, only for teachers of literature, 
only to employees of a particular territorial office etc (Figure 5). 



Constructionism 2018, Vilnius, Lithuania 

433 

 

 

Figure 5. School domain sociogram 

Scratch.mit.edu. Since all productive networking systems have common principles, we assume that a 
similar apparatus may be used for building sociograms based on an analysis of the actions performed 
by the Scratch community members (scratchers) within studios built for their collaboration. We also 
believe that the functions of Scratch studios are similar to Media Wiki categories. For experiment 
purposes, we have gathered data on member activities in a number of Scratch studios and generated 
collaboration sociograms based on the data. An example of such sociograms is shown in Figure 6. The 
human shapes refer to members/scratchers, code sheets – projects. A solid line from a scratcher to a 
project means that the scratcher is the project author. A dotted line means that the scratcher has 
commented on the project. As we can see in the sociogram, the studio is characterized by average 
productivity, high connectedness and cohesion, and low sustainability. The removal of the central 
scratcher and his projects will entail the studio chart disintegration into a large number of unconnected 
members. 



Constructionism 2018, Vilnius, Lithuania 

434 

 

 

Figure 6. Sociogram of a Scratch studio 

Conclusion and Discussion 

We believe that socio-educational co-creative projects are not only productive environments but 
developmental environments also. As John Raven wrote “in developmental environments people can 
think about their organizations and their society and come to understand and perceive these institutions 
(and their operation) in new ways that have marked implications for their own behavior” (Raven & 
Stephenson, 2001). The projected system of the collaborative network activity gives extra possibilities 
not only for the productive activity but also for the analysis and reflection on the processes inside the 
system. The tools should open the possibility to assess from the network point of view both the position 
of each participant and the degree of the whole system development as the learning network. The 
analysis of the activity of each participant inside the acting community combined by mutual story or 
mutual game, allows us linking the act of activity and the development of one participant with the 
development of the whole community. The point of the co-creative projects is not only the created 
product of the project, but also the social structure itself. The value is in the creation process of this 
social structure during collaborative work and the formation history of this structure. Usually the social 
structure and the history of its formation are hidden for the participants. In best cases the subject for 
participants' discussion is the number of created objects and the number of comments and ratings. 
Meanwhile a social structure is a significant characteristic in many respects determining the success of 
collaboration. We believe that visualization of the social structure can support the process of group 
reflection. Social reflexivity is associated with the social functioning part of a team, deals with 
interpersonal relation, strengthens collaboration among team members, and therefore leads to better 
performance. While various studies have found that social reflexivity has significant positive relationship 
with team outcomes (Gurtner, Tschan, Semmer, & Nägele, 2007; Schippers, Den Hartog, & Koopman, 
2007), little is known regarding the mechanisms underlying group social reflexivity in network 
collaborative projects. We start from the hypothesis that social reflection can be triggered by sociograms 
and we argue that learning as `building knowledge structures' happens especially felicitously in a 
context where the learner is consciously engaged in constructing a public entity, that can be discussed, 



Constructionism 2018, Vilnius, Lithuania 

435 

 

evaluated and reused by other participants to create new entities, and data on the interactions of agents 
of learning can be presented as a map. 

References 

Borgatti, S. P. (2006). Identifying Sets of Key Players in a Social Network. Comput. Math. Organ. 
Theory, 12(1), 21–34. https://doi.org/10.1007/s10588-006-7084-x 

Börner, K., Palmer, F., Davis, J. M., Hardy, E., Uzzo, S. M., & Hook, B. J. (2009). Teaching children the 
structure of science. In IS&T/SPIE Electronic Imaging (pp. 724307–724307). International Society for 
Optics and Photonics. Retrieved from 
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1334930 

Brennan, K., Hernández, A. M., & Resnick, M. (2009). Scratch: creating and sharing interactive media. 
In Proceedings of the 9th international conference on Computer supported collaborative learning - 
Volume 2 (pp. 217–217). International Society of the Learning Sciences. Retrieved from 
http://dl.acm.org/citation.cfm?id=1599503.1599576 

Burov, V., Patarakin, E., & Yarmakhov, B. (2012). A crowdsourcing model for public consultations on 
draft laws. In Proceedings of the 6th International Conference on Theory and Practice of Electronic 
Governance (pp. 450–451). New York, NY, USA: ACM. https://doi.org/10.1145/2463728.2463814 

Engeström, J. (2005). Why some social network services work and others don’t — Or: the case for 
object-centered sociality. Retrieved January 24, 2015, from 
http://www.zengestrom.com/blog/2005/04/why-some-social-network-services-work-and-others-dont-
or-the-case-for-object-centered-sociality.html 

Fontana, M., & Terna, P. (2015). From Agent-based models to network analysis (and return): the policy-
making perspective (Department of Economics and Statistics Cognetti de Martiis. Working Paper No. 
201507). University of Turin. Retrieved from https://ideas.repec.org/p/uto/dipeco/201507.html 

Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. 
Proceedings of the National Academy of Sciences, 99(12), 7821–7826. 
https://doi.org/10.1073/pnas.122653799 

Gurtner, A., Tschan, F., Semmer, N. K., & Nägele, C. (2007). Getting groups to develop good strategies: 
Effects of reflexivity interventions on team process, team performance, and shared mental models. 
Organizational Behavior and Human Decision Processes, 102(2), 127–142. 
https://doi.org/10.1016/j.obhdp.2006.05.002 

Kelleher, C., & Pausch, R. (2007). Using Storytelling to Motivate Programming. Commun. ACM, 50(7), 
58–64. https://doi.org/10.1145/1272516.1272540 

Klopfer, E., Scheintaub, H., Huang, W., Wendel, D., & Roque, R. (2009). The Simulation Cycle: 
Combining Games, Simulations, Engineering and Science Using StarLogo TNG. E-Learning and Digital 
Media, 6(1), 71–96. https://doi.org/10.2304/elea.2009.6.1.71 

Lerner, R. M. (2014). Agent-Based Modeling as a Social Activity. NORTHWESTERN UNIVERSITY. 
Retrieved from http://gradworks.umi.com/36/69/3669272.html 

Mehra, A., Borgatti, A., Soltis, S., Floyd, T., Halgin, D. S., Brandon, O., & Lopez-Kidwell, V. (2014). 
Imaginary Worlds: Using Visual Network Scales to Capture Perceptions of Social Networks. In 
Contemporary Perspectives on Organizational Social Networks (Vol. 40, pp. 315–336). Emerald Group 
Publishing Limited. Retrieved from http://www.emeraldinsight.com/doi/abs/10.1108/S0733-
558X%282014%290000040016 

Moody, J., Mcfarl, D., & Bender-demoll, S. (2005). Dynamic Network Visualization. American Journal of 
Sociology, 110(4), 1206–1241. 

Papert, S., & Harel, I. (1991). Situating Constructionism. In Constructionism (pp. 193–206). Ablex 
Publishing Corporation. Retrieved from http://www.papert.org/articles/SituatingConstructionism.html 



Constructionism 2018, Vilnius, Lithuania 

436 

 

Patarakin, E. D. (2017). Wikigrams-Based Social Inquiry. In Digital Tools and Solutions for Inquiry-
Based STEM Learning (Vol. 1, pp. 112–138). IGI Global. Retrieved from http://www.igi-
global.com/chapter/wikigrams-based-social-inquiry/180861 

Patarakin, Y., & Shilova, O. (2015). Concept of Learning Design for Collaborative Network Activity. 
Procedia - Social and Behavioral Sciences, 214, 1083–1090. 
https://doi.org/10.1016/j.sbspro.2015.11.709 

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying 
communities in networks. Proceedings of the National Academy of Sciences of the United States of 
America, 101(9), 2658–2663. https://doi.org/10.1073/pnas.0400054101 

Raven, J., & Stephenson, J. (Eds.). (2001). Competence in the Learning Society. New York: Peter Lang 
International Academic Publishers. 

Resnick, M. (1997). Turtles, termites, and traffic jams: explorations in massively parallel microworlds. 
MIT Press. 

Reynolds, R., & Caperton, I. H. (2009). Comparison of Middle School, High School and Community 
College Students’ Wiki Activity in Globaloria-West Virginia: (Pilot Year-two). In Proceedings of the 5th 
International Symposium on Wikis and Open Collaboration (pp. 29:1–29:2). New York, NY, USA: ACM. 
https://doi.org/10.1145/1641309.1641350 

Schippers, M. C., Den Hartog, D. N., & Koopman, P. L. (2007). Reflexivity in Teams: A Measure and 
Correlates. Applied Psychology, 56(2), 189–211. https://doi.org/10.1111/j.1464-0597.2006.00250.x 

Schwartz, D. L. (1999). The productive agency that drives collaborative learning. In In P. Dillenbourg 
(Ed.), Collaborative learning: Cognitive and computational approaches (pp. 197–218). NY: Elsevier 
Science/Permagon. 

 

 

  



Constructionism 2018, Vilnius, Lithuania 

437 

 

Reconstructing Constructionism by Construal 

Nicolas Pope, nwpope@gmail.com 
University of Turku, Finland  

Jonathan Foss, jonathan.foss@warwick.ac.uk 
University of Warwick, Coventry, CV4 7AL, UK 

Meurig Beynon, wmb@dcs.warwick.ac.uk 
University of Warwick, Coventry, CV4 7AL, UK 

Abstract 
Noss and Clayson (2015) sets out an agenda for 'reconstructing constructionism', identifying as a major 
challenge for research:  "... to transform constructionism from a framework for action into a set of ways 
of conceptualising what people do in constructionist environments that can simultaneously assist in 
designing those environments." This paper relates this challenge to an approach to constructionism 
based on 'making construals' within the alternative conceptual framework for computing of Empirical 
Modelling (EM). Making construals is a digital skill based on three fundamental concepts: observables, 
dependency and agency ("ODA"). Its application will be illustrated using the online Construit 
environment. Making construals promotes an empirical and experiential perspective on computing that 
is complementary to 'computational thinking'.  Its epistemological roots reflect the deep appreciation of 
the role of personal experience that characterises the pragmatism of William James and John Dewey. 

This paper reviews and illustrates an EM approach to constructionism with respect to six topics: 
provocative modelling, programming paradigms, objects-to-think-with, definitive programming, Scratch 
as a 'broader constructionist methodology', and emerging empirical perspectives on computing and 
learning. The progression of topics relates an EM approach to ideas, tools and practices to which current 
trends in computer support for constructionism are converging. 

 

 Jonathan Foss’s construal of the Artiphon: learning music theory through construction 

The concluding section considers a central problem, articulated by diSessa and Cobb (2004) and cited 
by Noss and Clayson, concerning constructionism as a framework for action where theories "are 
relatively inexplicit, complex, and often involve multiple very diverse elements that cannot plausibly be 
brought under a single umbrella." It argues that a pragmatic approach to constructionism can dissolve 
this problem, bringing unity to the plurality of approaches to computing and learning it involves. 

Keywords 
constructionism; objects-to-think-with; making construal; Empirical Modelling; radical empiricism 



Constructionism 2018, Vilnius, Lithuania 

438 

 

Introduction 

In their paper "Reconstructing Constructionism", Noss and Clayson (2015) identify a central challenge: 
"... to transform constructionism from a framework for action into a set of ways of conceptualising what 
people do in constructionist environments that can simultaneously assist in designing those 
environments." A key observation informs this challenge: the recognition that constructionism "is as 
much a theory of epistemology as one of pedagogy [in that] understanding the development of 
knowledge is part of and integral to the encouragement of an inclusive and powerful pedagogic theory 
and practice". And if constructionism is conceived "merely as a pedagogic strategy, [it] does not offer in 
concrete terms much more than a host of other worthy slogans such as 'discovery' ... 'exploratory' ... 
'enquiry based' learning". 

Computing has had a seminal influence over constructionism. Though constructionist practices may not 
require computing technology, Papert's original vision for constructionism took inspiration from the 
potentially transformative impact of the computer on education. This has inevitably meant that the 
prototype conceptual frameworks for constructionism have been heavily influenced by the semantic 
framework in which interaction with computers is conceived, that of computational thinking (CT) (Wing, 
2006). Papert himself recognised the potential conflict between the ‘hard’ science of computing and the 
scope for being ‘vaguely right’ that is characteristic of construction, as he discusses in his chapter on 
‘Computerists’ in The Children’s Machine (cf.  Beynon, 2017). 

This paper is one of several publications by Beynon and others (cf. Beynon et al, 2016) that attribute 
the difficulty of meeting Noss and Clayson's central challenge of finding appropriate ways to 
conceptualise "what people do in constructionist environments" to the compromising influence of CT. 
The raison d'etre of CT is to conceptualise the processes by which we construct and exploit objective 
contexts in which abstract computational activities can be carried out. Computing-in-the-wild is of its 
nature an activity in which 'construction' in the sense discussed by Latour (2003) plays an essential role. 
We argue that a conceptualisation of construction can be based on the principles of Empirical Modelling 
(EM) (“EM Website”). These principles make prominent the role of appropriate personal experiences 
during the construction activity which enable the formation of relevant knowledge structures, and are 
general enough to apply both to computing practice in its full generality and to constructionist practices 
in education. In practical terms they are associated with an activity called 'making construals' that is not 
necessarily computer-based but thrives on rich technologies for interaction and perceptualisation. In 
many contexts, computer use is more appropriately regarded as 'making construals' rather than 
'programming' as conceptualised in core computer science. This applies, in particular, where the 
computer is being used to support constructionist practices in education. 

There are two aspects to the contribution that EM can make to constructionism. From a conceptual 
perspective, it introduces three foundational concepts (observables, dependency and agency) which 
inform both the medium and process of construction and identifies semantic principles to account for 
these that are rooted in William James's philosophical stance of radical empiricism. From a practical 
perspective, EM has explored a number of environments for making construals (of which the most 
recent is the online "Construit" environment) whose designs - in keeping with the terms of Noss and 
Clayson's challenge - have been incrementally informed by the underlying concepts and principles. The 
interested reader can find more details of these two topics in papers presented at the Constructionism 
2016 conference: (Harfield et al, 2016) and  (Beynon et al, 2016). For convenience, we shall refer to 
making construals using an environment such as Construit as 'an EM approach' to constructionism. 

The responses of experts in the field of constructionism to an EM approach reflect an interest tempered 
by scepticism. Such experts (cf., in particular, personal communications from James Clayson and Ken 
Kahn) draw on rich experience of environments for supporting constructionism, of practices in software 
construction and of paradigms for programming. In their critiques, the merits of the Construit 
environment, its practical significance and what purport to be its distinctive qualities are questioned. 
Their call for concrete examples of how Construit differs from other approaches reflects the many 
different ways in which the environment can be viewed and deployed: as a programming environment 
to be compared (e.g.) with Jupyter, Scratch/Snap, NetLogo Web, ToonTalk Reborn, App Inventor; as 
representing a programming paradigm to be compared with (e.g.) prototype-based object-oriented 



Constructionism 2018, Vilnius, Lithuania 

439 

 

programming, pure functional programming or a modern Lisp such as Clojure; as an integrated 
development environment (IDE) to be compared with (e.g.) the Mathematica and iPython notebook 
IDEs; or as a presentation environment in which natural language and 'code' are blended to be 
compared with (e.g.) Literate Programming, what Alan Kay calls Active Essays 
[www.playfulinvention.com] and what Bret Victor calls Explorable Explanations [worrydream.com]. 

In responding to the feedback from expert commentators, and their injunction to focus on concrete 
comparisons, it has been important to adopt a holistic viewpoint on how environments support 
constructionism. The Construit environment is just one component of the EM approach to 
constructionism: its significance can only be understood in conjunction with the epistemically and 
experience focused mindset that has informed its design. The contextualising framework has a radical 
impact on the mode of interpretation of a construal. It is not appropriate to consider a construal simply 
as a program to serve a specific functional objective. For that reason, to compare construals with pure 
functional programs is to expose a chasm between two culturally distinct ways of thinking about 
computer artefacts: one that highlights the concrete and experiential and one that highlights the abstract 
and computational. In practice, many artefacts that have been developed as environments for 
developing programs admit interpretations -- or partial interpretations – similar to those of construals, 
though they are not explicitly conceived with such interpretations in mind and may be hybrid and 
incoherent as a result. Well-conceived construals highlight the epistemological merits of domain models 
based on observables, dependency and agency. A faithful construal of a typical Scratch program 
reveals the generally chaotic mash-up of abstract computational and concrete experiential ingredients, 
and its limitations as an epistemic model of an intended behaviour. 

The next, and main, section of the paper illustrates some of the above themes with reference to specific 
examples: it is followed by a concluding section in which one of the key problems confronting theories 
for constructionism identified in Noss and Clayson (2015) will be discussed. 

Construal, construction, comparison and contrast 
This section briefly reviews six topics that give useful insight into the nature and potential contribution 
of making construals. In three of these, construals are compared and contrasted with computer artefacts 
that address a related subject. The primary emphasis is on modelling as a key "characteristic of a 
constructionist agenda" identified by Noss and Clayson (2015). Our objective is twofold: 

 to highlight different ways in which this modelling for constructionism has been approached, and 
to illustrate the way in which these approaches, without explicitly spelling out a clear conceptual 
framework, can be related to and distinguished from an EM approach;  

 to assess the degree to which the Construit environment meets the criterion identified by Noss 
and Clayson (2015): promoting the learning of powerful ideas by enabling learners "[to create] 
external building blocks by a process of building, reflecting and debugging", in such a way that 
they "can develop relevant internal knowledge structures". 

The basic principles and concepts behind making construals will be sketchily and informally introduced 
as appropriate: for more details of these, see Harfield et al, 2016 and the prototype online course on 
making construals at http://jseden.dcs.warwick.ac.uk/construit/?load=344. Each topic will cite one or 
more construals that can be further explored via the Constructionism2018 construal in the Construit 
environment (“The Constructionism2018”). The six topics loosely reflect the evolution of computer-
based support for constructionist practices, and serve to illustrate ways in which some of the ideas and 
techniques behind making construals are, at least implicitly, represented in these practices. 

Topic 1: Provocative Modelling 
In Mindstorms (1980), Papert emphasises many important themes that motivate constructionism. His 
interest was not in computer programming per se, but in how interaction with computing technology 
could serve to promote ‘epistemological reflection’ in learners and teachers, and how potentially this 
might help to ‘externalise intuitive expectations’ and expose ‘the non-obviousness of what we consider 
obvious’. These aspirations are not well-aligned to the accepted motivations for learning to program, 
which are typically aimed at realising specific functional objectives rather than provoking reflection on 

http://jseden.dcs.warwick.ac.uk/construit/?load=344


Constructionism 2018, Vilnius, Lithuania 

440 

 

the nature of human agency. For Papert, the role of Logo programming in provoking learning about a 
subject domain was very clear, but also limited. It may be that the almost universal use of Logo-like 
programming constructs in subsequent environments to support constructionism is an aberration in this 
respect – an inappropriate attempt to generalise Papert’s principles as they apply to a specific learning 
objective as if they were universally applicable. 

A comparative study may be helpful in this context (see (“The Constructionism2018”)). This concerns 
modelling of a room layout such as might appear on an architect's sketch. The layout is a 2d line-drawing 
floorplan featuring lines to represent the walls, door, a filing cabinet and a table with a lamp upon it 
connected by a cable to one of several possible sockets. The study contrasts a most elementary 
application of basic Logo to draw the components of the layout with an equally unsophisticated 
application of the Construit environment to construct an image that is visually indistinguishable. 

Drawing the floorplan of the room in Logo has an educational significance that is non-obvious to the 
accomplished programmer. To appreciate it, it is necessary to consider how a child might learn to make 
a map in a concrete situation, as when recording the findings of an archaeological dig. The relevant 
epistemological ingredients are precisely concerned with the orientation and length of lines, and how 
these might be exposed through projection and informed by intuitive expectations of what form the 
floorplan of a buried room might take. The provocation to learn is concerned with how the child’s 
experience of orienting, moving and counting paces can be connected with an appreciation of entities 
and coordinates in a 2d space (cf. the Experiential Linear Algebra construal (“The 
Constructionism2018”)). 

It is quite apparent that such a primitive form of Logo is ill-suited to provoking reflection about the more 
sophisticated concerns that might arise in interpreting such an archaeological find - or in other situations 
motivating the 2d sketch. This raises the question of what kind of extensions to the Logo programming 
language, alternative choice of language, techniques in the program development or changes to the 
programming paradigm would be appropriate in addressing a broader agenda. It is in this connection 
that making a construal of the room layout is of interest. 

The construal of the room is loosely determined in an open-ended fashion by an explicit set of current 
definitions ("a script") and an implicit cloud of potential interactions. Each definition expresses the 
current value of an observable: these correspond to entities that might be directly registered by 
inspecting an actual room (or conceiving an imaginary one). The north-west corner of the room, the east 
wall, the door and the door status, whether open or closed are simple examples of observables in the 
script. Observables may include entities that (for diverse reasons) are not directly visible, such as 
whether the door is locked, whether the electricity is switched off, whether an alarm is sounding. The 
criterion for observability is a personal subjective one: it differs according to who is the observer or 
maker and what agency they have to interact. 

A definition may attach an explicit current value to an observable, as in "the north west corner is at the 
location [100,100]" or specify it by a 'spreadsheet-style' dependency, as in "the north east corner of the 
room is at the location [100+room_width, 100]". As another example: "the orientation of the hinged door 
depends on whether or not it is open". Dependencies are always associated with some latent agency 
(cf. the 'What if?' aspect of spreadsheet interaction): as in "What if the room was wider?" or "Let's shut 
the door". Though the construal of the room is visually quite primitive, as a casual sketch might be, 
interaction with the construal through redefinition is unconstrained, and meaningful in so far as it 
respects connections being made in the experience of the maker. "At what point is a door too wide or 
too narrow to be a door?" Interaction with the construal is through redefining observables; this 
encompasses commonsense room actions (such as "door_open = not door_open") and more 
complicated or subtle semantic changes, such as introducing a sliding door, or refining the model of the 
door so that it's orientation reflects 'how open' it is (and redefining the observable 'door_open' 
accordingly). 

In the simple illustrative example script, the only agency is that of the human observer, who can make 
redefinitions in the role of (e.g.) a room user, room designer or expositor of Empirical Modelling 
principles. With each role, there is an associated tacit context that shapes what interactions by way of 
redefinition are appropriate, or plausible. This is a discretionary context pragmatically determined by 



Constructionism 2018, Vilnius, Lithuania 

441 

 

what connections in experience make sense in that role: a room user would not ordinarily move a wall 
for instance. It is possible to introduce autonomous agency, but even where such agency is added the 
construal always conceptually corresponds to a state rather than a behaviour. As a simple example: the 
maker of the construal may add an automatic closing agent to the door, but still conceives the script as 
representing the current state of the room, where both script and room state are dynamically changing. 
This admits the possibility of intervention in automated behaviour without undermining the model of 
current state. In commonsense terms, this reflects the possibility that, even though the door closes 
automatically, you can still obstruct it. 

Juxtaposing the room construal with a primitive Logo program to draw the room layout highlights the 
challenge in promoting Papert’s vision for "writing programs as promoting epistemological reflection". 
The construal exposes the richness and subtlety of the experience and interpretation that surrounds 
potential conversations around the room layout. In particular, it reveals the extraordinary capacity of the 
human mind to make connections in experience of diverse kinds in a flexible and fluid manner: 
connecting a simple line drawing with an image of a physical room, real or imagined; attributing the 
relocation of the NE corner of the layout to a change in the value of ‘room_width’; conceiving the current 
state of the layout as part of ‘a behaviour’. The aspiration to strengthen the semantic connection 
between ‘writing a program’ and ‘understanding the subject domain in which it executes’ has been a 
leitmotif of software development that has informed the design of PLs to support constructionism. This 
helps to motivate the next topic: consideration of a declarative programming paradigm. 

Topic 2: Programming Paradigms 
This study examines the relationship between a model that is described in a declarative rather than a 
procedural fashion and a construal to address a similar theme, viz. modelling 'playing the game of 
noughts-and-crosses'. The declarative program in this case is written in the 'pure functional' Miranda 
PL, as formerly deployed in teaching first year university computer science at the University of Warwick.  
As the previous study illustrates, a procedural program can generate a bewildering complex of states 
that have no semantic significance as far as the subject domain is concerned.  The rationale for 
declarative PLs was to eliminate such states so as to make a more intimate connection between the 
program text and the subject domain. This ambition is clearly well-aligned in principle to the aspirations 
of epistemic modelling. The contrast in this case is with a construal that identifies the observables that 
are involved in playing a game of noughts-and-crosses (What is the state of the grid? What are the 
winning lines? How are the symbols displayed on the grid? Whose turn is to play? When is the game 
over? What is a winning move? etc) and expresses the dependency relationships between these 
together (if automated play is desired) with agents to make moves autonomously. 

It is indeed the case that constructs in the Miranda program have direct counterparts in a noughts-and-
crosses game. Since the declarative framework precludes modelling the explicit states of a game move 
by move, there are representations for such things as "the sequence of positions that arise in the game" 
- but no observable to represent what can be deemed in the construal to be the current position in the 
game. By contrast, the construal can readily be exercised in such a way as to simulate mistakes in play 
(such as a player missing a turn), cheating (such as a piece being removed from the board), changes 
in the winning lines (even in the course of play). In these respects, the construal (aka 'the OXO 
laboratory') has a better claim to the character that Papert attributes to "a programming language" 
(Mindstorms, 1980, p15): "[being] like a natural, human language in that it favors certain metaphors, 
images, and ways of thinking." 

As construals dating from several years ago, both the room construal and the OXO laboratory illustrate 
a problematic issue in learning to make construals. In framing dependencies, it is in general necessary 
to express relationships of a relatively complex form. For instance: “The player to move is X if X makes 
the first move and the number of Xs on the grid is the same as the number of Os and O otherwise”. A 
definition of this nature is then framed by writing a small conventional program (in a basic procedural 
programming notation embedded in Construit) to compute the number of Xs and Os on the grid from 
the current position. Since each definition in the script expresses the value of an observable as a pure, 
and generally simple, function of other observables, the (declarative) programming task is much more 



Constructionism 2018, Vilnius, Lithuania 

442 

 

straightforward both technically and semantically than developing a procedural program in which there 
is complex agency and state change, but the hybrid nature of the activity presents a barrier to the maker. 

Topic 3: Objects-to-think-with 
Towards the end of Mindstorms, Papert acknowledges the limitations of Logo and refines his position: 
"I see [the Turtle] as a valuable educational object, but its principal role here is to serve as a model for 
other objects, yet to be invented. My interest is in the process of invention of "objects-to-think-with," 
objects in which there is an intersection of cultural presence, embedded knowledge, and the possibility 
for personal identification." A significant point for emphasis here is that Papert is thinking in concrete 
experiential terms about what the computer offers to the learner: the Turtle is the object-to-think-with, 
and not the abstract Logo program. This is not a mode of thinking about computer programs that has 
foundational support from theoretical computer science, though it has developed considerable 
pragmatic endorsement from software practice. By way of illustration, object-oriented approaches to 
software development, which were once regarded as a promising candidate foundational framework for 
software development, have been undermined by a (sometimes bitter) controversy between those who 
champion object-orientation as a formal approach and those who declare it to be the basis of an 
empirical pragmatic framework in which the emphasis is on how objects are crafted in accordance with 
how they are experienced by developers (cf. (West, 2004)). To highlight the distinction that is being 
made here, the term 'computer artefact' will be used to refer to what computer programs offer in 
experiential terms: 'objects-to-think-with' are to be classified as artefacts, not programs. 

It seems difficult to identify an iconic example of an object-to-think-with that is implemented as a 
computer artefact. In Mindstorms, Papert (1980) describes such an object in connection with a Penny 
Rolling conundrum posed by Martin Gardner, but no implementation is described. In any event, realising 
such an object on the computer is a task beyond the range of a novice programmer. Microworlds can 
be viewed as preconstructed environments in which learners can learn about  a subject domain through 
experiment and similar claims can be made for environments to support educational robotics. Such 
environments invite the “worthy slogans ... of ‘discovery ... exploratory ... enquiry based’ learning”, but 
their constructionist credentials perhaps depend on the extent to which learners can exploit them to 
make connections that are beyond the scope of what has been preconceived by their designer. 

Of all the established approaches to creating objects-to-think-with, creating a spreadsheet might be 
seen as most promising, as it embodies the principles of ‘what if?’ modelling. Though spreadsheets 
have been advocated in education (cf. the Spreadsheets in Education journal) there seems to be little 
reference to their application in constructionist practices. Construals, to which spreadsheets are 
semantically the closest well-known relatives, nonetheless seem well-suited to specifying objects-to-
think-with. Examples include: construals of objects-to-think-with relating to the penny rolling puzzle 
(including Papert’s own proposal (Beynon,2017)); a construal of a purse; a number representation 
construal that gives visual expression to a mental model of how integers are represented in different 
bases. An important feature of these construals (all of which are available online in the Construit archive 
– see (“The Constructionism2018”)) is that they are constructed without the explicit use of conventional 
procedural or declarative programming techniques, a theme to be elaborated in the following sections.  

Topic 4: Definitive Programming  
The aspiration to exploit the computer fully in constructionist practices inevitably means that much 
attention has been given to how to make writing computer programs more accessible. Enabling 
computing novices to experiment with prebuilt objects and environments does not offer the same 
potential for learning in a constructionist idiom that enabling them to construct their own computer 
artefacts does. What is more, it has long seemed that the kind of procedural thinking that is exemplified 
by Papert’s Turtle is an essential component in constructing any computer artefact, and is also one to 
which novices can most easily relate. This has meant that helping novices to engage with procedural 
thinking has been a prominent characteristic of environments to support constructionism, whether 
through introducing blocks, as in Scratch and App Inventor, or more semantically motivated animation 
as in ToonTalk. 



Constructionism 2018, Vilnius, Lithuania 

443 

 

The effect of ‘writing a program to meet a specific functional requirement’ can be emulated in Construit 
by crafting the agency that is to be automated and invoking this in a context where the maker’s 
interaction is constrained to be that of the intended user. This activity is closely parallel to programming 
behaviour in the room construal by restricting redefinitions to plausible actions (such as ‘opening the 
door’ or ‘moving the table’ by the room user, and automated ‘closing of the door’ by the door 
mechanism). The discretionary context is one in which actions that redesign the room (e.g. ‘changing 
the width of the room’) are suppressed, but the option to reinstate them is open at any stage – even 
whilst programmed actions are being executed. In this way, program-like behaviours expressed using 
a construal can be seamlessly blended with actions that might be construed as re-programming. 

By way of illustration, consider the Whack-a-Mole application that is featured as an introductory 
programming exercise in App Inventor. By modelling the application in terms of observables, 
dependencies and agency, a very concise script can be framed to express the way in which the 
mechanism that moves the mole and the player’s mouse actions interact. In framing this script, 
dependency plays a crucial role in ‘taming’ the procedural ingredients of the application. As the maker 
of the Whack-a-Mole construal, Jonathan Foss, remarks: the main feature of the development was “the 
directness of the experience. Rather than having to ‘plan’/’design’ and ‘program’, it was more a case of 
drawing some holes and a mole, then adding functionality by describing how these things are connected 
to each other ... compared with App Inventor, there was a lot less abstract thought/planning required, 
with all statements having a direct connection to the scenario that was being modelled.” Further informal 
evidence of the qualities of the construal was obtained from a Key Stage 3 pupil at a schools event. In 
the space of 20 minutes, with no previous experience of Construit or making construals, and with only 
the most basic indication about the nature of the script, he was able to add more holes, introduce an 
extra mole, and make the speed at which the mole moved dependent on the score. 

A significant feature of Foss’s Whack-a-Mole construal is the absence of any explicit procedural 
programming ingredients. This is a characteristic of many more recent construals, which exploit an 
innovative feature of the Construit environment that has transformed the practice of making construals: 
the introduction of the with-construct. Informally, the significance of with is that it makes it possible to 
frame succinct definitions to express new categories of observables that correspond to commonplace 
modes of observation. For instance, the array of holes in Whack-a-Mole is defined by defining a 
prototype hole with index i and specifying the entire as a collection of holes, based on this prototype, 
with indices ranging from 1 to the number of holes. More generally, whenever an existing observable is 
defined by dependency in terms of other observables (its ‘dependees’), a new observable can be 
specified as the counterpart of this observable with a value defined as if specific changes to the valued 
to its dependees had been made. Through this enhancement, the expressive power of scripts is 
transformed. It becomes possible to refer to entities that routinely form part of commonsense 
observation (such as ‘the height of the tallest building on the skyline”) without needing to introduce 
obfuscating procedural constructs. The full implications of this are to realise a vision that has been a 
long-standing aspiration in EM research: an observation-oriented approach to programming that is 
based solely on definition and redefinition (aka “definitive programming”). 

Topic 5: Scratch and a ‘broader constructionism methodology’  
Noss and Clayson (2015) identifies Scratch as having "shown signs of contributing to the creation of a 
broader constructionist methodology", as suggested by Brennan & Resnick (2013). There is empirical 
evidence for this in the millions of learners, some collaborating with each other, who have used the 
online Scratch environment to create a vast archive of projects. Such a cultural phenomenon opens up 
unprecedented scope for ‘construction’ leading to the development of objective insights from subjective 
personal understandings. Scratch has patently been the stimulus for many people to begin to learn to 
program. What is not so clear is to what extent the Scratch programming revolution illustrates the central 
principle of constructionist practice: understanding of the subject domain informs the construction of a 
computer artefact and interaction with the computer artefact informs understanding of the subject 
domain. 

With its visual blocks interface, sprites and costumes, stage and backdrops, Scratch makes a significant 
move towards ‘constructing a computer artefact’ rather than ‘writing an abstract program’. It also 



Constructionism 2018, Vilnius, Lithuania 

444 

 

incorporates several features that resonate with an EM approach to construction. Agents act 
concurrently; built-in dependencies (e.g. to simplify networking and so promote collaboration) give 
learners easy access to high-level agency; sophisticated examples of observables and agency (such 
as enable sprites to detect whether they intersect a line of a certain colour, or to bounce at the edge of 
the stage) are built-in as primitives. This makes it easier for the learner to program and encourages 
them to explore basic concepts in computational thinking. 

The impact of introducing all these features on program comprehension is more problematic. The benefit 
of block-based programming has itself been questioned (Hermans and Aivalogou, 2016). From a 
constructionist viewpoint, as shown in the room modelling exercise, procedural ingredients need to be 
handled with care. Without principles to guide program development, having a wide choice of possible 
representations may not be advantageous: If I wish to create a vertical line from the top to the bottom 
of the stage, should I draw it using a Logo like command? should I ensure that it has the full height of 
the stage by using the bounce feature? or should I simply draw it on the backdrop? How do I 
subsequently move the line? How can I determine the explicit coordinates of its endpoints? Building-in 
instances of powerful dependency and agency to support key activities is helpful to a degree, but the 
merits of an EM approach stem from the automatic support for user-defined dependency to enable 
simpler and more intelligible specification of agency. Such considerations make it hard to attribute clear 
‘epistemic modelling’ content to casually constructed Scratch programs and places the somewhat self-
referential claim that Scratch supports constructionist practices that include ‘the construction of 
computer programs’ in a different light. 

Many of the above concerns are potentially just as topical for the Construit environment. It too offers 
many alternative modes of representation and techniques for development. It is quite possible to write 
traditional procedural programs within Construit, and there is even provision for incorporating 
JavaScript. Until the advent of the with-construct, some procedural coding element was essential in 
creating all but the simplest construals. In order to respect the principles of ODA modelling, such coding 
could then only be exploited to define the (pure – and simple) functions that expressed non-trivial 
dependencies and the elementary procedures to effect the redefinition associated with automated 
agents. In this respect, the absence of guiding principles to inhibit the ad hoc construction of Scratch 
programs seems problematic. 

The issues discussed in this section are illustrated by the Giving Change construal, developed to 
complement a Scratch program called 'Coins' developed by Phil Bagge for use in teaching programming 
at primary school. For details, see http://code-it.co.uk/scratch/coins/coinsoverview and 
http://jseden.dcs.warwick.ac.uk/construit/?load=138. The construal addresses the problem of 
converting a sum of money into a set of coins – a topic that is recognised to be challenging to teach 
young children because of the complexity of the skills that are involved. Bagge’s program is primarily 
intended to illustrate basic techniques in Scratch programming: the construal raises issues that bear 
directly on pedagogical strategies, and exemplifies the kind of exposure of epistemological questions 
that Papert advocates. The most important realisation in making the construal was that in order to 
express the agency of giving change in ‘definitive programming’ terms, it was essential to consider what 
modes of observation could be assumed to be plausible for the change-giving agent. For instance, if 
the agent is an automated AI, it is perfectly reasonable to presume that it can ‘inspect’ a set of coins 
and select the one with largest value. By contrast, for a young child to make the same selection, they 
have first to master several observational challenges, such as assessing whether the value of one coin 
is greater than that of another irrespective of their relative size and having regard to their colour (bronze, 
silver or gold). A most interesting feature of the construal is that it can be framed in such a way that the 
pattern of observation that serves to realise the required behaviour is exactly matched to the pattern of 
observation that might be used to teach a child to give change. In effect, the definitive program sets out 
a sequence of observational challenges of the form “can you recognise from the colour of these coins 
which has the greater value?”, “can you identify whether this coin is worth more than 32 pence?”, “can 
you identify which coin in this set has the largest value?” Carry out these same challenges with heads 
and tails reversed. etc. This intimate relationship between recipes for programming the computer and 
learning strategies is precisely in tune with Papert’s intentions in advocating the use of the computer to 
support learning. 

http://code-it.co.uk/scratch/coins/coinsoverview
http://jseden.dcs.warwick.ac.uk/construit/?load=138


Constructionism 2018, Vilnius, Lithuania 

445 

 

Topic 6: Empirical perspectives on computing and learning 
Over recent years, there has been strong interest in devising systematic empirical ways of using the 
computer in learning applications, to teach programming, mathematics and other subjects. Bret Victor 
has been prominent in this: the Learnable Programming, Kill Maths, Exploratory Explanations projects 
share a common theme: exploiting the power of the computer to offer rich interactive experiences to 
address learning goals that have generally been treated in the classroom in more abstract mathematical 
terms. These projects promote computer artefacts as objects-to-think-with and to-converse-with, and 
Victor explicitly acknowledges the inspiration of Papert's constructionist vision. 

Current trends have giving great impetus to the idea of ‘coding’, but also reflect dissatisfaction with the 
way in which programming is conceived. Chris Granger’s blog post: ‘Coding is not the new literacy’ 
echoes Papert’s emphasis on the epistemological implications of using the computer:  “We need the 
equivalent of composition, the skill that allows us to think about how things are computed. This time, 
we're not recording our thoughts, but instead the models of the world that allow us to have thoughts in 
the first place.” Granger goes on to identify ‘modelling wth spreadsheets’ as the most pertinent 
computing skill. Novel environments that have emerged also have features in common with Construit. 
In keeping with the desire to integrate construction and interaction with an artefact with learning about 
the domain, these typically include support for notebook style presentations, where natural language 
descriptions and code are blended. What is generally lacking in such innovations is a clear conceptual 
foundation. For instance, though observables, dependencies and agency feature quite explicitly in the 
Apparatus Editor, and enjoy support through a menu-driven interface, it is unclear how general the 
scope for defining dependencies is intended to be or to what extent the broader semantic issues 
addressed in EM have been taken into account. 

In comparing an EM approach to constructionism with other approaches, certain characteristics stand 
out: 

 In developing a construal, there is semantic significance in every redefinition: if this is not the case, 
the principles of making construals are not being properly respected. Redefiniton by redefinition, 
the thought processes of the maker are being meticulously registered by the maker, even if 
subconsciously, and recorded in the script. In part, the fine detail in which thought processes are 
being traced accounts for the aura of naivety that surrounds the representation in a script. 
Specification via declarative constraints or by very sophisticated pure functional expressions in an 
FP idiom might appear to be much more powerful, but cannot serve the same expressive role. 
Whether the maker can understand the effect of dependencies by inspection of the script, or by 
experimental redefinition, are important pragmatic considerations. A formal definition may be so 
complex that the maker is unable to recognise that there is a dependency. 

 The fact that the script invariably bears interpretation in state-based rather than exclusively 
behavioural terms, and has an essential ambiguity that allows it to relate simultaneously to  
different agent roles (such as designer and user) is another crucial characteristic. 

These qualities have implications for learning through both construction and interaction. 

Nicolas Pope’s construal of an internal combustion engine, developed for a science festival workshop 
for Key Stage 3 pupils, highlights the virtues of being able to blend automated action to a preconceived 
pattern with opportunistic experimental intervention by the learner or teacher. The construal supports a 
nuanced explanation of the principle behind the internal combustion engine where the learner can 
emulate the agency of the engine and develop an understanding of how it operates. It features a 
'drinking straw’ engine where the learner simulates the effect of internal combustion in maintaining the 
rotation of the wheel by blowing and sucking at appropriate points as it revolves. By emulating the 
behaviour of the engine in this fashion, it is possible to account for the need for a starter motor (or a 
crank handle!) and to illustrate the significance of issues such as timing, a blown gasket, possible 
causes of misfiring, and the principles of engine braking. In effect, making such a construal opens up 
the possibility of exploring the meaning of observables that are not ordinarily exposed in a conventional 
non-interactive simulation. Many of these were not preconceived in the evolutionary development of the 
construal. 



Constructionism 2018, Vilnius, Lithuania 

446 

 

Jonathan Foss’s construal of a newly developed electronic musical instrument, the Artiphon, illustrates 
the manner in which Construit can support design and documentation. In his own words: "Making the 
Artiphon construal entailed a large musical learning experience. If I'd have built the program 
conventionally, I feel (although can't necessarily prove), that traditional programming languages would 
have constrained my thoughts, I'd have needed to do a lot more thinking about the musical theory before 
actually doing anything with it. However, with Construit, I could just start by drawing what I could see, 
and then expressing how the physical observables interacted with each other. The style of the 'book' 
layout allowed the code building to be much more conversational than comments would normally be 
when writing code. The individual statements that were written to guide the construction process were 
much simpler than traditional programming - particularly the fact that definitions can be overridden 
(rather than having to change a particular line of code in place), meant that it was easier to log (e.g. a 
simple form of version control) and gain an understanding of faults." 

Prior to making the Artiphon construal, Foss had little knowledge of music theory. Reflecting on his 
experience of learning music theory by constructing the construal, he observes: 

"I think the strength of EM is that things can be built without a clear idea of the subject domain. ... In 
other programming languages, you'd have to already know lots about the subject domain and then 
translate it into code that is rather abstracted away from the actual subject domain. The learning process 
becomes more about learning how to code a representation of the subject domain. ... Whereas with a 
construal, the directness of experience means you can start with a basic understanding of the subject 
domain and fine tune it as you learn. You are thus spending much more time thinking about the subject 
domain than about how to translate that subject domain knowledge into code.” 

As an experienced software developer, Foss also reflected on the significance of version management 
in Construit, whereby the new versions are derived from the old (and vice versa) by overriding 
definitions. Contrasting this activity with “rewriting code then commiting to a version control system”, he 
remarks: “I suspect version control for most casual programmers is an advanced way of saving/backing 
up. Whereas for construal making, overriding definitions provides a much richer experience that can be 
easily ‘reviewed’.” 

Other example construals illustrate qualites of making construals relevant to issues raised by Noss and 
Clayson (2015): editing and extending (cf. the ‘Construing the Moment’ and ‘Solar System’ construals), 
layering (cf. Hex Colouring), exploratory design (cf. The OXO lab) – see (“Constructionism2018”) for 
more details. Further discussion is beyond the scope of this paper. 

Conclusion and Discussion 

The introduction to this paper refers to making construals ‘being rooted in William James's philosophical 
stance of radical empiricism’. The topics discussed in the previous section make a clear justification for 
considering making construals within its broader conceptual framework. The relevance of a 
philosophical stance is not so easily appreciated. 

In formulating the central challenge that has informed this paper, Noss and Clayson follow diSessa and 
Cobb (2004:82), who characterise constructionism as a 'framework for action'. They also cite diSessa 
and Cobb's comment to the effect that frameworks for action typically "do not cleanly separate their 
scientific claims and validation from their suggested actions. That is, the theory or theories behind 
frameworks for action are relatively inexplicit, complex, and often involve multiple very diverse elements 
that cannot plausibly be brought under a single umbrella."  

Any theory for constructionism has to confront the problem of dealing with the learner's subjective world. 
To speak of the learner's subjective experience is to consider matters about which it is scarcely 
appropriate to rationalise. There is no constraint on the irrationality of a learner's misconceptions, no 
guarantee that they will bear scrutiny even by the learner themselves, or that they will be consistent 
across changing contexts. Indeed, even referring to the 'learner's misconception' betrays a perspective 
that might be defensible when learning mathematics, but is more questionable when applied (say) to 
musical interpretation. 



Constructionism 2018, Vilnius, Lithuania 

447 

 

William James's radical empiricist stance addresses the problem of discussing the subjective world in 
a principled way. Its focus is upon the connections that the learner directly experiences, such as come 
into play when we understand a word, recognise a person, or attribute an effect to a cause. The 
semantics of a construal as a computer artefact are mediated by such connections: the principle is 
similar to what Noss and Hoyles (1996) call 'situated abstraction'. In reviewing the significance of 
situated abstraction in constructionism, Mackrell and Pratt (2017) observe: 'Situated abstraction is ... 
about connecting: learning is about increasingly knowing connections. However, the nature of such 
connections is left unexamined, which is problematic; it is tempting to see a situated abstraction as an 
inferential proposition drawn on the basis of what is known about a context and what this would entail 
in action, but this is not yet warranted.' 

The key phrase in the above quotation is "However, the nature of such connections is left unexamined, 
which is problematic ... "; this betrays a philosophical disposition to seek a rational explanation for 
situated abstraction that is at odds with a fundamental principle of radical empiricism (James, 1909): 
"the relations between things, conjunctive as well as disjunctive, are just as much matters of experience, 
neither more nor less so, than the things themselves". A similar philosophical sentiment is implicit in 
diSessa and Cobb's critique of frameworks for action that "do not cleanly separate their scientific claims 
and validation from their suggested actions". The EM approach to constructionism advocated in this 
paper endorses a more pragmatic perspective in which we accept that the authenticity of personal 
connections in experience is not amenable to validation in the strict objective sense that is expected in 
science; it can only be to a degree witnessed through performance in context. What is more, it is the 
very notion of trying to impose such traditional 'theories' upon constructionism that accounts for their 
'relatively inexplicit, complex' nature and the implausibility of bringing their 'multiple very diverse 
elements ... under a single umbrella'. It is in this respect that we hope that making construals can bring 
unity and coherence to the plurality of approaches to computing and learning associated with 
constructionism. 

References 

The Apparatus Editor. Online at http://aprt.us/ 

Beynon, M. (2012) Modelling with experience: construal and construction for software, Chapter 9 in 
Ways of Thinking, Ways of Seeing (ed. Chris Bissell and Chris Dillon), Automation, Collaboration, & E-
Services Series 1, Springer-Verlag, January 2012, p.197-228 

Beynon, M. (2017) Mindstorms Revisited: Making New Construals of Seymour Papert's Legacy, in 
Alimisis D., Moro M., Menegatti E. (eds) Educational Robotics in the Makers Era. Edurobotics 2016. 
Advances in Intelligent Systems & Computing, vol. 560. Springer, Cham, p.3-19 

Beynon, M., Foss, J., Harfield, A., Hudnott, E. and Pope, N. (2016) Construing and Computing: 
Learning through Exploring and Exploiting Agency. In Proceedings: Constructionism in Action 2016, 
February 1-5, Bangkok, Thailand. Bangkok: Suksapattana Foundation. p.69-78.  

Brennan K. & Resnick M. (2013) Imagining, creating, playing, sharing, reflecting: How online community 
supports young people as designers of interactive media. In: Lavigne N. & Mouza C. (eds.) Emerging 
technologies for the classroom: A learning sciences perspective. Springer, New York: p.253–268. 

Clayson, J. (2017) personal email communication, 28th April 2017 

The Construit environment for making construals: Error! Hyperlink reference not valid. 

The Constructionism2018 construal: http://jseden.dcs.warwick.ac.uk/construit/?load=362 

diSessa A. A. & Cobb P. (2004) Ontological innovation and the role of theory in design experiments. 
Journal of the Learning Sciences 13(1): p.77–103.  

The EM website at go.warwick.ac.uk/em 

Harfield, A., Alimisi, R., Tomcsanyi, P., Pope, N. and Beynon, M. (2016) Constructionism as making 
construals: first steps with JS-Eden in the classroom. In Proceedings: Constructionism in Action 2016, 
February 1-5, Bangkok, Thailand. Bangkok: Suksapattana Foundation. p.42-52 

http://jseden.dcs.warwick.ac.uk/construit/?load=362
http://go.warwick.ac.uk/em/


Constructionism 2018, Vilnius, Lithuania 

448 

 

Hermans, F, and Aivalogou, E, (2016) Do code smells hamper novice programming? A controlled 
experiment on Scratch programs. In Proceedings 2016 IEEE 24th International Conference on Program 
Comprehension (ICPC) 

James, W. (1909) Preface to The Meaning of Truth. https://www.gutenberg.org/files/5117/5117-h/5117-
h.htm 

Kahn, Ken (2017) personal email communication, May 2017 

Latour, B. (2003) The Promises of Constructivism, In Don Ihde and Evan Selinger (Eds.), Chasing 
Technoscience: Matrix for Materiality, Indiana University Press, p27-46 

Mackrell, K and Pratt, D. (2017) Constructionism and the space of reasons, Math. Ed. Res. J. DOI 
10.1007/s13394-017-0194-6 

Noss, R. and Clayson, J. (2015) Reconstructing Constructionism. 
http://www.univie.ac.at/constructivism/journal/10/3/285.noss 

Noss, R. and Hoyles, C. (1996) Windows on mathematical meanings: Learning cultures and computers. 
Kluwer, Dordrecht. 

Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. Basic Books, New York.  

Spreadsheets in Education, Bond University, School of IT, http://epublications.bond.edu.au/ejsie/ 

West, D. Object Thinking. (2004) Microsoft Press 

Wing, J. M. (2006) Computational thinking. CACM Vol. 49:3, March 2006, p.33-35 

  

http://epublications.bond.edu.au/ejsie/


Constructionism 2018, Vilnius, Lithuania 

449 

 

Constructionist STEM Activities Using the Bridge21 
Model 

Brendan Tangney, tangney@tcd.ie  
The Trinity Centre for Research in IT in Education, School of Computer Science & Statistics and School 
of Education, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland 

Ian Boran, ian.boran@tallaghtcs.ie  
Tallaght Community School, Dublin 24, Ireland 

Tony Knox, tonyknox@kilkennycollege.ie  
Kilkenny College, Kilkenny, Ireland 

Aibhín Bray, brayai@tcd.ie  
The Trinity Centre for Research in IT in Education, School of Computer Science & Statistics and School 
of Education, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland 

Abstract  
This paper explores how the use of a particular model of 21st Century teaching and learning (Bridge21), 
which aligns easily with a constructionist approach, can be integrated into an authentic classroom 
context, and the extent to which this leads to increases in students’ metacognitive problem-solving skills 
as well as their engagement and confidence with STEM disciplines. The research is framed as an 
exploratory case study with two embedded units: the first focused on developing  problem-solving skills 
in a group of 21 students (15-16 years old) in an after-school STEM club, using technologies that 
included a microworld for the construction of bridges; the second focused on the teaching of 
mathematical functions using a graphics calculator, with a view to improving student confidence and 
level of mathematical engagement, in a class of 24 students (15-17 year old) of mixed gender and weak 
to modest mathematical ability. Statistically significant improvements in students’ metacognitive 
problem solving skills are reported from Intervention A, while Intervention B reports statistically 
significant improvements in students’ attitude to mathematics and technology.  

Keywords 
STEM; 21st century teaching and learning; bridge21; constructionism 

Introduction 

Education systems around the world face a challenge in empowering teachers to create learning 
activities that foster the development of so called “21st century skills”, while at the same time helping 
students master curriculum content (Danah, Punya, & Petra, 2016; Fullan & Langworthy, 2014; Voogt 
& Roblin, 2012). This issue is particularity pertinent in the area of STEM education, where skills such 
as problem solving, communication and collaboration are fundamental to successful practice in 
associated disciplines. However, internationally, the number of students considering careers in STEM-
related areas is declining (Marginson, Tytler, Freeman & Roberts, 2013). The challenges that exist in 
STEM education, which are at least partially responsible for this fall off, are well documented and 
include: the use of didactic teaching styles, the restrictive nature of traditional classroom environments, 
low student motivation, overloaded curriculum content, over-reliance on text books, a lack of discussion 
of topics of interest, and the absence of opportunity for creative expression (Henriksen, Dillon, & Ryder, 
2015).  

In this paper, we explore how the use of a particular model of 21st Century teaching and learning 
(Bridge21), which aligns easily with a constructionist approach, can be integrated into an authentic 
classroom context, and the extent to which this leads to increases in students’ metacognitive problem-
solving skills as well as their engagement and confidence with STEM disciplines.  

mailto:tangney@tcd.ie
mailto:brayai@tcd.ie


Constructionism 2018, Vilnius, Lithuania 

450 

 

In order to set this research in context, this paper first presents some background literature. This is 
followed by an overview of the study, which includes a description of the local context as well as a 
section that provides a rationale for the methodological choices that were made. Two separate 
interventions and their findings are then discussed, and finally the concluding section discusses how 
the constructionist, 21st Century approach, scaffolded by the Bridge21 activity model, has addressed 
some of the challenges in STEM education through increasing student motivation, engagement and 
problem-solving abilities. 

Background  
Innovative approaches to STEM education such as Realistic Maths Education (Gravemeijer, Rainero, 
& Vonk, 1994), Project-Based Learning (Capraro, Capraro, & Morgan, 2013) and Inquiry-Based 
Learning (Edelson, Gordin, & Pea, 1999; Maaß & Artigue, 2013), which are promoted as ways to 
address some of the challenges in area, are also well suited to supporting the development of 21st 
century skills, especially when making creative use of technology. Constructionism, with its emphasis 
on the building of artefacts as part of the knowledge construction process, is an ideal pedagogy to use 
as part of such innovative approaches to 21st century STEM education. However, neither a 
constructionist approach, nor the pedagogies listed above, lend themselves well to traditional 
classrooms, which tend to embrace didactic teaching and learning methodologies (Fullan & Langworthy, 
2014; Tangney, Bray, & Oldham, 2015).   

In previous work Tangney et al. (2015) argued that innovative, technology-mediated learning activities 
need to be embedded in an appropriate, or sympathetic, pedagogical model rather than being 
accommodated and constrained within a traditional classroom approach. Activities of this type would lie 
at the higher, or transformation layers, of the SAMR hierarchy for classifying technological-based 
learning  interventions (Puentedura, 2012), as they are tasks that are significantly changed through the 
use of the technology (modification), or that use the affordances of the technology to design new tasks 
that would previously have been inconceivable (redefinition). Bridge21 is a particular model of 
technology-mediated, collaborative learning which promotes teamwork (Lawlor, Conneely, Oldham, 
Marshall, & Tangney, 2018), improves student motivation (Lawlor, Marshall, & Tangney, 2015), and 
helps develop key skills (Johnston, Conneely, Murchan, & Tangney, 2015). The Bridge21 approach has 
been used to support innovative learning activities across a range of subject areas including 
mathematics (Bray & Tangney, 2015) and computer programming (Byrne, O'Sullivan, & Sullivan, 2016). 
Of particular relevance to this paper is a study that reported on the use of Bridge21 to support a 
constructionist approach to teaching physics (Wickham, Girvan, & Tangney, 2016). However, the 
aforementioned studies were, for the most part, carried out in a learning laboratory on the university 
campus and not in an authentic school context. 

The Study 

In order to explore whether constructionist activities that are scaffolded by the Bridge21 model can be 
successfully integrated into authentic classroom contexts, and whether such activities have a positive 
effect on student confidence, engagement and problem solving, this paper reports on the experiences 
of two teachers who designed and researched transformative learning activities for use in their own 
classrooms. The teachers were engaged in postgraduate (masters level) professional development 
which emphasized the teacher as a designer and researcher of their own innovative practice. The 
activities were in the area of STEM and used a constructionist approach, aligned with the Bridge21 
pedagogic model. Technology was central to the interventions and was used at the transformation 
layers of the SAMR model. Both interventions are considered constructionist in nature owing to their 
use of project-based learning in which students used technology to create learning artefacts, motivated 
by some real-world context, as a vehicle for collaboratively constructing understanding of the topic in 
question. Furthermore, as per the Bridge21 model, the teacher orchestrated learning rather than 
engaging in direct instruction. The interventions took place in school, either during normal classes or as 
part of an afterschool activity. (The latter occurred for reasons to do with the timing of the approval of 
research ethics. Approval was quicker to obtain for a voluntary, out-of-class study. In all other ways the 
activity mirrored a regular classroom experience.) 



Constructionism 2018, Vilnius, Lithuania 

451 

 

The Local Context and Bridge21 
The Irish second level education system is going through a period of reform that is emphasising the 
development of key competencies, or 21st century skills, along with the acquisition of subject knowledge. 
The move is one in which “curriculum and assessment arrangements will promote a focus on active and 
collaborative learning. In particular, learners will be enabled to use and analyse information in new and 
creative ways, to investigate issues, to explore, to think for themselves, to be creative in solving 
problems and to apply their learning to new challenges and situations”, p7 (DES, 2015). Bridge21 is an 
approach to technology-mediated, collaborative learning which draws on a number of sources to create 
a model for 21st century teaching and learning that speaks to the current Irish curriculum reform process. 
It uses the teamwork model from the World Scout Movement (Bénard, 2002) and follows a lesson 
activity structure inspired by ideas from Design Thinking (Brown, 2008), see Figure . 

Initially developed for use in workshops run on campus as part of the university’s social outreach agenda 
the overarching design-based research project (which this study is a component of) is now actively 
engaging with schools to adapt the Bridge21 model for use in the classroom. This overarching research 
is being conducted within the context of the current reform process in order to meet the twin goals of 
delivering curriculum content while at the same time promoting the development of key skills. An 
immersive model of teacher professional development is offered to interested schools (Girvan, 
Conneely, & Tangney, 2016) and for the past 3 years a university accredited Postgraduate Certificate 
in 21st Century Teaching and Learning has been offered, which makes extensive use of Bridge21 
methodologies. One of teachers who co-authored this paper completed that certificate and both 
teachers completed M.Sc. dissertations on the use of Bridge21 in the classroom. 

 

Figure 1 : The Bridge21 Lesson Activity Model. Image adapted from (Byrne, O'Sullivan  & Sullivan 2017). 

 



Constructionism 2018, Vilnius, Lithuania 

452 

 

Methodology 
This research is framed as an exploratory case study with two embedded units (Yin, 2014), and uses a 
mixed-methods approach to explore the effectiveness of the interventions, both in terms of their design 
and implementation in an authentic school setting, and the degree to which learners achieved the 
desired learning intentions. That is, the study is designed to explore whether a constructionist approach, 
aligned with the Bridge21 pedagogy and activity model, have a positive effect on learners’ engagement, 
confidence and problem-solving ability in STEM subjects, within a traditional school context. 

Mixed-methods research refers to studies in which the researcher synthesises ideas, techniques, 
approaches, methods, and concepts from quantitative and qualitative research, within a single study 
(Johnson & Onwuegbuzie, 2004; Johnson, Onwuegbuzie, & Turner, 2007). In this research, each 
embedded unit relates to a single intervention, in which both quantitative and qualitative data were 
collected. Both types of data were collected concurrently with emphasis given to quantitative data in the 
analysis. 

Intervention A focused on developing problem solving skills in a group of 21 students (15-16 years old) 
in an after-school STEM club. The technologies used included a microworld for the construction of 
bridges. 

Intervention B focused on the teaching of mathematical functions. A class of 24 students (15-17 year 
old) of mixed gender and weak to modest mathematical ability engaged in learning activities using a 
graphics calculator that focused on the teaching of functions with a view to improving their confidence 
and level of mathematical engagement. 

In both interventions, pre and post tests were used to collect quantitative data, which were then analysed 
using paired t-tests in order to detect any changes that could be attributed to the activities. Qualitative 
data were gathered through focus group interviews. Open coding techniques were used to identify 
relevant codes and themes (Strauss & Corbin, 2008). These approaches will be discussed in more 
detail in the following sections. 

The Interventions 

The sections that follow provide an in-depth exploration of each of the two interventions, the data 
collection and analysis processes, and an overview of the findings of each of the teachers. 

Intervention A - Problem Solving  
Boran (2017) created an intervention that focused on developing students problem-solving skills. In 
order to provide a relevant context for the problem solving, the intervention focused on the challenge of 
bridge design using a microworld simulation. This topic requires students to use a high level of mathematics and physics as 

they must analyse, compare, and contrast the fundamental forces exerted on a load-carrying bridge. The problem-solving strategy 
they were encouraged to use was one devised by the teacher, based on a synthesis of ones found in 
the literature, all of which build on Polya’s seminal work (Polya, 1945). A website52 was designed to scaffold the 

learning experience and to provide a detailed description of the open and closed problem-solving questions that students had to answer in 

the learning activities. Students worked in teams and the sessions followed the Bridge21 lesson activity model. The sessions took place in 

a standard classroom and students shared access to laptops. The problems they were presented with required them to construct, design, 

analyse and review a series of bridge designs which had to meet specific criteria. The activity required students to use their problem-
solving skills to analyse the structural integrity of their designs and assess whether the design was cost-effective. As per the Bridge21 

model students had to present their designs to their peers and defend the design decisions they made. 

The microworld used was Bridge Designer53, a free tool from West Point University. It was chosen as it has a 

low floor and high ceiling, encouraging students’ exploration and creativity. The software is designed to provide primary 
and post-primary students with a realistic and contextualised introduction to the fundamental principles 
of bridge design and construction. The tool allows the student to interact and manipulate the key variables of bridge design 

(see Figure ) and students are presented with a realistic 3D simulation of their design (see Figure ).  

                                                
52 http://bridgedesignproblemsolving.weebly.com/ 
53 http://bridgedesigner.org/download/ 



Constructionism 2018, Vilnius, Lithuania 

453 

 

 

The 

microworld facilitates critical analysis, e.g. the load test allows the students to investigate the fundamental forces of compression and 

tension that are exerted on the individual joints and components in the bridge.  Students can adjust the parameters in the structure and 

analyse the impact of these changes. Taken together the combination of the software and the Bridge21 methodology allow learning activities 

to be created which lie in the redefinition layer of the SAMR model. The learners are actively and collaboratively engaged in artefact 

construction and are thus facilitated in developing both their problem-solving skills and domain specific knowledge. 

Participants & Duration 

The study took place in the teacher’s school as part of an after-school STEM Club. An initial pilot was 
carried out in which 20 students (15-16 years old) took part in activities of 4 hours in total duration. This 
pilot helped to test and tweak the design of the website, the suitability of the microworld, the details of 
the learning tasks and the appropriateness of the data collection tools. The main study involved 21 
(different) students of the same age in 10 hours of learning spread over 4 weeks. The students attended 
the club on a voluntary basis and had a range of ability. The school is located in an area of socio-
economic disadvantage. 

Data Collection 

Following the mixed-methods approach described above, the data collected were primarily quantitative 
but also included some qualitative data. The instrument used to collect quantitative data was the 
Metacognitive Activities Inventory (MCAI) (Cooper & Sandi-Urena, 2009). This was completed before 
and after the four weeks of the learning intervention, to assess any changes in student’s metacognitive 
skills. The tool focuses on 4 main skills used when problem solving; planning, monitoring, reflection and 
general problem-solving skills. Focus group interviews were carried out with two groups, 7 students in 
each, pre and post intervention. Structured observation notes were recorded by the researcher, focusing 
on the participation of students in the activity. 

Findings 

The results from the MCAI questionnaire indicate an increase in students’ metacognitive skills in each 
of the subscales post intervention, and a two-tailed t-test showed the change to be significant in each 
case at the 95% confidence interval (Table ). 

Table 1. Metacognitive Activities Inventory – Showing statistically significant changes, for p < 0.05, post 
intervention 

 Mean-pre SD-pre Mean-post SD-post t(20) 𝑝 

Problem Solving Skills 2.3 .45 3.3 .51 -3.277 .004 

Planning 3 .52 3.3 .49 -3.789 .001 

Reflection 3 .37 3.3 .43 -2.677 .015 

Monitoring 2.9 .64 3.2 .57 -2.461 .023 

Figure 3: Bridge simulation Figure 2: Microworld interface 



Constructionism 2018, Vilnius, Lithuania 

454 

 

The qualitative data from interviews was transcribed and coded using open coding techniques. The 
themes that emerged were: evidence of the use/awareness of problem-solving strategies, the use of 
the problem-solving model, attitudes to problem solving, the effects of technology on learning, and the 
effect of the Bridge 21 learning model. The themes supported the positive findings arising from the 
quantitative data as typified in the following quotes. 

• “Yeah like I think the project was good at making us be creative and critically think about the 
design and structure of our bridges, sometimes in Maths we don’t get to be creative and 
innovative in Maths and it’s hard to reflect on our answers because we cannot check to see if 
they are right or wrong.”  (Technology - Construction of an artefact, Bridge21 - Plan-Create-
Reflect) 

• “Yeah it was cool that you could learn from your mistakes and change your design, it kind of 
helped you and you could work out by analysing the load test and testing your bridge”. 
(Technology - Construction of an artefact, Bridge21 - Plan-Create-Reflect) 

• “This was a fun problem, we discovered that the bars were two weak for the bridge to function, 
so we replaced the hallow tubes with solid bars so they would be more efficient, and then we 
tested our design to see what bars we could reduce the size of to be more cost 
effective.”  (Technology - Construction of an artefact, Bridge21 - Plan-Create-Reflect) 

• “It was fun I enjoyed the learning experience, you gave us a lot more control and we could make 
our own decisions, and you (the teacher) kind of let us work out the problems for ourselves which 
was good because we learned more by doing it ourselves.”  (Bridge21 – Student responsibility 
for learning) 

In each of the above, the students emphasised the positive impact that the Plan-Create-Reflect cycle 
of the Bridge21 activity, combined with the construction of an artefact in a group setting had on their 
experiences. The teacher/researcher observations aligned with the analysis of the qualitative data from 
students in highlighting the role that the overall design of the intervention, the Bridge21 activity model, 
the open-ended problems and the constructionist tool, had on its effectiveness. 

Intervention B – Mathematical Functions, Engagement & Confidence 
In his work, Knox (2017), explored the use of a constructionist, Bridge21 approach to improve student 
engagement and confidence with mathematical functions. Within mathematics education, the topic of 
functions is recognised as difficult for students to grasp, and as one in which many students develop a 
number of misconceptions (Carlson, Oehrtman, & Thompson, 2005). This learning intervention was 
designed according to a set of heuristics (Bray & Tangney, 2015) that promote collaborative team-based 
learning and innovative use of technology to support the Realistic Math Education pedagogical 
approach (Gravemeijer et al., 1994). The technology used was the Desmos Activity Builder54 and a 
number of challenges provided with it, including Marbleslides – see Error! Reference source not 
found..  

The learning activities focused on students’ engagement with construction and problem-solving 
activities that required them to work with, and manipulate, different representations of functions, thus 
facilitating their discovery and ‘reinvention’ of the relevant mathematical ideas. The activities lie at the 
modification layer of the SAMR model as the affordances of the technology have permitted significant 
re-design of the task. 

                                                
54 www.desmos.com 



Constructionism 2018, Vilnius, Lithuania 

455 

 

  

 

Participants & Duration 

The lessons were conducted in the teacher’s school with one of the teacher’s own mathematics classes. 
The class was made up of 24 students (15-17 years old) of mixed gender and with weak to modest 
ability in mathematics. The learning experiences took place in normal timetabled class periods, of 40 or 
80 minutes, and in total 8 hours and 40 minutes were spent on the intervention. The Bridge21 approach 
was used and the students worked collaboratively in teams to deal with the challenges presented. The 
Bridge21 Lesson Activity Model was utilised, but the short duration of some classes meant it had to be 
tailored to suit the time constraints. Once teams had been formed for the first class it was not necessary 
to repeat this part of the process. Some activities spread across multiple classes with, for example, one 
period devoted to the warm up/investigate steps, two periods to plan/create, and one period to 
present/reflect (Figure ). 

Data Collection 

The Mathematics and Technology Attitudes Scale (MTAS) (Pierce, Stacey, & Barkatsas, 2007) was 
used to measure student confidence and engagement pre and post the overall learning intervention. 
MTAS is a validated instrument which has five subscales that measure: behavioural engagement (BE), 
confidence with technology (TC), mathematical confidence (MC), affective engagement (AE), and 
attitude to using technology for learning mathematics (MT). Qualitative data were collected through 
researcher observation, analysis of data captured by the web-based challenges, and through three 
semi-structured group interviews with a total of 11 participants, each interview lasting approximately 20 
minutes.  

Findings 

The study shows evidence that the learning experience had a positive impact on the attitudes of 
participants. There were increases on each of the 5 MTAS sub-scales with the changes for Affective 
Engagement (AE) and Attitude to using Technology for Learning Mathematics (MT) both being 
statistically significant (p < 0.05) – see Table .  

 

Figure 4: Marbleslides - built using Desmos Activity Builder. In this example students must create 
functions so that the falling purple marbles touch each of the yellow stars. 



Constructionism 2018, Vilnius, Lithuania 

456 

 

Table 2. Results of Two Sample t–tests for Means 

 Mean-pre SD-pre Mean-post SD-post t(23) 𝑝 

BE 13.5 2.0 13.6 2.2 0.267 0.792 

TC 14.3 3.4 15.8 2.3 1.934 0.065 

MC 10.6 3.7 11.5 3.5 1.131 0.270 

AE 11.5 2.4 12.8 2.6 2.734 0.012 

MT 12.7 4.0 14.6 3.9 2.187 0.039 

The focus group transcripts were transcribed and an open coding process followed which yielded 77 
codes, which were categorised into 9 themes including: groups, attitude, engagement, learning and 
technology. These themes, and the observations made by the teacher/researcher during class, support 
the findings from the quantitative data that the students enjoyed the experience, found it engaging and 
saw the benefits of working in teams and with technology. These attitudes are typified by the following 
quotes. 

• “I thought they were beneficial, they were like really good and kind made you think about math 
in different ways.”  (Attitude)  

• “It was more interesting and I found that I looked forward more to coming to maths.” (Attitude)  

• “I thought it was helpful because you got to see like every time you changed a number and like55 
something would happen on the screen and you'd see something and that helped.”  (Technology 
– Constructionism) 

• “Helpful because you had to work a few times at finding the numbers you needed for the 
graph.”  (Technology – Constructionism) 

Discussion and Conclusion 

Influenced by ideas to do with 21st century teaching & learning, the Irish second level education system 
(ages 12-18), as with others around the world, is undergoing a period of reform. A key challenge in that 
process is to create learning activities that promote the development of key skills while at the same time 
helping learners to master curriculum content, and to achieve both within the constraints of the regular 
school timetable and the system level requirements of covering a curriculum and meeting national 
assessment criteria. Even when the external regulatory framework, which Somekh (2008) identified as 
often being a barrier to change in classroom practice,  is encouraging such innovation, teacher beliefs 
about teaching and learning remain what Ertmer (2005) describes as the “the final frontier in our quest 
for technology integration”.  

Our research team has had considerable success in using the Bridge21 model of technology-mediated 
learning in the teaching of skills and content. However much of our results to date are based on work 
conducted in the learning lab on the Trinity campus, or in schools as one-off, boutique interventions that 
are not constrained by timetables. To assist teachers in changing their beliefs it is necessary, among 
other things, to show how innovation can be implemented within the constraints of the regular 
classroom, and to produce evidence of its benefits to students. 

Focusing on the area of STEM education and innovative pedagogical approaches centred on ideas of 
constructivism and constructionism, this study looked at creative learning activities in two Irish 
secondary schools. We posited that the Bridge21 pedagogical approach, of team and project-based 
learning, and the associated activity model, which puts a structure on how lessons can be organized, 
was a pragmatic model for use in the mainstream classroom. The two cases showed that the model 
could be used in such settings, and resulted in statistically significant improvements in students’ 
attitudes and meta-cognitive skills. The qualitative data, including the teacher-researcher observations, 

                                                
55 Many Irish teenagers make like excessive use of the word like when they are speaking.  



Constructionism 2018, Vilnius, Lithuania 

457 

 

supported the view that Bridge21 provides a suitable framework for the transformative use of 
constructionist technologies and practices.  

There are of course limitations to a study of this scale. Within the timeframe, it was not feasible to 
measure student attainment and one of the studies took place in an after-school STEM club. However 
as explained above that was due to external factors to do with the timing of receiving university ethical 
approval rather than anything to do with the intervention. The afterschool sessions ran for 1.5 hours 
which is the equivalent of two consecutive class periods so it most respects it was an authentic in-school 
activity. 

The study was framed as an exploratory one which as (Yin, 2014) points out is a useful methodology 
for the identification and refinement of research questions, hypotheses, or procedures that will be used 
in further research. The findings, while not being conclusive in any way, are however sufficiently positive 
to i) give encouragement to the researchers that the such research can be carried out in schools, and 
ii) to the teachers involved, and more importantly their peers in their own and other schools, that 
Bridge21 is a pragmatic model for use in schools to support the current reform process. To this end the 
research team continue to work with schools and teachers to provide the professional development 
support they need to empower them to innovate in their practices for the benefit of their students.  

References 

Bénard D. (2002). Handbook for Leaders of the Scout Section - A method of non-formal education for 
young people from 11 to 15. Retrieved from http://euroscoutinfo.com/wp-
content/uploads/2012/05/Handbook-Scout-01.pdf 

Boran I. (2017). As Part of a 21st Century Learning Activity, an Investigation into the Effect of Utilising 
a Synthesized Problem Solving Model in a Microworld Simulation to Develop Problem Solving Skills in 
Maths Education. (M.Sc.), Trinity College Dublin, the University of Dublin, Dubln. Retrieved from 
https://www.dropbox.com/s/wvw6rabw9xgwkl4/MSc-IanBoran.pdf?dl=0  

Bray A., & Tangney B. (2015). Enhancing student engagement through the affordances of mobile 
technology: a 21st century learning perspective on Realistic Mathematics Education. Mathematics 
Education Research Journal, 1-25. doi:10.1007/s13394-015-0158-7 

Bray A., & Tangney B. (2014). Barbie Bungee Jumping, Technology and Contextualised Learning of 
Mathematics. 6th International Conference on Computer Supported Education (CSEDU 2014), 206-
213.  

Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.  

Byrne, J. R., O'Sullivan, K., & Sullivan, K. (2017). An IoT and Wearable Technology Hackathon for 
Promoting Careers in Computer Science. IEEE Transactions on Education, Vol 60, No 1, 50-58.  

Capraro RM, Capraro MM, & Morgan JR. (2013). STEM project-based learning: An integrated science, 
technology, engineering, and mathematics (STEM) approach: Springer Science & Business Media. 

Carlson M., Oehrtman M., & Thompson P. (2005). Key aspects of knowing and learning the concept of 
function. Mathematical Association of America Research Sampler, 9.  

Cooper, M. M., & Sandi-Urena, S. (2009). Design and Validation of an Instrument To Assess 
Metacognitive Skillfulness in Chemistry Problem Solving. Journal of Chemical Education, 86(2), 240. 
doi:10.1021/ed086p240 

Corbin, J., & Strauss, A. (2008). Basics of qualitative research (3rd ed.). Thousand Oaks, CA: Sage. 

Danah, H., Punya, M., & Petra, F. (2016). Infusing Creativity and Technology in 21st Century Education: 
A Systemic View for Change. Journal of Educational Technology & Society, 19(3), 27-37.  

DES. (2015). Framework of the Junior Cycle. Retrieved from 
https://www.ncca.ie/media/3249/framework-for-junior-cycle-2015-en.pdf 



Constructionism 2018, Vilnius, Lithuania 

458 

 

Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the Challenges of Inquiry-Based 
Learning Through Technology and Curriculum Design. Journal of the Learning Sciences, 8(3-4), 391-
450. doi:10.1080/10508406.1999.9672075 

Ertmer, P. A. (2005). Teacher pedagogical beliefs: The final frontier in our quest for technology 
integration? Educational Technology Research and Development, 53(4), 25-39. 
doi:10.1007/bf02504683 

Fullan, M., & Langworthy, M. (2014). A rich seam: How new pedagogies find deep learning (pp. 100): 
London: Pearson. 

Girvan C., Conneely C., & Tangney B. (2016). Extending experiential learning in teacher professional 
development. Teaching and Teacher Education, 58, 129-139.  

Girvan C., Conneely C., & Tangney B. (2016). Extending experiential learning in teacher professional 
development Teaching and Teacher Education(58), 129-139. doi:10.1016/j.tate.2016.04.009 

Glynn M. (2017). An investigation into the use of the Bridge21 model to deliver the new Junior Cycle 
Science specification. (M.Sc.), Trinity College Dublin, the University of Dublin, Dubln. Retrieved from 
https://www.dropbox.com/s/glbgnimrvgdtey6/MSc-MaireadGlynn.pdf?dl=0  

Gravemeijer K., Rainero R., & Vonk H. (1994). Developing realistic mathematics education: Freudenthal 
institute Utrecht, The Netherlands. 

Henriksen EK., Dillon J., & Ryder J. (Eds.), (2015), Understanding Student Participation and Choice in 
Science and Technology Education. Springer. 

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed Methods Research: A research paradigm whose 
time has come. Educational researcher, 33(7), 14-26. 

Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a Definition of Mixed Methods 
Research. Journal of Mixed Methods Research, 1(2), 112-133. 

Johnston K., Conneely C., Murchan D., & Tangney B. (2015). Enacting key skills-based curricula in 
secondary education: lessons from a technology-mediated, group-based learning initiative. Technology, 
Pedagogy and Education, 24(4), 423-442. doi:10.1080/1475939X.2014.890641 

Knox T. (2017). An Investigation into Bray’s Heuristics for Mathematical Learning Activities as Applied 
to Functions. (M.Sc.), Trinity College Dublin, the University of Dublin, Dubln. Retrieved from 
https://www.dropbox.com/s/lqnhjtdvcr0rpml/MSc-TonyKnox.pdf?dl=0  

Lawlor J., Conneely C., Oldham E., Marshall K., & Tangney B. (2018). Bridge21: Teamwork, Technology 
and Learning - A pragmatic model for effective 21C Team-based Learning. Technology, Pedagogy and 
Education. doi:https://doi.org/10.1080/1475939X.2017.1405066 

Lawlor J., Marshall K., & Tangney B. (2015). Bridge21 – Exploring the potential to foster intrinsic student 
motivation through a team-based,  technology-mediated learning model. Technology, Pedagogy and 
Education, 1-20. doi:http://dx.doi.org/10.1080/1475939X.2015.1023828 

Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: a 
synthesis. ZDM, 45(6), 779-795. doi:10.1007/s11858-013-0528-0 

Marginson S, Tytler R., Freeman B. &  Roberts K (2013), STEM: country comparisons: international 
comparisons of science, technology, engineering and mathematics (STEM) education. Final report., 
Australian Council of Learned Academies, Melbourne, 
Australia. http://hdl.handle.net/10536/DRO/DU:30059041 

Pierce, R., Stacey, K., & Barkatsas, A. (2007). A scale for monitoring students’ attitudes to learning 
mathematics with technology. Computers & Education, 48(2), 285-300. 
doi:https://doi.org/10.1016/j.compedu.2005.01.006 

Polya, G. (1945). How to solve it: A new aspect of mathematical method: Princeton University Press. 



Constructionism 2018, Vilnius, Lithuania 

459 

 

Puentedura, R. (2012). The SAMR model: Background and exemplars. Retrieved from 
http://hippasus.com/rrpweblog/ 

Somekh, B. (2008). Factors affecting teachers’ pedagogical adoption of ICT International handbook of 
information technology in primary and secondary education (pp. 449-460): Springer. 

Strauss, A. L., & Corbin, J. M. (2008). Basics of Qualitative Research: Techniques and Procedures for 
Developing Grounded Theory 3e (3rd ed.). Thousand Oaks, CA: Sage Publications, Inc. 

Tangney B., Bray A., & Oldham E. (2015). Realistic Mathematics Education, Mobile Technology & The 
Bridge21 Model For 21st Century Learning – A Perfect Storm. In Crompton H. & Traxler J. (Eds.), Mobile 
Learning and Mathematics: Foundations, Design, and Case Studies (pp. 96-105): Routledge. 

Voogt J., & Roblin N.P. (2012). A comparative analysis of international frameworks for 21st century 
competences: implications for national curriculum policies. Journal of Curriculum Studies, 44(3), 299-
321.  

Wickham C., Girvan C., & Tangney B. (2016). Constructionism and microworlds as part of a 21st century 
learning activity to impact student engagement and confidence in physics. Constructionism 2016, 34-
43.  

Yin, R. K. (2014). Case Study Research: Design and Methods (5 ed.). Thousand Oaks, CA: Sage 
Publications, Inc. 

  

http://hippasus.com/rrpweblog/


Constructionism 2018, Vilnius, Lithuania 

460 

 

Exploring Girls’ Values and Perspectives in Making 
for Others 

Sawaros Thanapornsangsuth, st2839@tc.columbia.edu 
Teachers College, Columbia University, USA  

Nathan Holbert, holbert@tc.columbia.edu 
Teachers College, Columbia University, USA  

Abstract  
This study explores a pedagogical framework on how “making for others” can influence and engage 
girls in maker activities. We are particularly interested in how the relationship between builders and their 
clients can influence the builders’ making process and their motivation throughout that process. Feminist 
literature suggests that girls tend to locate themselves in relation to the world and describe themselves 
through actions that bring them into connection with others (Gilligan, 1982, p. 35). Leveraging the 
school’s Big Sister - Little sister mentorship program, the fourth-grade builders were asked to make toys 
for their first-grade clients. Throughout the year, builders worked closely with their clients to iterate on 
their toy designs, developing a close relationship and personalizing constructed toys to align with the 
clients’ requests. The interview data indicate that builders were constantly thinking about their clients’ 
needs and that they were proud of seeing their client’s satisfaction with the handmade toys. Additionally, 
we have found that encouragement and emotional support from peers and teachers are also vital for 
young female builders in completing their projects. 

Keywords  
making; girls; constructionism; maker movement; diversity; elementary students 

Introduction 

Peppler and Bender (2013) refer to the maker movement as “a growing culture of hands-on making, 
creating, designing, and innovating.” (p.22) Similarly, Halverson and Sheridan sees the maker 
movement as a group of people who are involved in “creative production of artifacts in their daily lives” 
(2014, p.496). As a movement, a group of “makers” often share their processes and products with 
others. Makers’ distinctive identity is their do-it-yourself (or do-it-with-others) mindset. They find making, 
tinkering, inventing, problem-solving, discovering and sharing intrinsically rewarding (Kalil, 2013). Maker 
activities provide learners with hands-on experience to design, experiment, build, and invent as they 
engage in activities that involve science, technology, engineering, math (STEM), and art. It draws people 
with interest in a range of activities, from textile craft, robotics, cooking, wood-crafts, electronics, digital 
fabrication, or mechanical repair (Peppler & Bender, 2013).  Making in education is not new. 
Constructionist scholars and progressive educators have been advocating for learning through making 
since the 1960s. When learners make, they construct personalized connection to the artifact that 
engages their thinking, feeling, and learning (Wilensky, 1991). The construction can be anything from 
programming to painting, to carpentry, to making a hypothesis for a scientific experiment, or even to 
writing poetry (Papert, 1980). The term “maker movement” became more widely recognized in the early 
2000s with the establishment of Make magazine and Maker Faire (Dougherty, 2016). Nevertheless, the 
making practices that were portrayed through these popular media outlets have demonstrated a very 
narrow representation of making featuring mainly male dominated practices like electronics, vehicles, 
and robots (Buecheley, 2013). 

The maker movement has a high potential to reach people from diverse backgrounds through hands-
on making. However, the movement has predominantly targeted wealthy and highly educated men 
(Buecheley, 2013; Maker Media, 2014). In an effort to expand the space of what counts as “making” in 
this maker movement, researchers and designers have worked to bridge traditionally feminine domains 
such as craft and fashion to computing and engineering. For example, the LilyPad Arduino allows 



Constructionism 2018, Vilnius, Lithuania 

461 

 

learners to sew and program electronics. Many organizations have developed coding games for girls 
as well as organizing girl-only coding camps. These efforts have played an important role in increasing 
girls participations in maker activities; however, there is a danger in over-generalizing or simplifying 
womens’ interests. Generalizing girls’ preferences and superficially including features like fashion and 
beauty into the learning environment can be problematic. The act may aggravate gender stereotypes 
and community divides (Holbert, 2016). An alternative way to create a more inclusive maker-centered 
learning environment may be to directly consider women’s values and goals and then evaluate how 
these values can be reflected in the design of maker activities and spaces. 

This paper explores a pedagogical framework based on values cultivated by women to build 
connections with others (Belenky et al., 1986; Gilligan, 1982) that can engender more girls to participate 
in maker activities. It is a part of the wider two-year Bots for Tots design-based research project (Holbert, 
2016) where we engage young learners from diverse communities to build toys for younger kids in their 
school rather than for themselves. Using data from the second iteration of the Bots for Tots program 
where all participants were girls, we investigate the relationship between fourth-grade builders (Big 
Sisters) and their first-grade clients (Little Sisters) and the relationship’s impact on the builders’ making 
process to explore a pedagogical framework on designing maker activities for girls. In this study. Our 
research aims to answer the following questions:    

• How does making personalized toys for their clients motivate and help builders to persist through 
challenges in completing their toy design 

• How do builders persist through times of discouragement encountered during their making 
process? 

We present findings about how the relationship between builder participants and their clients motivated 
the builders during the making process. 

Literature Review 

Diversity in the maker movement: Engaging women in making 
In the United States, the maker movement has struggled to expand its participations beyond affluent 
and well educated men. An attendee survey of the 2014 Bay Area Maker Faire showed that 70% were 
male, 97% attended or graduated college, and earned a median household income of $130,000 (Maker 
Media, 2014). Moreover, 85% of the 41 people featured on Make magazine covers (2005-2013) were 
men. Likewise, a very narrow definition of maker activities had been portrayed on the covers featuring, 
53% electronics, 31% vehicles, 22% robots, 8% rockets, and 5% music (Buechley, 2013). Revisiting 
these data three years later, Buechley (2016) called on the maker community to focus their efforts on 
inclusion, arguing that if the program is not inclusive, it is discriminatory. Instead of narrowly defining 
STEM and maker activities, Buechley argued for the inclusion of STEM-rich activities practiced by 
diverse communities and cultures (2016). For example, knitting should also be considered as a 
mathematically-rich activity as creating designs and patterns requires intricate calculation. 

At the same time, we should not force learners to take on an externally imposed identity but should 
support them in building their own unique one. For instance, not all learners will be drawn to the “hacker” 
identity predominantly advertised by many maker communities (Worsley & Blikstein, 2016). Women in 
particular may be find this framing uninviting (Fisher & Margolis, 2002). Martinez (2015) suggest 
educators to be sensitive of their classroom environment as women can react to surroundings that 
reflect stereotypical hacker culture by denying that they are interested in science and engineering. 

Linking science and technology with learners’ values and area of interest can help create an inclusive 
STEM and maker-centered learning environment for women (Rosser, 1990). Findings from Margolis 
and Fisher’s (2003) longitudinal research show that context is very important for women. They suggest 
bridging other disciplines such as medicine, arts, and environmental science to computer science as 
well as connecting learners with local communities to sustain women’s interests in technology-focused 

fields.  



Constructionism 2018, Vilnius, Lithuania 

462 

 

Margolis and Fisher’s (2003) research also aligns with Belenky, Clinchy, Goldberger and Tarule’s (1986) 
seminal work on ways of knowing cultivated by women. They examine two distinctive forms of knowing: 
separate and connected knowing. Generally, the separate knowers tend to be more critical and 
detached from feelings and emotions. On the other hand, connected knowers are more empathetic. 
They try to understand others’ perspectives and share their own experience to foster relationship. They 
are driven by the desire to connect. Gilligan (1982) used the term “separate” and “connected” to describe 
two different conceptions or experiences of the self (separate from others) and in relationship 
(connected to others). Interviewing eleven-years-old boys and girls, Gilligan found that girls tend to 
locate themselves in relation to the world and described themselves through actions that bring them 
into connection with others (p.35). To examine separate and connected knowing, Belenky et al. (1986) 
conducted a survey that holds statements indicating “separate knowing” and “connected knowing” and 
found that their female participants had higher tendency toward connectedness. It is noted that separate 
and connected knowing are not gender specific and both ways of knowing have no correlation to 
intellectual capacity. Though not all women are connected knowers, this epistemological belief can help 
us design an inclusive and supportive maker-centered curriculum suitable for women without relying too 
much on activities or discourses related to gender stereotypes such as girls prefer pink toys or beauty 
related products (Holbert, 2016). 

As Belenky et al. (1986) and Gilligan (1982) have suggested, women tend to value social interactions 
and a sense of community. They talk about their negative feelings (stress, anger, and disappointment) 
with others significantly more often than men (Simon & Nath, 2004). In a stressful situation, women are 
more likely to express their feelings and cope with their emotions by seeking social support, as 
compared to men (Thoits, 1995). In maker activities, women work collaboratively, provide support, and 
help their peers more often than men (Intel Corporation, 2014). Women are more motivated by the 
social service aspects of making, particularly, they want to help or give. This act can be as simple as 
creating gifts for family and friends (Intel Corporation, 2014). Literature suggest women have higher 
tendency than men to favor collaborative relationships to competition and enjoy helping or giving back 
to their community (Mosatche et al., 2013). Leveraging these findings, maker-centered environment that 
support working together and working for others can leads to an increase in confidence and 
performance for women in making. 

Methodology 

Population and Site 
The data presented here is from 41 fourth grade builders (aged 9 to 11) taking an Engineering and 
Design class at an all-girls private school in a suburban area in the North-Eastern United States. 
Leveraging school’s Big Sister - Little Sister mentorship program, the Bots for Tots project had an explicit 
goal of having the fourth grade builders or “Big Sisters” to design and build toys for their first grade 
clients or “Little Sisters”. The class began with two sessions of making with a 2D to 3D objects with 
cardboard in order to familiarize the builders with tools and materials in the lab as well as warming them 
up for creative activities ahead. After the cardboard sessions, the builders interviewed their clients using 
the “Client Profile” worksheet. They questioned their clients about the toy they liked and disliked. Then, 
the builders used the Client Profile worksheet to discuss with their classmates and brainstorm toy ideas 
within a small group. After two sessions of prototyping, the builders met their clients again to show 
prototypes they made and receive feedback for further iteration. The builders spent seven sessions to 
make their final designs. The instructor also allowed the builders to take the toy home for the last 
weekend if they could not complete the toy in the class time. The builders met their clients for “play date 
session” on the last day of the semester where the girls exchanged the toys and played together. All 
names used in the paper are pseudonyms chosen by the participants. 

Data Collection 

Interview 
Of the 41 builders participating in the study, 12 were randomly selected for one-on-one interviews. We 
interviewed the builders at the beginning of the year, before the Bots for Tots project had begun to 



Constructionism 2018, Vilnius, Lithuania 

463 

 

determine builders’ experience with technology, construction, and crafts as well as knowledge of 
relevant making and engineering concepts or skills. Interviews lasted approximately 30 to 40 minutes 
per builder. We interviewed the same builders again at the end of the year after the class had concluded. 
In the post interview, builders were asked about their experience of making toys for their clients. Our 
goal was to understand how making for their clients influenced the overall making process and how 
builders may have developed an interest in making. The interview was video recorded and transcribed. 
The data was coded “bottom-up” where themes and coding categories emerged from patterns in the 
data (Miles et al., 2014). For example, one code categorized instances where the participants changed 
their initial designs after receiving feedback from their clients and another identified instances where 
participants reference their clients while making their toys. A subset of the codes relevant to this analysis 
were applied by coders outside of the primary coding team. Interrater reliability was computed for each 
data set with all sets achieving greater than 0.7 Cohen’s Kappa initially and improving to greater than 
0.9 after discussion. 

Field notes 

Detailed field notes were taken during observations of the Bots for Tots project. These observations 
focused on fourth-grade girls’ conversation with classmates and instructors about their clients’ toy 
preferences and feedback. Particularly, we looked into the builders’ development of toy ideas, feedback 
from interview with clients, changes that builders had implemented after the feedback session. 

Artifacts 

A variety of artifacts were produced by builders throughout the Bots for Tots project. These include in 
class worksheets, photographs of builders giving toys to their clients, as well as photographs of their 
toy designs throughout the construction process. Following are artifacts investigated: 

 My Client Profile worksheet: Builders filled out the My Client Profile worksheet, indicating their 
client’s toy likes and dislikes, during the first client interview. Here, we investigated the requests 
their clients originally made. 

 Brainstorming worksheet: Using the data gathered from the client interview, builders discussed 
and brainstorm toy ideas with their classmates. Next, they finalized their toy idea and materials 
that they would use by drawing and filling in their toy design plans. We wanted to see how 
builders brought in clients’ preferences in coming up with project ideas. 

 Client’s feedback worksheet (Figure 2): Approximately half of the way into the project, builders 
presented their prototypes to their clients to receive feedback. This form guided that process by 
providing questions that included clients’ preferences and concerns about the prototype and 
whether or not the prototypes met their expectation. We wanted to look into feedbacks from the 
clients and how that the feedback had led to the builders’ changes in their designs. 

 Prototypes and Final Project: Builders built prototypes of their toys as a quick and tangible way 
to express their ideas and receive feedback from their clients. The final project was the last 
iteration of the toy given to the clients on the play date session. We investigated the builders’ 
prototypes and final projects to see the changes they had made in each stage of designing toys 
for their clients. 

Study Design 

41 fourth grade builders from two classes (20-21 builders per class) participated in the study as a part 

of their Bots for Tots project, a bi-weekly class which ran 45 minutes per session. Throughout the 

academic year, builders participated in 19 sessions in total as described on Table 1. 

 

 

 

 



Constructionism 2018, Vilnius, Lithuania 

464 

 

Table 1. Structure of Making and Engineering class 

Name of activities # of sessions the 
activity occurs 

Major activities 

Pre workshop 
interview with twelve 
builders 

1 Interview 12 builders about their experience 
and familiarity with tools and toys related to 
maker activities 

Make 2D to 3D 
cardboard animals 

3 Created 3D animals from cardboard 

Interview with clients 1 Interviewed first-grade clients about their 
dream toys 

Brainstorm with small 
group 

2 Shared information gained from interviewing 
with clients and asked classmates for inputs 
about their design ideas. 

Prototype 2 Made prototypes 

Receive feedback 
from clients 

1 Showed clients the prototype and asked for 
feedback 

Complete final toy 
design 

7 Revisited the feedback from clients and 
planned for improvements. 
Finalized toy construction. 

Toy delivery and play 
date 

1 Met clients for toy delivery 

Post workshop 
interview with twelve 
builders 

1 Interviewed the 12 builders about their 
experience in the Making and Engineering 
class. 

Results 

 

 Figure 1. from left to right. 1) Amy’s prototype of orange emoji pillow inspired by her My Client Profile 
worksheet. 2) Amy’s final project. 3) Amy and her client at the playdate, holding the card her client made. 

 



Constructionism 2018, Vilnius, Lithuania 

465 

 

We divide the investigation of artifacts made by fourth grade builders into three phases: (1) after the 
first client interview, (2) after the client feedback session, and (3) before a playdate with clients. We 
found 27 out of 41 students kept their original project ideas from phase (1) to phase (3). The 14 
remaining students changed their toy ideas after phase (2) but still showed alignment to their clients’ 
requests. Out of 41 projects, 40 projects aligned with what was requested by their first grade clients. 
Throughout the three phrases, builders also made changes to their design to serve their clients’ 
preferences. For example, Amy’s client profile sheet suggested her client likes emojis: happy, hearts, 
and sparkly eyes. The client preferred the toy to be “kind of hard with a lot of stuffing and puffy.” Amy 
made an orange emoji pillow from felt that was roughly sewn together as her prototype and showed it 
to her client for feedback. Her client liked the pillow and only asked if Amy could change the color of the 
fabric from orange to yellow and added “sparkly eyes” using pink and yellow fabric. On the final project, 
Amy took her client’s feedback and made a heart eye yellow emoji pillow. She also recorded her voice 
on a recorder module to play, “have a nice day!” once the pillow was squeezed (Figure 1). 

Amy was one of the 27 builders who held onto their original toy design requested by the clients since 
the first client interview, making only minor changes. 14 builders completely changed their designs. 
These changes were made because of several reasons including difficulties in making original ideas (8 
cases), feedback from clients (2 cases), materials constraint (1 case) and peer influence (3 cases). 

 

Figure 2. Ruth (left) and Betty’s (right) responses from their Client’s feedback worksheet 

Unlike Amy, whose client loved her design and only requested minor changes, 10 out of 41 builders 
indicated negative feedback. For example, Ruth answered “No” on her client feedback worksheet for 
the question: It is close to what [client] imagined? (Figure 2). Ruth’s client did not like her prototype at 
all. She made a pillow with a voice recorder that spoke “I love you, [name of the client]” when squeezed, 
but her client wanted a doll house. Ruth was discouraged and worried that she would not be able to 
make a doll house. She spent the next session listlessly looking at other projects and playing with 
materials. Her friends and teacher encouraged her to try to make the dollhouse. The teacher asked 
Ruth to cut plywood into five rectangular pieces and showed her how to assemble the pieces into a 
cube with one side open. Ruth was excited to see an initial structure of the doll house. However, the 
structure collapsed when she returned for the next session. Ruth was disappointed that she had to start 
all over again. Feeling discouraged, the teacher had to work closely with her and suggested she use a 
glue gun instead of masking tape. Once the structure was finished and had a strong foundation, Ruth 



Constructionism 2018, Vilnius, Lithuania 

466 

 

knew exactly what to do. She picked up several colorful tubes of acrylic paint and started to paint her 
doll house (Figure 3). At the end of the class, Ruth said “I’m so proud of myself today!” When asked 
why, she answered “I worked so hard. I’m almost done!” 

Like Ruth’s client, Betty answered “NOTHING” on her client feedback worksheet (Figure 2). Betty’s 
client did not like her prototype and it was “NOTHING” like what she expected. Betty intended her 
dollhouse to have two levels. But, she cut one piece of wood slightly smaller than the others so when 
she assembled her house together, it was slanted. She looked unhappy with her design, so her 
classmate provided encouragement by saying that it looked “like a cool modern loft house!” Another 
agreed and said Betty could decorate her dollhouse as a fun, “whimsical witch house”. However, Betty 
still appeared unsatisfied and said that she would not continue her dollhouse project and would make a 
pillow instead. Seeing that Betty already poured in a lot of time and effort for her project (cutting and 
gluing wood), the teacher suggested that she take the second floor out and redesign her roof. Betty 
agreed and took out the top floor. She added a piece of plastic on the top to create a roof with skylight. 
She also made a loft floor for a bedroom (Figure 3). During the post interview, Betty told us that her 
favorite part of Bots for Tots was to see how surprised her client was to receive the toy she made. She 
said, “I liked when I gave it to my little sister. I like to see how like happy and like surprised she was.” 
Betty was proud of her creation, even though she almost changed her design to a pillow. 

 

 

Figure 3. Ruth (left) and Betty’s (right) final designs for their doll houses on the day of Play date. 

Pillows were a popular choice among builders that did not pursue the original idea. While only one 

client originally requested a pillow, ten girls made pillows. For example, Panni told us during the post 

interview that her client originally wanted a stuffed animal that has a “head of shark with a dolphin 

body”. She tried drawing and cutting a shark’s head but she was not able to make it; she said “It was 

kind of hard.” So Panni asked her client if she could make her a pillow instead. As pink was her 

client’s favorite color, Panni made a pink polka dot pillow with rainbow mesh. She wrote her client’s 

name a side of the pillow. Out of ten pillows, nine showed personalization features specific to each 

client. Several personalized details were requested by the clients such as the clients’ initials, soft 

circuits, voice records, and sketches.  



Constructionism 2018, Vilnius, Lithuania 

467 

 

 

Figure 4. Lightbulb’s pillow for her client (front and back) 

One of the ten builders who made a pillow, Lightbulb, described her project as not a “boring pillow”. She 
decorated one side of her pillow with pompoms and an “M” for her client’s name. On the other side, she 
made a soft circuit where her client could “flip the switch a little star thing would light up” (Figure 4). She 
told us during the post interview that she felt like her client “wanted more than just a boring pillow”. She 
added that, “I wanted to do more for her, instead of just a pillow that said, [client’s name]. I wanted to 
make it special and personalized, that’s why I did the—because not a lot of people have light up pillows.” 
Since Lightbulb finished her project two weeks before the playdate, she decided to make a set of 
wooden blocks, a toy her client originally requested. She admitted that she made a pillow because she 
initially did not know what to do, “I just didn’t know what to do so I was like, why don’t I make a pillow.” 
She then realized that her pillow was not relevant to her client’s preference and recalled that her client 
liked to play with Lego bricks. She said, “well these [wooden blocks] are kind of like Legos, so maybe it 
would add something more to the project that [her client] would like.” Additionally, Lightbulb told us 
during the post interview that not only did she like making things, but she also liked seeing the reaction 
of her client after receiving the toys she made. She felt really proud as she “liked watching [her client] 
like play and enjoy the blocks.” 

Lightbulb was not the only builder who felt proud when her client enjoyed her handmade toy. Out of 12 
builders interviewed, 11 also said that they felt proud or happy when they saw that their clients liked 
their projects. For instance, Aditi said that she was happy when her client was hugging and playing with 
her bunny stuffed animal. LillyJane said that she liked seeing reactions of her client when she received 
the gift. Even though the making experience was challenging, it was really fun for her. Like LillyJane, 
Hailey thought that it was hard to know what her client liked but it was fun making for her client and 
seeing her love the personalized pillow. She said, “I really wanted to make something that she would 
remember and really love.” Sarah thought that her project was “not as hard as some other people’s” but 
she was still proud of herself for putting in effort and for satisfying her client’s requests. 

Furthermore, the post interview data showed that the builders often talked about their clients even when 
they were not asked about them. Our first seven questions on the post interview protocol aimed to 
understand the builders’ feelings toward the Bots for Tots project and their perceptions on technology 
and craft. We did not ask the builders about their clients in these questions. 11 out of 12 builders talked 
about their clients unprompted in the first seven questions, six girls said that making toys for their clients 
was their favorite part of the class. For example, LillyJane told us that her favorite part was interviewing 
her client because it allowed her to know her client better and to personalize the toy for her. Hailey 
explained that her favorite part was helping her classmates with making and creating a toy that her client 
would love. Hailey liked prototyping so that she could receive feedback from her client and improve. 
Moreover, when asked about their feelings toward the toy they made or about things they would have 
liked to do differently seven girls mentioned their clients. For example, Erica answered that she “really, 
really liked” a colorful dollhouse she made. She then added, “and I think [her client] really liked it too.”  

One girl, Aditi, mentioned her client on four out of seven unprompted questions. During her pre interview 
Aditi was timid and quiet often answering questions with, “I don’t know” and “Mm-hmm.” However, in 
the post interview, she gave lengthy responses and often referred to her client. Aditi said that 



Constructionism 2018, Vilnius, Lithuania 

468 

 

brainstorming session was the most challenging task because her client said “yes to everything” that it 
required extra work to come up with a project idea. Aditi ended up making a pink bunny stuffed animal 
with a letter "J" (her client’s initial) on its belly. She said that she enjoyed the making experience and it 
was fun designing for her client. When asked Aditi if in a future Bots for Tots project she would prefer 
to build for herself or for someone else, she said she would prefer making for someone else because 
the receiver would be surprised and happy. She would not enjoy the making experience that much if 
she were to make for herself. 

Similar to Aditi, nine other builders interviewed would prefer making for someone else if they were 
participated in the Bots for Tots project again. Panni wanted to make for others because she loved hugs 
and the receivers often gave her hugs of appreciation. Another builder, Margie, explained that she 
wanted to make for others as she would try hard because she did not want her receivers to feel sad. 
Erica wanted to make for her parents and her good friends because she knew exactly what they liked. 
Nevertheless, five of them said that they also wanted to build something for themselves. The most 
common reason was that they felt proud of what they had made and wanted to keep it. 

Discussion 

A goal of this study was to explore a pedagogical framework on how “making for others” can influence 
and engage girls in maker activities as well as exploring the emerging supports that the girls need 
throughout their making process. We wanted to provide an alternative way to create a more inclusive 
maker-centered learning environment that directly consider women’s values in cultivating personal and 
community connections. We also suggest that providing girls opportunities for social and emotional 
support is important in the design of maker activities and spaces. 

Making for others: Building toy, building relationship 

Belenky and her colleagues (1986) suggested that women are likely to be driven by the desire to connect 
with others at a personal level. The school’s “Big Sisters-Little Sisters” program encouraged the fourth 
grade builders to build a year-long mentor-like relationship with their first grade clients. This intimacy 
and relationship with their first grade clients motivated the builders throughout their making practices. 
Apart from making toys for their clients in Bots for Tots project, the fourth grade builders also provide 
care and guidance to their client, as it was their first year of elementary school. They shared the same 
building and often met during recess and school activities. 

While the Bots for Tots project was part of a formal school experience, activities and artifacts would not 
be graded. Nevertheless, the builders were motivated by their clients’ preferences, as 40 out of 41 
projects showed alignment with what was requested by their clients. The builders took what they had 
learned from client interviews to come up with project ideas and more than half (27 builders) were 
committed to the original ideas throughout the year. In the 13 other instances where the builders could 
not carry out their original plans, they added personalized details for their clients. For example, in making 
pillows, the builders chose fabric based on their client’s choice of colors and often included clients’ 
initials, voice recording, and sketches. This is demonstrated by Lightbulb, who incorporated a soft circuit 
to her pillow because her client did not want “just a boring pillow.” She wanted to make her project 
special and personalized. Lightbulb was the only builder in the class who made the soft circuit. It was 
also her first time experiencing with the materials. 

In addition, the post interview data showed that builders were constantly thinking about and referring to 
their clients even when they were not asked about them. They try to understand the other’s point of 
view and tend to position themselves through actions that bring them into connection with others 
(Galligan, 1982). The clients were important to the builders’ making experience. Making the toys for 
their clients connects and tightens the relationship between the builders and the clients. Interestingly, 
11 out of 12 builders talked about their clients when discussed about their favorite parts of the Bots for 
Tots project and their feelings toward their projects. LillyJane’s favorite part of the class was interviewing 
and getting to know her client better so that she could make the toy that her client would love. While 
Panni regretted about the toy she made because she could not make the toy that was originally 
requested by her clients. The builders empathized and connected with their clients 



Constructionism 2018, Vilnius, Lithuania 

469 

 

The builders are particularly motivated by the social aspect in making and their desire to help or to give. 
They tend to feel a sense of accomplishment in making and often depend on personal and community 
connections (Intel Corporation, 2014). When asked whether the builders prefer building for themselves 
or for someone else if they were to participate in the Bots for Tots project again, ten answered that they 
wanted to build for someone else. The most common reason was that the builders felt happy when they 
saw that their clients appreciated their handmade toys. 11 girls interviewed talked about how seeing 
their clients like their toys made them feel proud or happy. For instance, Aditi was happy when she saw 
her client hugging and playing with the bunny stuffed animal she made. LillyJane also liked seeing her 
client’s reactions when they received the gift. This finding confirmed how relationship and feelings were 
tied to the builders’ motives in making.  

Persisting through challenges: Motivated by clients, encouraged by peers and teacher 

The feedback and reactions from clients toward the toys affected builders’ feelings and confidence. The 
comments-- both positive and negative--prompted the builders to improve their designs. Builders made 
changes on their designs based on their clients’ feedback. While 31 clients were satisfied with the 
prototypes, only requesting builders to make minor changes, ten of the builders received negative and 
discouraging feedback. 

Despite the tough feedback, the builders overcame challenges and finished toys that satisfied their 
clients. They took comments that may be discouraging to improve their toys and ensured that their 
clients were happy. Here, the builders have higher tendencies toward being connected knowers and 
“learn through empathy” (Belenky et al., 1986, p. 115). For example, Margie’s client told Margie that her 
pillow looked like a sausage, when her intention was to a tennis ball pillow after learning that her client 
liked to play tennis. Margie improved the design of tennis ball pillow and added a small tennis court 
made of wood, knowing that her client loved tennis. At the end of the project, Margie was proud of what 
she made and told us that her client also liked her toys. She said, “[her client] really liked the pillow. 
That’s her favorite. She was like leaning on it.”  Despite receiving harsh comments on their prototypes, 
they tried to understand their clients’ perspectives and made personalized toys to foster their 
relationship.  

Nevertheless, negative feedback can also demotivate the young female builders, especially when the 
feedback came from a person who they had fostered meaningful relationship with. In a stressful 
situation, young female builders need close facilitation and emotional support from peers and teachers 
(Thotis, 1995). Sometimes, the form of support can be as simple as giving a compliment to the builders. 
Words of encouragement like: “I’m so proud of you today” or “I like the living space that you added here 
in your doll house. What are you planning to do on the top floors? Good job. You’re almost done.” As 
shown through the case of Ruth, who was emotionally affected by a comment which took her several 
weeks to recover from and get back on track. The teacher provided her with encouragement and 
guidance to regain her confidence. She spent the last four weeks (and even some extra time at home) 
to finish her two-story dollhouse. Ruth was proud of her work, and was also rewarded with her client’s 
satisfaction and happiness. In another example, Betty was disappointed by her slanted two-level 
dollhouse and wanted to make a pillow instead. She received feedback and encouragement from her 
peers and teacher that the house looked “cool” and “whimsical”. After this reassurance, she decided not 
to start a new project, but figured out a way to improve her existing one. The teacher supported her by 
reframing her project and her classmates supported her by providing encouragement, and easing her 
disappointment so that she was able to progress past this mistake. 

Without close support, female builders may feel demotivated and may give up on their intended project. 
This was the case for Panni, who chose to make a pretty pillow instead of a disproportionate shark-
dolphin stuffed animal. It was also the case for other builders who switched from their clients’ original 
requests to a pillow. Though they made personalized designs for their clients, these builders lost 
confidence in their ideas, became demotivated, and wanted to settle on less complex designs. 

Conclusion 

The intimacy and personal connection with their clients influence how the young female builders 
engaged in the processes of making. This connection with their clients make the construction process 



Constructionism 2018, Vilnius, Lithuania 

470 

 

“personally meaningful”, because the person for whom they were building was meaningful. Though 
these young builders have not yet developed to the “connected knowers” stage as defined by Belenky 
and her colleagues (1986), they have a tendency to value social interactions and a sense of community. 
Making for others is an effective exemplar of how we can leverage an epistemological approach that is 
cognitively and culturally unique to women in order to motivate female learners in making.  

However, it is not enough to merely provide a space for girls to make. How we design the learning 
experience matters. The teacher needs to provide support. At the same time, facilitation and activities 
should also be designed to build a community of learners that supports one another. A better 
understanding of the values of diverse learners that make up our schools and makerspaces must be 
considered in order to create an inclusive maker-centered learning environment. 

References  

Belenky, M. F., Clinchy, B. M., Goldberger, N. R., & Tarule, J. M. (1986). Women's ways of knowing: 
The development of self, voice, and mind (Vol. 15). New York: Basic books. 

Buechley, L. 2013. Thinking about making. Retrieved December 6, 2017 from 
http://edstream.stanford.edu/Video/Play/883b61dd951 d4d3f90abeec65eead2911d  

Buechley, L. 2016. Inclusive Maker Education: STEM is Everywhere. Retrieved January 2, 2018 from 
https://edstream.stanford.edu/Video/Play/a33992cc9fb2496488c1afa9b6204a571d 

Dougherty, D. 2016. Free to Make: How the Maker Movement is Changing Our Schools, Our Jobs, and 
Our Minds. North Atlantic Books. 

Fisher, A., & Margolis, J. 2002. Unlocking the clubhouse: the Carnegie Mellon experience. ACM 
SIGCSE Bulletin, 34(2), 79-83. 

Gilligan, C. 1982. In a different voice. Harvard University Press. 

Halverson, E. R., & Sheridan, K. 2014. The maker movement in education. Harvard Educational Review, 
84(4), 495-504. 

Holbert, N. (2016). Leveraging cultural values and “ways of knowing” to increase diversity in maker 
activities. International journal of child-computer interaction, 9, 33-39. 

Intel Corporation. 2014. MakeHers Report: Engaging Girls and Women in Technology through Making, 
Creating, and Inventing. Retrieved November 12, 2016 from http://www.intel.com/content/www/us/en/ 
technology -in- education/making-her-future- report.html 

Kalil, Thomas. 2013. Have fun—learn something, do something, make something. Design, make, play: 
Growing the next generation of STEM innovators, 12-16. 

Margolis, J., & Fisher, A. 2003. Unlocking the clubhouse: Women in computing. MIT press. 

Maker Media. 2014. Attendee Study Maker Faire Bay Area 2014. Retrieved from 
http://makermedia.com/wp- content/uploads/2013/01/MFBA-2014-research- deck_FINAL.pdf 

Martinez, S. 2015. Making for All: How to Build an Inclusive Makerspace. Retrieved August 26, 2017 
from EdSurge: https://www.edsurge.com/news/2015-05-10-making-for- all-how-to-build-an-inclusive-
makerspace 

Miles, M. B. Huberman, A. M., & Saldana, J. (2014). Qualitative Data Analysis: A Methods Sourcebooks. 

 Mosatche, H. S., Matloff-Nieves, S., Kekelis, L., & Lawner, E. K. 2013. Effective STEM programs for 
adolescent girls: Three approaches and many lessons learned. Afterschool matters, 17, 17-25. 

Papert, S. 1980. Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc. 

Peppler, K., & Bender, S. 2013. Maker movement spreads innovation one project at a time. Phi Delta 
Kappan, 95(3), 22-27. 



Constructionism 2018, Vilnius, Lithuania 

471 

 

Rosser, S. V. 1990. Female-friendly science: Applying women's studies methods and theories to attract 
students. Pergamon. 

Simon, R. W., & Nath, L. E. (2004). Gender and emotion in the United States: Do men and women differ 
in self-reports of feelings and expressive behavior?. American journal of sociology, 109(5), 1137-1176. 

Thoits, P. A. (1995). Stress, coping, and social support processes: Where are we? What next?. Journal 
of health and social behavior, 53-79. 

Wilensky, U. 1991. Abstract meditations on the concrete and concrete implications for mathematics 
education. Epistemology and Learning Group, MIT Media Laboratory 

Worsley, M., & Blikstein, P. (2016). Children are not hackers: Building a culture of powerful ideas, deep 
learning, and equity in the Maker Movement. In Makeology (pp. 78-94). Routledge. 

  



Constructionism 2018, Vilnius, Lithuania 

472 

 

The Construction of Knowledge in Maker 
Education: A Constructivist Perspective 

José Armando Valente, jvalente@unicamp.br 
State University of Campinas, UNICAMP, Brazil 

Paulo Blikstein, Paulo, paulob@stanford.edu 
Stanford University, USA 

Abstract 

The objective of this paper is to reflect on the contributions of makerspaces to the process of knowledge 
construction. Initially we discuss aspects related to the theory of constructionism, and, subsequently, 
using Piaget’s notions of conceptualization, we discuss how knowledge can be constructed in a 
makerspace. We show that in makerspaces students can develop sophisticated artifacts by using digital 
technologies, and that besides the product, this process allows for the representation of the actions 
provided to these machines, expressed as concepts and strategies used. This representation 
constitutes the "window into the mind" of the learner, allowing for one to understand and to identify the 
knowledge used and, with that, help the learner reach a new level of knowledge construction.  

Keywords 
makerspaces; maker education; fabrication technologies; knowledge construction; constructionism 

Introduction 

Makerspaces are being introduced in K-12 education as an alternative to traditional approaches so that 
students can have more agency, engage in project-based learning activities, and generally be more 
active. In makerspaces, students learn how to produce artifacts by using traditional objects and 
materials combined with digital fabrication technologies, which are increasingly present in the 
contemporary world (see Figure 1 for examples of students’ projects.) These activities are based on the 
constructionist approach to learning proposed by Papert (1986) and are being inserted in education so 
that learners can develop objects of their interest and, with this, explore and build knowledge about 
various curricular concepts. 

Seymour Papert and collaborators developed, in the late 1960s, the Logo programming language, which 
aimed to allow children to “teach” the computer, an activity that, according to these researchers, would 
be much more efficient than passive teaching strategies used in the traditional classroom. Papert called 
the approach through which the learner constructs knowledge when s/he produces an object of her/his 
interest, such as a work of art, a report, or a computer program, constructionist (Papert, 1986). Papert 
emphasized the importance of learning through the “hand” on and the “head” in process: the learner is 
involved in building something of her/his interest, and in doing so, is faced with unexpected problems 
for which there is no pre-established explanation. 

This belief in the development of an increasingly complex and multidisciplinary problem-solving capacity 
in students brings Papert’s constructionism ideas closer to the current maker movement, which seeks 
to take protagonism and technological innovation to learning spaces. 

A central aspect of a makerspace or digital fabrication lab is the construction of objects using different 
materials such as scrap, wood, cardboard, electromechanical and electronic components, which can 
be combined with computer programming activities and the use of fabrication tools such as a laser 
cutters and 3D printers. The emphasis is on promoting engagement and a strong sense of 
experimentation with media and the materials, while constructing knowledge, collaborating, and building 
a learning community. Making involves trying to solve a specific problem, creating a physical or digital 
artifact, and sharing that product with the public. The interaction between participants and the process 
of knowledge sharing is often mediated by social media, as well as online repositories of objects, tools, 



Constructionism 2018, Vilnius, Lithuania 

473 

 

and “how-to” manuals. Much of the spirit of maker labs resonates with the “do it yourself” (DIY) culture, 
as Hatch states: 

Making is fundamental to what it means to be human. We must make, create and express 
ourselves to feel whole. There is something unique about making physical things. The things we 
make are like little pieces of us and seem to embody portions of our soul. (Hatch, 2013, p.11) 

Despite issues regarding equity of participation and culture mismatch (Blikstein & Worsley, 2016), 
makerspaces have great potential to contribute to progressive education and to create multiple paths 
for students to learn topics that are more relevant to them. Researchers have been suggesting that 
making, associated with learning methodologies such as constructionism, can create conditions for 
student to be creative, critical, as well as able to solve problems and to work in groups (Martinez & 
Stager, 2013; Halverson & Kimberly, 2014; Kurti, Kurti & Flemming, 2014). 

In many maker labs, the focus is on building a product, and learning how to operate different machines 
and devices. However, when something is produced, multiple ideas and concepts that the learner 
already has are put into action. This knowledge goes beyond technical skills and may involve 
disciplinary content or can be constructed as learners interact with their objects and machines. However, 
through trial and error, a product can be successfully constructed without the learner necessarily being 
able to understand all the concepts involved in the process.  

Piaget studied the development of certain concepts, which are constructed as the result of the 
interactions between the learner and everyday objects or people; process that Papert called “Piagetian 
learning” or “learning without being taught” (Papert, 1980, p.7). Other researchers such as Vygotsky, 
for example, understood that the construction of scientific concepts does not result from the simple 
interaction between the learner and objects, or is a natural result of the development of “hands-on” 
activities. The learners’ construction of knowledge goes to a certain point, and from then on, no matter 
how much effort the learner makes, the content cannot be assimilated. The learner needs the help of a 
more experienced colleague or a specialist, who will assist in the construction of these new concepts 
(Vygotsky, 1989). 

This article aims to understand educational makerspaces and how these contribute to learning; discuss 
the theories underlying knowledge-building processes, especially regarding hands-on activities; trying 
to understand how knowledge can be represented and conceptualized in makerspaces. 

Makerspaces and education   

From the point of view of technological diffusion, the maker concept has its roots in the Mechanics' 
Institutes, created in Edinburgh, Scotland, during the beginning of the 19th century for the provision of 
technical education for craftsmen, professionals, and workers in general. These institutes have 
revolutionized access to science and technology education (Holman, 2015). With the dissemination of 
digital technologies, the 1980s and 1990s saw the creation of the hacker movement, or hackerspaces, 
in several cities across the United States and Europe. These were places where technology enthusiasts 
could work together to invent devices, reuse and exploit new technologies such as low-cost 
microcontrollers, and were inspired by the open software community (Blikstein, 2018). In this context, 
the term "hacker" does not refer to the transgression of rules, but rather describes the use of existing 
everyday objects to understand a phenomenon, or the production of new objects or systems. A classic 
example is the disassembly of electronic devices and the reuse of their parts for the creation of new 
appliances. 

From the educational point of view, the interest in a student-centered or learning by doing based 
education is not new either. One of the first educators to use this pedagogical approach was Dewey 
during the beginning of the last century. This author criticized expository teaching as being old-fashioned 
and ineffective, and proposed the implementation of hands-on based learning situations (Dewey, 1916). 
Other educators and thinkers such as Freinet (1998), Montessori (1965), and Freire (2008) have 
devoted special attention to the relationship between mind and artifact-production as part of the 
educational process. More recently, during the first decade of this century, new trends in educational, 
social, economic, and technological character have contributed to the growth of these movements into 



Constructionism 2018, Vilnius, Lithuania 

474 

 

formal and non-formal educational environments, such as schools, museums, and makerspaces in 
communities.  

According to Blikstein (2018), the interest in the creation, dissemination, and popularization of 
makerspaces can be attributed to five trends: the greater social acceptance of ideas and principles of 
progressive education; countries’ interest in establishing a base for an innovative economy; the growth 
of public awareness, in addition to the popularity of computer programming combined with the creation 
and production of artifacts; the sharp reduction in the cost of digital information and communication 
technologies (DICT), as well as digital fabrication technologies (DFT); and the development of tools that 
are more powerful and easier for students to use, along with studies and publications in academic 
research focused on the effect and impact of these new technologies on learning. 

Since 2005, makerspaces have gained great popularity as a result of the   emergence of the broader 
"maker movement" (Anderson, 2012), the publication of Make Magazine, and the first Make Faire in 
2006, idealized by Dale Dougherty (2013). In addition, these spaces received a great deal of attention 
from educators and researchers after the former US President, Barack Obama, launched an initiative 
to promote learning environments that "encourage young people to create and build and invent - to be 
makers of things, not just consumers of things" (The White House, 2009). 

Papert’s constructionist ideas are the rationale behind the dissemination of making in schools, since, in 
these spaces, learners can learn from hands-on and “heads-in” experiences. Several researchers and 
research groups focused on this area of study have emphasized that students use different concepts 
throughout the activities developed in these spaces (Martinez & Stager, 2013; Halverson & Kimberly, 
2014; Kurti, Kurti & Flemming, 2014). 

However, before using constructionism as a conceptual basis for the creation of the maker activities, it 
is relevant to understand the context in which this concept was developed in the mid-1980s. First, 
researchers believed it was important to introduce an alternative to the uses of computers in education, 
which at the time were still totally focused on the idea of transmitting information through tutorials, or 
exercise and practice programs, which Papert called "instructionism" (Papert, 1991, p.8). Second, for 
Papert, constructionism builds on constructivist theories: “this happens especially felicitously in a 
context where the learner is consciously engaged in constructing a public entity, whether it’s a sand 
castle on the beach or a theory of the universe" (1991, p. 1). The emphasis was, therefore, on the fact 
that learning is not only the result of the learner’s interaction with objects and people around her/him, 
as proposed by Piaget’s constructivism, but the result of the learner’s engagement in the construction 
of something of her/his interest, which can be done with or without the use of computers. Papert makes 
it clear that “computers figure prominently only because they provide an especially wide range of 
excellent contexts for constructionist learning” (1991, p. 8). Perhaps when these ideas were proposed 
it was not as important to emphasize the presence of computers, since they were not yet widely 
disseminated, and learning was not centered on the "connections between computers and real-world 
artifacts" (Donaldson, 2014, p.7). Third, constructionism as a theory required further elaboration. 
Although the concept is “much richer and more multifaceted, and very much deeper in its implications” 
(Papert, 1991, p.1), Papert even went so far as to comment on the irony that “it would be particularly 
oxymoronic to convey the idea of constructionism through a definition since, after all, constructionism 
boils down to demanding that everything is understood by being constructed” (p.2).  

The presence of digital technologies as part of constructionism was further elaborated by Edith 
Ackermann, as she differentiated constructivism from constructionism by proposing: 

1. The increased role of external aids in learning and development; 

2. The emphasis on digital and technological aids;  

3. The learner’s hands-on initiative for a learner takes in the creation of tools, objects, or 
knowledge (Ackermann, 2001, p. 5).   

Digital technologies become important when they go beyond aiding in the production of a product, and, 
rather, make explicit the actions that one must carry out during the process of developing an object. The 
ability to explain one’s actions is very different from what takes place during the production of something 
using traditional objects. It is one thing to be able to produce a sand castle or a vase from a clay tusk. 



Constructionism 2018, Vilnius, Lithuania 

475 

 

Another thing is to provide information so that a robot can produce the same sand castle or vase. In the 
case of the robot, in addition to the product, one must be able to represent the actions the robot must 
take so that the product can be produced. These actions are described as concepts and strategies 
created by the learner. This representation can be studied and analyzed in terms of the concepts and 
strategies used and be improved or debugged for production efficiency. In fact, this representation 
constitutes a “window into the mind” of the learner, in the sense that it allows for one to understand and 
to identify the common-sense knowledge that was used during the production process and, with that, 
help the learner reach a new level of scientifically-based knowledge that is a product of a growing 
learning spiral (Valente, 2005). 

In this sense, to create an educational makerspace, it is important to consider, in addition to traditional 
objects of construction, digital information and communication technologies such as computers, digital 
cameras, as well as fabrication technologies such as 3D printers, laser cutters and computerized 
numerical control milling machines. These technologies should not only be part of the makerspace 
because they are innovative and part of advanced production processes, but also because of the role 
they play in making the concepts and strategies learners use to develop the artifacts they produce 
explicit. For these technologies to function they need to be programmed using concepts such scale, 
distance, geometry. Furthermore, the learner must develop different strategies to apply these concepts  
in the “program.” Lastly, as noted by Riley (2015), technologies add precision, scalability, and 
reproducibility to the students’ work, as shown in Figure 1. 

 

Figure 1. Examples of students’ projects (clockwise): a robot-enacted theater play (top left), a custom-
made guitar, a daVinci machine, and a microscope (bottom right) 



Constructionism 2018, Vilnius, Lithuania 

476 

 

 
The tasks that can be performed in makerspaces, particularly using digital technologies, allow 
learners the possibility of working with concepts from several knowledge areas, such as subjects in 
standard curricula. Riley (2015), while analyzing students’ use of fabrication technologies, identified 
that students had the opportunity to develop mathematical concepts such as Cartesian coordinates for 
the transposition of 2D shapes into 3D figures and vice versa, geometric shapes, units of measure, 
scale, Boolean operations, etc. The production of artifacts using a combination of traditional materials 
and digital technologies makes it possible for learners to use concepts from other areas such as 
science, engineering, and technology. 

 
In addition to these concepts, several authors mention that makerspaces promote personal and social 
development. For example, Clapp et al. (2017) identified the development of agency (a more proactive 
orientation towards the world) and character building in makerspaces. The learner can take risks, cope 
with failures to achieve success, and develop a mindset which includes creativity, curiosity, mental 
openness, persistence, social responsibility, and teamwork. 

However, the lack of a deeper understanding of constructionism, of the role digital technologies play in 
these environments, and of a more precise definition of what constitutes an educational makerspace, 
have contributed to several misunderstandings. First, makerspaces set up in schools are quite 
heterogeneous, varying in terms of size, capacity, and cost. Some schools have understood that simply 
having a room with tables, traditional materials, and glue guns is enough, while other schools offer 
spaces with the most sophisticated digital fabrication technologies (Blikstein, 2018). It is crucial to 
understand the role that technologies play in these spaces and to seek to balance the composition of 
traditional materials and digital technologies. 

Second, educational makerspaces in schools should be understood as spaces for knowledge 
production. In this sense, it is important that they are not seen as environments for the development of 
isolated activities, but activities that are integrated with curricular disciplines. It is not enough to create 
makerspaces in which learners can be creative and have agency, while curricular subjects are still 
introduced in a traditional way. Third, for the learner to construct knowledge in the makerspaces, it is 
important that a series of issues are observed. The elaboration of a product is fundamental, as Papert 
emphasized. However, the production process and the analysis of representations, which provide the 
opportunity for one to understand the concepts and strategies used by the leaner, are also important. 
Thus, the fact of producing something is not enough to ensure that the learner has constructed 
knowledge. The teacher’s role is fundamental to mediate processes and product development, to create 
opportunities for reflection, and to develop the learner’s awareness of the concepts and strategies that 
are used, as observed by Piaget and Vygotsky. 

Knowledge construction in the maker activities 

In his investigations, Piaget identified three types of knowledge that an individual constructs: physical 
knowledge (constructed through the direct action of the individual with the object), logical-mathematical 
knowledge (fruit of a reflection regarding the information collected at a practical level, generating the 
conceptualization), and social-arbitrary knowledge (constructed through the interaction with other 
people in society) (Matui, 1995). However, it is the development of logical-mathematical concepts that 
has received the most attention from teachers and been implemented in the learning process, since 
these concepts depend on the ability for abstraction and their development must be aided by educators. 

Vygotsky makes a similar distinction regarding the construction of concepts. He distinguishes 
spontaneous concepts from scientific ones. The first is developed based on the individual’s experience 
in  the world in which s/he lives, and with the world organization imposed by society; while as scientific 
concepts are developed from spontaneous experiences, but fundamentally depend on  social interaction 
and on the presence of more experienced people or the school environment (Vygotsky, 1986). 

Vygotsky was concerned with the study of how to provide the means for the construction of knowledge. 
He makes an important distinction between development and learning. Effective or real development 
can be understood as all the knowledge the learner has already constructed. Potential development is 



Constructionism 2018, Vilnius, Lithuania 

477 

 

what the learner can achieve during the teaching and learning process - understood here to be the literal 
translation of the Russian term obuchenie, which involves the learner, the person who teaches, and the 
relationship between these pairs that are subjects of the educational process (Matui, 1995). Therefore, 
learning is what allows for the transition from real development to potential development. Between these 
two levels is the area or zone of proximal development (ZPD) where teaching must take place, since 
“the only good teaching is what advances to development” (Matui, 1995, p. 121). 

Papert emphasizes the importance of enriching learning environments by incorporating digital 
technologies, so that subjects can act and construct concepts and ideas that permeate these 
environments (Papert, 1980). The use of these technologies requires logical-mathematical concepts 
and the interaction with these concepts becomes a way to stimulate  "Piagetian learning". However, 
constructing knowledge about these concepts does not happen without the help of more experienced 
people, as emphasized by Vygotsky (1986). 

From this brief analysis of the ideas proposed by notable socio-interactionist authors, one can see that 
the  development of spontaneous concepts, or even some kind of logical-mathematical or social-
arbitrary knowledge, can be achieved through “Piagetian learning”. For learners to be able to develop 
scientific or logical-mathematical concepts, however, the help of more experienced people who 
understand the process of how to promote learning and the content being studied is necessary – there 
is a need for a “true” educator, in the literal sense of the word. However, one cannot assume that simply 
providing information or completing a task is sufficient for constructing knowledge. 

The evaluation of teaching and learning processes is still based on the idea that the student has learned 
a concept if s/he is able to successfully apply it, or is able to talk about the acquired information. 
However, the fact that the learner succeeds at performing a task does not necessarily mean that s/he 
understands what was done. Piaget noted that there is a difference between doing something 
successfully and understanding what was done.  

In 1974, Piaget published two books: La Prise de Conscience (translated into English as “Grasp of 
consciousness: action and concept in the young child”, 1976) and Réussir et Comprendre (translated 
to English as “Success and Understanding”, 1978). These described the process by which children and 
adolescents develop what he called “conceptualized understanding” of the concepts involved in a series 
of tasks, which Piaget asked the subjects of his research to perform. 

In these studies, Piaget noted that children can use complex actions to achieve premature success, 
which represents all the characteristics of savoir faire. The child can perform a certain task but not 
understand how it was performed, nor be mindful of the concepts involved in the task. Piaget also noted 
that the passage from this practical form of knowledge to understanding is done through the grasp of 
consciousness, which is not a kind of insight, but a level of conceptualization. This level of thinking is 
achieved thanks to a process of transforming schemes of action into notions and operations. Thus, 
through the coordination of more complex concepts, the child can move from the level of premature 
success to a level of conceptual understanding, which takes place in three phases. In the first, the child 
neglects all the elements involved in the task; in the second, s/he coordinates some elements, and in 
the third, s/he coordinates all the elements involved in the task. 

Besides this succession of phases, Piaget first observed that it is not the object that leads the child to 
the comprehension phase. Being able to understand how to topple a sequence of dominoes does not 
necessarily mean understanding how to make a castle with playing cards. For each situation, the child 
must transform the action schemas into notions and operations that are involved in a given task. Piaget 
also noted that understanding is the fruit of the quality of the interaction between the child and the object. 
If s/he has a chance to play with objects, to reflect on the results obtained, and to be challenged by new 
situations, the greater is the chance that the child will be attentive to the concepts involved, and, thus, 
reach the level of conceptualized understanding. 

In the case of working with digital or fabrication technologies in the makerspaces, learners can explore, 
create, and reflect in a very stimulating and innovative environment. However, from the educational 
point of view, it is impractical to think that they will be able to construct knowledge individually, without 
being aided by others. First, it would be too costly to construct learning environments involving concepts 
from all the existing domains so that an individual could act in this environment and construct her/his 



Constructionism 2018, Vilnius, Lithuania 

478 

 

knowledge in isolation. Second, as an educational solution this model is not practical, because the time 
needed to train people with the knowledge already accumulated by humanity would be enormous. In 
this sense, the idea of knowledge construction can be improved if we have teachers prepared to help 
students (Piaget, 1998) or, as Vygotsky proposes, through more experienced people who can help 
formalize concepts that are historically agreed upon (Vygotsky, 1986). Without the presence of an 
educator it would be necessary for the learner to recreate these conventions. 

Conclusion 

There is a great interest in introducing maker activities in K-12 education, so the students can have 
more agency, engage in project-based learning, and be generally more active in the learning process, 
learning to produce artifacts by using traditional and digital materials. This article argues that it is 
possible to create learning environments that are based on Papert’s constructionist ideas using activities 
in which the learner can develop objects of their interest and, with this, explore and construct knowledge 
about various curricular concepts, especially those related to STEM.  

The analysis of constructionist ideas indicates that Papert has emphasized the production of objects as 
a way for learners to express their ideas. However, as proposed by some researchers, production 
should take place using digital technologies, which besides the product also allows for the 
representation of the actions provided to these machines. These actions are registered as the concepts 
and strategies the learner used, which can be analyzed and debugged. These representations 
constitute a window into the learner’s mind allowing teachers or a more experienced person to help the 
learner construct new knowledge. 

The fact that the learner is working with digital technologies in the makerspace allows for the 
representation of the action s/he is using, or her/his knowledge, in addition to the creation of the product. 
This means that digital technologies play an important role in makerspaces. Furthermore, since the 
makerspace is created in the school, it is important to integrate activities students develop to other 
curricular content. 

Finally, according to what was discussed in terms of some ideas proposed by Piaget and Vygotsky, it 
is important that the implementation of the makerspace consider the presence of teachers or a more 
experience person whose function is to work with the students so as to challenge them, to create 
conditions for them to interact with the object being produced, and to help them understand the concepts 
and strategies used. Through these interactions with the students, teachers can help students construct 
new knowledge, as well reach a higher level of comprehension about what they are doing.   

However, for this type of setting to take place in a school it is necessary to change the relationships 
taking place in the learning environment and to determine new roles to be assumed by the different 
professionals who work in the school. This means implementing changes in the relationship between 
people, and the quality of the students’ interactions with the objects and activities performed. As 
observed by Piaget, the fact that the learner can make an artifact or can successfully arrive at an answer 
does not  necessarily indicate that knowledge was constructed. The learners must also to be able to 
conceptualize what was produced, which allows for the transformations of their mental schemas.  

The solution to education that prioritizes understanding is the use of stimulating objects and activities, 
so that the student can be involved with what s/he is doing. These objects and the tasks should be rich 
in opportunities that allow the student to explore, and must create the conditions for the teacher to 
challenge the student and, thereby, increase the quality of the interaction with the product. Also, as 
proposed by Vygotsky, the learner needs to get help from more experienced people. Without this type 
of support the learner must recreate knowledge and conventions that are already available. However, 
for teachers to be able to support and help the student in the makerspace it is necessary that they 
receive training not only in terms of how to use technologies, but also regarding how to integrate the 
activities the students are developing with the disciplines in the curricula. The analysis of literature on 
makerspaces has shown that this integration has not fully happened yet—we still have a long way to go 
in the process of creating makerspaces in schools for knowledge construction. 



Constructionism 2018, Vilnius, Lithuania 

479 

 

Acknowledgements 

This work is support by Conselho Nacional de Desenvolvimento Científico e Tecnológico, (CNPq), 
Brazil, grant 306320/2015-0; by Fundação de Amparo à Pesquisa (FAPEST), Brazil, grant 2015/16528-
0; and by the Lemann Center for Entrepreneurship and Educational Innovation in Brazil at Stanford 
University, USA. 

References 

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference? Future 
of Learning Group Publication, 5(3), 438. 

Anderson, C. (2012). Makers: The new industrial revolution. New York: Crown.  

Blikstein, P. & Worsley, M. (2016). Children are not Hackers: Building a culture of powerful ideas, deep 
learning, and equity in the Maker Movement. In K. Peppler, E. Halverson, & Y. Kafai (Eds.), Makeology: 
Makerspaces as Learning Environments (Volume 1) (pp. 64-79), New York, NY: Routledge. 

Blikstein P. (2018). Maker Movement in Education: History and Prospects. In: de Vries M. (Ed.) 
Handbook of Technology Education. Springer International Handbooks of Education. Springer, Cham. 

Clapp, E. P., Ross, J., Ryan, J. O. & Tishman, S. (2017). Maker-Centered Learning: empowering young 
people to share their worlds. San Francisco: Jossey Bass. 

Dewey, J. (1916). Democracy and Education. New York: The Free Press. 

Donaldson, J. (2014). The Maker Movement and the rebirth of constructionism. Hybrid Pedagogy, 1-
19. Retrieved from http://hybridpedagogy.org/constructionism-reborn/ 

Dougherty, D. (2013). The Maker Mindset. In: M. Honey & D. E. Kanter (Eds.). Design, Make, Play: 
Growing the Next Generation of STEM Innovators. London: Routledge. 

Freinet, C. (1998). Educação pelo trabalho. São Paulo: Martins Fontes. 

Freire, P. (2008). Pedagogia da autonomia: saberes necessários à prática educativa. 37.ed. São Paulo: 
Paz e Terra. 

Halverson, E. R. & Kimberly, M. S. (2014). The Maker Movement in Education. Harvard Educational 
Review, December 2014, Vol. 84, No. 4, pp. 495-504. Retrieved from: 
http://hepgjournals.org/doi/10.17763/haer.84.4.34j1g68140382063. 

Hatch, M. (2013). The Maker Movement Manifesto: Rules for Innovation in the New World of Crafters, 
Hackers, and Tinkerers. New York: McGraw-Hill Education.  

Holman, W. (2015). Makerspace: Towards a new civic infrastructure. Places. Retrieved from: 
https://placesjournal.org/article/makerspace-towards-a-new-civic-infrastructure. 

Kurti, R. S., Kurti, D. l. & Fleming, L. (2014). The Philosophy of Educational Makerspaces: Part 1 of 
Making an Educational Makerspace. Teacher Librarian: The Journal for School Library Professionals, 
June 2014. Retrieved from: www.teacherlibrarian.com/2014/06/18/educational-makerspaces/.  

Martinez, S. L. & Stager, G. (2013). Invent to Learn: Making, Tinkering, and Engineering in the 
Classroom. Santa Barbara: Constructing Modern Knowledge Press. 

Matui, J. (1995). Construtivismo: teoria construtivista sócio-histórica aplicada ao ensino. São Paulo: 
Editora Moderna. 

Montessori, M. (1965). Spontaneous activity in education. New York: Schocken Books. 

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: Basic Books. 

Papert, S. (1986). Constructionism: A new opportunity for elementary science education. A proposal to 
the National Science Foundation, Massachusetts Institute of Technology, Media Laboratory, 
Epistemology and Learning Group, Cambridge, Massachusetts. 

http://hybridpedagogy.org/constructionism-reborn/
http://hepgjournals.org/doi/10.17763/haer.84.4.34j1g68140382063
https://placesjournal.org/article/makerspace-towards-a-new-civic-infrastructure


Constructionism 2018, Vilnius, Lithuania 

480 

 

Papert, S. (1991). Situating constructionism. In S. Papert & I. Harel (Eds.) Constructionism. Norwood, 
NJ: Ablex Publishing Corporation. Retrieved from 
http://www.papert.org/articles/SituatingConstructionism.html. 

Piaget, J. (1976). Grasp of consciousness: action and concept in the young child. London: Psychology 
Press. 

Piaget, J. (1978). Success and Understanding. Cambridge, Mass: Harvard University Press. 

Piaget, J. (1998). Sobre Pedagogia. São Paulo: Casa do Psicólogo. 

Riley, E. (2015). What do people learn from using digital fabrication tool? In P. Blikstein, S. L. Martinez 
& H. A. Pang (Eds.) Meaningful Making: projects and inspirations for fab labs and makerspaces. 
Torrance, CA: Constructing Modern Knowledge Press. 

The White House (2009). Office of the Press Secretary. Remarks by the president at the national 
academy of sciences annual meeting. Retrieved from: https://www.energy.gov/articles/remarks-
president-national-academy-sciences-annual-meeting.   

Valente, J. A. (2005). A Espiral da Espiral de Aprendizagem: o processo de compreensão do papel 
das tecnologias de informação e comunicação na educação. Unpublished thesis. Universidade 
Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil. Retrieved from: 
http://www.bibliotecadigital.unicamp.br/document/?code=000857072&opt=4. 

Vygotsky, L.S. (1986). Thought and Language. Cambridge: The MIT Press. 

  

http://www.papert.org/articles/SituatingConstructionism.html
https://www.energy.gov/articles/remarks-president-national-academy-sciences-annual-meeting
https://www.energy.gov/articles/remarks-president-national-academy-sciences-annual-meeting
http://www.bibliotecadigital.unicamp.br/document/?code=000857072&opt=4


Constructionism 2018, Vilnius, Lithuania 

481 

 

Constructionism in Different Cultures: the Case of 
Brazil 

José Armando Valente, jvalente@unicamp.br 
State University of Campinas, UNICAMP, Brazil 

Paulo Blikstein, paulob@stanford.edu  
Stanford University, USA 

 Abstract 

This paper starts with the conjecture that constructionism proposed by Papert is not used in the same 
way in different countries and cultures. Based on Piaget’s ideas it is possible for a concept to be 
assimilated or accommodated in terms of mental structures that were constructed based on the 
experiences researchers have by living in their respective cultural contexts. Thus, it is unlikely that the 
constructionist ideas proposed by Papert are used in the same way as in the USA, Brazil or Thailand. 
In Brazil, the educational context has been heavily influenced by the ideas of Paulo Freire, considered 
the Patron of Brazilian Education. We have several examples to show that constructionism is Brazil 
was influenced by the ideas of Freire, as well other factors which are particularly related to the 
educational system and the country social and economic situation. 

Keywords 

International education, contextualized knowledge, Brazilian education, Freire, Constructionism 

Introduction 

This paper starts with the conjecture that the “construction” of constructionism as an educational 
philosophy by researchers in education happens according to the assimilation and accommodation 
processes described by Piaget. In this case, the idea of constructionism (or any other educational idea) 
might be assimilated in terms of mental structures that were constructed based on the experiences that 
researchers had by living in their respective cultural contexts. It is likely, thus, that constructionism was 
assimilated and accommodated according to the influences of the different cultures. The amalgam of 
constructionism and knowledge constructed in these contexts may constitute a new theoretical basis 
that support projects and activities related to the use of new technologies in education in different 
countries or cultures. Thus, it is unlikely that the constructionist ideas proposed by Papert are used in 
the same way as in the USA, Brazil or Thailand. 

In this paper, we intend to examine the specific characteristics of constructionism in Brazil, given its 
educational culture and academic tradition. One key element here is that in the case of Brazil, 
constructionism was heavily influenced by the ideas of the well-known Brazilian educator Paulo Freire. 
This can be seen in the research developed at different centers that are related to this area, such as 
the Nucleus of Informatics Applied to Education (NIED) from the State University of Campinas 
(UNICAMP), the Teacher Training and New Technologies of the Graduate Program in Education 
(Catholic University of São Paulo-PUC/SP), from the Laboratory of Cognitive Studies (LEC) at the 
Federal University of Rio Grande do Sul (UFRGS) and others. 

Freire on awareness 
According to Freire (1980), the power of transformation is directly related to raising the subject’s 
awareness, understood as a reflective attitude of the subject’s own condition and the condition of his/her 
social practices in the world. Freire believes that the subject may reach three levels of awareness: a 
primitive level, in the sense of responding automatically without being aware of the situation; the 
awareness of the external actions when the subject starts perceiving the social context; and the self-
conscious level, when the subject clearly associates the social and historical context with his/her own 



Constructionism 2018, Vilnius, Lithuania 

482 

 

current reality. Literacy practices that manage to reach the latter level of awareness will bring about the 
most significant transformations that can cause impact on the cognitive, perceptive realities and on the 
social and cultural context of the subject. 

Other factors 
But Paulo Freire was not the only factor that influenced the adoption of constructionism in Brazil, as we 
will discuss in this article. For example, there was a sense that technology was an expensive investment, 
and that schools had much more urgent needs such as offering better salaries for teachers, improving 
the school lunch, fixing leaking roofs or buying new chairs. A second element, which is connected to 
the last point, was that the high perceived price of technology made teachers and school administrators 
heavily control the access to computers, computer labs, and other technologies, creating  labs that were 
highly regimented and with a plethora of tacit and explicit rules for usage. A third element was the idea 
that technology was associated with “imperialistic” exploitation schemes coming from foreign countries, 
the US in particular.  

Thus, we show that the work developed by the authors based on the constructionist approach and 
implemented in different contexts in Brazil had not only principles from the Freire’s ideas, but were also 
influenced by a wide variety of factors that were specific to Brazil. 

Case studies and examples 

“Contextualized constructionism:” a concept developed by NIED 
NIED was created under strong influence of Papert and Minsky’s ideas. They visited UNICAMP in two 
occasions, July of 1975 and 1976. In 1975 they developed several workshops about Logo ideas. This 
was done using only a blackboard since at UNICAMP at that time there was no program to interpret 
and execute the Logo commands. A group of researchers from UNICAMP visited the MIT Logo 
Laboratory in February-March 1976. When this group returned to Brazil, the Logo interpreter was 
deployed to the PDP 10 computer, which allowed the beginning of the first work on the use of Logo with 
children. This experiment was performed with children of UNICAMP teachers and used the only cathode 
ray terminal connected to the PDP 10 computer. Papert and Minsky returned to Brazil in July 1976 to 
teach seminars and participate in the activities of the research group on the use of Logo in education 
that had been established. These experiences and studies gave rise to Maria Cecília Calani's master 
dissertation (Calani, 1981), and later this research group was consolidated with the creation of NIED in 
May 1983.  

Valente has been associated with NIED since its creation, was its director during the period of 1986 to 
2003 and is still part of this research group. Through these years NIED research approach has gone 
through basically four phases: use of Logo in activities related to public schools, use of online 
technologies to promote educators’ professional development, use of mobile technology in schools, and 
more recently exploring the use of ubiquitous technologies in educational settings.      

After the creation of NIED, the first research project developed was related to the Educom Project, which 
took place in five universities: Federal University of Pernambuco (UFPe), Federal University of Minas 
Gerais (UFMG), Federal University of Rio de Janeiro (UFRJ), UFRGS and UNICAMP. This project 
considered the diverse uses of the computer in different pedagogical approaches, including educational 
software development and the use of the computer as resource for problems solving. The objective of 
the project developed by NIED was to integrate the Logo methodology into the high school curriculum 
of Mathematics, Sciences and Portuguese in three public schools in the state of São Paulo 

In the projects and activities developed by NIED, Papert’s ideas was referred as Logo methodology, 
Logo aesthetics or Logo environment. Only after the creation of the constructionism term in 1986, 
activities developed by NIED incorporated the term. It was used to describe the cognitive aspects of the 
learner’s knowledge construction. However, it was important to consider that the learner was also part 
of a social and cultural environment built locally by colleagues and teacher, and globally by parents, 
friends or by the community where s/he lives. S/he could use all these social and cultural elements as 
a source of ideas and information or a place to find problems to be solved by the computer. 



Constructionism 2018, Vilnius, Lithuania 

483 

 

The social aspect was included during the work that was carried out by NIED researchers as part of a 
project developed by the Secretariat of Education of the Municipality of São Paulo, implementing 
information technology in their school system. The secretary at that time (1989-1991) was Paulo Freire. 
One of the pedagogical recommendation that was proposed by his group of educators was to relate the 
theme of the project the students were developing to their cultural identity or culture context. In this 
case, the community should be the source of problems to be solved through the computer, and solutions 
and knowledge constructed by the learner should return to the community in the form of some 
improvement to be implemented. 

Based on this experience NIED researchers created the contextualized constructionism concept in 
which the contextualized aspect is related to Freire's ideas. The rationale was that if the products the 
learners are producing are related to their interest and context in which they live, the better the chance 
of them understanding about the content and getting involved in the educational activities of producing 
this product (Freire, 1975). The contextualized constructionism concept was used to support various 
projects developed by NIED such as teacher training, training of factory workers, adult ICT literacy, and 
one laptop per student project (Valente, 2005). 

Teacher training 

The process of preparing teachers for the use of ICT in their pedagogical activities was developed by 
NIED through several online courses and using the contextualized constructionist approach (Valente, 
2003). One of these courses was to prepare teachers from special education to be able to use ICT in 
their classroom activities. One course was part of the Project of ICT in Special Education (Projeto de 
Informática na Educação Especial – PROINESP), sponsored by the Special Education Secretary from 
the Ministry of Education Office and by the National Federation of APAEs (FENAPAEs). The objective 
was to prepare special education teachers from APAE (Associação de Pais e Amigos dos Excepcionais) 
a non-government organization of parents of special needs children, and other special education 
institutions in different regions in Brazil to be able to use ICT in their classroom activities. 

The goal of this online course was to promote the development of a reflective teacher, emphasizing 
reflection-in-action and reflection-on-action and working with contextualized and decontextualized 
knowledge. These different reflections were elaborated at different levels: about technical aspects of 
ICT, about the use of ICT to develop their own projects, and about how to use ICT with their students. 
The contextualized aspect was related to the process of knowledge construction which was grounded 
on each teacher’s reality in terms of previous experience, classroom students and school setting. The 
decontextualized aspect had to do with each teacher capability to go beyond his/her contextual 
knowledge and to be able understand and discuss with other course participants about the knowledge 
they constructed based on their different contexts. 

Since the courses emphasized the development of reflective teachers and provided means for them to 
understand the use of ICT activities in different learning contexts, teachers were acquiring means to 
interact with their students, discussing the concepts involved in their activities as well as how knowledge 
could be constructed based on different realities, whether regional or types of disability. 

Training of factory workers 

In 1991, NIED researchers started to interact with a local factory in the Campinas region with the 
objective of using computers for the creation of learning environment for training their assembly line 
workers. The first part of this project was dedicated to understanding the actions that the workers 
performed in their jobs and the concepts involved in these actions. On the basis of this understanding 
and with workers that the company designated to be part of the project, were developed various 
software like the “Target Game,” whose objective was to explore the concept of Statistical Process 
Control (Fernandes, Furquim & Baranauskas, 1996); “Enxuto,” which allowed modeling and simulation 
of manufacturing systems (Borges, Borges & Baranauskas, 1995); and “Jonas,” a system whose 
function was to support training in manufacturing processes (Borges, Borges & Baranauskas, 1995). 
These software and systems were based on the contextualized constructionist approach. The workers 
could construct models for a given problem, involving specific concepts related to production, propose 



Constructionism 2018, Vilnius, Lithuania 

484 

 

experiments based on the knowledge that perform this experiment on the computer, and observe and 
analyze the results obtained. 

For example, the Target Game was used in a study to understand the effectiveness of the training 
process, as part of a doctoral thesis (Schlünzen, 2000). Some workers were trained to be facilitators in 
the training process since they were very knowledgeable about the concepts related to statistical quality 
control process and about the difficulties their assembly line colleagues had with these concepts. They 
were responsible for training their colleagues and with this methodology it was possible to work with all 
employees from different production sectors. The results showed that this training process not only 
contributed to improved performance of the workers in their respective workplace, as it also resulted in 
a modest but significant increase56 in the productivity of the company in general. During the period of 
this study the company did not contract other workers or acquired more efficient equipment. The fact 
that this project was conducted with factory workers, and the ideas of (positive) social and hierarchical 
disruption within the workplace clearly resonate with values and ideas coming from Paulo Freire.  

Adult ICT literacy 

This study was associated with the investigations conducted at the Multidisciplinary Research-Action 
Healthy Community Laboratory – LIPACS a joined effort with the Research Group “Culture, Society and 
Media” of the Institute of Arts of the State University of Campinas – UNICAMP. The objective was to 
conduct studies and surveys on the use of ICT applied to the teaching and learning processes and on 
the impact of these technologies on society, on the population regarded as excluded (Maia, 2011).      

The study included 16 senior citizens, among whom 14 were women and 2 were men. Their schooling 
ranged from 3 and 7 years of Basic Education, and all of them were regarded as digitally excluded. 
Practical activities were used using sites of interest for the group, emails, websites to access audiovisual 
files and social network platforms. The actions were based on social and historical concepts and were 
supported by the strategy of dialog with the learners. The purpose of this research was to understand 
how senior citizens were empowered with technologies to build new literacies and, with that, become 
aware of their capacity to function in and to transform the context where they live so to be able to build 
new realities. 

For example, in one of the groups studied, gardening became the generative theme. The activity started 
with a presentation on gardening delivered by one of the participants. This presentation was an integral 
part of the ICT activities planned for this learner. In addition, the learner was in the process of acquiring 
reading and writing skills and did not feel he fit in the group. He became the leader the moment he made 
the presentation of his own professional activities as a gardener. Figure 1 shows the participants visiting 
a garden, being guided by this learner who is learning about the digital camera.  

 

Figure 1. Participants visiting a garden and one of then learning about a digital camera 

With his self-esteem boosted, he fascinated the whole group with the gardening topic. Mediators took 
advantage of the moment to encourage debate among learners so that, based on what was observed, 
discussions were raised on how gardens related to each person’s own life. Digital technologies also 
contributed to the activities. They could visit websites and blogs, register their work using images, took 
pictures of the garden they visited and of meaningful objects found in their own home, or objects which 
are or used to be part of their lives to represent the garden itself. Messages with the images were 

                                                
56 The increase, as measured by the authors at the time, was 5%. 



Constructionism 2018, Vilnius, Lithuania 

485 

 

emailed to friends and relatives. Through their work it was possible to see increased awareness of the 
social use of the ICT to the degree of even transforming the context of their own lives. These changes 
were noticed both in the intellectual aspect and in relation to ICT, as well as in terms of practices in 
specific social contexts.  

One laptop per student project 

One of the projects developed was the Inquiry Based Learning Project (Project ABInv), with the objective 
to study the implementation of an inquiry-based learning approach, so that teachers and students could 
be engaged in "doing science", using features of the laptop in a 1-1 situation. The project was developed 
in three public schools in the state of São Paulo. The methodology used in this study was action 
research. NIED researchers worked with the teachers and students to define the thematic proposals for 
the development of the investigations based upon the school curriculum.  

The role of the researchers was, primarily, to encourage and assist the teachers’ development so that 
they could adopt a creative and pedagogic view of the appropriation of the laptops according to this new 
inquiry-based approach. The teachers learned how to work with students to raise questions related to 
the curriculum; how to decide together with the students what is a good question to be investigated; 
how to create practical, implementable experiments; how to collect data to respond to the questions 
under investigation; and how to analyze and present the results from the experiments in order to 
respond to the questions they raised. The students explored the mobility offered by the laptops, working 
in alternative special configurations within the classroom, in other internal spaces within the school, as 
well as spaces outside the school building. They were encouraged to develop collaborative projects, 
dividing up the tasks so that the experiments could be executed, and the data recorded and analyzed. 

The results from the Project ABInv were recorded in the book, AbInv – Aprendizagem Baseada na 
Investigação (Valente, Baranauskas & Martins, 2014). In one of the schools it was possible to involve 
all the students from each of the first to fifth grades. The themes of the project developed were: 1st 
grade, Indians in Brazil in which the students investigated how the Indians produced dyes to paint their 
bodies; 2nd grade, Animals from the Pantanal Ecosystem, and the question investigated was why the 
knees of the of the Tuiuiú bird, symbol of the Pantanal region, bend backwards when he walks; 3rd 
grade, Astronomy, primarily the planets and the students’ interest was to investigate the environmental 
conditions necessary to maintain an organism alive; 4th grade, Garbage, and the questions that arose 
were in relation to organic and inorganic garbage; how garbage decomposes over time and if the 
conditions in which it is kept influences its decomposition; and 5th grade, Plant Cultivation, and the theme 
studied was the growth of plants in different soil conditions, fertilized earth, normal earth, or in cotton, 
as shown in Figure 2. 

 

Figure 2a. Testing 
dye fixation on skin 

Figure 2b.The 
Tuiuiú bird 

Figure 2c. 
Chrysanthemums 

plant studied 

Figure 2d.       
Garbage 

decomposition 

Figure 2e.       
Growth of beans 

Figure 2. Students’ projects 

“The City that We Want” project in São Paulo 

In the early 2000s, a team led by the Massachusetts Institute of Technology (USA) started a project 
with the Municipal Secretary of Education in the city of São Paulo, Brazil. The goal was to show what 
could be accomplished in a typical public school using technologies such as programming, robotics, 
and physical computing. The project encompassed as many as 30 schools throughout São Paulo 
(Cavallo et al., 2004). Students were to begin by identifying generative themes that would motivate their 



Constructionism 2018, Vilnius, Lithuania 

486 

 

projects. Due to rain shortage and lack of infrastructure investment, Brazil was experiencing a massive 
crisis in the electric energy system, and the population was resorting to all sorts of creative solutions to 
save energy. The crisis, being an everyday concern for all the population, appeared to be a good 
generative theme, which could generate projects such as building galvanometers, timer devices, waters 
heaters, energy generators, and robots to control lights. The theme eventually changed based on the 
interactions with the students, and the change underscores the meaning of negotiating in real time and 
in locus for truly authentic Freirean generative themes. Since the majority of the households in the 
Brazilian favelas had illegal energy connections, and therefore neither energy meters nor bills, students 
were more interested in projects about safety and raising awareness about the danger of illegal 
connections, in order to train them to make safe, yet illegal, energy connections. 

The second authentically Freirean moment in the project had to do with the use of materials. As students 
acquainted themselves with the new resources and planned their projects, they were initially enthralled 
by the Lego parts, digital cameras, and video cameras. But even though students seemed excited, 
some were afraid to use the equipment, and these anxieties were only further stoked by some teachers. 
There were historical reasons for such behavior. Access to computers in schools is often regarded as 
an administrative issue, addressed with strict usage rules and constant supervision. The high cost of 
the equipment and maintenance (especially in developing countries) amplifies the concern of damaging 
these machines. In many schools the computer room was even more regimented than regular 
classrooms. The solution was to break with all established rules. The researcher’s computers were left 
on the floor unattended and available for students, cameras were made available without signup sheets. 
During some of the wrap-up interviews for the project, results revealed that 70% of students mentioned 
“trust” as the most important element of the workshops. Students explained that they felt trusted by 
researchers because they were allowed to freely use the equipment. For an attentive reader of Freire, 
this should not come as a surprise: the manifestations of oppression and power are not necessarily 
overt. Similarly, manifestations of trust are not always explicit. The unrestricted access to equipment 
was a design decision heavily inspired by Freirean ideas. 

Finally, a third element in this project was very specific to Brazil (and likely other developing countries). 
As researchers started to get acquainted with the community and students’ lived experiences, by visiting 
houses, small stores, and car repair garages, they identified a technological culture of repurposing and 
recycling. Car mechanics would use all sorts of improvised solutions to keep cars running at a minimum 
cost. In their homes, people would never discard a broken appliance without trying to fix it in all possible 
ways. If fixing was impossible, they would repurpose the broken device in creative ways. The community 
radio station was put together with equipment from different sources, many of which were broken or 
incompatible and had to be fixed. The perception of this culture led researchers to change, again, the 
design of the project, and replace Lego materials with the repurposing of electronics, appliances and 
other devices. 

Conclusion 
The goal of this paper was to show how, in the history of constructionist implementations in Brazil, some 
particular characteristics of the Brazilian context were determinant. We focused on a few of those 
characteristics. The first and most prominent is the influence of Paulo Freire and his ideas. In particular, 
there has been a considerable focus on generative themes, community-relevant projects, personal 
relevance, connection with broader societal problems, and sensitivity to local culture (including 
perception of cost of technology). Even though Papert and his colleagues were also very concerned 
with many of those issues, the work of Freire in Brazil preceded them, so the perception was that there 
was a combination of both approaches. 

But there were order elements of the implementations that were not only theoretical considerations but 
consequences of Brazil being a developing country, with public schools being not well resourced and 
most of them being located in low-income areas. For example, computers were perceived as expensive, 
foreign and threatening devices, and therefore the reaction to projects that were technology-heavy was 
quite different from the reaction in the US or Europe. Relative to the salaries of teachers and the budgets 
of schools, computers were so much more expensive than in the developed world, so they were more 
likely to end up locked in a room with many rules and security measures. At the same time, because 



Constructionism 2018, Vilnius, Lithuania 

487 

 

public schools in Brazil have so many shortcomings, bringing technology into those schools was seen 
with much more suspicion, and seen as much less of a priority. All of those factors influenced the 
reception of constructionism in Brazil in ways that perhaps were very different than what took place in 
developed countries. 

Seymour Papert purposely refused to define constructionism in precise ways, and advocated for 
researchers and practitioners to define it by themselves through rich, contextualized learning narratives. 
It seems that in the Brazilian case, that process took place with mixed results. On one hand, it was 
possible to combine constructionism with existing theoretical approaches such as the work of Paulo 
Freire. On the other hand, the difficulties stemming from the fact that technology was perceived much 
differently in Brazil were never fully resolved in many of the projects. 

References 
Borges, E.L.; Borges, M.A.F.; Baranauskas, M.C.C. (1995). Da simulação à criação de modelos: Um 
contexto para a aprendizagem na empresa. Proceedings of the VI  SBIE - Simpósio Brasileiro de Informática 
na Educação, Florianópolis, SC, Brasil, 1995. 

Calani, M.C. (1981). Conceitos Geométricos Através da Linguagm Logo. Master dissertation. Department 
of Computer Science, State University of Campinas (Unicamp), Campinas, Brazil. 

Fernandes, L. D.; Furquim, A. A.; Baranauskas, M. C. C. (1996). Jogos no computador e a formação de 
recursos humanos na indústria. Proceedings of 3rd. Congresso Iberoamericano de Informática Educativa. 
R BIE Barranquilla – Colômbia. 

Freire, P. (1975). Pedagogy of the Oppressed. New York: The Seabury Press. 

Freire, P. (1980). Conscientização. Teoria e prática da libertação: uma introdução ao pensamento de Paulo 
Freire. São Paulo: Moraes. 

Maia, I, F. (2011) No jardim dos letramentos: tomadas de consciência e poéticas em rede e na cultura da 
convergência. Ph.D. thesis, State University of Campinas (Unicamp), Campinas, Brazil. Retrieved from 
repositorio.unicamp.br/jspui/handle/REPOSIP/284430. 

Papert, S. (1986). Constructionism: A new opportunity for elementary science education. A proposal to the 
National Science Foundation, Massachusetts Institute of Technology, Media Laboratory, Epistemology and 
Learning Group, Cambridge, Massachusetts. 

Schlünzen, K., Jr. Construindo conhecimento nas empresas usando software construcionista. In Lethelier , 
E., Bortolozzi, F., Weber,  K. C. Pereira, H. (Eds.), Anais do International Symposium on Knowledge 
Management/Document Management – ISKM/DM2000 (pp 197 - 215), Curitiba: Pontifícia Universidade 
Católica do Paraná, PUCPR. 

Valente, J.A. (2003) Teacher training via Internet: Creating a virtual environment for contextualized learning. 
In Proceedings: 9th European Logo Conference, Eurologo 2003, Porto, Portugal, August 27-30, 2003, p. 38-
47. 

Valente, J.A. (2005). A Espiral da Espiral de Aprendizagem: o processo de compreensão do papel das 
tecnologias de informação e comunicação na educação. Thesis, State University of Campinas, (Unicamp), 
Campinas, Brazil. Retrieved from 
http://www.bibliotecadigital.unicamp.br/document/?code=000857072&opt=4. 

Valente, J. A., Baranauskas, M. C. C. & Martins, M. C. (2014). ABInv – Aprendizagem baseada na 
investigação. Campinas, SP: Unicamp/NIED. Retrieved from www.nied.unicamp.br/?q=livros.  

http://www.bibliotecadigital.unicamp.br/document/?code=000857072&opt=4
http://www.bibliotecadigital.unicamp.br/document/?code=000857072&opt=4
http://www.bibliotecadigital.unicamp.br/document/?code=000857072&opt=4
http://www.nied.unicamp.br/?q=livros
http://www.nied.unicamp.br/?q=livros


Constructionism 2018, Vilnius, Lithuania 

488 

 

Concept-building Oriented Programming Education 

Jiří Vaníček, vanicek@pf.jcu.cz 
University of South Bohemia, Czech Republic 

Abstract 
In this methodological paper we present an approach to teaching programming to 12 to 14-year-old 
pupils based on concept building. The method of presenting pupils with a set of similar tasks of 
increasing difficulty with the same concept at the background is conducted through construction of 
didactical environments. The world of Scratch is simplified in these environments in a way to enable 
pupils to focus on the given problem. A pupil is guided through various situations in which the concept 
is at play and builds a generic model of the concept. The paper presents concretized principles for 
creation of educational materials for teaching programming. The principles are fulfilled in teacher and 
pupil’s materials which were developed within the project PRIM bringing computational thinking into 
compulsory primary and secondary education in Czechia. Some experience from a pilot research study 
of teaching conducted is presented. 

Keywords 
programming education; lower secondary; concept-building; Scratch 

Introduction 

If Informatics is, in accordance with Gander (Gander, 2014, p. 7), regarded as a part of general 
education, computational thinking becomes a substantial new skill. If it becomes a component of 
compulsory curriculum, programming, perceived as a “playground” where various components of 
computational thinking such as abstraction, algorithmization, decomposition, evaluation or 
generalization (Selby, 2014) and other cognitive functions can be developed, grows in importance. In 
consequence we have to ask what approaches and methods to use when teaching programming. These 
approaches and methods must respect the above stated goals as well as the decreasing age at which 
the teaching of Informatics starts.  Many education authorities believe that IT can help children develop 
their competencies already in their early years (Kalaš, 2010, p. 9), which is in line with Bruner’s 
proposition that the foundations of any subject may be taught to anybody at any age in some form 
(Bruner, 1960, p. 12). 

The Czech Republic, like other countries, can expect programming to become compulsory already at 
primary school (see both the government programme Strategy for digital education until 2020 (MŠMT, 
2014) and the new edition of the Framework Educational Programme for Informatics). Yet very few 
teachers of the compulsory subject Informatics have training comparable to teachers of other subjects.  
A research survey conducted in the Czech Republic shows that only 18 % of respondents in a research 
survey among ICT teachers at lower secondary schools show teaching qualification in informatics or 
some closely related discipline (Rambousek, 2013, p. 13). The same researches show that pupils would 
appreciate if they could work with computers much more and in a more interesting way (p. 159). 
Currently attention in lessons of informatics is paid to the user approach to technologies. Teachers are 
not ready to teach the foundations of informatics and do not realize they will need this skill. Most 
teachers who teach Informatics in Czech schools cannot code a program. This means that what is 
needed at this time is a curriculum and teaching materials that can be used by an insufficiently trained 
teacher with little experience in the area of programming and Informatics and with a lot of fears about 
not being able to cope with the new demands and content. The case is probably much the same around 
the world. 

Rather than focusing separately on educating and training professional IT specialists, it may be more 
practical to focus on how teachers can learn by doing: how learning and teaching of programming can 
develop teachers’ computational thinking as well as students'. Many approaches to teaching 
programming favour pupils’ activity, active learning, learning by doing, and construction of knowledge 



Constructionism 2018, Vilnius, Lithuania 

489 

 

as a result of active creative work. All this with respect to the fact that knowledge and knowing are not 
transferable. We believe that knowledge is actively constructed by the learner in interaction with the 
world, so we are inclined (following Ackermann) to offer opportunities for children to engage in hands-
on explorations that fuel the constructive process. This approach is in line with Piaget‘s view that 
“knowledge is an experience“ and Papert’s opinion that “knowledge is formed and transformed within 
specific contexts, shaped and expressed through different media“ (Ackermann, 2001, p. 3, 8).  

Some might expect that this approach within the Scratch environment can guarantee that a pupil will 
learn to programme in an innovative way. We doubt that this is sufficient. A very important factor in the 
education process is the quality of the teachers, their experience and prior training and education as 
well as their beliefs, whether they are able and willing to depart from a traditional teaching focus on 
having pupils' reproduce and imitate and giving them little opportunity for creative activity.  

Orienting teaching on building of concepts 

It is a challenge to concretize and implement this theoretical basis into a particular way of teaching 
programming. One of the possible ways is to use the framework (Explore, Explain, Envisage, Exchange, 
bridgE) used in the ScratchMaths project for primary programming education in England (Benton et al, 
2016, p. 29). When looking for how to conceive teaching materials for programming in Scratch on lower 
secondary school level we turned our attention to theories from didactics of mathematics, which has 
been interested for several decades in how concepts are built. School mathematics has sought new 
ways of teaching since the 1960s. The experience from the so called New Math (Kline, 1973) made 
mathematics educators realize that “understanding mathematics is not given by the content but rather 
by the method of teaching” (Hejný, 2012, p. 43).  

The concept is the key term in procept theory (Gray, Tall, 1994, p. 117), scheme-oriented education 
theory (Hejný, 2012) as well as APOS theory (Dubinsky, 2001). Block-oriented programming 
environments such as Scratch allow a pupil to see all the available commands of the language but it is 
difficult for pupils to see which of the commands represent important programming concepts and 
whether their mastery is essential for development of programming skill. It is up to teachers to lead their 
pupils through this battlefield; orientation to building concepts will help them. 

Results of research analysing the frequency of the use of various commands in Scratch projects shared 
by users worldwide point at this issue. The category of More blocks, essential for development of the 
skill to decompose, was the least frequent among 10 categories of the language; only 1 % of blocks 
used fell into this category (Hudičák, 2017). This corresponds to other studies (Scratch, 2017). It seems 
pupils have to be led to some concepts because their lack doesn't prevent pupils from programming but 
can impede their development of computational thinking. This may occur even if teaching is oriented on 
creation of products; in some cases formal knowledge is required.  

Theory of generic mental models (Hejný, 1987) works with the mechanism of cognitive process and 
helps to analyse pupils’ thinking processes and detect sources of pupils’ mistakes. The aim of the 
approach is to decrease the emphasis on formality of knowledge without deeper understanding. 
According to this theory the process of constructing a piece of knowledge starts from initial motivation, 
moves to the construction of isolated models and results in creation of the so called generic models. 
Having been motivated, a person first observes phenomena in which the new concept is present and 
creates isolated models (Hejný, 1987, p. 59) that are tested in new situations. With enough time and 
opportunity to get a sufficient number of isolated models in different situations, person is able to build a 
generic model, which is universal and should work in all known situations.   

A concept is not a data point, a single piece of information. It is an abstraction. To grasp a concept a 
pupil needs as many isolated mental models, experience with specific cases in which the concept is at 
play to allow making connections  in the pupil’s mind, looking for relationships, structuring the 
information, constructing a generic model of the intended concept. This implies a pupil must go through 
a lot of number of situations in which the concept appears through various prisms and from different 
points of view. The pupil in these situations creates a number of models including what seem like 
models, but are partial and/or incomplete, as well as models that are surprising (Hejný, 2013a). The 



Constructionism 2018, Vilnius, Lithuania 

490 

 

pupil must come across situations in which the concept behaves in a strange, specific, unexpected way 
to see it plastically.  

Let us illustrate the importance of understanding concepts on several examples. If we want pupils to 
understand programming, to build concepts correctly, it is not enough that they be able to develop a 
programme, create an algorithm, or propose a solution to the problem. They must be able to look at the 
problem from a distance; they need the practical programming skills that they will apply when solving 
the situation. So called “beaver tasks” from the Bebras challenge contest (Dagienė, 2017) are situational 
informatics tasks. In such situational tasks, pupils plunge into a described situation which they must 
grasp, get to understand the concepts and terms that are used, find an informatics principle the task is 
based on and solve the problem using cognitive and thinking skills. Tasks of this type are unsolvable 
without deep understanding of the concepts related to programming.  

Hejný claims that understanding is more important than skill. A well-constructed mental model helps 
one grasp a concept correctly and find relationships between this concept and others. An example of 
diametrically different behaviour of various commands in Scratch is the pen state or sprite visibility 
preserving the given state and is valid until the state is changed, which is in contrast to executive 
commands “stamp” or “change costume”. Pupils have problems with understanding these differences. 
Other example comes from programming robots. It may happen that the “programme is standing and 
the robot is moving” e.g. having carried out the command that makes the engine work the programme 
waits for fulfilling the condition at the input from sensors before carrying out the command to stop the 
engine. Children suppose that when the programme is stopping, the robot must not move. These 
situations are difficult for pupils if they do not understand the mechanism of the given concept well, do 
not have the generic model built. 

Two types of programming tasks and building of concepts 

Observations of in-service teachers (well-experienced as teachers but without training in informatics) 
as well as pre-service teachers (with informatics background but without experience) are a rich source 
of information about how these teachers approach their teaching. We compared approaches to teaching 
programming used in Czech and other textbooks and also methodological manuals for teaching 
programming available on the internet. Predominant in these textbooks and manuals are two basic 
types of programming tasks.  

One uses a series of several-minute long programming etudes (as in Kalaš, 2017), always targeting the 
acquisition of one specific skill or focused on one specific item of knowledge or one concept. Pupils can 
easily check their result and it is easy to organize such lessons especially for non-well-experienced 
teachers. But motivation in these activities is weaker than in larger projects. 

Teaching through larger programming units – the so called “projects” (as in LEAD, 2013), e.g. creating 
games or stories — often has the form of a sequence of activities organized as a tutorial or a problem 
task. It is hard to combine the goal to teach a specific concept, procedure or method with open-ended 
activities. These activities cannot target the development of one concept. Programing projects can result 
in creation of long multiline codes in which it is harder for the pupil to orient and for the teacher to find 
the pupil’s mistake. 

In the two ways of selecting types of problems, two different approaches to teaching goals can be 
observed: in case of shorter programming etudes the approach is intensive, focused on competences 
in the area of concepts, and the other is holistic, more open, emphasising creativity, focusing on product 
(Vaníček, 2015). 

Didactical environments 

One of the disadvantages of block oriented programming environments is that users can see all the 
blocks of the language. However, pupils cannot master all these commands, especially if they are to 
understand them in depth. Then it is difficult to give pupils a problem because if they don’t immediately 
know how to solve the task they may, instead of thinking, waste time by looking for an appropriate tool 
or command that would solve the problem. A tutorial is not a solution because following fully specified 



Constructionism 2018, Vilnius, Lithuania 

491 

 

procedures does not help a student learn to generalize. Especially in introductory activities for teaching 
programming, we find it most efficient to create didactical environments. A didactical mathematics 
environment as understood by Wittmann (2001) is a set of linked situations that provide problems that 
let a pupil discover important ideas. We add to this concept three more conditions: the motivating power, 
long-term commitment, and flexibility in the level of difficulty. (Hejný et al, 2013b).  

Mathematics educators use ways of creating learning environments based on one task. Wollring 

mentions the relation “Task  Task format  Learning environment” (Wollring, 2008). In his scheme-
oriented approach to mathematics education Hejný (2011, 2013b) uses learning environments that are 
close to children’s everyday experience (e.g. Spider web, Snakes, Staircases, Stepping, Seat in the 
bus) to create learning environments, microworlds in which it is possible to grasp the rules quickly and 
to solve a given set of similar or progressive tasks. Similar environments have been used in 
programming education for years (e.g., turtle graphics, robot Karel). Scratch allows one to create 
learning environments through sprites, their costumes and scripts, by setting the backdrop of a stage, 
and by preparing blocks and scripts on the script building area. In fact it enables one to create 
environments didactically as strong as Hejný’s which depart from the world of mathematics and are 
viable as Scratch projects that a pupil opens and works in. 

Paraphrasing Hejný’s characteristics of effective teaching mathematics (Hejný, 2012), we characterise 
effective teaching of programming by three cognitive goals:  

 pupils understand programming, their knowledge is not mechanical;  
 pupils are intrinsically motivated for work, they are not frustrated by programming;  
 pupils develop intellectually, which primarily means development of the ability to: 1. communicate 

both orally and in writing, 2. cooperate in a group or even lead a group to solve problems, 3. 
analyse a problem situation, 4. effectively solve problems and 5. correct one’s own mistakes. 
(Hejný, 2012).  

Properties of curriculum based on building concepts  

The theoretical background described above allows us to state principles for creating a concept building 
programming education curriculum. 

 It is made of a lot of very short activities, which are related to the same concept. The aim is for 
pupils to get an idea of the behaviour of the given concept in various situations. The activities help 
the teacher; unlike broader activities in which a teacher can get lost, in these short activities, the 
teacher is able to find a pupil’s mistake in a script, and there is less chance that the pupil will 
programme a situation which the teacher is not able to test, fails to correct or cannot guide the 
pupil to discovery.   

 Several didactical environments must be used for teaching one concept. These environments must 
be based on different activities of sprites, e.g. drawing lines, stamping shapes, moving on the 
scene, changing costumes. In these environments the intended concept is shown in various 
thought-out situations, allowing the pupil to abstract away the incidental or irrelevant properties 
and attach to the concept properties that are substantial and independent of a particular 
environment. The pieces of knowledge gained by the pupil do not remain isolated. 

 A mistake is not unwelcome; on the contrary it is one of the main sources of knowledge. A pupil 
must be presented with various possible mistakes that can be the result of misunderstanding and 
that can help the pupil grasp the concept more deeply. Pupils find it motivating assignments of 
such activities are worded as if somebody has made a mistake in their programme and is facing a 
situation in which they desperately need help. The pupil’s task is to figure out what situations 
expose the mistake, what it is caused by, if it really is a mistake (some solutions may be erroneous 
only from certain points of view) and whether the mistake is covert (e.g. the solution is not general 
enough or the mistakes shows only after change of input parameters or when run again).  

 Activities should aim at various programming competences. Pupils are asked not only to create 
and run a script but also to read it, interpret it, predict the output, test its correctness, set the 
situation in a way that would make the mistake manifest or to adapt a working script to solve a 
similar problem. Then the pupil’s pieces of knowledge do not remain isolated.  



Constructionism 2018, Vilnius, Lithuania 

492 

 

 The curriculum should be built on concepts of in order of increasing difficulty. According to our 
long-term experience and after studying other textbooks, we set the order command (block), 
programme (script), sequence (arrangement of blocks), repetition, procedure (new block), event, 
object (sprite), message, condition, decision making, arrangement and embedding of structures, 
parameter, variable. 

 Individual work alone or group work alone when creating a script is not enough. Activities should 
be varied with respect to the form of pupils’ work. Pupils also need to experiment with various 
blocks, with changes of order or different arrangement of blocks, with different inputs. Other good 
activities are individual creation, discussion with justification and reasoning, commenting on other 
people’s work or unplugged activity in which the pupil in the role of a sprite acts out what the script 
demands.  

 The curriculum should be graded from basic to more difficult tasks (and to really difficult ones for 
more advanced or faster pupils). The curriculum should have a spiral structure. The mastered 
concepts appear again in tasks in later chapters, in new relations and environments. Pupils learn 
by revisiting.  

 Each activity, however short, must have some effect, and must provide a new experience to the 
learner. The pupil gets used to the fact that feedback is provided by the computer, not the teacher 
and expects the reaction of the computer. The curriculum respects that the goal of programming 
from the pupil’s point of view is to create something that works with “one click”, whether it is a story, 
game, drawing or piece of music. Pupils’ interest and success results in the teacher’s change of 
beliefs and willingness to invest in changes in their teaching style. 

Illustration 

 

 Figure 1.  

Strategic project PRIM – Support for Development of Computational Thinking, is supported by the 
Ministry of Education and being conducted in the period 2017 – 2020 at all Faculties of Education in the 
Czech Republic. Within the frame of this project, teaching and learning materials for pupils and lower 
secondary school teachers working in Scratch are developed. These materials try to follow the principles 
listed above. The target concepts for teaching are taken from the new Framework Education 
Programme for Informatics and are provided by one of the project partners, National Institute for 
Education. Although the project PRIM is simultaneously preparing teaching materials for programming 
at primary school level, the materials our team is working on are designed even for beginners of any 
school age because even lower secondary pupils have had no programming lessons so far.   

We will present here some didactical environments and tasks for illustration. 

Figure 1 shows the didactical environment Digital Numbers. The pupil creates scripts from blocks 
provided by the authors in which the sprite moves to the given point. The task from the introductory 



Constructionism 2018, Vilnius, Lithuania 

493 

 

chapter about assembling blocks poses the question “Which script did the cat use to draw letter U?” to 
teach pupils to read scenarios. 

 

 Figure 2.  

Figure 2 shows a task in which students are to find a mistake in the script. Students know that, pen 
down sets the sprite’s state to stay down through subsequent moves. For students who imagine that 
stamp acts in the same way, setting a sprite-state that makes it continue stamping through subsequent 
moves, the sprite behaves contrary to expectations. Pupils are meant to reason and test hypotheses. If 
more tasks of this type with different kinds of mistakes with different sources are used, pupils are guided 
to deeper understanding of the given concept. 

Figure 3 shows the didactical environment Words and Letters. Letters are “printed” by stamping a sprite 
of the appropriate costume. This is an advanced task where pupil creates a procedure with a text 
parameter. 

 

 Figure 3.  

 



Constructionism 2018, Vilnius, Lithuania 

494 

 

 

 

Figure 4.  

Figure 4 shows the didactical environment Coordinates for understanding conditions, conditionals and 
coordinates. A randomly jumping sprite makes points whose colour depends on whether the given 
condition is fulfilled. In the bottom part, conditions of growing complexity are shown. By experimenting 
with various conditions a pupil may get to understand coordinates. 

Conclusion 

The first version of the textbook is finished and is being piloted at schools. Preliminary research was 
conducted with experienced teachers. In later stages, the textbook will be tried out with teachers who 
lack education in informatics and had no prior experience teaching programming. So far the piloting has 
shown that 

 even experienced teachers find it difficult to adapt teaching in which they do not talk too much to 
pupils and let them work independently; 

 teachers skip those tasks they find too similar to previous tasks and fail to see a different teaching 
goal in them, to see a different situation that offers the pupils another isolated model; 

 teachers tend to evaluate each pupil’s answer, to state whether it is right or wrong instead of 
allowing the computer to provide the feedback, allowing the computer to show whether the pupil’s 
idea was correct or not;   

 if a pupil asks for help when they make a mistake, teachers immediately show the mistake instead 
of giving encouragement or advice on how to look for the mistake; 



Constructionism 2018, Vilnius, Lithuania 

495 

 

 but teachers find pupils’ attitudes to programming positive, which is motivating for them as 
teachers. 

 

We believe that teaching programming can contribute significantly to development of each pupil. To 
achieve this goal, it is important that students not simply adopt ready-made knowledge but learn to 
argue, discuss and evaluate. Critical thinking as a way to work out what is disinformation is an important 
skill of a citizen of a democratic society. Especially in our geographical area we believe the school 
should put emphasis in education on pupils’ ability not to allow anybody to manipulate them. This will 
allow us all to fulfil the thesis of the famous Czech educator Comenius, who believed education would 
help to solve problems of the whole world. 

Acknowledgement 

We would like to thank the project “PRIM” – “Support for Development of Computational Thinking” 
(CZ.02.3.68/0.0/0.0/16_036/0005322) for funding this work.  

References 

Ackermann E. (2010) Constructivism(s): Shared roots, crossed paths, multiple legacies. In Clayson, J. 
E., Kalaš I. (eds.) Constructionist approaches to creative learning, thinking and education: lessons for 
the 21st century, proceedings Constructionism 2010, Paris 16.-20. 8. 2010. Bratislava: Library and 
publishing centre Comenius University. 

Ackermann, E. (2001) Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future 
of learning group publication, Vol. 5 No. 3, p. 438. 

Benton, L., Hoyles, C., Noss, R., & Kalas, I. (2016) Building mathematical knowledge with programming: 
insights from the ScratchMaths project. In: Proceedings of Constructionism 2016, Thailand: Bangkok, 
February, pp. 25-32. 

Bruner, J. S. (1960) The process of education. Cambridge: Harvard University Press. 

Dagienė, V., Sentance, S., V. and Stupurienė, G. (2017) Developing a Two-Dimensional Categorization 
System for Educational Tasks in Informatics. Informatica, Vol. 28, No 1, p. 23-44. 

Dubinski, E., & McDonald, M. (2001) APOS: A constructivist theory of learning in undergraduate 
mathematics education research. In D. Holton (Ed.): The teaching and learning of mathematics at 
university level: An ICMI Study, pp. 275−282. Dodrecht: Kluwer Academic Publisher. 

Gander, W. (2014) Informatics and General Education. In Gülbahar, Y., Erinç, K. (Eds.) Informatics in 
Schools, Teaching and Learning Perspectives. Heidelberg: Springer LNCS, p. 1-7. 

Gray, E., Tall, D. (1994) Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal 
for Research in Mathematics Education, Vol. 25 No. 2, pp. 116–141.  

Hejný, M. (1987) Teória vyučovania matematiky 2 (Theory of mathematics education 2). Bratislava: 
Slovenské pedagogické nakladateľstvo, 553 p.  

Hejný, M. (2011) Scheme-oriented mathematics education: Spider web mathematical environment. In 
M. Kaldrimidou, X. Vamvakousi (Eds.), Proccedings of 4th Conference of Greek Association of 
Researchers of Mathematics Education “The classroom as field of development of mathematical 
activity”, Ioannina: University of Ioannina & GARME, pp. 3−24. 

Hejný, M. (2012) Exploring the Cognitive Dimension of Teaching Mathematics through Scheme-oriented 
Approach to Education. Orbis scholae, Vol. 6 No. 2, pp. 41-55, ISSN 1802-4637. 

Hejný, M. (2013) Vyučování matematice na 1. stupni ZŠ orientované na budování schémat: Aritmetika. 
(Scheme-oriented mathematics primary education: Arithmetics). Praha: PedF UK. 



Constructionism 2018, Vilnius, Lithuania 

496 

 

Hejný, M., Slezáková, J., Jirotková, D. (2013) Understanding equations in schema-oriented education. 
Procedia - Social and Behavioral Sciences, Vol. 93, October, pp. 995-999. 

Hudičák, M. (2017) Co vlastně děti programují ve Scratch? (What do kids actually program in Scratch?) 
Theses. České Budějovice: Jihočeská univerzita.  

Kalaš, I. (2010) Recognizing the potential of ICT in early childhood education. UNESCO IITE, Moscow, 
148 p. 

Kalaš, I. (2017) UCL Scratchmaths curriculum. UCL, Institute of Education. Available at 
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths/curriculum-materials  

Kline, M. (1973) Why Johnny Can’t Add: The Failure of the New Mathematics. New York: St. Martin’s 
Press. 

MŠMT (2015) Strategie digitálního vzdělávání (Strategy of digital education). Praha: MŠMT, 2014, 49 
p. 

Rambousek, V. et al. (2013) Rozvoj informačně technologických kompetencí na základních školách 
(Development of information technology competencies at primary and lower secondary schools). Praha: 
Česká technika. 

Scratch statistics (2017) Scratch Block Usage (random sample). Scratch [online]. [cit. 2018-01-04]. 
Available from: https://scratch.mit.edu/statistics/, https://scratch.mit.edu/projects/99177947 

Selby, C., Woollard, J. (2014) Computational Thinking: The Developing Definition. SIGCSE, March, 
Georgia: Atlanta. 

The LEAD Project (2016) Programování pro děti (Programming for children). Brno: Computer Press, 
160 p. EAN 9788025138090. 

Vaníček, J. (2015) Programming in Scratch using inquiry-based approach. In Brodnik, A. (ed.) 
Informatics in schools. Curricula, competencies, and Competitions. Heidelberg: Springer Lecture Notes 
in Computer Science, Vol. 9378, pp. 82 - 93. 

Wittmann, E. Ch. (2001) Developing mathematics education in a systemic process. Educational Studies 
in Mathematics, Vol. 48 1 20. 

Wollring, B. (2008) Kennzeichnung von Lernumgebungen für den Mathematikunterricht in der 
Grundschule. In Kasseler Forschergruppe (ed.): Lernumgebungen auf dem Prüfstand. Bericht 2 der 
Kasseler Forschergruppe Empirische Bildungsforschung Lehren – Lernen – Literacy. Kassel: Kassel 
university press GmbH, pp. 9-26. 

  



Constructionism 2018, Vilnius, Lithuania 

497 

 

Practice papers 
  



Constructionism 2018, Vilnius, Lithuania 

498 

 

Constructive and Collaborative Digital Storytelling 
for Enhancing Creativity and Cooperation In and 
Out of School 

Francesca Agatolio, francesca.agatolio@phd.unipd.it 
University of Padua, Dpt. of Psychology, Italy 

Alfredo Asiain, alfredo.asiain@unavarra.es 
Public University of Navarra, Dpt. of Philology & Language didactics, Spain 

Alfredo Pina, pina@unavarra.es 
Public University of Navarra, Dpt. of Math & Computer Engineering, Spain 

Gabriel Rubio, gabrielmaria.rubio@unavarra.es 
Public University of Navarra, Dpt. of Philology & Language didactics, Spain 

Michele Moro, michele.moro@dei.unipd.it 
University of Padua, Dpt. of Information Engineering, Italy 

Abstract 
An effective integration of technologies in the didactical context means much more than providing 
students with an easy access to computers. Technological tools can be used to provide students a 
personalised and active learning environment in accordance with the constructionist principles but, for 
this purpose, teachers should be aware of which type of knowledge and skill they aim to transmit and 
which technologies can help with that. In this paper we describe two digital storytelling experiences, 
held respectively in Spain and in Italy using Scratch, which provide an example of how teachers can 
offer an engaging learning experience without much effort. In both cases, Scratch is seen as a catalyst 
for different knowledge, skills and disciplines. 

 

Figure. Two digital storytelling experiences using Scratch 

The activity made in Spain, in particular, focused on the multidisciplinary aspect by the creation of stories 
related to the intangible cultural heritage. The Italian experience, on the other hand, was aimed at 
supporting creative and collaborative learning for gifted children.  

Keywords 
constructionism; digital storytelling; personalised learning; multidisciplinary learning; gifted children 



Constructionism 2018, Vilnius, Lithuania 

499 

 

Introduction 

In the interesting paper “Digital Storytelling: A Powerful Technology Tool for the 21st Century 
Classroom” (Robin, 2008), Robin started his reflection about the potential of digital storytelling reporting 
the results emerged in 2007 by the survey of the U.S. Department of Education. The report states that 
no significant differences are detected in the performance of students that use technologies at school 
compared to others. In 2015, the results of the PISA survey (OECD, 2015), not only confirm this fact 
but also suggest that the students’ performance seems to be inversely related to the quantity of time 
spent using computer in school. Indeed, students from countries where schools provide easier access 
to computers, show worse performance in ‘digital reading’ and mathematics (fig. 1). The report 
concludes that “On average, in the past 10 years there has been no appreciable improvement in student 
achievement in reading, mathematics or science in the countries that have invested heavily in 
information and communication technologies for education”. This should not come as a surprise. The 
report states that the main activities mentioned by the students are: chatting on line; sending e-mails; 
browsing the Internet; downloading, uploading or browsing material from the school’s website; posting 
work on the school’s website; playing simulations at school; practicing and repeating lessons; doing 
individual homework on a school computer; using school computers for group works and to 
communicate with other students. If we consider the usage of computers during mathematics classes, 
things are not much better. More frequently tasks are: drawing the graph of a function; calculating with 
numbers; constructing geometric figures; entering data in a spreadsheet; rewriting algebraic 
expressions and solving equations; drawing histograms; finding out how the graph of a function 
changes. All this has little to do with the computer’s role described by Papert; all this is still the “computer 
that programming the children” (Papert, 1980).  

Figure 1. Trends in mathematics performance and increase in computers in schools (OECD source) 

We are among those educators and researchers that think that “Integrating technology is much, much 
more than putting a piece of software into a classroom” as Robin states citing Mary Ann Wolf, executive 
director of the State Educational Technology Directors Association. To invest in technologies for 
education does not only mean ensuring that schools must have computers and that students have to 
use them a certain number of hours per week; and neither does only mean to provide internet 
connection. This is only a step - maybe not the most urgent – in the process of integrating technologies 
in education. Technologies are not a panacea for all the problems of education, but some technologies 
lend themselves to help teachers in “engaging students in experiences liable to encourage their own 
personal construction of something in some sense like it” (Papert et al., 1991). Integrating technologies 
in education means 1) to identify the added value provided by using a specific technological tool to 
convey a certain knowledge and/or skill (Mishra et al., 2006), and 2) to use this tool to deliver a 
personalized “discovery experience” to the students. It is a “magic” that requires many interconnected 
different kinds of knowledge, among them the technological knowledge is not the main one. However, 



Constructionism 2018, Vilnius, Lithuania 

500 

 

teachers should not get discouraged because it is a gradual path and there is no need for them to have 
all the answers. In this paper, we present two experiences of digital storytelling held in Spain and in 
Italy: both of them are easily replicable, do not require complex technological knowledge and provide 
an example of how technologies can be readily used to prepare lessons where different disciplines and 
skills converge and students are actively engaged. Though the two experiences were organized 
separately, the past collaborations of the authors inspired by common 
pedagogical principles render these experience comparable and deserving a unique presentation 
and discussion. 

Digital storytelling as a catalyst for different knowledge, skills 
and disciplines 

Digital storytelling concerns the storytelling process supported by the use of digital tools such as Scratch 
or Alice. The digital component allows integrating text with animations, sounds, narrative voices and 
also interactive elements. The possibility to combine this variety of resources contributes to making 
storytelling a problem solving experience, particularly engaging for the students (Sadik, 2008) and able 
to bring out their creativity (Malita et al., 2010).  During a digital storytelling activity, students are involved 
in many different processes such as the research on a topic, the organization of information, the 
construction of meaningful narratives and often team working (Robin, 2008). The use of digital 
storytelling goes back to the 1980s with the creation of the Center for Digital Storytelling in California 
and now it is worldwide diffuse, in part due to the spreading of low-cost technologies (Meadows, 2008). 
In (Yuksel et al., 2011) the authors report the results of an investigation about the use of this tool around 
the world. It emerges that the main reasons for teachers to choose digital storytelling are: to allow 
students to construct their own understanding in a content area, to facilitate team working, to promote 
discussion, to introduce students to new contents, to help them in facing problem solving issues, critical 
thinking and complex ideas. Moreover, since the software involved in this context are in most cases 
programming environments, digital storytelling is often used to introduce the basis of programming and 
computational thinking (Kelleher et al., 2007). On the contrary, the use of digital storytelling focused on 
the improvement of writing skills is less frequent (Burke et al., 2010). The two digital storytelling 
experiences that we are going to describe have been carried out separately in Spain and in Italy: 
activities in the Spanish case as regular classroom activities while in the Italian case they were 
developed as extra-curricular. The main aspect they have in common is the use of the technological 
tool (Scratch) seen as a catalyst for diverse skills, knowledge and disciplines. During the activities, 
children are not asked to solve a little isolated task but they are actively involved in the construction of 
a complex product (a story), acting like in a laboratory experience, applying contents from many 
subjects, sharing ideas and competences. Moreover, they have time to shape and refine their product. 
In defining the principles of constructionism, Papert was inspired by students who were working on soap 
sculptures (Papert et al., 1991). He reported that what had struck his imagination was the fact that “the 
project was not done and dropped but continued for many weeks.” During these weeks, students have 
“time to think, to dream, to gaze, to get a new idea and try it and drop it or persist, time to talk, to see 
other people's work and their reaction to yours”. We think “time” is one of the key point that teachers 
should take into account: if we want that our students become really involved in the learning experience, 
we should allowed them the time to embrace their project. Another aspect that should be considered is 
the difference of each student from the other and they should be allowed to express themselves and 
their own talent. Most technological tools (Peirce et al., 2008) are particularly suited to personalize the 
learning process: the two experiences we report in the paper, for instance, show how Scratch can be 
used both with standard groups of children and students with special needs. In all this, the technological 
tool never steals the ‘center of stage’ but it is only an instrument at the service of the students, just as 
a ruler or a protractor. In every class of each school there is at least a ruler, and teachers know when it 
can be useful for students and to what end; we’d like to be the same with a computer. 



Constructionism 2018, Vilnius, Lithuania 

501 

 

Digital storytelling to enhance creativity and to bring secondary 
students closer to our intangible cultural heritage: a Spanish 
experience 

The intangible Cultural Inheritage of Navarra has several graphical, textual or sound elements as a 
multimedia database for the research and knowledge of the cultural richness of Navarre and Basse 
Navarre. However, this database is not known neither used by some of his target users: secondary and 
primary level students. Nevertheless, its contents are really suitable for exploring, handling and even 
gaming. 

The choice of the task 

 
The article 2 of the Convention for the safeguarding of the intangible cultural heritage (UNESCO 2003) 
says: 

The  “intangible  cultural  heritage”  means  the  practices,  representations,  expressions, knowledge, 
skills – as well as the instruments, objects, artefacts and cultural spaces associated therewith – that 
communities, groups and, in some cases, individuals recognize as part of their cultural heritage. This 
intangible cultural heritage, transmitted from generation to generation, is  constantly  recreated  by  
communities  and  groups  in  response to  their  environment,  their interaction  with  nature  and  their  
history,  and  provides  them  with  a  sense  of  identity  and continuity,  thus  promoting  respect  for  
cultural  diversity  and  human  creativity. 

Resnick (Resnick 2007) says: 

 “To succeed in today’s Creative Society, students must learn to think creatively, plan systematically, 
analyze critically, work collaboratively, communicate clearly, design iteratively, and learn continuously. 
Unfortunately, most uses of technologies in schools today do not support these 21st-century learning 
skills. In many cases, new technologies are simply reinforcing old ways of teaching and learning” 

Our hypothesis is that if we work with the contents of the intangible heritage in the right way using digital 
objects and an adapted narrative for young people, this could provide an attractive and creative engine 
to access and recreate intangible heritage. For thus we define a didactic strategy and appropriate tools 
suitable to our scholar context and able to deal with digital objects and to create digital stories. 

Description of the activity 

We used 4 narrative engines based on 4 Navarre legends (Mito de Mari, Mielotxin, Sanchicorrota and 
the Virgen of Uxue). The text of all of them has been adapted with a didactic simplification and the 
intangible heritage produced some digital images. The teacher provided to the students with 4 Scratch 
projects as possible examples of how to tell digital stories based on the 4 legends. Their task was to tell 
their own story of one of the legends, working in 3-4 persons teams. This has been done with 46 
students (25 boys and 21 girls) of 2 classes of the first year of the secondary school (13 years old). The 
Stages/Sessions were the following and combined regular lectures of language literacy with computing 
sessions of technology/digital competency: 

1. Pre Questionnaire. Reading and Analysis of the narratives 

2. Examples that show how to transform a story into s videogame/digital story  

3. Choosing the story and storyboards design 

4. Storyboards presentations 

6. Programming the game/interactive digital story (2 sessions)  

7. Results presentation and post questionnaire  



Constructionism 2018, Vilnius, Lithuania 

502 

 

 

 

Figure 2. Digital objects for the activity (https://scratch.mit.edu/studios/3737471/projects/) 

Results and considerations  

We used two questionnaires in order to check the knowledge on programming and on the Navarre 
legends before and after the activity. 

 

 
 

 

 

 

 

Figure 3. Programming skills knowledge before/after the activity. 

 

    

 

  

 

 

Figure 4. Legends and Myths knowledge before/after the activity. 

Figures 3 & 4 show the improvement after the activity; other feedback from the students is that they 
liked creating videogames, the work team was fine and all of them enjoyed the activity. Mixing 
programming and language literacy as we did, gives lots of possibilities both for technology and for 
literature. 
 

https://scratch.mit.edu/studios/3737471/projects/


Constructionism 2018, Vilnius, Lithuania 

503 

 

Digital storytelling to enhance cooperation between gifted 
children: an Italian experience 

From 2016 to 2017, we taught a programming course dedicated to 7-10-years-old gifted children. The 
course was based on Scratch; it lasted nine months and took place outside of school. The lessons was 
both face-to-face (three hours, once per month on Saturday) and online (one hour per week). In the last 
part of the course, we decided to introduce a digital storytelling activity. At that point, the children 
programming skills had reached a good level and we sought to focus their attention on the cooperative 
aspect through a digital storytelling experience. 

The choice of the task 
When we started to design the mentioned activity, we had to take into account some limitations related 
to the course’s organization. Indeed, the course aimed at offering mathematically talented students the 
possibility to explore challenging contents. Because children came from different parts of the region, 
many classes were held online, through an e-learning platform. Of course, this fact restricts the occasion 
to have team working experiences but it does not prevent the possibility to make a reflection on the 
importance of collaboration in some situations. Gifted children are often loath to work cooperatively with 
peers (Robinson, 2007). They appear frustrated when arguing their ideas and giving explanations, 
ending up as lonely dominators or silent onlookers (Diezmann et al., 2001). Moreover, we noticed they 
are not prepared to listen to each other and to modify their own ideas in relation to those of peers. This 
prompted us to propose a digital storytelling activity in which students, after defining the plot of the story 
as a group, make separately their scene while taking care that it was coherent with the ones made by 
the workmates. What we expected was that, after an initial “failure”, they would understand the necessity 
to improve communication among their group to have a better result. Regarding the choice of the topic, 
we sought students to create their stories starting from the images of “Dixit” (fig.5), the famous board 
game created by the paediatric psychiatrist Jean-Louis Roubira. The peculiarity of the “Dixit” images is 
that they are metaphorical and open to different and creative interpretations. The frequent use of 
metaphors and their comprehension is a typical trait of talented students to the point that it is can 
contribute to the identification of giftedness (Tan et al., 2013).  

 

Figure 5. Some images from the “Dixit” board game 

 

During our teaching experience with gifted children we often confirm this fact; we like to report here the 
example of a 10-years-old pupil that, about teamwork, said us he has learnt that teamwork is like 
drinking a hot drink: membership has to happen gently, otherwise you afford to burn your tongue. These 
considerations lead us to structure the activity as follows. 

Description of the activity 

In the face-to-face lesson, we introduced the activity giving children the “Dixit” cards and proposed 

them to play a simple game: we gave them four cards each and asked them to create a simple story 

using the images. Taking turns, they had to invent the beginning of the tale taking inspiration from a 

card; then, the next student had to continue the tale using one of his cards, and so on. In this way they 

explored the metaphorical potential of the images. After that, we divided the 12 students in 4 groups of 

3 members each and we gave every group six cards. We asked students to select three cards, one for 



Constructionism 2018, Vilnius, Lithuania 

504 

 

each member of each group and to draft a storyboard drawing inspiration from them. During the next 

week, they made their sketches using Scratch and uploaded them in the e-learning platform; workmates 

could communicate through mail. In the first online lesson, we commented together with the students 

their works, reflecting on how could be improved. The next week children worked to fix and refine the 

sketches and, finally, they joined them to create the final story. In this way, we aimed at giving them 

the time both to express their creativity individually and to refine their work taking into account the 

ideas of the others. 

Results and considerations  

The groups of children approached the activity in different ways: only the members of one group felt 
spontaneously the need to coordinate from the beginning using email. The other children made the first 
version of their scenes without facing with the workmates, but almost all recognized the necessity to 
take in account the others’ work when we asked them to join the sequences of the story.  In general, 
they have proved to be reluctant to communicate with the others, probably also because using email is 
not suitable for children of this age. Despite this, they were willing to modify their own project adjusting 
the timing, changing the images and adding explanation to accommodate the workmates. Regarding 
this, we think that using a technological tool like Scratch makes the difference: indeed, it allows making 
changes in a quick way so that children can easily refine their work. Moreover, Scratch enhance the 
students’ creativity providing different ways to express themselves: many students integrated the 
program with their personal drawings and voices inspiring the other children. The final products resulted 
quite different but they have in common the sense of humor and some surreal traits (fig. 6), suggesting 
the importance for a teacher to provide tasks open as much as possible so that also students with 
special needs can express themselves. Finally, even if the online mode proved to be a barrier to 
communication, it enables students to take the time they need following their inspiration. 

Figure 6. Frames of a story. In quotes the children’s voiceover 

Conclusion and Discussion 

An effective integration of technologies in the didactical context means much more than providing 
students with an easy access to computers: it requires an informed choice of the tools by which it is 
possible to create an active learning environment. Tools like Scratch make it easier to offer an 
experience in which different skills, contents and disciplines converge. In the paper we reported two 
examples of how, without much effort, teachers can use the digital storytelling as a multidisciplinary 
engaging tool (the Spanish experience) or as an instrument to promote personalised and collaborative 
learning without limiting creativity (the Italian experience). More specifically, the two experiences show 
that either disciplinary-oriented or 
motivationally-oriented projects are different faces of the same medal and that they can coexist 
when carefully adapted to the context, to the group of kids involved, to the expected outcomes. 
On the other hand, it must be observed again that the Spanish experience was designed and evaluated 
in a formal setting, 
whereas the Italian project was necessarily adapted to an informal setting, particularly 



Constructionism 2018, Vilnius, Lithuania 

505 

 

challenging for the exploitation of communication means. In taking inspiration from the 
two experiences, these characteristics should be taken into account.  

References 

Burke, Q., & Kafai, Y. B. (2010, June). Programming & storytelling: opportunities for learning about 
coding & composition. In Proceedings of the 9th international conference on interaction design and 
children (pp. 348-351). ACM. 

Diezmann, C. M., & Watters, J. J. (2001). The collaboration of mathematically gifted students on 
challenging tasks. Journal for the Education of the Gifted, 25(1), 7-31. 

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications of the 
ACM, 50(7), 58-64. 

Malita, L., & Martin, C. (2010). Digital storytelling as web passport to success in the 21st century. 
Procedia-Social and Behavioral Sciences, 2(2), 3060-3064. 

Meadows, D. (2003). Digital storytelling: Research-based practice in new media. Visual 
Communication, 2(2), 189-193. 

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for 
teacher knowledge. Teachers college record, 108(6), 1017. 

OECD (2015), Students, Computers and Learning: Making the Connection. OECD Publishing, Paris. 
http://dx.doi.org/10.1787/9789264239555-en 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.. 

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11. 

Peirce, N., Conlan, O., & Wade, V. (2008, November). Adaptive educational games: Providing non-
invasive personalised learning experiences. In Digital Games and Intelligent Toys Based Education, 
2008 Second IEEE International Conference on (pp. 28-35). IEEE. 

Resnick, M. (2007): «Sowing the Seeds for a More Creative Society», Learning and leading 
with technology, 35(4), pp. 18-22  

Robin, B. R. (2008). Digital storytelling: A powerful technology tool for the 21st century classroom. 
Theory into practice, 47(3), 220-228. 

Robinson, A. (1997). Cooperative learning for talented students: Emergent issues and implications. 
Handbook of gifted education, 243-252. 

Sadik, A. (2008). Digital storytelling: A meaningful technology-integrated approach for engaged student 
learning. Educational technology research and development, 56(4), 487-506. 

Tan, M., Barbot, B., Mourgues, C., & Grigorenko, E. L. (2013). Measuring metaphors: Concreteness 
and similarity in metaphor comprehension and gifted identification. Educational & Child Psychology, 
30(2), 89-100. 

UNESCO 2003. Convention for the safeguarding of the intangible cultural heritage 
http://portal.unesco.org/en/ev.php-URL_ID=17716&URL_DO=DO_TOPIC&URL_SECTION=201.html 

Yuksel, P., Robin, B., & McNeil, S. (2011, March). Educational uses of digital storytelling all around the 
world. In Society for Information Technology & Teacher Education International Conference (pp. 1264-
1271). Association for the Advancement of Computing in Education (AACE). 

  

http://dx.doi.org/10.1787/9789264239555-en


Constructionism 2018, Vilnius, Lithuania 

506 

 

Towards a Framework for Educational Robotics 

Julian M. Angel-Fernandez , Angel-Fernandez@acin.tuwien.ac.at 
Vienna University of Technology, Vienna, Austria  

Nikoleta Yiannoutsou, nyiannoutsou@ppp.uoa.gr 
University of Athens, Athens, Greece  

Chronis Kynigos, kynigos@ppp.uoa.gr 
University of Athens, Athens, Greece  

Carina Girvan, girvanc@cardiff.ac.uk 
Cardiff University, Cardiff, Wales, UK 

Markus Vincze, Vincze@acin.tuwien.ac.at 
Vienna University Technology, Vienna, Austria  

Abstract  
Educational robotics has been considered as a field with a good potential to teach difficult concepts 
(e.g. friction) in appealing way. As a consequence, the interest in educational robotics has grown in the 
last decade, which is reflected in increasing number of robotic platforms, kits, and programming 
interfaces now available. Nevertheless, researches still fail on describe activities that could be used by 
teachers and other people with no technological fluency, who are scared by the overwhelm amount of 
information that made them avoid the use of robotics to teach. Moreover, most of the activities 
developed until now do not consider pedagogical methodologies to inform the design and 
implementation of them. As a direct consequence of the misinformation about the correct use of 
pedagogical methodologies and robotics' multidisciplinary, the number of people who master the use of 
robotics in education is still scant. This paper presents ongoing work on the development of a framework 
in the European project Educational Robotics for Science, Technology, Engineer, and Mathematics 
(ER4STEM). The framework aims to make evident the connection between 21st century skills, robotics 
and pedagogical methodologies to support the creation of pedagogical activities, which is defined in 
ER4STEM as an activity that has clear learning outcomes and evidence of learning, use of one or more 
pedagogic methodologies during the activity, and detail description of the activity. This is achieve 
through the critical use of tools and examples of activities developed ER4STEM. 

Keywords  
educational robotics; framework for educational robotics; pedagogical activities; educational activities; 
educational robotics for STEM; constructionism 

Introduction 

Robotics is a field where mechanical, electronic and computer engineering converge but it also involves 
other fields such as mathematics, psychology (e.g. human behaviour and attitudes), biology, arts, and 
sciences. Therefore, it has been recognized as a technology that could highly impact education (Papert, 
1980). Nevertheless, the broad connection with different fields and the constant evolution of technology 
can make people to focus on the technology aspect without fully consider how pedagogical 
methodologies should be included, such as best approach or specifying learning outcomes clearly. 
Despite all these, robotics has been already used to teach diverse topics, such as Geography (Serholt, 
et al., 2014), Geometry (Walker & Burleson, 2012), Maths (Hussain, Lindh, & Shukur, 2006), Physics 
(Church, Ford, & Rogers, 2010) among others, with a high predominance in physics and programming. 
Despite all of these works, most of them are not well documented, which reduce their availability and 
therefore replication in other educational context.  

This does not mean that researchers are not aware of were not aware of these and other weaknesses. 
For example, the project TERECoP (Alimisis, et al., 2012) presented a constructivist methodology for 



Constructionism 2018, Vilnius, Lithuania 

507 

 

teacher training in the use of robotics in education. Several training sessions were available across 
Europe. Nevertheless, this approach focuses on face-to-face training to teachers and it is linked with 
Lego Mindstorms. Others have come with frameworks to establish precise procedures that have to been 
followed to create and activity with robotics. This is the case of Roberta initiative (Bredenfel & Leimbach, 
2010), which established specific criteria for the activities that could have the brand Roberta and more 
important the teachers. Although these approaches are beneficial in the long term, it is still required 
materials that could increase the use of robotics in a critical way that considers benefits of the technology 
and pedagogical methodologies.  

Educational Robotics for Science, Technology, Engineer and Education (ER4STEM) is a European 
project that aims to realize a creative and critical use of Educational Robotics (ER) to maintain children’s 
curiosity in the world. ER4STEM has adopted constructionism as a foundational approach to designing 
workshops, robotic solutions and in the development of an integrated framework for inclusive learning 
and engagement with STEM.  The project partners have found fundamental value in designing a variety 
of approaches, thus each workshop implements activities that foster students to discuss, argue and 
communicate their ideas about STEM concepts in a meaningful context for them. Consequently, the 
framework created in ER4STEM aims to make the explicit connection among pedagogical 
methodologies, knowledge in robotics, and 21st century skills.  

Frameworks in Educational Robotics (ER) 

There is a limited number of works that offer a clear guideline on the correct use of robotics in education, 
especially on the connection between technology and pedagogy. Roberta initiative (Bredenfel & 
Leimbach, 2010) aims to create a gender-balance didactic material and course concept. It specifies 
several characteristics that teachers and activities must have to be considered as Roberta teacher and 
activity, respectively. These characteristics could be cluster in four main areas: activity and teacher 
characteristics, design ideas, and quality criteria. The design ideas for an activity are: selection of 
interesting topics, provide examples, allow rapid achievements, and strength participants’ self-
confidence. Once the activity is created, it has to fulfil the following requirements: last from 2 to more 
than 40 hours, be suitable for mixed groups, be connected to real problems, and be certified by the 
initiative. 

Another framework is created by (Chiou, Lye, Lai, & Wong, 2011), called EARLY. Their framework is 
based on the work done by (Carroll, 2002), that identifies four critical components in activities that 
involve technology. These components are: people, activities, context and technology. As a 
consequence, the EARLY framework describes three basic components: participants (i.e. teachers, 
learners, developers and experimenters), environment (i.e. computer, material, software and robot) and 
arena (e.g. problem based arena and soccer). A final element called scope embraces all of them to 
describe a specific situation or activity. Although the authors present five different case studies, the 
framework lacks literature support and formal evaluation. 

The Educational Robotic Applications (ERA) is a framework created by (Catlin & Blamires, 2010) that 
postulates ten principles for the correct use of robotics in education. They grouped these principles in 
three categories. (1) The Technology category where the principles are intelligence, interaction and 
embodiment. They are related to expect features that robots have and could improve the educational 
experience. (2) The Student aspect that focuses on engagement, sustainable learning and 
personalisation. (3) The Teacher category that covers pedagogy, curriculum and assessment, equity 
and practical. Although these are important aspects to be considered in any educational activity, the 
authors neither offer information in how they should be implemented nor consider difficulties that may 
arise in their use. Nevertheless, there is a clear direction on how to use these principles and, as the 
authors suggest, require supportive testing and evaluation. 

ER4STEM Framework 

The manner that ER is being presented lacks that guidance that can help people design, develop and 
implement activities in ER that uses pedagogical methodologies to inform any decision. However, ER 
involves a huge group of stakeholders. Therefore, the first task in ER4STEM was to determine who the 



Constructionism 2018, Vilnius, Lithuania 

508 

 

stakeholders in ER are. The stakeholders identified were (Angel-Fernandez, y otros, 2016): young 
people, young people parents, teachers, school boards, organizations offering educational robotics, 
educational researchers, robotics researchers, human computer interaction researchers and industry. 
This group of stakeholders is still too big, if it is to consider that each one of them has a different needs, 
requirements and objectives. This variety makes it difficult to address all at once. Therefore, it was 
decided to focus on those stakeholders who have a direct impact on the quality of the activities. This 
was decided because those stakeholders would provide information that could inform other interested 
parties to implement ER. Teachers, researchers, organizers of educational activities and industry have 
been identified as those stakeholders (Angel-Fernandez, y otros, 2017).  

Based on their requirements and needs, and ER4STEM’s aims, ER4STEM's researchers suggested 
that workshops and lessons must be treated as similar because the place where the activity is 
implemented should be transparent for the final users. In order to achieve this, any activity should have 
a clear learning outcomes and evidence of learning, which could be formal or informal. This has several 
benefits: (1) the activities designed and implemented as a workshop are easily implemented as lessons. 
The description of objectives and proof of learning makes it easier for teachers to link the activity with 
any school’s curriculum. (2) The evidence of learning allows people to verify if the activity is reaching 
the expected results or not. Also it could be used to measure the real impact of ER, which has not been 
quantified yet (Fabiane & Barreto, 2012) and it would generate arguments towards the use of ER in 
formal settings. As a consequence all activities done under ER4STEM, and hopefully in all ER, must be 
pedagogical activities, which have the following characteristics: (1) Clear learning outcomes and 
evidence of learning, which could be formal (e.g. assessment) or informal (e.g. write to a friend about 
what you have done today). (2) Use of one or more pedagogical methodologies during the activity, 
which has to be thought during the design of the activity and refine after the implementation of it. (3) 
Description of the activity using the activity template created in the project (Yiannoutsou, Nikitopoulou, 
Kynigos, Gueorguiev, & Angel-Fernandez, 2016). This will help other stakeholders to have a clear idea 
of all considerations taken into account and the assumptions done by the designer. 

As a consequence of these all elements already presented, weaknesses of current approaches and 
industry requirements, ER4STEM’s framework is a work on progress that aims to guide any ER’s 
stakeholder on the design or adaptation, implementation and evaluation of pedagogical activities. This 
is achieved through the explicit connection among pedagogical methodologies, knowledge in robotics, 
and 21st century skills. To achieve this, the ER4STEM’s framework provides four components, such as 
it is depicted in Figure 1. (1) An ontology of ER. The concept ontology in this case must be understood 
as it is done in Computer Science. This ontology provides specific definition of each word used in the 
field and the connection between them. (2) Tools created specifically to be used in ER, such as a web-
repository, activity template and activity blocks. The last is a piece of activities that have been proven 
to be useful to foster specific skills and could be connected with other blocks to create a pedagogical 
activity. (3) Values or pillar of ER4STEM were selected from the industrial’s needs, literature review and 
project’s objectives. These values are: creativity, collaboration, communication, critical thinking, 
evidence of learning, mixed gender teams, multiple entry points, changing and sustaining attitudes to 
STEM, and differentiation. (4) Processes for workshops and conferences for young people.  



Constructionism 2018, Vilnius, Lithuania 

509 

 

 

Figure 1. Graphical representation of the elements that compound ER4STEM’s framework. The dash arrows 
represent the connections between elements that constitute the framework. The other lines come from different 

elements to the framework because they constitute the framework. 

Values of ER4STEM 
The values of ER4STEM were selected after doing a literature review, analyzing current industry’s 
needs and project objectives. From the literature review, several weaknesses on how works in ER were 
identified (Angel-Fernandez, y otros, 2016). Thus: (1) There is not a clear evidence how pedagogical 
theories were considered during the design of the activity. (2) Activities reported in many cases are not 
fully described and therefore limiting their replication. (3) Some of the studies lack rigorous and 
systematic analysis of the data, which would make it become anecdotal. On the other hand, the analysis 
of the industry revelled that there is a common agreement that STEM is critical to the future economic 
growth. However, there are different views on whether the supply of STEM-skilled labour will be 
sufficient or not in the near future. According to Business Europe the lack of STEM-skilled labour will be 
one of the main obstacles to economic growth in the coming years (Europe, 2011). Therefore, the 
project objectives are four. (1) The provision of multiple entry-points to ER and STEAM. (2) Empowering 
children to solve real world problem and address all young children. (3) Provide a continuous STEM 
schedule. (4) Develop an open and conceptual framework. As a result, the values are: creativity, 
collaboration, communication, critical thinking, evidence of learning, mixed gender teams, multiple entry 
points, changing and sustaining attitudes to STEM, and differentiation. For each one of these values a 
literature review is been done to provide stakeholders with suggestions that have been already studied 
by other researchers. 

An example of a value: Creativity 

This is one of the skills that most of the people talk but it is difficult to explain in words. An important 
aspect to foster creativity is to avoid tell children that they are no creative just because the person does 
not consider that they are doing something new or innovative. Regarding this, it is important to 
remember that there are diverse level of creativity, for example (Kaufman & Beghetto, 2009) proposed 
four types of creativity: little-c, big-c, mini-c and pro-c. Little-c is the creative that involves novelty beyond 
individuals. Pro-c could be positioned between little-c and big-c, and it embedded ideas that are 
considered with significant valuable in their field but their contribution has not been recognized as big-
c. Little-c, which occurs when individuals comes ideas that are new for them and for others but without 
a significant relevance to their field; and big-c, which occurs when individuals come with ideas that 
revolutionize their fields.  Other important facts to remember are: 



Constructionism 2018, Vilnius, Lithuania 

510 

 

 The creation of environments, that promotes creativity, is also possible by   

o Defining clear goals in the activity (Csikszemtmihalyi, 1996) 

o Balancing knowledge and challenge (Lewis, 2015) (Csikszemtmihalyi, 1996). Too 
difficult or easy will not contribute in the development of creativity. 

o Create a climate where students are not concerned that they may fail (Lewis, 2015) 
(Csikszemtmihalyi, 1996) (Sefertzi, 2000) (Vassileva, et al., 2012) 

o No creating competitions or providing rewards after finishing the activity (Lewis, 2015) 

o Motivating students to be creative (DeHan, 2009)  

 Elements proposed by (Nelson, 2012) to foster creativity in robotics are: 

o Ability to visualize solutions, for example sketching or building prototypes of robots. 

o Thorough knowledge base in the domain, for example building on previous robotic 
projects  

o Ability to decompose and manipulate partial solutions 

o Ability to take informed risks, which include tasks with no right or wrong answers 

o Flexibility to try alternative techniques 

o Creativity friendly environment 

o Practice  

 Failure most not be penalized (Sefertzi, 2000) (Lewis, 2015) 

 Use of diverse tools to motivate creativity (Sefertzi, 2000), such us brainstorming, story boarding, 
lotus blossom, checklist, morphological analysis, and excursion technique. 

Educational Robotics Ontology 
An ontology as is presented by (Grimm, Abecker, Volker, & Studer, 2011) is a formal explicit 
specification of a domain of interest that could be executed by a machine and understand by humans. 
This representation is helpful in two ways. (1) It provides a specific definition of the concepts in the 
domain of interest. This will avoid misinterpretation of a concept that has different meaning depending 
of the field. For example, in ER4STEM when the idea of creating an ontology came, there were a 
misunderstanding between engineers and educational researchers because each one had a different 
definition of it. Also it will help stakeholders without knowing the concept to understand it. (2) It is the 
base of a semantic search on the repository, which would let it to provide better results to a query.  

Thus in context, the ER4STEM’s ontology was created in two steps. (1) Determining requirements and 
possible queries that should be answers and (2) Describing and formalizing the ontology. During the 
first step, it was decided to use the activity template as a base to determine concepts that must be in 
the ontology. On the other hand, the queries were created from diverse meetings between all partners 
in ER4STEM. This allow the discussion between researchers, practitioners and industry, which 
contribute to have different perspectives. The final questions are: 

o What kind of activity I can use to for participants between x and y? 

o Which activity I can use to improve an X skill? 

o Which activities I can implement with an X robotic platform? 

o What platforms I can use with Y programming language? 

o What type of activities I uses an X pedagogical methodology? 

o Which activities I can use for participants with X, Y and Z characteristics? 



Constructionism 2018, Vilnius, Lithuania 

511 

 

Based on requirement analysis, it was firstly decided to focus on concepts that are intrinsically 
embedded in ER, and avoid concepts and terms that unequivocally do be described in other ontologies 
that could not add any additional value to the base of knowledge. For example robotics or technology 
ontologies. The second step was initiated with the creation of a beta version of the ontology. This version 
was discussed with educational experts from University of Athens and Cardiff University, who provided 
corrections to the educational concepts. Taking into account their comments, a new version of the 
ontology was created and shared with all partners to have a feedback from them. This feedback lead to 
the first stable version of the ontology. The taxonomy and its relations are presented in the web-
repository. 

Tools 
In ER4STEM three tools have been created to support stakeholders in ER. (1) The activity template is 
a generic design instrument that identifies critical elements of teaching and learning with robotics based 
in theory and practice (Yiannoutsou, Nikitopoulou, Kynigos, Gueorguiev, & Angel-Fernandez, 2016). It 
was designed to be a mediating artefact between pedagogical experts and the ER4STEM partners 
interested in design activity plans for ER. The template addresses the following aspects: a) the 
description of the activity, with explicit reference to the domains involved, objectives, duration and 
necessary materials; b) a level of detail that will demonstrate the influence of a specific approach. (2) 
Activity blocks were designed the outcomes of the first year of the project. They focus on the practical 
aspect of the activity plan. The activity blocks are adjustable short activities that were selected as good 
activities that could be used to foster one of the ER4STEM’s values. (3) Repository is the digital 
representation of activity template, activity blocks and ontology. The repository’s main objective is to 
support other people in the creation of new activities and inspire them ideas that other users have 
shared. Figure 2 presents the front page of the repository, which has the option to login in case the user 
wants to share their activity. Also there is the possibility to visualize diverse activities that already exist 
in the repository. Also it is also possible to search for specific key words or features, such as age. 

 

Figure 2. Front page of the ER4STEM’s repository.  

Processes 
A macro process was created base on research cycle and the professional teaching and learning cycle 
(Laboratory, 2008). The main aim was to conceive a suitable structure that could be used in activities 
that involves the use of robots. The final result is depicted in Figure 3. As it could be seen this process 
is composed of four main macro phases: design or adaptation of an activity plan, implementation in real 



Constructionism 2018, Vilnius, Lithuania 

512 

 

settings, activity’s evaluation or assessment, and improvement of the activity plan. The first macro phase 
is divided in two possible steps, which represents the possibility to design an activity from scratch or 
adapt one from other existing activities. The second macro phase is implementation, which mainly 
focuses on considerations involving the settings and the context in which the activity is going to take 
place. The third phase provides instruments and procedures for evaluating the implementation. The 
fourth and last macro phase focuses on possible improvements of the activity plan based on information 
derived from the implementation in real settings, on reflections from the teachers, the students and the 
designers. Once the activity has been improved, there is the possibility to being implemented again as 
an activity for future groups. 

 

Figure 3. Framework’s macro process definition 

Using this macro process as reference there has been identified two processes can be created from the 
project experience: conferences and competitions, and pedagogical activities. 

Acknowledgements 

This work is funded by the European Commission through the Horizon 2020 Program (H2020, Grant 
agreement no: 665972). Project Educational Robotics for STEM: ER4STEM. Also the authors would 
like to thank all researchers, who have participated in all conversations that allow the specification of 
the framework. 

References 

Alimisis, D., Arlegui, J., Fava, N., Frangou, S., Lonita, S., Menegatti, E., . . . Pina, A. (2012). Introducing 
Robotics to Teachers School: experiences from the TERECop project. Constructionism. Paris. 

Angel-Fernandez, J. M., Kynigos, C., Lepuschitz, W., Pullicino, J., Grizioti, M., Girvan, C., & Todorova, 
C. (2017). Towards an Extended Definition of ER4STEM Framework.  

Angel-Fernandez, J. M., Lammer, L., Kynigos, C., Gueorguiev, I., Varbanov, P., Lepuschitz, W., . . . 
Vrba, P. (2016). Best Practice and Requirements.  

Bredenfel, A., & Leimbach, T. (2010). The Roberta Initiative. Conference on SIMULATION, MODELING 
and PROGRAMMING for AUTONOMOUS ROBOTS (SIMPAR 2010). Darmstadt. 

Carroll, J. M. (2002). Human-Computer Interaction in the New Millennium. Addison-Wesley 
Professional. 

Catlin, D., & Blamires, M. (2010). The Principles of Educational Robotic Applications (ERA). 
Constructionism, (pp. 1-17). Paris. 



Constructionism 2018, Vilnius, Lithuania 

513 

 

Chiou, A., Lye, N. C., Lai, R., & Wong, K. W. (2011). Framework for robotics in education: Some 
experiences and case studies in test arena based projects. IEEE International Conference on e-
Learning in Industrial Electronics (ICELIE). Melbourne. 

Church, W. J., Ford, T., & Rogers, C. (2010). Physics with robotics Using LEGE MINDSTORM in High 
School Education. Educational Robotics and Beyond. Stanford. 

Csikszemtmihalyi, M. (1996). Flow and the psychology of discovery and invention. In Creativity (pp. 
107-126). New York: Harper/Collins. 

DeHan, R. L. (2009). Teaching Creativity and Inventive Problem Solving in Science. CBE Life Science 
Education, 172-181. 

Europe, B. (2011). Plugging the Skills Gap – The clock is ticking (science, technology and maths). 
Brussels: Business Europe. 

Fabiane, B., & Barreto, V. (2012). Exploring the Educational Potential of Robotics in Schools. 
Computers and Education, 58(3), 978-988. 

Grimm, S., Abecker, A., Volker, J., & Studer, R. (2011). Ontologies and the Semantic Web. In Handbook 
of Semantic Web Technologies (pp. 509-579). Berlin: Springer. 

Hussain, S., Lindh, J., & Shukur, G. (2006). The Effect of LEGO Training on Pupils' School Performance 
in Mathematics, Problem Solving Ability and Attitude: Swedish Data. Educational Technology & Society, 
9(3), 182-194. 

Kaufman, J. C., & Beghetto, R. A. (2009). Beyond Big and Little: The Four C model of Creativity. Review 
of General Psychoogy, 1-12. 

Laboratory, S. E. (2008). The Professional Teaching and Learning Cycle. Austin: Southwest 
Educational Development Laboratory. 

Lewis, T. (2015). Creativity - A Framework for the Design/Problem Solving Discourse in Technology 
Education. Journal of Technology Education, 35-52. 

Nelson, C. A. (2012). Generating Transferable Skills in STEM through Educational Robotics Robots. In 
K-12 Education: A New Technology for Learning (pp. 54-65). Hershez: IGI Global. 

Papert, S. (1980). MINDSTORMS: Children, Computers, and Powerful Ideas. New York: Basic Books, 
Inc. 

Sefertzi, E. (2000). Creativity. Retrieved from http://www.adi.pt/docs/innoregio_creativity-en.pdf 

Serholt, S., Barendregt, W., Leite, L., Hastie, H., Jones, A., Paiva, A., . . . Castellano, G. (2014). 
Teachers’ Views on the Use of Empathic Robotic Tutors in the Classroom. IEEE International 
Symposium on Robot and Human Interactive Communication. Edinburgh. 

Vassileva, M., Sharkova, A., Laister, J., Zörwer, B., Arrizabalaga, E., Uriarte, X., . . . Beatty, E. (2012). 
Creativity Development and innovation: Hadbook for SMEs.  

Walker, E., & Burleson, W. (2012). User-Centered Design of a Teachable Robot. International 
Conference on Intelligent Tutoring Systems. Crete. 

Yiannoutsou, N., Nikitopoulou, S., Kynigos, C., Gueorguiev, I., & Angel-Fernandez, J. (2016). Activity 
Plan Template: a mediating tool for supporting learning desig with robotics. International Conference on 
Robotics in Education 2016. Vienna, Austria. 

  



Constructionism 2018, Vilnius, Lithuania 

514 

 

Think, Create and Program: Evolving to a K-9 
Nationwide Computational Thinking Curriculum in 
Costa Rica  

Carol Angulo, carol.angulo@fod.ac.cr 

Alberto J. Cañas, acanas@gmail.com 

Ana Gabriela Castro, ana.castro@fod.ac.cr 

Leda Muñoz, leda.munoz@fod.ac.cr 

Natalia Zamora, natalia.zamora@fod.ac.cr 
Omar Dengo Foundation, Costa Rica 

Abstract  
As early as 1988, the National Program of Educational Informatics (PRONIE MEP-FOD) led by the 
Omar Dengo Foundation in partnership with the Ministry of Public Education of Costa Rica, has 
implemented Papert´s constructionism ideas and computer programming as part of the public schools 
curriculum, as a means for students to learn through constructing. This large scale program currently 
benefits 87.6% of the country’s K-9 students, who receive two weekly lessons.  

In an effort to update and revise the Program to respond to the challenges brought about by the Fourth 
Industrial Revolution, and to stimulate the development of the skills our students need in order to fulfill 
future jobs that we cannot imagine today, we are enhancing the Program  into a richer curriculum that 
includes the understanding of computational thinking where computer programming is a fundamental 
methodology to achieve and exercise higher-order thinking skills, while at the same time students learn 
and comprehend key concepts in ‘computing’, all within a constructionist learning environment. 
Computational thinking is addressed from a broad but also deep perspective, based on the definition of 
key concepts, skills and attitudes from preschool to ninth grade. After the definition of the learning 
outcomes and the designing processes, we have been piloting this new curriculum in 107 schools and 
have started extending it to 1300 in 2018. 

 

Sixth grade student using Arduino 

In this paper we present advances, including methodological and conceptual foundations of the updated 
educational proposal and the implementation of pilot studies. 

Keywords 
computational thinking; programming skills; computing concepts; educational informatics; 
competences; problem solving; higher order thinking skills; K-9 curriculum 

mailto:carol.angulo@fod.ac.cr
mailto:acanas@gmail.com
mailto:ana.castro@fod.ac.cr
mailto:leda.munoz@fod.ac.cr
mailto:natalia.zamora@fod.ac.cr


Constructionism 2018, Vilnius, Lithuania 

515 

 

Introduction 

The National Program of Educational Informatics of the Omar Dengo Foundation in partnership with the 
Ministry of Public Education of Costa Rica (PRONIE MEP-FOD), constitutes a public-private 
collaborative effort which has been designated since 1988 with the task of introducing technology in the 
education system of the country with an emphasis in promoting higher order thinking skills.  With a 
pathway of thirty years, the Program has been established as an important component of the 
educational policy of the country, driving the national public education forward, offering innovative 
education models that are based on technology, contributing to solve the digital gap, and preparing 
future generations to actively participate in the new digital society.  

PRONIE MEP-FOD departs from the constructivist epistemological framework proposed by Jean 
Piaget, and the constructionism of Seymour Papert, which guides the pedagogical practices to use 
technology as a way to facilitate learning, and to promote cognitive development in children, teenagers, 
and teachers all over the country. The Program considers that the main potential of computers is their 
use as tools to increase people´s capabilities to think, create and share. It aims to facilitate and promote 
students to become active users of technology and responsible creators. 

As of December 2017, the Program had reached a total coverage of 87.6% of the K-9 students enrolled 
nationwide, benefiting 610,883 students from 3,174 schools. From these, 1,199 have a computer 
laboratory where Papert’s pedagogical ideas are implemented, benefiting 476,565 students annually 
(356,617 elementary and 119,948 high school students). The work in the labs consists of a project-
based strategy that guides the programming tasks, under the facilitation of an educational informatics 
educator that works with groups of 30 students approximately. The PRONIE MEP-FOD aims to reach 
100% of schools in the next few years. 

The incremental presence of digital technologies in all activities of the new society, opens the challenge 
of introducing these resources and especially their logic, foundations, and full appropriation to the new 
generations. This implies transforming programming, coding, and all skills associated with programming 
into a new literacy, a literacy as important as learning how to read and write. “To reading, writing, and 
arithmetic, we should add computational thinking to every child’s analytical ability.” (Wing, 2006, p.33).  

According to Costa Rica´s Chamber of Information and Communication Technologies (CAMTIC) the 
visionary idea of the Program founders 30 years ago has been an important element favoring the 
evolution of the country´s economy to one with a stronger and dynamic sector associated with 
technology.  As a consequence, there is an estimated lack of 8000 computer scientists nationwide (El 
Financiero, 2017). Between June  and August 2016, there was a supply of 5000 new jobs in companies 
related to technology in Costa Rica (La República, 2016), a condition similar to what is found in  other 
countries around the world where the labor demand in informatics is wide and in constant growth. 
Besides looking for human talent in technological areas, companies also want their employees to have 
differentiated skills for new jobs, according to OECD (2016). 

The accumulated experience of the PRONIE MEP-FOD in promoting skills like programming, problem 
solving, critical thinking and collaboration, has provided a solid basis from which to build a revised 
curriculum to address this new context.  In this framework, PRONIE MEP-FOD designed didactic 
practices according to new demands and technologies and their incorporation to Costa Rican society 
through the public education system, ensuring equity and mutual benefits. Consequently, since 2014 
the Program has evaluated and updated the educational informatics computer lab proposal, in order to 
encourage students to develop the skills required to become 21st century citizens.  

Educational Informatics Laboratory: Think, create, program  

After studying international trends and the evolution of educational proposals that incorporate 
technology to solve problems with programming, and revising the experience gained by the PRONIE 
MEP-FOD itself through three decades, four major competences linked to the expected learning 
outcomes were established.  These are:  



Constructionism 2018, Vilnius, Lithuania 

516 

 

• Problem-solving with programming: to understand and solve problematic situations (for 
which the solutions are not immediately obvious) through strategies that imply computer 
programming. 

 
• Modeling and representation of data: abstraction, modeling, and representation of data as 

the basis for communication and information-building through programming. 
 

• Understanding of concepts, operations, and components of computational and computer 
systems: to understand (and manipulate) the main components of computer systems in an 
effective and safe way, through the understanding of its most basic theoretical foundations, vital 
aspects of the surroundings, and ethical and social implications.  

 
• Manufacturing of physical devices and robots: to design and create tangible and interactive 

objects, made with different materials and technological resources, which can be programmed 
and controlled from a computer or mobile device. 

Inspired by the constructionist didactics of Creative Computing (ScratchEd team at the Harvard 
Graduate School of Education, 2014), each of the activities designed for the ten grades consists of a 
designing process, personalizing process, sharing and collaborating process and reflection process 
(Bujanda, 2016), aiming at promoting meaningful learning, the development of computational thinking, 
and learning of computer science concepts, and following a competencies-based methodology. These 
competences became evident after the construction of a computational thinking concept map (Figure 
1) that identified the computing concepts, programming skills and attitudinal elements (tolerance to 
frustration, preference for precision, learn from mistakes) aimed to pursue. 

 

Figure 1. On the left, a high-level summary concept map on Computational Thinking; on the right, a purposefully 
unreadable image of the (work in progress) concept map used to identify the big-ideas that would guide the K-9 

curriculum and the concepts associated with them gives an idea of the scope of the number of concepts 
considered. 

As the competencies went beyond simple coding to include big ideas such as data processing, in-depth 
programming, abstractions and models, machines and programs, in addition to the attitudes and 
practices of the computational thinker, we found ourselves that our 30 years of experience provided us 
a good guideline in terms of the progression in programming we could expect from students through K-
9, but with little to rely upon in terms of the identification of big ideas and associated concepts in 
computing, let alone the progression of the understanding of those big ideas and concepts throughout 
10 years. To identify the big ideas and associated concepts with constructed the concept map shown 
in Figure 1. These conceptual big ideas enable the understanding of how current technologies work 
from their foundations, and it creates the basis to comprehend future technologies.  



Constructionism 2018, Vilnius, Lithuania 

517 

 

The big ideas and the associated concepts provide a framework that facilitates the work of the 
educational informatics teacher in guiding an integrated and coherent learning process; they provide a 
way for the teacher to help the student better understand what is behind the programming that the 
student is realizing These ideas influenced the activities and units organized, identifying not only which 
key concepts should be learned but also  their connection with others elements of the curriculum. For 
each big idea, a progression of that idea was built from kindergarten to 9th grade, and together conform, 
as a result, a progression for Computational Thinking, as defined by the proposal.  

The concepts are to be made evident by the teacher as the student encounters them through 
programming, or as is appropriate through the advancement in programming skills, instead of being 
associated with a fixed curriculum. For this, the progression of concepts through each big idea is carried 
out through a block of years (grades) we called levels57, generating a more flexible and fluid learning 
process, giving students opportunities to create links among the concepts covered in different levels, 
and to teachers and students as well, to easily detect the progress in the achievement of expected 
results. Teachers are made aware that certain level of understanding of a concept is expected at a 
particular block, but it is up to the teacher to determine when to make the concept evident to the 
student(s) or class. 

We established a group of procedural, conceptual, and attitudinal indicators to obtain a description of 
the aimed competence and how it will be reflected in the students. These indicators guided the 
construction of didactic designs with two or three units and several activities for each year. 

Additionally, a plan to train and update educational informatics teachers has been developed, and it is 
mainly delivered through virtual courses for scalability reasons. 

The design of this new curriculum takes specific initiatives into consideration, such as the Maker 
Movement, which have a close relationship with the way we believe students build knowledge. In this 
regard, it promotes that people in the new culture should: make, share, give, learn, be equipped, play, 
participate, support, and change (Hatch, 2014). Accordingly, three grades in elementary school have 
been selected to incorporate resources associated with physical computing, such Makey Makey, 
PicoBoard, Arduino Uno, and Circuit Playground, and preschool and eighth grade were selected to 
incorporate robotics. so that students can develop computational thinking while creating and 
programming robots to solve problems. In grades that do not incorporate physical computing, projects 
that involve game design or computer networking are proposed.  

Starting with 4th, 5th and 6th grades in 400 schools in 2018, the project will be gradually implemented 
until all Educational Informatics labs in the country are covered by 2021. 

Implementation and monitoring of pilots 

We have been piloting this project since 2015, reaching 57 elementary schools and 50 high schools 
around the country. The pilot plan has been accompanied by a monitoring process that registers the 
reactions, constraints, likes and dislikes from students and teachers, which has been used to improve 
and adjust the designs. 

The distribution of designs, monitoring and piloting per year, is detailed below: 

2014:  Design of the first and fourth grade proposals 

2015:  First and fourth grade proposals were piloted and monitored with 20 teachers. Second 

and fifth grade proposals were designed. 

2016:  Second and fifth grade proposal were piloted and monitored with 50 teachers. Third, sixth 

and seventh grade proposals were designed. 

                                                

 57 Level 1: kindergarden, first, and second grades.  
Level 2: third and fourth grades. 
Level 3: fifth and sixth grades. 
Level 4: seventh, eighth and ninth grades. 



Constructionism 2018, Vilnius, Lithuania 

518 

 

2017: Third, sixth and seventh grade proposals were piloted and monitored with 50 third and 

sixth grade teachers, and 20 seventh grade teachers. Preschool, eighth and ninth grade 

proposals were designed. 

2018: Preschool, eighth and ninth grade proposals are being piloted and monitored, with 20 

teachers in preschool and 40 teachers in eighth and ninth grades. 

For each of the monitoring stages, we defined the main indicators to be evaluated, methods of data 

collection, and people in charge of the process to comply with the following monitoring objectives: 

 General objective: Compile inputs that allow critical and timely evaluation of the updated 

proposal, for decision making and adjustments to the designs. 

 Specific objectives: 

o To identify the relationship between the activities carried out in classroom and the 

recommended curricular proposal. 

o To review teachers' understanding of the main components of the proposal after training 

is received. 

o To assess didactic resources of proposal by teachers. 

o To identify the main constraints that affect the implementation of the proposal. 

o To assess likes, dislikes and understanding of the proposed activities by the students. 

Data collection has been done through three specific channels: teacher survey, student survey and non-

participatory observation.  

Preliminary conclusions 

Both the piloting phase and the recently initiated scaling up to the national level, will allow us to continue 
to learn about the strengths and weaknesses of the proposal, specially to evaluate how big ideas 
associated with computational thinking evolve in students, and their understanding of concepts and 
strengthening of programming skills for problem solving, in order to continue the necessary adjustments. 
However the preliminary results are stimulating so far, and signal of a robust and pertinent proposal to 
address the new digital society with all its challenges and opportunities. 

After 30 years of learning through programming based on Papert's ideas and facing the fourth revolution, 
we evolved towards a new curriculum that further deepens programming, and is enriched with elements 
of physical computing and computational thinking concepts, all within a constructionist framework. 

Papert’s fundamental ideas are as pertinent and provocative, if not more, than 30 years ago, and the 
educational systems need to explore new ways, even new pedagogies such as this, to strengthen the 
leading role that they are called to have in this knowledge society. 

References  

Angeli, C., Voogt, J., Webb, M., Cox, M., Malyn-Smith, J., and Zagami, J. (2016) A K-6 Computational 
Thinking Curriculum Framework: Implications for Teacher Knowledge. Educational Technology & 
Society, 19 (3), 47-45.  

Angulo, C. (2017) Design of the monitoring of the Update of the Educational Computing proposal. 
PRONIE MEP-FOD. San José, Costa Rica.  

Brennan, K., Balch, C. & Chung, M. (2011) Creative Computing. Harvard Graduate School of Education. 

Bujanda, M. E. (2016). Framework of expected learning results in students. PRONIE MEP-FOD. San 
José, Costa Rica. 

Bujanda, M. E., Pérez, Ó., Otárola, A., López, E., Matarrita, D., Angulo, C.,  Hernández, A. V. (2016) 
Review learning objectives. Update of the LIE proposal. PRONIE MEP-FOD. San José, Costa Rica.  

Cañas, A., Castro, A. G., Acuña, A. L., Rodríguez, A., Angulo, C., Matarrita, D.,  Zamora, N. (2017) 
Progression of powerful ideas associated with computational thinking. PRONIE MEP-FOD. San José, 
Costa Rica.   



Constructionism 2018, Vilnius, Lithuania 

519 

 

Castro, A., & J. Lopez, F. O. (2017) Technology review report for use in eighth grade.  PRONIE MEP-
FOD. San José, Costa Rica.  

El Financiero (2017) Increase offer of computer scientists will require an additional effort in the academy. 
Retrieved from: http://www.elfinancierocr.com/tecnologia/Camtic-UCR-UNA-ITCR-Cenfotec-Ulacit-
empleo_0_893310680.html. 

Fonseca, E. (2017) Observation report and surveys to Secondary Teachers, in training of the New 
Proposal LIE 7th level. PRONIE MEP-FOD. San José, Costa Rica.  

Fundación Omar Dengo. (2016) Digital technologies and capacities to build the future: contributions of 
the Program. PRONIE MEP-FOD. San José, Costa Rica. 

Fundación Omar Dengo (2016) Contribution of PRONIE MEP - FOD to the learning of students who 
graduate from II and III cycles of Basic General Education. PRONIE MEP-FOD. San José, Costa Rica. 

Hatch, M. (2014) The Maker Movement Manifesto. McGraw-Hill Education. 

Harel, I & Papert, S. (1991) Constructioinism. Ablex publishing corporation norwood, New Jersey. USA. 

La República.net (2016) Engineering, IT and languages lead labor demand. Retrieved from: 
https://www.larepublica.net/noticia/ingenieria_informatica_e_idiomas_lideran_demanda_laboral 

OECD. (2016) Skills and Work. Retrieved from:  
https://oecdskillsandwork.wordpress.com/2016/03/23/what-skills-do-employers-want/ 

Otárola, A., & Castro, A. G. (2017) Proposed entry and exit profile for the seventh level. San José, Costa 
Rica: Programa Nacional de Informática Educativa MEP-FOD. 

Otárola, A., Castro, A. G., & Pérez, Ó. (2017) Seventh Year Educational Proposal: "Imagine and design 
worlds in 3D". San José, Costa Rica: Programa Nacional de Informática Educativa MEP-FOD. 

Papert, S. (1980) MINDSTORMS: Children, Computers & Powerful ideas.   Basic Books, Gálapago. 
Buenos Aires.  

Papert, S. (1995) The children´s machine: Rethinking school in the age of the computer. Paidós, 
Barcelona.  

Quesada Solano, M. E., Cedeño Suárez, M. A., & Zamora Calvo, J. M. (2001) The Curricular design in 
the curricula: theoretical aspects and methodological guide. Heredia, C.R.: EUNA. 

Roanes, L. & Roanes, E. (2015) Turtle Geometry. Faculty of Education. Universidad Complutense de 
Madrid.  

Russell, S., & Norvig, P. (2003) Artificial Intelligence: A Modern Approach (2da edición). Upper Saddle 
River, Prentice Hall, New Jersey. 

Schwab, K. (2017) The Fourth Industrial Revolution. Crown Business. World Economic Forum. USA. 

ScratchEd team at the Harvard Graduate of Education. (2014) Creative Computing. Retrieved from:  
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf 

Shannon, R., & Johannes, J. (1976) Systems simulation: the art and science. IEEE Transactions on 
Systems, Man and Cybernetics, 6(10), 723-724. 

Skills and Work, OECD (2016) Skills and Work, Understanding skills needed at the workplace. Retrieved 
from: https://oecdskillsandwork.wordpress.com/about/ 

SparkFun. (2013) Analog vs. Digital. Retrieved from: https://learn.sparkfun.com/tutorials/analog-vs-
digital/digital-signals 

Wing, J. (2006) Computational Thinking. Retrieved from: https://www.cs.cmu.edu/~15110-s13/Wing06-
ct.pdf 

Wing, J. (2008) Computational thinking and thinking about computing. Computer Science Department, 
Carnegie Mellon University. USA.  

  

http://www.elfinancierocr.com/tecnologia/Camtic-UCR-UNA-ITCR-Cenfotec-Ulacit-empleo_0_893310680.html
http://www.elfinancierocr.com/tecnologia/Camtic-UCR-UNA-ITCR-Cenfotec-Ulacit-empleo_0_893310680.html
https://www.larepublica.net/noticia/ingenieria_informatica_e_idiomas_lideran_demanda_laboral
https://oecdskillsandwork.wordpress.com/2016/03/23/what-skills-do-employers-want/
https://oecdskillsandwork.wordpress.com/about/
https://oecdskillsandwork.wordpress.com/
https://oecdskillsandwork.wordpress.com/
https://oecdskillsandwork.wordpress.com/about/
https://oecdskillsandwork.wordpress.com/about/


Constructionism 2018, Vilnius, Lithuania 

520 

 

Computational Thinking and Music Learning 

Judith Bell, jbell@chisnallwood.school.nz 
Chisnallwood Intermediate School, Christchurch, New Zealand 

Tim Bell, tim.bell@canterbury.ac.nz 
University of Canterbury, New Zealand 

Abstract 
Computational thinking (CT) can be integrated with subjects outside computer science, and music is no 
exception. CT ideas such as decomposition, patterns, abstraction and algorithms can all be exercised 
in a meaningful way while at the same time engaging students with key concepts from music. This paper 
explores connections between computational thinking and music, and gives vignettes of creative ways 
to connect the two subjects in a manner that explores each subject in an authentic way. 

The first example is sorting musical values (such as pitches and note lengths), which explores the ideas 
around sorting while exercising music reading and aural skills. We then explore the idea of giving 
commands to robots to position them on a giant stave to represent music; and data representation is 
explored by coding binary values using high and low pitches. Finally, students write computer programs 
to play scales and tunes, which forces them to think about both the rules around these musical concepts, 
as well has having to exercise programming discipline to make it sound correct and be adaptable to 
play in different keys. 

These ideas provide students with ways to genuinely engage with both computational thinking and 
music. As well as the practical benefit of teaching two topics at once, it shows students how school 
subjects don’t exist in isolation, and how there are aspects of thinking in common between the subjects. 

Keywords 
computational thinking; music theory; curriculum integration 

Introduction 

Computational Thinking (CT) is becoming part of school curricula in many countries under titles such 
as “Computing”, “Digital Technologies”, and “Computer Science” (Hubwieser, Giannakos, Berges, et al. 
2015), which brings the challenge of fitting it into what is usually an already full school curriculum. This 
raises the concern that STEM subjects will overshadow traditional subjects that are important for a 
rounded education. However, the arts have an important role in STEM subjects because they encourage 
creativity, communication and teamwork. 

In this paper we provide several vignettes of how these issues can be addressed in music education by 
integrating aspects of music education with Computational Thinking. Integration means that both 
subjects are being taught at the same time, which not only provides efficiency in the use of class time, 
but also helps students to avoid seeing subjects in isolation, and can potentially engage students who 
are more attracted to one of the elements than the other. The contrast may seem particularly strong 
when music and computer science are juxtaposed, particularly based on stereotypes of music as a 
creative art and computer science appearing to be a machine-centric science. In fact, they have more 
in common than might be expected from the stereotypes, both in terms of skills needed to be effective 
(creativity, teamwork, communication, working with notation), and also the opportunities to use one 
subject to engage and even enhance learning in the other. Furthermore, in practical situations both 
music and computer science involve constructing something that is intended for an audience; in 
computing the audience might be the users of an app or web page, or an organisation collecting data, 
while in music the audience might be at a concert, watching a film, or listening to an advertisement. 
Because both involve thinking about the needs of an audience and constructing something to meet 
those needs, when teaching them there are strong constructionist opportunities for student projects 
developing something with a real purpose. 



Constructionism 2018, Vilnius, Lithuania 

521 

 

The challenge is to design activities that include genuine music learning as well as genuine 
computational thinking. Simply using computers in a music class (such as making digital recordings or 
using online resources) is unlikely to help students engage at a deep level with computational thinking. 
Similarly, using music in a computer class (such as playing background music in a game or learning 
how to compress audio files) is unlikely to be teaching many key elements of music. There is a well-
established body of work that achieves a strong link between CT and music by using computer 
programming to generate music, such as “Media computation” (e.g. Guzdial, 2003; Greher & Heines, 
2014) and using systems such as EarSketch (Engelman, Magerko, McKlin, et al., 2017) and Sonic Pi 
(Aaron, Blackwell, & Burnard 2016), but we will explore other approaches here. 

The elements of CT and music 

In order to be sure that an exercise is teaching both CT and music, we need to be aware of the kinds of 
concepts that are covered by these two areas of learning. 

Curricula based on CT generally include learning to create new artefacts on digital devices, as well as 
using the devices. This often includes working with and for others, which has been argued to be an 
important part of this discipline (Kafai, 2016). There are many definitions of CT, and even some debate 
about what should be included (Tedre and Denning, 2016), but there are common elements that appear 
in most definitions. For example, Selby and Woollard (2013) use the following list: algorithmic thinking; 
abstraction; decomposition; generalization and evaluation. Computer programming isn't listed explicitly 
here, although learning to program does cover these concepts well, and some would argue that it 
defines the scope of CT (Denning, 2017). In this paper we evaluate the relevance of each activity against 
these CT criteria, including programming, since this gives concrete evidence that they are likely to 
genuinely support CT in a computing curriculum. Our examples also provide broader contexts in which 
students can engage with CT.  

A music curriculum, at a high level, will typically cover creating, performing, responding and connecting 
(Kaschub and Smith, 2016), and the elements of music that define the scope of curriculum are often 
articulated as a list such as pitch, timbre, texture, dynamics, duration, tempo, and structure (Burton, 
2015). As with CT, the elements do not provide a curriculum, but they help us to identify if something 
belongs in a music curriculum. For a general classroom course these are likely to be made accessible 
through the use of basic notation, accessible instruments, and meaningful contexts such as popular 
music, film music, and local culturally relevant music. 

Again, we will evaluate activities against these criteria to ensure they match the concepts that are likely 
to appear in school music curricula. We note that these are very atomic components of music, and are 
likely to be covered by broader descriptions. For example, pitch might come up in relation to 
understanding the range of a musical instrument, which in turn might be in the context of the instruments 
of an orchestra or other ensemble. 

There are common elements between music and CT. In practical situations, both rely on notations in 
formal languages (for music that could include Common Music Notation on 5-line staves, tablature, 
solfège notation or graphic notation; for computing it includes programming languages as well as 
markup languages and protocols); and both use concepts around sequence (the order in which notes 
appear in time; and the order of statements in a computer program) and repetition (in music this includes 
repeats, as well as forms such as rondo or the structure of popular songs; in computing loops and 
recursion provide this).  

However, we are not advocating that these related ideas should be used directly as common examples, 
as sometimes analogies and differences might add to confusion, but we do note that there are already 
related forms of thinking in both subjects. 

In the remainder of this paper we give some vignettes of ways that music and CT can be combined in 
a way that genuinely engages students with both subjects. The first three exercises are built on activities 
from CS Unplugged (csunplugged.org), and the fourth is based on programming in a simple block-based 
language. The exercises mainly cover music theory, but also some composition. 



Constructionism 2018, Vilnius, Lithuania 

522 

 

Parallel sorting network 

A parallel sorting network is an abstract concept for parallelising the task of ordering data into a 
sequence, usually in increasing order of value. It is a quintessential activity from the CS Unplugged 
activities (Bell, Rosamond, & Casey, 2012), where the network is drawn on the ground (or floor), and 
students traverse the network and come out in sorted order. 

Figure 1 shows the layout of a 6-way sorting network. Six students enter the network at the left, each 
holding a card with a numeric value on it. When they meet at a node, they compare numbers, with the 
smaller value leaving to the left, and the larger one to the right. This simple rule is repeated each time 
they meet, and at the end the students emerge with their cards in ascending order. 

Since sorting can be applied to any values that have a binary relation that is a total order, sorting 
networks can be used for keys other than numbers, including putting words or names into alphabetical 
order, or putting elements of a well-known story into the sequence in which they should occur. This 
opens up a number of possibilities in music. 

One valuable approach is to have students compare written notes in Common Music Notation (Figure 
2, left). Initially this can be simple notes that are on the same clef and only use lines and spaces (so the 
simple rule is that the note that is further up the stave should go to the right). This can be extended by 
adding accidentals, so that two notes on the same line might be distinguished by being sharp, natural, 
or flat. If the students have mixed levels of understanding, the "harder" notes (with accidentals) can be 
given to a more advanced student, so that if such a comparison is needed, the student holding the card 
will be able to explain it to the student that they meet each time. The next step up is to add ledger lines 
and different clefs (bass, alto, tenor). This approach could be used with a variety of notations, such as 
solfège, tablature or numbered music notation, and even mixing up different notations! 

 

Figure 1. A 6-way parallel sorting network 

The next extension is to compare note and rest lengths (students are given quavers/crotchets/minims 
and so on, with tied and dotted notes used as an extension). It can also apply to dynamics (ff, f, mf, mp 
etc.) and tempo indications (Allegro, Andante, Presto etc.). Aural skills can be exercised if the students 
are given instruments that make a sound; we have found tuned bells to be particularly effective, as it is 
possible to get bells that are the same size but have different pitches (Figure 2, right). This forces 
students to make pitch comparisons over and over, and success is measured if the bells come out in 
ascending order. 

While a fixed sorting network itself is fairly easy to master, we have been surprised that students enjoy 
using it regularly. They can try out different things to compare, and reason about the meaning of the 
order for different musical elements. The activity has a built in gamification in that students want to 
complete the task as quickly as possible, but if they are inaccurate because of speed then the team 
doesn’t achieve a successful outcome. 

 

 - S
o

rtin
g

 N
e

tw
o

rk
 - c

s
u

n
p

lu
g

g
e

d
.o

rg
 



Constructionism 2018, Vilnius, Lithuania 

523 

 

  

Figure 2. Comparing musical notes (left) and bell pitches (right) in a sorting network 

From a computational point of view, students can encounter the factorial number of orders that the input 
can start in, and the idea that two identical values end up being sorted together. It touches on every 
aspect of CT, but is particularly strong in abstraction (the algorithm works regardless of what is being 
sorted), decomposition (a sophisticated outcome is broken into very simple comparison steps), and 
logic (trying to explain, for example, why the smallest value will always find its way to the correct node). 

It is also an effective music education tool - students are repeatedly gaining experience with the notation 
for pitch and rhythm, and exercising their aural skills in a motivating context; and as they become 
comfortable with a notation, it can be extended by adding more difficult variations. When using  this we 
have repeatedly found that students are able to meaningfully grasp music concepts beyond their current 
music theory level, which results in much deeper understanding of their current knowledge. 

Positioning robots 

An activity based on simple turtle-style robots is to draw a large stave on the ground (Figure 2), and 
have students program simple robots to go to the location of a specified note on the stave. The robots 
in Figure 3 are “BeeBots”, a simple device that can be programmed using only four commands (forward, 
back, left, right) that can be entered as a sequence. These commands are then followed when the "go" 
button is pressed, which is equivalent to running a program. The BeeBot moves 15cm for each 
forward/back command, so with the stavelines 30cm apart, each movement corresponds to one space 
or line on the stave. 

 

Figure 3. Students using BeeBots to show a musical interval 

Initially the BeeBot only needs to move forward to the given note (e.g. “get the BeeBot to go to D”), but 
this can be extended into notating a short tune either with the BeeBot pausing on each note of the tune 
and spinning 360 degrees, or having multiple BeeBots. This now requires programming the position in 
two dimensions based on the simple movements.  

In our experience, students initially make mistakes with the programming, but are determined to get to 
the right note. After a while they become adept at the “language” of the BeeBots, and some have even 
taken the risk of sending the BeeBot on longer paths than needed to introduce some humour to the 
exercise. This approach is easiest using tunes based on a diatonic C major scale, although representing 
sharps and flats can be done by the direction the BeeBot is pointing (left for flat, right for sharp). 



Constructionism 2018, Vilnius, Lithuania 

524 

 

Another variation is to use two BeeBots, and work with intervals, either programming them to show an 
interval (possibly given aurally), or having other students name the interval that has been displayed. 
This can be extended further by having one group of students program a chord with three or four 
BeeBots either vertically aligned (harmonic) or in a horizontal pattern (melodic), which also provides the 
challenge of avoiding collisions. We then have another group play the chord on a piano, and/or name 
the chord (starting with simple triads, and extending to other types of chords, including inversions, 7ths, 
sus chords and so on). A further extension is to change the clef. 

A challenge that exercises evaluation from CT is to try to make all the BeeBots arrive at their final 
destination at the same time. This would require students to accurately determine the number of steps 
in the “program” before it is run, and pad out the steps for shorter routes to match the longest one. This 
exposes students to the idea that we could analyse the running time of an algorithm without running it. 

This exercise motivates students to repeatedly use the fundamental idea in programming of sequences, 
with the concomitant CT elements, particularly algorithmic thinking, and decomposition of the path into 
steps. Musically, students are working with rudiments of music theory, particularly pitch notation, 
accidentals, clefs, intervals, and triads/chords. They also need to demonstrate teamwork to create 
“chords”. 

Another variation of this is to create ukulele or guitar diagram grids for students to program the BeeBots 
to land on chord shapes. In this case the grid lines are 15cm apart, representing the strings and frets. 

Codes based on sound 

The idea that all data on computers (text, sound, images, numbers etc.) is represented as binary 
numbers is fundamental to the idea of a digital device. The CS Unplugged activities include a popular 
way to introduce binary numbers with minimal mathematical background required (in fact, the main 
prerequisite is being able to count up to 31). This is done by having students work with 5 cards, with 16, 
8, 4, 2 and 1 dots on one side of them respectively. The Unplugged website gives a lesson plan for a 
constructivist approach to show students the relationship between decimal numbers and binary 
representation by flipping over the cards as a binary representation.  

This segues to representing letters of the alphabet using these numbers; for the 26-letter English 
alphabet students will usually suggest using 1 for A, 2 for B, 3 for C, and so on. For example, the binary 
number 11010 represents the number 26, or the letter Z. Since the 0 and 1 digits are abstract 
representations, this transitions easily to the idea of using other representations that have two values, 
including sound. A variety of alternatives can be explored (loud/soft, long/short, timbre, melodic patterns, 
low/high), with the latter (low/high) being effectively how a telephone modem works. Once students 
realise that letters of the alphabet can be transmitted using only high and low notes, a tune can be used 
to represent some text. As a simple example, the first exercise in the CS Unplugged “Modems” activity 
has a recording of a jazz singer singing this sequence, which students can decode ( 
https://www.youtube.com/watch?v=MOMXxRbpkjM ). 

The concept of encoding messages into an apparently unrelated format is called “steganography”. The 
idea that this is even possible is an important opportunity to show students how innovative algorithms 
can achieve something that might not have been thought possible, and can motivate students to create 
their own hidden messages. 

This leads to a constrained exercise in composition for students - they should first work out the binary 
representation that they would like to hide in a composition, and then write a meaningful piece of music 
that encodes the message. This is typically done using notes that are clearly high and low, but any other 
two-state representation could be used, such as whether each note is higher or lower than the previous 
one, a percussion part that has two sounds (such as a kick and snare drum), or a backing part that is 
ascending or descending. The composition could be performed live on acoustic instruments, entered 
into recording or notation software, or played using websites that allow students to create music using 
a range of graphical input formats.  

As an intriguing variation, the hidden message could be a melody itself, represented with diatonic music 
numbers or MIDI! If MIDI is being used, the notes can be represented in 7 bits, and this could map on 

https://www.youtube.com/watch?v=MOMXxRbpkjM


Constructionism 2018, Vilnius, Lithuania 

525 

 

to rhythms with 8 quavers (eighth notes) in a 4/4 bar (notes or rests for 1 or 0 respectively), with either 
the first or last quaver being chosen by the composer, and the other 7 based on the bits in the MIDI 
note. In this case, a melody is being represented by a rhythm. 

This activity exercises a variety of CT concepts, including algorithms for converting between decimal 
and binary, abstraction where even representations may have different representations(!), and 
evaluation of the number of bits needed to represent a range of symbols (e.g. for alphabets of more 
than 26 characters). 

Musically, it provides motivation for composition as well as some constraints. Students listening to 
steganographic recordings will be exercising their aural skills to recognise the binary digits that make 
up the message. 

Programming note sequences 

Music theory contains a lot of rules around sequences of notes, particularly scales, which are 
fundamental to many genres of music. These scales are based on repeating patterns, so they are 
amenable to being programmed. Most programming languages are able to play MIDI notes, which 
opens up the possibility of writing programs to play scales. Parameters could be added to determine 
aspects like the key, range and speed. 

For example, Figure 4 shows a simple one-octave chromatic scale programmed in the Scratch 
language, starting on a C (midi note 60). Each note is 1 semitone higher than the previous one (the 
“change degree by 1” command). Students can be given this as an example, and asked to identify the 
scale. They can then “remix” the program (edit it) to make the degree change by 2 each time, creating 
a whole-tone scale, which has a distinct sound to it. Other step sizes produce various arpeggios (for 
example, steps of 3 produce diminished 7th arpeggios), and students could be challenged to make the 
notes ascend in octaves (12 steps, as there are 12 semitones in an octave), to write descending scales 
(negative steps), and identify them aurally. 

 

Figure 4. A first attempt at a Scratch program for a scale 

Figure 4 shows how the choice of variable names provides a valuable form of integrated learning. The 
terminology (tonic and degree) for how the note is calculated articulates how the logic of the program 
works. In this example, the term “degree” is not quite musically accurate as it is the number of semitones 
above the tonic, rather than the degree. While such discussions might seem pedantic, they give the 
opportunity to work with the precise terminology in music, and to recognise the importance of accurately-
named variables to make a program understandable. 

The next challenge is to have students adapt the program for other scales (such as major, minor, and 
modes). These will involve a mixture of intervals between notes for each octave (for example, a major 
scale increases the pitch of each note by a tone, tone, semitone, tone, tone, tone, semitone respectively) 
to give 8 notes. Programming this forces students to think about each degree of the scale, and they can 
debug their program by listening to it and checking that the scale sounds like a conventional major 
scale. They could also write a program to play a sequence of scales (e.g. C major, then C# major, D 
major, and so on), which provides opportunities to work with nested loops. For more advanced 
programmers, this also raises the possibility of storing the degrees of the scale in a list, and looking up 
the degree in the list, which makes it easy to move up and down a scale. 



Constructionism 2018, Vilnius, Lithuania 

526 

 

This exercise engages students with loops and variables in a way that there are precise desired 
outcomes (such as playing a particular scale). The need for accuracy playing scales can transfer from 
musical training to the need for the program to do precisely what is specified. As well as working with 
algorithms, students are using abstract representations of notes, and are also using decomposition to 
break scales into their elements. 

Another valuable activity is to have students write programs to play a tune, and use musical phrases 
that can be represented as functions (“More Blocks” in Scratch), so that they are both aware of the 
structure of the music and using the CT concept of decomposition. 

Musically, students are developing their knowledge of music theory (such as the intervals between notes 
in each scale and use of musical phrases) as well as their aural skills. 

Conclusion 

In addition to the natural connections between music and CT, we have given four examples of exercises 
that can be used to engage students meaningfully with both subjects in an integrated manner. This 
provides ways to involve students who might be more interested in one aspect than the other, and also 
means that teaching time is being used to cover two subjects at once. They may also help teachers 
who feel confident in one subject to explore the other subject with students. In practice, it is likely that 
this would benefit from a collaboration between a computing teacher and a music teacher if each subject 
is to be explored in depth. 

These examples only touch on aspects of each curriculum. We recognise there are other ways that CT 
and music can be combined, particularly using programming languages to create compositions, either 
offline or as a live performance. Computational thinking is a relatively new subject in schools, and we 
look forward to new ideas appearing as teaching collaborations  and teachers with cross-curricula 
interests create new activities that meaningfully combine different subjects. 

References 

Aaron, S., Blackwell, A. F., & Burnard, P. (2016). The development of Sonic Pi and its use in educational 
partnerships: Co-creating pedagogies for learning computer programming. Journal of Music, 
Technology & Education, 9(1), 75-94.  

Bell, T., Rosamond, F., & Casey, N. (2012). Computer Science Unplugged and related projects in math 
and computer science popularization. In H. L. Bodlaender, R. Downey, F. V Fomin, & D. Marx (Eds.), 
The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the 
occasion of his 60th birthday (Vol. LNCS 7370, pp. 398–456). Heidelberg: Springer-Verlag, Berlin, 
Heidelberg.  

Burton, R. L. (2015). The elements of music: what are they, and who cares? In The Australian Society 
for Music Education National XXth Conference Proceedings (pp. 22–28). 
Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the 
ACM, 60(6), 33–39. 

Engelman, S., Magerko, B., McKlin, T., Miller, M., Edwards, D., & Freeman, J. (2017, March). Creativity 
in Authentic STEAM Education with EarSketch. In Proceedings of the 2017 ACM SIGCSE Technical 
Symposium on Computer Science Education (pp. 183-188). ACM.  

Greher, G. R., & Heines, J. M. (2014). Computational thinking in sound: Teaching the art and science 
of music and technology. Oxford University Press. 

Guzdial, M. (2003, June). A media computation course for non-majors. In ACM SIGCSE Bulletin (Vol. 
35, No. 3, pp. 104-108). ACM. 

Hubwieser, Peter, Michail N. Giannakos, Marc Berges, Torsten Brinda, Ira Diethelm, Johannes 
Magenheim, Yogendra Pal, Jana Jackova, and Egle Jasute. 



Constructionism 2018, Vilnius, Lithuania 

527 

 

Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim, J., Pal, Y., Jackova, 
J., & Jasute, E. (2015). A Global Snapshot of Computer Science Education in K-12 Schools. In 
Proceedings of the 2015 ITiCSE on Working Group Reports - ITICSE-WGR ’15 (pp. 65–83). New York, 
New York, USA: ACM Press. 

Kafai, Y. B. (2016). From Computational Thinking to Computational Participation in K–12 Education. 
Commun. ACM, 59(8), 26–27. 

Kaschub, M., & Smith, J. P. (2016). The Big Picture: Developing Musical Capacities. Music Educators 
Journal, 102(3), 33-40. 

Selby, C. & Woollard, J. (2013). Computational thinking: the developing definition. Available from 
http://eprints.soton.ac.uk/356481. 

Tedre, M., & Denning, P. J. (2016). The Long Quest for Computational Thinking. In Proceedings of the 
16th Koli Calling Conference on Computing Education Research (pp. 120–129). 

  

http://eprints.soton.ac.uk/356481


Constructionism 2018, Vilnius, Lithuania 

528 

 

Teaching in a Sustained Post-Secondary 
Constructionist  Implementation of Computational 
Thinking for Mathematics  

Chantal Buteau, cbuteau@brocku.ca 
Brock University, Canada 

Ana Isabel Sacristán, asacrist@cinvestav.mx 
Cinvestav, Mexico 

Eric Muller, emuller@brocku.ca 
Brock University, Canada 

Abstract  
In this practice report, we reflect and discuss the roles of, and demands on university instructors in three 
undergraduate mathematics computer-based courses implemented since 2001 at Brock University, 
Canada. These are the Mathematics Integrated with Computers and Applications (MICA) I, II, III 
courses, in which instructors create an environment that supports students’ constructionist learning 
experiences as they design, program, and use interactive environments (i.e., microworlds) to learn and 
do mathematics. Using Ruthven’s (2009) model on the professional adaptation of classroom practice 
with technology, we feature constructionist characteristics of the course design highlighting the shift 
from traditional, instructionist pedagogy towards one of empowering students. Since there seem to be 
relatively few sustained implementations of microworlds in mathematics instruction (Healy & Kynigos, 
2010), this report, grounded on a continuous practice of over 15 years, contributes to our understanding 
of roles and demands of “ordinary” instructors in the “real” classroom, who have aimed at creating an 
environment for supporting students’ constructionist learning experiences. In particular, this report 
highlights the instructor’s demanding role in these student-centred courses, more so since students 
select their own topics for their last project in lieu of final exam, thereby having the opportunity of it being 
meaningful to them. 

Keywords 
computational thinking; constructionism; mathematics; programming; microworlds; university; teachers 

Introduction  

In this practice report, we reflect on the roles of, and demands on university instructors in undergraduate 
mathematics computer-based courses – the Mathematics Integrated with Computers and Applications 
(MICA) I-II-III courses – carried out at Brock University, Canada (Ralph, 2001; Buteau, Muller, & Ralph, 
2015). These courses follow the constructionist paradigm (Papert & Harel, 1991), requiring students to 
design and program computational objects for mathematical learning, and have had sustained 
implementation for over 15 years (Buteau, Muller & Marshall, 2015).  

More specifically, at Brock University, mathematics majors and future mathematics teachers learn to 
design, program, and use interactive environments –called Exploratory Objects– for the investigation of 
mathematical concepts, conjectures, and theorems or real-world situations (Muller, Buteau, Ralph, & 
Mgombelo, 2009). During their first undergraduate years, students may enrol in a sequence of three 
MICA courses and create in total 14 Exploratory Objects as part of their course load (Buteau, Muller, 
Marshall, Sacristán, & Mgombelo, 2016). At the end of each term, students, individually or in groups of 
two or three, create an original Exploratory Object for which they select the topic (see MICA, 2018). As 
a result of a literature review study (Marshall & Buteau, 2014), we classified the development of 
Exploratory Objects as mathematical microworlds: they constitute open-ended exploratory computer 
activities (Edwards, 1995) where MICA students engage in computational thinking for mathematics 
(Buteau et al., 2016). 



Constructionism 2018, Vilnius, Lithuania 

529 

 

This paper provides a discussion, based on insightful reflections, on the “real” MICA classroom by 
particularly focusing on how the “ordinary” MICA instructors have created an environment that supports 
the students’ constructionist learning experiences. We are interested in discussing the constructionist 
experiences involved in the teaching of MICA courses. In the following, we first briefly lay out aspects 
of Constructionism, Computational Thinking and Microworlds that frame the pedagogical approach in 
the MICA classroom. Using Ruthven’s (2009) model of five key structuring features of school classroom 
practice, we then discuss demands on, and roles of instructors in these courses. This discussion 
focuses, first, on the overall courses  and, second, on students’ final individual projects which are used 
in lieu of final exams. We end with a few concluding remarks. 

Constructionism, Computational Thinking and Microworlds: A 
Theoretical Framework for MICA’s Pedagogical Approach in the 
Mathematics Classroom 

As stated above, our MICA courses follow the constructionist paradigm; constructionism is defined by 
Papert and Harel (1991, p.1) in the following way: 

Constructionism--the N word as opposed to the V word--shares constructivism's connotation of 
learning as ´building knowledge structures´ irrespective of the circumstances of the learning. It 
then adds the idea that this happens especially felicitously in a context where the learner is 
consciously engaged in constructing a public entity, whether it's a sand castle on the beach or a 
theory of the universe.  

Thus, the basic principles of the constructionist paradigm involve learning situations or environments 
that are student-centred, where students build or construct shareable objects that are somehow 
“tangible”. These situations usually involve open projects, often computer-based ones, in which learners 
engage with meaningful “powerful ideas” (Papert, 1980) within a social context of collaboration, 
discussion or interaction among peers.  

One concept that is linked to constructionism, is that of exploratory computational environments known 
as microworlds. A microworld is defined by diSessa (2000) as 

a type of computational document aimed at embedding important ideas in a form that students 
can readily explore. The best microworlds have an easy-to-understand set of operations that 
students can use to engage tasks of value to them, and in doing so, they come to understanding 
powerful underlying principles. (p. 47)  

For Papert (1980), microworlds involve objects “to think with” and “allow a human learner to exercise 
particular powerful ideas or intellectual skills” (p. 204) through exploration and discovery in a knowledge 
domain.  

Two ways of describing microworlds are given by Edwards (1995): a “structural” definition which focuses 
on the design elements (e.g. collections of computational objects to model mathematical or physical 
properties of a domain; representations; and activities or challenges for students to explore in the 
domain); and a “functional” definition which highlights how students learn with microworlds, such as 
through the interaction between the student, the software, and the setting in which it is used. 

Related to the latter, an important aspect for us is that related to the role of the teacher in 
constructionism: Papert (1980) stated that in a microworld situation “the relationship of the teacher to 
learner is very different: the teacher introduces the learner to the microworld in which discoveries will 
be made, rather than to the discovery itself” (p. 209); that is, the situation presented by the teacher is 
one to facilitate students to think like mathematicians rather than to teach them about mathematics. 

Weintrop et al. (2016) remind us that “Papert (1996) was the first to use the term computational thinking 
to refer to the affordances of computational representations for expressing powerful ideas.” (p.130). 
These authors discuss extensively on how mathematicians and scientists have come to engage in 
computational thinking in their professional (including research) work, and argue that “the varied and 



Constructionism 2018, Vilnius, Lithuania 

530 

 

applied use of computational thinking by experts in the field provides a roadmap for what computational 
thinking instruction should include in the classroom” (p. 128).  

In the next sections we present the structure and functioning of our MICA courses, highlighting the 
constructionist aspects and role of the instructors.  

University Instructors in MICA Courses: Roles & Demands 
To provide a structure for our reflection and discussion on demands on, and roles of instructors in MICA 
courses, we use Ruthven’s (2009) model of five key structuring features of school classroom practice 
to “illuminate the professional adaptation which technology integration into classroom practice depends” 
(p. 131).  

Working environment 

For MICA courses, instructors teach in regular lecture rooms where they mostly elaborate the 
mathematical content. They lead mathematics programming-based activities in computer laboratories 
(one computer per student). The course format is two hours per week for lectures and two hours per 
week for lab sessions. The class size is capped at 35 students per course section.  

Resource system 

Ruthven (2009) describes: “[t]he concept of ‘resource system’ focuses… on the combined operation of 
the mathematical tools and curriculum materials in classroom use, particularly on their compatibility and 
coherence of use, and on factors influencing this” (p.136). For their mathematics lectures, MICA I 
instructors use lecture notes which to date have been shared among instructors. In MICA II, instructors 
use lecture notes and possibly a mathematical modelling textbook depending on the instructor. For the 
lab sessions, programming software is used. Since MICA I students need to learn programming, the 
instructor uses a friendly textbook for the introduction of this technology (currently VB.NET in Visual 
Studio environment), in addition to lab activity guidelines (Ralph, 2017) that emphasize the connection 
of mathematics and programming (Buteau & Muller, 2014). In MICA II-III, instructors use only lab activity 
guidelines since students are then knowledgeable programmers. MICA instructors actually use 
programming in their own mathematical research, and therefore consider programming as an integral 
part in doing mathematics (i.e. they are engaging in computational-thinking-based mathematics 
research as described by Weintrop et al., 2016). In other words, because of their research practice, 
instructors naturally merge the mathematics and programming resources as a system. Individual 
instructors might need to learn the specific programming language. However, this is a not overwhelming 
particularly since within the lab sessions they can count on knowledgeable teaching assistants. 

Activity format 
Ruthven (2009) introduces the key structuring feature of activity format where “Classroom activity is 
organised around formats for action and interaction which frame the contributions of teacher and 
students to particular lesson segments (Burns & Anderson, 1987; Burns & Lash, 1986).” (p. 137). 

Overall the MICA instructor needs to provide a learning environment in which students: 

• design and program mathematics experiments/modeling/simulations with an appropriate 
interface in order to conduct an investigation; 

• reflect on mathematical results and data in a written report.  

(Buteau & Muller, 2010) 

This constitutes what we call in this paper ‘a microworld approach’ to learn and do mathematics. In the 
first-year MICA I course, students learn the microworld approach, and in the upper-year MICA II-III 
courses, they apply it to broader and more sophisticated mathematics contexts (Buteau et al., 2016). 
The instructor in any MICA I – II - III provides an environment for students to experience constructionist 
learning: students learn by making and using these microworld projects. This includes a pedagogical 
approach where instructors guide students to carefully develop their visual interfaces to support their 
investigations (the construction is shareable). In fact, this overall aim for students to learn and apply the 



Constructionism 2018, Vilnius, Lithuania 

531 

 

microworld approach grounds the MICA course design and pedagogy (Buteau et al., 2015), and leads 
to empowering students to work as mathematicians (Broley, Buteau, & Muller, 2017; Buteau et al., 
2016).  

In MICA I lectures, the instructor elaborates on the mathematical content, although it is not presented 
quite in a traditional manner. For example, the instructor thinks out loud as a ‘working mathematician’ 
to make transparent the messy development of mathematical ideas. Or the content may be presented 
through selected examples in order to prompt students to ask mathematics questions and state 
conjectures. This is a shift from a traditional, instructionist approach towards one of empowering 
students. For the instructor, it requires acceptance of a slower pace in terms of mathematics content 
covered and surrendering some control (i.e., s/he acts as facilitator, not lecturer). In MICA II-III, the 
instructor follows a more regular lecture format. However, due to the smaller size of classes and the 
inquiry component of the course, lectures are often more interactive including aspects of an inquiry-
based mathematics classroom (Rasmussen & Kwon, 2007); e.g. with interaction between instructor-
students or among students, at structured times.  

In MICA lab sessions, the instructor usually gives overall guidelines to the whole class for a short period 
of time (2-15 minutes), then leads students to their individual work, and when necessary, provides 
opportunities for the whole class to discuss a situation encountered by one or more students. Teaching 
assistants assist the instructor with students’ individual work. This stresses the student-centred activity 
format of the lab sessions. Overall, and particularly in MICA I, instructors need sensitivity to individual 
students’ development of their instrumental genesis (Trouche, 2004) during their programming and in 
their involvement in the mathematics microworlds (Buteau & Muller, 2014), stressing again the student-
centred characteristic of MICA courses. 

Curriculum script 

When preparing or teaching lessons on a topic, instructors use their professional knowledge that 
includes, in particular, “a loosely ordered model of relevant goals and actions which serves to guide 
their teaching of the topic” (Ruthven, 2009, p.138).  

MICA courses are not mathematics content-driven: the microworld approach to learn and do 
mathematics defines the courses (Buteau et al., 2015). The overall content is not ‘traditional 
mathematics’, and the overall script had to be rethought since the technology impacts ‘what’ 
mathematics is covered in MICA courses (Buteau et al., 2016). In MICA I, the course content is driven 
by students needing to learn programming and the microworld approach: the mathematics content 
provides context in which students learn those (Buteau & Muller, 2014). In particular, the learning of 
programming technology for mathematics follows a back-and-forth instrumental orchestration (Trouche, 
2004) model (Buteau & Muller, 2014). The instructors’ script also includes the component of debugging 
one’s own program and for students to appreciate the value of debugging. In MICA II-III, each instructor 
involves mathematics content relevant to the microworld approach (i.e., a computational thinking 
approach) according to his/her own, evolving mathematics interests. As such, the instructors integrate 
authentic programming-based mathematics tasks (Buteau, Mgombelo, Muller, Rafiepour & Sacristán, 
submitted) which, in particular, includes inquiry practices (i.e., involving using the microworld). We 
associate this with Wagh, Cook-Whitt and Wilensky’s (2017) position that “the constructionist approach 
of interacting with and manipulating program code of computational models can facilitate productive 
forms of [students’] engagement with inquiry-based science” (p.615). 

Time economy 
Because of the student-centered characteristic of the microworld approach defining the MICA courses, 
individual student guidance is required, and this means ‘time’. To respond to this characteristic, the 
department limits enrolment to 35 students per section and provides two teaching assistants for the lab 
sessions to assist the instructor. 

As mentioned before, the instructors need to accept and adapt, due to the nature of the MICA courses, 
to a slower pace in terms of mathematics content covered in lectures. Also, instructors use programming 
in their own research and do not require additional time to learn the technology (except if there is a 
change in the programming language). However, when teaching the MICA courses for the first time, 



Constructionism 2018, Vilnius, Lithuania 

532 

 

instructors need to prepare in terms of the change in the pedagogical paradigm required for the MICA 
implementation of the microworld approach (Papert, 1980; Muller et al., 2009). This is a shift in 
philosophy that is new to university mathematics instructors who normally mainly, if not strictly, 
concentrate on content. This shift requires time. 

University instructors have a dual role for their departments as teachers and policy makers to create, 
delete, and modify courses in their curriculum (Barker et al., 2004). Because of the innovative nature at 
the time of the proposed course design, a professor in the department was awarded a course release 
to dedicate his time to design what became MICA courses (Buteau et al., 2015).  

In the next section, we elaborate on the roles of and demands on the instructors required in the last part 
of the MICA courses for which the course format is significantly different. 

Instructors Creating an Environment for Individual Projects 
Meaningful to Students: Roles & Demands 

Each of the three MICA course terms culminates to a complete constructionist learning experience 
opportunity for every student. This is a very demanding and engaging exercise for both students and 
instructors. 

Students, individually or in groups of two or three, create original microworld open projects for which 
they select their own topics. The MICA instructor encourages and insists that students select a topic of 
interest to them, i.e., something related to them, either an application of mathematics or a mathematical 
topic of interest. In other words, the instructor motivates students to engage in a project that is 
meaningful to them. For example, Matthew and Kylie wondered if it is better to walk or run in the rain 
(Figure 1, left) while Adam investigated the bounded area, as the exponent increases, of the iterative 
complex function defining the Mandelbrot set (Figure 1, right). See MICA (2018) for these and other 
examples. Since these original microworlds are meaningful to students and shareable constructions, 
we have observed that students show pride of, engagement in, and ownership of their own projects 
(Muller et al., 2009).  

 

 

Figure 1. To the left, Matthew and Kylie’s real-world situation microworld: “is it better to walk or run in the rain?”; 
to the right, Adam’s pure mathematics microworld about the bounded area of the iterative complex function 

defining the Mandelbrot set as the exponent increases. 

This individual project-based activity requires a completely different teaching format. Because students 
select the topic of their individual microworld projects, this is a demanding, ‘risky’ approach for the 
instructor, in particular in regards to the instructor’s curriculum script, resource system, and time 
economy features (Ruthven, 2009). The change in the instructor’s activity format and working 
environment is not challenging: the instructor acts ‘on-demand’ for students, and this individual guidance 
takes place in labs or at unscheduled time. 

During the original project period, details of the instructor’s curriculum script could not have been 
elaborated ahead of time as it is driven by the students’ selection of topics. The instructor may need to 



Constructionism 2018, Vilnius, Lithuania 

533 

 

engage in research for some student projects: mostly to evaluate the feasibility of the project, which 
possibly involves a simplification of a proposed topic or problem and to guide students to adequately 
research the topic. The instructor may also be called upon to guide and to assist in the designing and 
running of the investigation. This is demanding as it is different and possibly new for each project and 
for each time the course is offered, and is part of the “at risk” aspect for the instructor. In terms of 
resource system, the instructor mostly relies on his/her research skills. This involves for each student 
project to help identify ‘on the spot’ good resources at the right level for students. As for instructor’s time 
economy, this part of the MICA courses is very much time demanding because of the individual 
guidance and research component required by the instructor for each student project (one of the 
reasons why MICA course sections are capped to 35 students). The evaluation of these projects is no 
less demanding. 

Concluding Remarks 

Throughout this practice report paper, we described how the teaching at Brock University of the MICA 
courses embraces a constructionist paradigm based on using and developing computational thinking 
for mathematics. By course design, MICA students learn by making through individual projects in the 
form of designing, programming, and using a mathematics microworld (i.e., a tangible computer object 
that is shareable) to learn and do mathematics. This is what we have called the ‘microworld approach’ 
in this paper. The student-centred constructionist learning experience in MICA courses culminate to 
individual original projects for which students select their own topics, thereby have the opportunity of it 
being meaningful to them. As such, the design aims to empower students to work as mathematicians. 
In terms of mathematics content, the microworld approach outlining the MICA courses has impacted 
the ‘what’ of mathematics (Buteau et al., 2016), a key characteristic distinguishing constructivism from 
constructionism (Noss & Clayson, 2015).  

In order to reflect the design of the course, instructors have to change their pedagogy in a significant 
way, which highlights many characteristics of constructionist teaching. For example, MICA instructors 
tend to act more as facilitators than lecturers, and to use a slower pace to cover mathematics content. 
When appropriate, they make transparent the messy development of mathematical ideas. This is a shift 
from a traditional instructionist approach towards one of empowering students, thereby aligning with the 
aims of the courses (Buteau et al., 2015). In Buteau et al. (2016), we examined the learning experience 
of a student, named Ramona, through her three MICA courses. We concluded that “students such as 
Ramona engage in constructionist experiences of mathematics learning…,” adding that “[s]tudents also 
progressively develop proficiency in the third pillar of scientific inquiry mentioned by the European 
Mathematical Society (2011),” namely: “Together with theory and experimentation, a third pillar of 
scientific inquiry of complex systems has emerged in the form of a combination of modeling, simulation, 
optimization and visualization” (European Mathematical Society, 2011, p.2). 

The present paper discussed the roles of and demands on the university instructors teaching the MICA 
courses. The application of Ruthven’s (2009) model on the professional adaptation of school classroom 
practice with technology proved to be very insightful as to identify key components of instructors’ roles 
and demands specific to the constructionist approach in the MICA courses. However, we suggest that, 
at the university level, a ‘Teaching Assistant’ structuring feature be added to Ruthven’s (2009) model. 

There seem to be relatively few sustained implementations of microworlds in mathematics instruction 
(Healy & Kynigos, 2010). In this paper, we identified in the mathematics MICA courses, implemented at 
Brock University since 2001, that the ‘meaningful to students’ constructionist principle impacted, in a 
significant and challenging way, three of the five key structuring features of the instructor’s classroom 
practice as given in Ruthven’s (2009) model, namely curriculum script, resource system, and time 
economy. This could highlight why the implementation of a constructionist approach by (university) 
instructors is so challenging. 

References 

Barker, W.D., Bressoud, D., Epp, S., Ganter, S. et al. (Eds.), Undergraduate programs and courses in 
the mathematical sciences: CUPM curriculum guide 2004. Washington, DC: Mathematical Association 



Constructionism 2018, Vilnius, Lithuania 

534 

 

of America.  

Broley, L., Buteau, C., & Muller, E. (2017, February). (Legitimate peripheral) computational thinking in 
mathematics. In T. Dooley & G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European 
Society for Research in Mathematics Education (CERME10), (pp. 2515-2523). Dublin, Ireland: DCU 
Institute of Education & ERME. 

Burns, R. B., & Anderson, L. W. (1987). The activity structure of lesson segments. Curriculum Inquiry, 
17(1), 31-53. 

Burns, R. B., & Lash, A. A. (1986). A comparison of activity structures during basic skills and problem-
solving instruction in seventh-grade mathematics. American Educational Research Journal, 23(3), 393-
414.  

Buteau, C., Mgombelo, J., Muller, E., Rafiepour, A., & Sacristán, A. (submitted). Authentic Task 
Features for Computational Thinking in Mathematics. Submitted to Mathematics Education in Digital 
Age Conference, Copenhagen, September 2018. 

Buteau, C. & E. Muller (2010): Student Development Process of Designing and Implementing 
Exploratory and Learning Objects. In V. Durand-Guerrier, S. Soury-Lavergne & F. Arzarello (Eds.), 
Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education 
(CERME 6), (pp. 1111-1120). Lyon, France: INRP and ERME.  

Buteau, C., & Muller, E. (2014). Teaching Roles in a Technology Intensive Core Undergraduate 
Mathematics Course. In A. Clark-Wilson, O. Robutti, N. Sinclair (eds), The Mathematics Teacher in the 
Digital Era (pp. 163-185). Springer Netherlands. 

Buteau, C., Muller, E., & Marshall, N. (2015). When a university mathematics department adopted core 
mathematics courses of an unintentionally constructionist nature: really? Digital Experiences in 
Mathematics Education, 1(2–3), 133–155. doi: 10.1007/s40751-015-0009-x 

Buteau, C., Muller, E., Marshall, N., Sacristán, A. I., & Mgombelo, J. (2016). Undergraduate 
mathematics students appropriating programming as a tool for modelling, simulation, and visualization: 
A case study. Digital Experience in Mathematics Education, 2(2), 142-156. doi:10.1007/s40751-016-
0017-5 

Buteau, C., Muller, E., & Ralph, B. (2015). Integration of programming in the undergraduate 
mathematics program at Brock University. In Online Proceedings of Math+Coding Symposium, London, 
ON. http://researchideas.ca/coding/proceedings.html 

diSessa, A.A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press. 

Edwards, L. D. (1995). Microworlds as representations. In A.A. diSessa, C. Hoyles, R. Noss, & L. D. 
Edwards (Eds.), Computers and exploratory learning (pp. 127–154). New York: Springer. 

European Mathematical Society (2011). Position paper of the European Mathematical Society on the 
European Commission’s contributions to European research [online]. 
http://ec.europa.eu/research/csfri/pdf/contributions/post/european_organisations/european_mathemati
cal_society.pdf. Accessed 20 Jul 2015.  

Healy, L., & Kynigos, C. (2010). Charting the microworld territory over time: design and construction in 
mathematics education. ZDM, 42(1), 63-76.  

Marshall, N. & C. Buteau (2014). Learning by designing and experimenting with interactive, dynamic 
mathematics exploratory objects. International Journal for Technology in Mathematics Education, 21 
(2), 49-64. 

MICA (2018). MICA – Mathematics Integrated with Computers and Applications. 
https://brocku.ca/mathematics-science/mathematics/mica-mathematics-integrated-with-computers-
and-applications/  

Muller, E., Buteau, C., Ralph, B., Mgombelo, J. (2009): Learning mathematics through the design and 
implementation of Exploratory and Learning Objects. International Journal for Technology in 



Constructionism 2018, Vilnius, Lithuania 

535 

 

Mathematics Education, 16 (2), 63-74. 

Noss R. & Clayson J. (2015) Reconstructing constructionism. Constructivist Foundations, 10(3): 285–
288. http://constructivist.info/10/3/285 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books, Inc. 

Papert, S., & Harel, I. (1991). Situating constructionism. In I. Harel and S. Papert (Eds), 
Constructionism. NY: Ablex Publishing Corporation, 1-11. Retrieved from 
http://www.papert.org/articles/SituatingConstructionism.html 

Papert S (1996) An exploration in the space of mathematics educations. International Journal of 

Computers for Mathematical Learning, 1(1), 138–142. doi: 10.1007/BF00191473  

Ralph, B. (2001). Mathematics takes an exciting new direction with MICA program. Brock Teaching, 
1(1), 1. Retrieved from http://www.brocku.ca/webfm_send/18483. 

Ralph, B. (2017). Two-Hour Weekly Labs: Guidelines. Retrieved from: 
http://ctuniversitymath.ca/2017/11/29/introductory-course-lab-guidelines/ 

Rasmussen, C., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate mathematics. 
The Journal of Mathematical Behavior, 26(3), 189-194.  

Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in classroom 
practice: The example of school mathematics. Education & didactique, 3(1), 131-159. 

Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning 
environments: guiding students’ command process through instrumental orchestrations. International 
Journal of Computers for Mathematical Learning, 9, 281-307. 

Wagh, A., Cook‐Whitt, K., & Wilensky, U. (2017). Bridging inquiry‐based science and constructionism: 
Exploring the alignment between students tinkering with code of computational models and goals of 
inquiry. Journal of Research in Science Teaching, 54(5), 615-641. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 
computational thinking for mathematics and science classrooms. Journal for Science Education and 
Technology, 25, 127-147.  

  

http://www.papert.org/articles/SituatingConstructionism.html
http://www.brocku.ca/webfm_send/18483
http://ctuniversitymath.ca/2017/11/29/introductory-course-lab-guidelines/


Constructionism 2018, Vilnius, Lithuania 

536 

 

Design Curriculum for Educational Robotics: 
Constructionist Pedagogical Experience in Formal 
Education  

Flavio Campos, flavio.rcampos@sp.senac.br 
University of Sao Paulo – USP, Brazil 

Abstract  
This paper presents a pedagogical constructionist experience in designing curriculum for educational 
robotics for k-12 formal education. The discussion is based on 15 years’ experience of a school in Brazil, 
detailing a timeline of an educational robotics curriculum project development. Beginning as an 
afterschool program back in 2003, running as a technological resource used by math and science 
teachers and later integrated into curriculum from kindergarten through high school. The analyses 
emphasize the historical scale of a constructionist curriculum project with robotics, describing the 
aspects of each step and the challenges faced by the school, teachers and the administration. 
Therefore, the paper intends to address a curriculum design approach that drives educational robotics 
activities, highlighting the constructionism perspective. Pedagogy and its dimensions such as 
methodology, teaching and learning related to educational robotics are presented within theoretical and 
educational foundations. Beyond the use of robotics, deepens the discussion of curriculum design, 
engineering design process during robotics activities and how the integration of robotics education can 
boost constructionist approach in formal education.  

Keywords  
design curriculum; educational robotics; constructionism; engineering design process. 

Chapter 1 

Introduction 
In the last decade, robotics has sharpened the interest of teachers and researchers as an important 
resource for cognitive development and social skills of students from kindergarten to high school and in 
the learning background of science, mathematics, technology, computing and other knowledge. 

As a technological resource used by educators, robotics is one of the most upgraded and integrated 
into school’s activities around the world. From STEM projects through political pedagogical standards, 
formal education is allowing computational thinking and constructionist approach to emerged in teaching 
and learning process using robotics and its technology. Many countries, including Brazil, have been 
benefited by a growing number of educational robotics technology such as LEGO Mindstorms, 
fischertechnick, Kibo, K’nex, GoGo board and others.         

Robotics projects in k-12 education in many schools represent as an isolated practice in different 
development projects, because these projects have been identified as a specific subject in the 
curriculum, which means it has been using in professional education in high school or College. Robotics 
have been seen by educators and the population as a sophisticated toy, in which people that love 
robotics find themselves in championships and conferences around the world. 

The research in robotics has been reaching the university context – engineering and mechanics – and 
industries. The interest for the subject is growing, and we can see the investments from the government 
in educational technology. Even with all the investments, only a few k12 schools in Brazil integrate 
educational technology subjects (such as robotics) in curriculum. Projects that are more significant are 
limited in professional education and College.  

Despite all that, It´s not unusual to find educators interested in exploring robotics, STEM curriculum and 
constructionist concepts in their practice. Influenced by researchers and projects using robotics in 



Constructionism 2018, Vilnius, Lithuania 

537 

 

schools, by cinema and media, or by simply amused by technology, teachers and students mobilize 
themselves to create and conduct their projects. Making the design, build, program and analyse the 
results of robotics become a motivated activity in learning process and STEM curriculum, helping 
cognitive process, as well as provides creative activities.       

Phase 1 – Afterschool program and science fairs  
Beginning in 2003, the school acquired initially knex and LEGO Mindstorms(RCX) educational sets to 
start its afterschool program. The goal was to develop a program to give students an opportunity to 
learn and engage in engineering and robotics activities.  

The activities were based on engineering and robotics concepts and were developed considering 
students from 6th grade to high school (11 to 17 years old). Once a week for three hours, students 
interested in those activities participated in this program offered only after school and they could design 
artifacts with either knex or mindstorms. 

Usually, the projects were presented by the teacher, with challenges prepared based on science 
concepts and mathematical problems. One aspect of this approach was that only students with a 
personal interest in robotics and engineering looked for to participate, which represented less than 5% 
of total students at the school. 

Although a small percentage of the students participated at the beginning, it was significant to create a 
motivational atmosphere and to initiate a discussion about robotics integration into curriculum activities.    

During the afterschool program phase, students started to talk more about different possibilities with 
this technology in the classroom, asking teachers and the administration about using robotics sets to 
learn different types of subjects such as science, math and even humanities. 

After only two years of afterschool programs, the administration decided to add another step into 
educational robotics and constructionism perspective allowing science and math teachers to integrate 
educational robotics in science fairs projects. 

The 2005 science fair integrated robotics with 9th grade and high school students. Teachers decided to 
use robotics with a group of 35 students, divided into small groups of 5 and let them with the choice of 
their own projects. Therefore, students worked for two months in their projects, designing, building and 
programming devices to present at the science fair. 

 

Figure 2. Knex Eiffel Tower project and RCX spider project – (Science fair 2005) 

First, students gathered to decide a theme to work on, and then they structured a schedule to develop 
the project. Research and prototype design were the main tasks during the project development, and 
students had time between school program and afterschool program to finish the project. 

The teachers were mentors during the process, helping students in everything they need, from scientific 
concepts to engineering design. At the science fair, students had to present their project to the 
community, demonstrating not only the “product” but all the process. 

By that time, robotics were only used at the afterschool program and during the science fair schedule.    



Constructionism 2018, Vilnius, Lithuania 

538 

 

Phase 2 – Mathematics and Science curriculum with educational robotics  
The first science fair with robotics sparked a desire to use educational robotics beyond afterschool 
programs and science fairs. Teachers and school administration decided to use robotics in math and 
science classes.   

In 2005, science and math 9th grade teachers specifically started to plan their classes and projects. The 
expectations at the beginning were to create room for more and more activities with robotics, letting 
teachers of science and math experience the learning process with robotics. 

One of the math classroom projects designed was a car created by the students to study equations, 
which students engineered a door to calculate the data. The teacher planed the activity and students 
had the chance to create the object, although it had to be a car. 

 

Figure 3. Knex car project equations – (Math classroom activity 2006) 

The scenario in 2005 was different from what the administration expected. While students were excited 
to use robotics to learn school content such as equations, simple machines and so forth, teachers 
actually only used educational robotics in six or seven classroom activities during the school year.   

Teachers had a professional development to comprehend theory and practice of educational robotics, 
as well as time to prepare and discuss possibilities of curriculum projects with robotics. Unfortunately, 
that seemed not to be enough, as students had just a few opportunities to experience a constructionist 
approach to robotics. 

Phase 3 – Participation First LEGO League competition 
After two years of educational robotics, the school administration invited some of the students that had 
been participating in the afterschool program to be at the First Lego League competition. They had 
group meetings every week (2 hours) and dedicated time to deep understanding of programing and 
engineering, using at first Lego mindstorms RCX.  

The project was not only to participate in the competition but also to present the challenges to other 
students at the school and even promote a “school competition” in order to engage students with 
educational robotics. Therefore, during 2006 competition, they had a waiting list of students wanting to 
participate, and after three seasons, the school usually takes 3-4 to teams to the competition.     

This experience was significant because, with only two years, teachers and administration motivated 
with students participation decided to think about integrating educational robotics and constructionist 
approach into curriculum.   

Phase 4 – Educational robotics integrated into curriculum  
The year of 2008 represented an important change in educational robotics at the school. Teachers and 
administrators decided to include a subject in the curriculum called “Engineering and Robotics”, with 
classes once a week for an hour and forty minutes. Such as math, science, history, geography and so 
forth, this subject was integrated in the curriculum from 1st grade to high school students.  



Constructionism 2018, Vilnius, Lithuania 

539 

 

Since 2008, educational robotics and constructionist approach have been part of the curriculum, with 
weekly activities using different resources (Lego mindstorms, knex, GoGo board, Arduino), programing 
with a diverse type of programing languages (robolab, nxt, Labview, scratch). 

At the beginning, teachers organized classroom activities based on science and math concepts and 
used educational robotics to achieve the goals, as an example, an activity was to calculate distance, 
time and speed using a car built with Lego mindstorms. 

For two years, teachers were planning activities using educational robotics to understand some subject 
concepts, but not too deeply engage into technology and robotics itself. The initial experience was to 
use robotics as a resource, helping teachers to present complex concepts. 

 

Figure 4. Engineering and Robotics curriculum development with NXT and makey makey board– (from left to 
right: classroom activity 2011 and 2016) 

Combining the experience with the desire to expand robotics activities, teachers decided to integrate 
robotics and technology with complex concepts in different subjects such as science, math and 
humanities.  

Thereby, educational robotics classroom activities started to be planed based on computing, robotics 
and subjects content. At the same time, teachers prepared a storytelling approach with 1st to 5th grade 
to integrate educational robotics. 

 

Figure 5. Storytelling, from left to right – (Story with a challenge; an engineering design and Keywords to study 
during the project) 

After reading a story, which contains a challenge, students always in groups of three or four start to plan 
the solution, picking up an engineering design prototype to build. Actually, students begin the activity a 
week before, investigating the problem and keywords teachers give them in order to maximize the time 
between every project. 

An example of this storytelling approach is the activity called “submarine” with students in 5th grade in 
2017. After students had read the story with two characters talking about submarines, they did research 
about it; then, students designed their prototypes and built the submarine based on engineering design 



Constructionism 2018, Vilnius, Lithuania 

540 

 

process and programmed it to do what the students planned. At the end, students showed their projects 
to the class and shared ideas and choices, registering the most important parts of the physical 
construction and how the mechanism created worked. A quote from the students about the most 
important parts of the submarine created and how it works: 

“The motor, engineering basis, gears and propellers. The motor makes the propellers spin and the submarine 
moves”. Student (2017) 

 

Figure 6. Submarine activity (novel, design´s prototype and the submarine model built – 5th grade)  

Every project/activity has keywords related to four dimensions: technology; science; vocabulary and 
engineering to guide the teaching and learning process. For example, in the submarine activity these 
are the keywords: 

 Technology Science Vocabulary Engineering 

Relation between 
structures and motors 

Experiment and relation 
to motors, design and 
engineering;  

 

 

Motors, structures, 
design, machines; 

Description and 
explanation of 
construction; 

 

Assembling 
components  

Simple machines; Test and evaluation; 

 

Evaluation; Scientific investigation; 

 

Engineering design; 

Table 1. Keywords dimensions for educational robotics project/activity 

Chapter 2 

Design curriculum for educational robotics – A curriculum model approach 
We consider the perspective of robotics in the curriculum in a broader way and its integration into the 
curriculum permeates both the curricular framework itself and afterschool projects. However, we 
prioritize the integration of robotics in the curriculum, as the afterschool projects have specific 
characteristics, allowing greater flexibility in the development of the projects. 

Relevant element of this aspect lies in the fact that schools, in general, do not have the “clear” direction 
about what to teach related to robotics, for instance, they usually have difficult to choose related any 
robotics content and thus take different paths in relation to the choice of didactic materials and contents 
for this component. 



Constructionism 2018, Vilnius, Lithuania 

541 

 

Indeed, this is fundamental when we discuss about integrating robotics into the curriculum. Differently 
from subjects such as mathematics, science, geography, historically constituted as the school core 
curriculum with structured contents for each school year(educational policies), which contribute to a 
diversity of didactic-pedagogical contents.  

For instance, we can think of schools that are planning curriculum of robotics based on the concepts of 
technology linked directly with the materials of this resource, such as learning programming and the use 
of sensors and motors. In this case, schools demonstrate difficulties in aggregating contents from 
different subjects that constitute the school core curriculum. 

Another example are schools that privilege content linked to subjects such as science, mathematics, 
physics, which limits the concepts of technology learning. 

Therefore, to think of robotics integration in the curriculum is indispensable to considerate the 
perspective of three axes: science, technology and subjects, according to the model we propose below: 

 

Figure 7.  Educational Robotics curriculum model 

These aspects provide guidance to the design of robotics curriculum in formal education environment 
and their integration in a meaningful way, having as reference the construction of knowledge and the 
autonomy of students in the teaching-learning process. 

In science, elements such as investigation process, research, hypothesis, scientific method, among 
others are central. This axis contributes to a curriculum guided by the immersion of the student in a 
process of investigation of the studied phenomena, in research and tests of hypotheses. 

About technology, we need to consider the knowledge of functioning parts such as sensors, motors, 
electronics, programming language, the field of computation itself, computational thinking, and 
advances in technology (as a technological artifact). 

Finally, subjects, which contemplate the school core curriculum (Physics, Language, History, Sciences, 
and Mathematics), those referring to robotics, engineering, artificial intelligence, creativity, as well as 
soft skills such as teamwork, collaborative learning, among others. 

The organization of these three axes is what we call the “DNA” of interdisciplinarity. In this sense, it 
refers to the whole process of knowledge production, constituting itself not as the simple inter-relation 
between knowledge, but the concrete constitution of all knowledge produced in the activity or project. 

Interdisciplinarity is the production of meaning in the whole process, and not only the "mixing" of areas 
of knowledge around a theme/project, in other words, it enlarges the interconnections and produces 



Constructionism 2018, Vilnius, Lithuania 

542 

 

knowledge that did not exist before, involving aspects of philosophy, anthropology and sociology. 
(Fazenda, 2010) 

Therefore, we propose this model for educational robotics curriculum design, in which for every project 
or activity the three axes must be present as a core curriculum, with interdisciplinarity as a DNA 
considering a link to the three axes and balancing the importance of content knowledge related to the 
teaching and learning process.   

Considering this context, robotics curriculum can contribute to an emancipatory teaching-learning 
process for both student and teacher. These aspects usually encounter challenges in order to actually 
materialize during day-to-day of school education, given the relation time/space, available resources, 
teacher training, among others. 

Integrating robotics is fundamental, because it goes beyond a technological resource that allows the 
active participation of students in constructing knowledge. It has the potential to contribute to the 
development of projects that aim the emancipation of students in learning complex concepts and skills 
development of the 21st century. 

In addition, it contributes not only to the construction of a multi-referenced curriculum, which considers 
both the historically constituted core contents and the particular contexts of each school for the 
development of pedagogical projects, but also for the strengthening of a culture of technology use in 
education that has as fundamentals the autonomy and emancipation of students in the teaching-
learning process. 

It is not, therefore, simply to add robotics in the curriculum framework because it is interesting, to 
"conquer" new students, nor to use this technological resource at a few times during the school year. 

Creativity in the context of integrating robotics in the curriculum stands out as another fundamental 
element. Integration projects of such technology that contemplate activities that do not allow students 
to create in all steps described are limited to only superficially incorporate robotics. 

Thus, during the stages of a robotic activity, students need to exert creativity, for example, they cannot 
receive ready-made assembly model and instead they need to build the device based on the challenge 
proposed at the beginning of the activity. They need to create the device's programming and not receive 
it ready to just test it. 

In this sense, creativity must permeate the learner´s action during all stages of a robotic activity, in order 
to maximize the reach of this technological resource in the teaching-learning process and, therefore, 
ensure the integration of robotics in the curriculum significantly. 

References  

Blikstein, P. (2013) Digital fabrication and ‟making‟ in education: The democratization of invention. In J. 
Walter- Herrmann & C. Bόching (eds.). FabLabs: Of Machines, Makers and Inventors (pp. 1-21). 
Bielefeld: Transcript Publishers, 2013. 

Fazenda, I. C. A. (2010) Interdisciplinaridade. São Paulo: Papirus.  

Papanikolaou, K, Frangou, S., Alimisis, D. (2008) Teachers as designers of robotics-enhanced projects: 
the TERECoP course in Greece. In SIMPAR. 1, 2008, Itália. Veneza, volume 6472, 556 p. 

Papert, S. (1980) Mindstorms: Computers, Children and Powerful Ideas. NY: Basic Books. 

Papert, S. (1987) Computer criticism vs. technocentric thinking. Educational Researcher, 16(1), 22-30. 

Piaget, J. (1974) To understand is to invent. N.Y.: Basic Books. 

Resnick, M., Berg, R.; Eisenberg, M. (2000) Beyond black boxes: Bringing transparency and aesthetics 
back to scientific investigation. Journal of the Learning Sciences, 9(1), 7-30. 

Resnick, M. (2007) Sowing the seeds for a more creative society. Learning & Leading with Technology, 
35(4), 18-22.  

Ortiz, J., Bustos, R., Rios, A. (2011) System of indicators and methodology of evaluation for the robotics 
in classroom. Proceedings of the 2nd International Conference on Robotics in Education (RiE 2011) 
(pp. 63-70). Vienna, Austria: Austrian Society for Innovative Computer Sciences.  
http://www.innoc.at/fileadmin/user_upload/_temp_/RiE/Proceedings/37.pdf, 2011.  



Constructionism 2018, Vilnius, Lithuania 

543 

 

Forming Concepts for Programming Conditional 
Statements in the Primary School 

Miroslava Černochová, miroslava.cernochova@pedf.cuni.cz  
Radek Čuma, radek.cuma@seznam.cz 
Hasan Selcuk, hasan.selcuk@pedf.cuni.cz 
Faculty of Education, Charles University, Prague, Czech Republic 

Abstract 
The Ministry of Education, Youth and Sport of the Czech Republic is currently preparing an update of 
curriculum documents for primary, lower and upper secondary school education in which two major 
changes to be made: (1) A concept of digital literacy will be incorporated into all school subject across 
the curriculum in accordance with DigComp 2.0 defined by JRC EC; (2) Instead of the existing 
compulsory subject ICT, a new compulsory subject of Informatics focused on computational thinking 
development, will be introduced in all levels of education. In the context of the forthcoming curricular 
changes, not only educational activities, but also research on the way in which pupils of different ages 
acquire basic information concepts has great importance. 

The authors conducted a case study focussed on discovering how pupils of primary school (especially 
Year 3, 4 and 5) acquire, use and understand some programming conditional statements and loops (IF-
THEN, IF-THEN-ELSE; REPEAT/ REPEAT-UNTIL). Programming conditional statements are 
undoubtedly one of the fundamental algorithmic concepts that pupils will need to understand and use 
in programming and algorithmic thinking development. How can pupils apply them in programming? 
Does it make sense to introduce these programming conditional statements into programming activities 
in primary education? 

The research was carried out in 2017/18 at a small village school among 31 pupils (17 girls and 14 
boys) of Year 3, 4 and Year 5 during 16 lessons of a compulsory subject “Work with a computer”. Pupils 
usually worked in groups of three or four. The activities were designed in accordance with a proposal 
of requirements for algorithm skills and programming development in primary school education. The 
research was organised into four phases: (i) Preparatory phase (out of school), (ii) CSunplugged 
activities with a special set of paper cards and LEGO toys, (iii) Activities in a virtual environment 
Code.org, and (iv) Testing acquired skills and knowledge. 

Findings showed that firstly, primary school pupils are able to use programming conditional statements 
and loops, nevertheless the Year 3 pupils can lose motivation and willigness to work if something is 
wrong or if they are not successful, and also they can have some linguistic barriers how to describe 
more details verbally their algorithmic schemes. Secondly, it has a sense to introduce these conditional 
statements and loops into primary education if we create for pupils conditions to link their concrete ideas 
based on manual operations (such as with a Lego toy) to their experinces gained in a virtual 
programming environment (such as Code.org). 

Keywords 
conditional statements; loops; algorithm; programming; computational thinking; unplugged activities; 
code.org 

Introduction 

The Ministry of Education, Youth and Sport of the Czech Republic is currently preparing an update of 
the curriculum document Framework Educational Programme (FEP), see (MoYES, 2013). In the new 
FEP for elementary/primary schools (for pupils aged 6-15), two major changes relating to the digital 
education strategy (MoEYS, 2014) will be made. (1) Pupil’s digital literacy, which was formed through 
compulsory ICT, will be now developed in all subjects. The concept of digital literacy will be incorporated 
into the curriculum in accordance with its form defined in DigComp 2.0 described in R. Vuorikari et al. 

mailto:hasan.selcuk@pedf.cuni.cz


Constructionism 2018, Vilnius, Lithuania 

544 

 

(2016). (2) In the curriculum for primary schools, instead of ICT a new compulsory subject of 
Informatics, which will focus on the development of information thinking, will be introduced. 
Informatics will be included in both primary and lower secondary education. 

The changes awaiting primary schools are relatively radical and should be put into practice by 2021. 

Research aim 

Since 2017, nine Czech faculties of education have been working closely together to develop and 
validate teaching materials, methodological guidelines for teaching a new subject of Informatics and for 
validating these at several selected schools (starting with pre-school centres and kindergartens and 
ending with secondary schools). At the same time, courses and subjects for teachers of kindergartens, 
primary and secondary schools are being prepared to be ready for the planned curricular changes. All 
nine faculties of education innovate study programmes for student teachers of all subjects including ICT 
and Computer Science. 

In the context of the forthcoming curricular changes, not only educational activities, but also research 
on the way in which pupils of different ages acquire basic information concepts has a great importance. 

The research, we have done, is focussed on discovering how pupils of primary school (especially Year 
3, 4 and 5) acquire, use and understand when designing programs involving selected commands and 
functions associated with some programming conditional statements (IF-THEN, IF-THEN-ELSE; 
REPEAT/ REPEAT-UNTIL). Programming conditional statements are undoubtedly one of the 
fundamental algorithmic concepts that pupils will need to learn and use in programming and algorithmic 
thinking development. How do they understand these concepts? How can they apply them in 
programming? Does it make sense to introduce these programming conditional statements into 
programming activities in primary education? 

In our case study research, we decided to design and test a pedagogical experiment with primary school 
pupils a methodical approach to teaching programming with programming conditional statement like IF-
THEN, IF-THEN-ELSE, REPEAT, REPEAT-UNTIL which can lead to easier understanding and 
acquiring algorithms of this type of task and learning activity. 

Theoretical framework 

The activities for pupils were prepared in accordance with a draft document of requirements for skills 
and knowledge for a computational thinking (NÚV, 2017), especially for algorithm and programming 
development in primary school education. 

The content here (Table 1) was drawn upon in preparation for the research. 

Table 1. A proposal of standards and continuity in algorithm and programming development (NÚV, 2017) 

Algorithm 
development 
and 
programming 

A pupil is able to read and interpret text or symbolic scripts of the algorithm and to 
explain their individual steps. 

A pupil is able to describe a simple problem, to design and to explain individual steps of its 
solution. 

A pupil is able to adjust and modify a ready procedure for a similar problem. S/he is 
able to verify a correctness of a proposed procedure and to find and debug errors. 

A pupil is able to recognise if two different algorithms can solve the same problem. 

In a block-oriented programming language, a pupil is able to design a computer program. 
S/he is able to test it and debug errors in it. 



Constructionism 2018, Vilnius, Lithuania 

545 

 

A pupil is able to recognize recurring patterns, to use cycles for repeating and to apply sub-
programs (sub-routines). S/he is able to use events to run sub-routines and scripts. 

Methodological design 

The research was carried out in 2017/18 at a small village school among pupils of years 3, 4 and 5 
during 16 lessons of a compulsory subject “Work with a computer”. In the research there were N1 = 15 
pupils (8 girls and 7 boys) of Year 3 and Year 5 and N2 = 16 pupils (9 girls and 7 boys) from Year 4. 
Pupils usually worked in groups of four. 

Tasks were designed to develop the skills to compile algorithm development with using hand-made and 
ready-made teaching tools for CS unplugged activities. 

The case study was organised in these phases (Table 2): 

Table 2. Phases of the case study 

Preparatory 
phase 

weekend playing and games with several pupils (outside school) managed by a 
teacher - researcher 

CS 
unplugged 
activities 

Activities without a computer in (8) groups with 3-4 pupils. The two groups consisted 
of Year 3 pupils, four groups were Year 4 pupils and two groups of pupils from Year 
5. 
Pupils were divided into mixed groups so that in each group there were girls and boys 
and pupils with different study success (marks, grades). 
For Csunplugged activities there were developed a set of cards from which pupils 
could compile algorithms and learn to read procedures and interpret and perform 
them (using a vehicle constructed in Lego). 

Activities in a 
virtual 
environment 

Tasks in a virtual Code-Oriented Programming Environment Code.org were solved 
by pupils individually in a 1: 1 model, each pupil worked on one device. 
The pupils' results were recorded in the online environment and further analyzed. 

Testing 
acquired 
skills and 
knowledge 

Control tasks for pupils were assigned with the aim to find out to what extent pupils 
understood the meaning and principle of using commands with conditional statement 
(Repeat X-times, Repeat Until, IF - THEN, IF – THEN – ELSE) 

 

Research data were collected using video and audio records by means of: (1) observation of pupils' 
behaviour and activities; (2) records of processes how pupils solved problems and tasks; (3) testing 
how pupils understand selected algorithmic concepts. Pupils were very often asked (i) to describe and 
interpret how they proceeded in solving a problem, (ii) to read the codes, and (iii) to interpret meaning 
of the assembled algorithms (using, for example, a vehicle made in Lego). Collected data were added 
to data gained using the environment Code.org with the aim to analyse a progress in pupils' thinking. 

Expected conclusions/findings 

The data are currently being analysed. The results will be available in June 2018. The analysis of the 
collected data should contribute to understanding how students comprehend their programming, how 
and if they are able to find errors in their work. 

Experience shows that primary school pupils are quick to lose motivation and willingness to work if 
something is wrong or if they are not successful. The same goes for programming. If teaching 
programming is not responsive to pupils’ capability, a lot of pupils can be discouraged. By creating a 
bridge between a real and virtual world of programming using unplugged activities, we can achieve work 
in a virtual environment which will not be difficult for pupils. 



Constructionism 2018, Vilnius, Lithuania 

546 

 

In our case study, the pupils demonstrated that they correctly understand the meaning and principle of 
using an algorithm when programming conditional statements. The pupils also showed that they can 
comprehend what events occur at each step of the program, to which the said unplugged activities with 
a set of cards greatly contributed, especially in activities where the students manually demonstrated an 
assembled algorithm using vehicles made from Lego blocks. 

The pupils subsequently transferred these learned skills into tasks in Code.org which led to the desired 
link between unplugged activities and activities in a virtual programming environment. 

Resources 

Futchek, G., Moschitz, J. (2011) Learning Algorithmic Thinking with Tangible Objects Eases Transition 
to Computer Programming. In: International Conference on Informatics in Schools: Situation, Evolution, 
and Perspectives. ISSEP 2011: Informatics in Schools. Contributing to 21st Century Education. 
Sprinnger, 2011, pp 155-164. Available at https://publik.tuwien.ac.at/files/PubDat_199953.pdf 

MoEYS (2013) Rámcový vzdělávací program pro základní vzdělávání. Praha: Výzkumný ústav 
pedagogický v Praze, 2013. Available at: http://www.msmt.cz/file/43792/  

MoEYS (2014) Strategie digitálního vzdělávání do roku 2020. Available at: 
http://www.msmt.cz/uploads/DigiStrategie.pdf 

NÚV (2017) Informatika - rámec očekávaných výstupů (prosinec 2017). Tabulka pro posouzení 
návaznosti. Available at: 
https://docs.google.com/spreadsheets/d/1op92O_ZFNcLRbKxm6FcanUmPjSdP_Dd2JAznIfG5YDU/e
dit#gid=1456952308 

Vuorikari, R., Pune, Y., Crretero, S., Van Den Brade, L. (2016) DigComp 2.0: The Digital Competence 
Framework for Citizens. Update Phase 1: The Conceptual Reference Model. European Union, 2016. 
ISBN 978-92-79-58876-1. 

 

https://link.springer.com/book/10.1007/978-3-642-24722-4
https://publik.tuwien.ac.at/files/PubDat_199953.pdf
http://www.msmt.cz/uploads/DigiStrategie.pdf
https://docs.google.com/spreadsheets/d/1op92O_ZFNcLRbKxm6FcanUmPjSdP_Dd2JAznIfG5YDU/edit%23gid=1456952308
https://docs.google.com/spreadsheets/d/1op92O_ZFNcLRbKxm6FcanUmPjSdP_Dd2JAznIfG5YDU/edit%23gid=1456952308


Constructionism 2018, Vilnius, Lithuania 

547 

 

Designing Constructionist Learning Environments 
with Computational Design and Digital Fabrication 

Christos Chytas, christos.chytas@uni-oldenburg.de  
Computing Education Research Group, University of Oldenburg, Germany  

Ira Diethelm, ira.diethelm@uni-oldenburg.de 
Computing Education Research Group, University of Oldenburg, Germany 

Abstract 
Makerspaces like fab labs (digital fabrication laboratories) are open workshops that promise to 
democratize the means of production and technical knowledge. Even though such laboratories are often 
seen as innovation spaces for small business they are receiving increasing attention as informal learning 
environments for STEAM (Science, Technology, Engineering, Art, Mathematics) subjects. ‘’Making’’ as 
a set of learning activities roots in learning theories of educators like Seymour Papert. Inspired by 
Papert’s constructionist learning theory, we designed, implemented and evaluated workshops on digital 
fabrication and computational design for children and youth. The workshops’ goal was to introduce 
computational concepts and programming as means of personal expression through the creation of 
computational design models that could be fabricated in our labs.  

 

Figure 1. Generated 3D parametric model of a flower which was 3D printed to make an interactive artistic project 

The workshops’ concept provided opportunities for creativity, personal expression, collaboration and 
content rich learning activities to create artistic, practical or entertaining artifacts. We identify the 
elements of maker tools and culture that enhanced the learning experience in our workshops. We 
discuss implications and challenges of these elements for educators who wish to use digital fabrication 
for programming learning activities. 

Keywords  
constructionism; computational design; digital fabrication; the maker movement; computing education; 
Fab Lab 

Introduction and Theoretical Background  

The Maker Movement is on the rise and what started as a hobbyist community for tinkering and crafts 
has now expanded to reach millions of people in a growing number of physical and online spaces. 
Making activities often include crafts and the use of sophisticated technologies like digital fabrication 
machines (3D printers, laser and vinyl cutters, CNC routers etc.), CAD (Computer Aided Design) 



Constructionism 2018, Vilnius, Lithuania 

548 

 

software and microcontrollers. These tools are becoming increasingly accessible for everyone to use 
(Anderson, 2012). The expiration of patents in 3D printing and the decreasing price of other digital 
fabricators like laser cutters have triggered the rise of open-source software for 3D modelling (e.g. 
OpenSCAD), vector graphics (e.g. Inkscape) and image processing (e.g. GIMP) among others. 
Furthermore, online makerspaces dedicated to open-source hardware like Thingiverse.com provide 
digital models that can be shared under the creative commons licenses. Such models can also be 
created through computational/parametric design tools and be customized by users of diverse 
experience in design. 

By focusing on design and construction, making provides exciting opportunities to explore STEAM 
subjects, including engineering design (Blikstein, 2013a), programming through physical computing with 
the use of microcontrollers and microcomputers to make interactive artifacts (Blikstein, 2013b) or 
computational design (Jacobs and Buechley, 2013; Dittert et al., 2014; Chytas et al., 2018). Such 
activities attract increasing attention from educators who strive to support the development of 
engineering and computing skills in a meaningful and interesting way to foster 21st century skills. 
According to Vossoughi and Bevan (2015), making settings ‘’are generally to inspire interest, foster 
engagement, develop understanding of the processes and concepts at the center of making activities, 
and support students’ identities as thinkers, creators and producers of knowledge’’.  

Literature review on the maker movement in education (Blikstein, 2013a; Vossoughi and Bevan, 2015) 
shows that making inherits ideas of educators like Dewey, Froebel, Montessori, Vygotsky and especially 
those of Piaget and Papert. Seymour Papert inspired by Piaget’s Constructivism developed 
Constructionism, a learning theory that emphasizes on learning by constructing mental models and that 
the learning experience can be further enhanced by creating something tangible that can be shared 
with others. ‘’Constructionism--the N word as opposed to the V word—shares constructivism's 
connotation of learning as "building knowledge structures "irrespective of the circumstances of the 
learning. It then adds the idea that this happens especially felicitously in a context where the learner is 
consciously engaged in constructing a public entity, whether it's a sandcastle on the beach or a theory 
of the universe’’ (Papert and Harel, 1991). 

Few decades ago, Papert and his colleagues developed Logo (Papert, 1980), a programming 
environment to introduce aspects of mathematics and computer science to children. In computing 
education programming is a major activity that is important for everyone to learn. Even more essential 
is the development of computational thinking skills and digital literacy which also require at least basic 
knowledge of algorithms and computational concepts. Logo was aligned with the theory of 
constructionism and provided exciting opportunities for children and youth to engage in programming 
(and math) activities.   

Advancements in technology and the accessibility of digital fabrication tools allow us to create digital 
designs and turn them into physical artifacts faster and cheaper than ever. Eisenberg suggests that a 
maker-centred CSE would ‘’situate computers as elements in a creative technological landscape that 
includes 3D printers and scanners, a growing selection of sensors and actuators". According to him, 
combining elements of CSE with making culture would expand its focus, not only on software and digital 
realities but physical artifacts and hardware as well (Eisenberg, 2017).  

Moreover, computation has expanded to reach industrial design and architecture, opening new 
possibilities for creative computing in the physical realm. Computational design has a long history in 
computing education since the popularization of Logo (Papert, 1980) and other educational tools like 
Turtle Art. Even though there is a plethora of promising tools that promise more creativity in computing 
education, we still believe that there is a gap in current practices with digital fabrication and 
computational design in constructionist learning environments.  

Meanwhile, educators and academics have called for best practices to take advantage of the tools of 
making in the classroom. Even though digital fabrication in the realm of computing education is receiving 
increasing attention from the constructionist community, the findings on computational design have not 
progressed as much as in physical computing with the use of microcontrollers. Furthermore, there is an 
ongoing trend on the use of digital fabrication and especially 3D printing in education but the potential 
of such technologies for programming learning activities is still something new for most educators. 



Constructionism 2018, Vilnius, Lithuania 

549 

 

Chytas et al. (2018) focused on the use of computational design and digital fabrication for 
computationally rich learning activities and their potential to develop a programmer’s mindset by creating 
personally meaningful artifacts. Dittert et al. (2014) and Jacobs and Buechley (2013) focus on the use 
of the Processing programming language to generate 2D shapes that can be manufactured by laser 
cutters and its impact on the empowerment of workshop participants to use programming for creative 
purposes. Kastl et al. (2017) focused on the use of 3D modelling through turtle graphics to create 3D 
models that could be fabricated by 3D printers, as motivation to support programming and mathematics 
actions in educational settings.  

Methodology 

To investigate best practices for coding learning activities with digital fabrication, we follow a mixed 
methods approach. Similar with the method of Katterfeld et al. (2014), our approach includes iterative 
circles of design and research on digital fabrication in educational context in order to improve our current 
workshops. The evaluation of our workshops is based on before and after surveys, observations, 
evaluations of artifacts and interviews with the participants. This evaluation helps us to better 
understand their expectations, profound experience, self-efficacy on the use of technology, their wishes 
as well as what they liked or did not like during the workshops.  

From 2016 until now, we evaluated workshops with more than 50 participants aged from ten to 17 years 
old in formal and informal learning spaces. All these spaces were equipped with 3D printers and had 
close access to a laser cutter as well. The number of participants in our workshops varied from small 
groups of two to a class of 16 students. The workshops’ duration is usually between three to five days 
so that the students have enough time to explore design and programming practices in depth and build 
physical artifacts of their designs through digital fabrication technologies. Our educational setting follows 
a constructionist approach, meaning that the participants are encouraged to familiarize with the 
technology by themselves and learn-by-doing. The workshops are usually supported by two to four 
tutors and researchers who act as facilitators. The implementation of the workshops included 1) 
demonstration of digital and physical artifacts, 2) description of the values and ideas behind the maker 
movement and making, 3) a short introduction of computational/parametric design (CAD and 
programming features), 4) the “making” phase, 5) the demonstration of the produced artifacts and 6) 
the reflection on the experiences from the workshop. 

To introduce programming under the lens of computational design we use two parametric design tools: 
a) BlocksCAD (an online platform which exploits block-based parametric design tools) and b) 
OpenSCAD (an open-source parametric design software which includes a syntax similar with the C 
programming language). An example of code from both tools and the generated 3D models are 
illustrated in Figure 2 and 3 respectively. These tools share two important similarities which were the 
determining factor to use this combination in our workshops. Both tools are free to use and share the 
same essential commands for parametric design which fall under four main categories: 1) Shapes, 2) 
Transformations (e.g. commands to move or scale the generated models), 3) Constructive Solid 
Geometry Operations (e.g. commands to merge two models together or subtract one set of existing 3D 
solids from another) and 4) Programming Features (e.g. iterations, conditional statements, functions 
and the use of parameters to change the properties of a model). The first three categories of commands 
are broadly used in most hobbyist and professional CAD tools while the last one adds computational 
elements like iterations and customization features to the design. 

 



Constructionism 2018, Vilnius, Lithuania 

550 

 

 

Figure 2. Generated 3D parametric model of a flower through blocks. The code of the workshop’s participant 
includes modules (which group parts of code for future reuse), iterations, conditionals and core CAD elements 

(shapes, transformations and constructive solid geometry operations). 

 

Figure 3. Generated 3D parametric model of a building through a text editor which includes programming 
features and CAD elements. 

In the following sections we provide elements of computational design and maker culture that we found 
to be suitable to enhance personal expression in programming activities.  

Computational Design and Constructionist Learning 

In maker culture, technical skills like coding are often used for personal expression through the creation 
of physical projects that are linked with social, educational and entertaining activities. Within the 
constructionist community, there is a rich discussion on the benefits of making tangible media that can 
be enjoyed and shared with others (Blikstein, 2013). The tools of making like open-source 3D printers 
and programming CAD tools (e.g. parametric design software) promise to bring creative computational 
activities in the physical realm. However, according to Katterfeld et al. (2015), current research on digital 
fabrication in educational context should focus not only in developing computing skills and 
competences, but also nurturing deep and sustainable learning about the medium through personal 
development. After ten years of implementing digital fabrication workshops, the authors highlight three 
ideas as crucial in achieving deep sustainable learning with digital technologies. These are: be-
greifbarkeit (as the ability to deeply understand (grasp) but also grab something tangible), Imagineering 
(as ‘’means to invent and create yet unknown products that relate to personal life worlds’’) and self-
efficacy (Katterfeld et al., 2015). Their work focuses on constructionist learning environments for digital 
fabrication with the use of physical computing construction kits and provides implications of their 
research to extend the educational concept to also include fabricators like 3D printers and laser cutters.  



Constructionism 2018, Vilnius, Lithuania 

551 

 

Inspired by their research, we aim to extend this concept with computational design and digital 
fabrication machines in the spotlight. We find computational design to be a very promising design asset 
that can greatly contribute to constructionist learning through the creation of tangible projects that can 
be personally meaningful and enhance the share-ability and customization of the designs (Chytas et 
al., 2017).  

To this point, we evaluated eight workshops that took place in formal and informal learning settings. The 
first three workshops took place at a university fab lab and were evaluated in-depth using qualitative 
methods, either by taking part in individual or group semi-structured interviews (regarding their 
experience and impression of the workshops, the difficulties they met and the things that they would 
like to be different), observations and evaluation of artifacts. The low number of participants in all three 
workshops (two participants per workshop) gave us the opportunity to capture with higher precision the 
reactions and attitudes of participants towards computational design. With some participants we also 
had the opportunity to introduce non-programming 3D modelling tools to compare with computational 
design and investigate which features the participants preferred to use. Two workshops took place at a 
school makerspace and were evaluated with quantitative methods using questionnaires and statistical 
analysis of their code, while three workshops took place at our informatics learning lab and were 
analysed with triangulations of the previous methods. 

Based on the evaluations of the workshops that were described above, we identify four more elements 
that showed the potential to enhance the learning activities and personal expression with digital 
fabrication and computational design. Summarizing our findings, we concluded that when designing a 
learning environment that exploits digital fabrication and computational design, the following should be 
kept in mind: 

Connecting computational design with our lifeworld   

Our workshops aimed at empowering youth and children to use design and programming as means for 
expression and artistic creation. The benefits of computation could be reflected through designing 
geometries that included recursive elements and complex design patterns. Designing such patterns 
without computation requires longer times that tend to be frustrating. Before engaging children and 
youth in computational practices with digital fabrication they need to understand the role of programming 
and design in their daily life. Computational design enables the creation of designs so complex that 
could not be created handmade or with non-programming CAD tools. The participants from our 
workshops created artistic, practical or entertaining artifacts that were intended for diverse uses ranging 
from household objects to figures of popular animations and items that were intended for social good. 
The evaluation from the interviews showed that the participants were more motivated to engage in 
computational design activities and put more effort into creating something tangible that can be used in 
their daily life by them or others. Participants that were engaged in personally meaningful projects were 
intrinsically motivated to ask themselves about the benefits of computing science in their lifeworld and 
how it can connect with entertainment, personal expression or real-world problem solving in both the 
digital and physical realm.  

Encouraging exploration  

We found the demonstration of digitally fabricated artifacts essential to trigger imagination for 
computational design and digital fabrication. Demonstrating digital and physical artifacts in fab labs, 
maker faire, makerspaces and websites is a fundamental feature of Maker culture (Posch et al.,2010; 
Eisenberg, 2017). Novices cannot fully explore the possibilities of digital fabrication technology in the 
limited time of the workshops. Even people with significant experience in programming and design, can 
learn about new properties of innovative materials and production or assembly techniques. For example, 
cutting wooden surfaces with laser cutters in specific patterns can give them the ability to bend wooden 
surfaces and produce curved objects as illustrated in Figure 4a. When it comes to production of big 
objects a puzzle-like (snap-fit) modelling like the one illustrated in Figure 4b., can result in an easy and 
cheap assembly, reducing considerably the production time in comparison with alternative 
manufacturing methods like 3D printing. Learning about these possibilities of digital fabrication 
technology requires a lot of time to explore autonomously but the demonstration of physical and digital 
artifacts provides the basics to trigger the design process. 



Constructionism 2018, Vilnius, Lithuania 

552 

 

 

 

Figure 4. Bending wood and snap-fit patterns. 

Encouraging purposeful design  

Computational design tools for hobbyists and professionals provide opportunities to explore interesting 
patterns, concepts and geometries in design though computational practices. However, there were 
times when participants generated models that were aesthetically appealing but not intended (Chytas 
et al., 2018). Creating artistic shapes and geometries that impress by combining programming elements 
with CAD involves complex thinking processes that could lead to the exploration of new concepts and 
schemata which cannot be easily calculated and visualized in our minds. Even though such situations 
could also be fruitful opportunities to explore computation under the lens of design, we need to ensure 
that the activities are aligned with deep sustainable learning. We found that the creation of objects that 
are intended to be combined with other technologies (e.g. the creation of a model that is meant to 
include a microcontroller with LED lights) or serve a specific purpose like replacing a broken part or fit 
perfect on a surface can overcome this situation in artistic projects as well.  

Computational design as a social experience 

Let the learners engage in collaborative activities and create a culture of sharing to explore the social 
dimension of computation and design. Maker culture is aligned with collaboration, sharing and helping 
others in physical and online spaces and communities (Martin, 2015; Kostakis et al., 2015). The 
workshops’ concept provided opportunities for brainstorming about different ideas, solutions for designs, 
reflection on the artifacts that were created, working collaboratively on projects, helping or getting 
feedback from others and getting involved in discussions about personally meaningful projects. 
Furthermore, the use of computational/parametric design and the rise of the open-source hardware 
models on the internet enhance the share-ability of the designs. Designers can reach everyone to use 
their design, modify it by changing the parameters and code or further improve it. In his book Makers, 
Anderson (2012) states that ‘’The ability to easily “remix” digital files is the engine that drives community. 
What it offers is an invitation to participate. You don’t need to invent something from scratch or have an 
original idea. Instead, you can participate in a collaborative improvement of existing ideas or designs’’ 
(p. 74). This ability enhances collaboration and sharing by providing customization possibilities that are 
often missing from traditional non-programming CAD tools. 

Conclusion 

Computational design and digital fabrication have not been widely used for programming learning 
activities by youth and children. In this work, we emphasize on computational design as a powerful tool 
to support design and coding learning activities in constructionist learning settings. We combine 
computational design with digital fabrication technologies to highlight programming as means for 
creation in the digital and physical realm. Inspired by the work of Katterfeld et al. (2015) on designing 
learning environments with digital fabrication, we further focus on elements from computational design 
that are often missing from the digital-physical swift. These elements can greatly contribute to 
constructionist learning through the creation of tangible projects that can be personally meaningful and 
enhance the share-ability and customization of the designs. After evaluating our workshops on 
computational design, we report best practices on learning with digital fabrication by exploiting the 
possibilities of computation in modern design tools. We provide examples of embracing opportunities 



Constructionism 2018, Vilnius, Lithuania 

553 

 

and ideas behind the maker movement to take advantage of the increasing accessibility of the new tools 
and foster 21st century skills that are not intended only for industry but personal development and 
expression as well.  

References  

Blikstein, P. (2013). Digital fabrication and ‘making’ in education: The democratization of invention. 
FabLabs: Of machines, makers and inventors, 4, 1-21. 

Blikstein, P. (2013, June). Gears of our childhood: constructionist toolkits, robotics, and physical 
computing, past and future. In Proceedings of the 12th international conference on interaction design 
and children (pp. 173-182). ACM. 

BlocksCAD. https://www.blockscad3d.com/ 

Chris, A. (2012). Makers: The new industrial revolution. New York: Crown Business. 

Chytas, C., Tsilingiris, A., & Diethelm, I. (2018, April). Learning programming through design: An 
analysis of parametric design projects in digital fabrication labs and an online makerspace. In Global 
Engineering Education Conference (EDUCON), 2018 IEEE (pp. 1978-1987). IEEE. 

Chytas, C., Diethelm, I., & Lund, M. (2017) Parametric Design and Digital Fabrication in Computer 
Science Education. 

Dittert, N., Katterfeldt, E.-S. & Wilske, S., (2014). Programming Jewelry: Revealing Models behind 
Digital Fabrication. Short paper at FabLearn Europe: Digital Fabrication in Education Conference. June 
2014. Aarhus, Denmark. 

Eisenberg, M. (2017). Approaching Computer Science Education Through Making. In New Directions 
for Computing Education (pp. 35-44). Springer, Cham. 

GIMP. https://www.gimp.org/ 

Inkscape. https://inkscape.org/ 

Jacobs, J., & Buechley, L. (2013, April). Codeable objects: computational design and digital fabrication 
for novice programmers. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (pp. 1589-1598). ACM. 

Kastl, P., Krisch, O., & Romeike, R. (2017, November). 3D Printing as Medium for Motivation and 
Creativity in Computer Science Lessons. In International Conference on Informatics in Schools: 
Situation, Evolution, and Perspectives (pp. 27-36). Springer, Cham. 

Katterfeldt, E. S., Dittert, N., & Schelhowe, H. (2015). Designing digital fabrication learning environments 
for Bildung: Implications from ten years of physical computing workshops. International Journal of Child-
Computer Interaction, 5, 3-10. 

Kostakis, V., Niaros, V., & Giotitsas, C. (2015). Open source 3D printing as a means of learning: An 
educational experiment in two high schools in Greece. Telematics and informatics, 32 (1), 118-128. 

Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College 
Engineering Education Research (J-PEER), 5 (1), 4. 

OpenSCAD. www.openscad.org/ 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.. 

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36 (2), 1-11. 

Posch, I., Ogawa, H., Lindinger, C., Haring, R., & Hörtner, H. (2010, June). Introducing the FabLab as 
interactive exhibition space. In Proceedings of the 9th International Conference on Interaction Design 
and Children (pp. 254-257). ACM. 

TurtleArt. https://turtleart.org/ 

Vossoughi, S., & Bevan, B. (2014). Making and tinkering: A review of the literature. National Research 
Council Committee on Out of School Time STEM, 1-55. 

  

  



Constructionism 2018, Vilnius, Lithuania 

554 

 

Developing Mathetic Content Knowledge using an 
Emergent Systems Microworld  

Sugat Dabholkar, sugat@u.northwestern.edu 
Learning Sciences and Center for Connected Learning, Northwestern University, USA 

Gabriella Anton, gabby.anton@gmail.com 
Learning Sciences and Center for Connected Learning, Northwestern University, USA 

Uri Wilensky, uri@northwestern.edu 
Learning Sciences, Computer Science and Center for Connected Learning, Northwestern University, 
USA 

Abstract  
In this paper, we define and develop a theoretical construct Mathetic Content Knowledge (MCK) in the 
context of children’s learning. We discuss acquiring MCK using a special type of constructionist learning 
environment, which we call Emergent Systems Microworlds (ESMs). ESMs allow students to engage 
with emergent phenomena in an exploratory way. We argue that the students who participated in our 
ESM-based curricular unit, GenEvo about Genetics and Evolution not only learned disciplinary core 
ideas, but also possibly developed mathetic insights into how to learn by engaging in the scientific 
inquiry process. The GenEvo curriculum incorporates a series of computational models designed using 
NetLogo that follow the agent-based modeling approach to emergent systems. In this curriculum, 
students design and conduct computational experiments in the ESM learning environment to figure out 
the answers to the guiding questions collectively build towards the ideas about emergent properties in 
the ESM.  

We argue for the importance of fostering Mathetic Content Knowledge, knowledge of how to learn by 
engaging in discipline specific inquiry practices, in general, and specifically for science education. We 
also discuss how systematic exploration of computational models using ESM learning environments 
could be an effective way to develop science MCK. 

Keywords  
Mathetic content knowledge; emergent systems microworlds; science inquiry practices; 
constructionism; design  

Introduction 

Papert, in his book Mindstorms, introduced the term ‘mathetics’ to talk about the guiding principles that 
govern learning (Papert, 1980). Papert made an argument that just like pedagogy is a word for art of 
teaching, there should be a word for the art of learning. His proposed candidate for that word is 
‘mathetics’. This word has the same Greek root as mathematics; mathamein is a verb which means to 
learn. Mathetics has much broader connotation as the same root, math has in case of the word 
‘polymath’, which means a person of many learnings. Papert later elaborated on this idea in his book 
‘The Children’s Machine’, where he talked about mathetics as the art of learning (Papert, 1993). We 
argue that as learning scientists, when we design learning environments to support different kinds of 
learning, it is also critical to evaluate whether and how the design supports this ‘art of learning’. 

In a somewhat related context Shulman introduced the concept of pedagogical content knowledge 
(PCK), when he argued for the importance of research questions dealing with the content of the lessons 
taught in the field of teaching and teacher education (Shulman, 1986). Pedagogical content knowledge 
is about teachers’ interpretations and transformations of subject-matter knowledge in the context of 
facilitating student learning which also incorporates understanding of common learning difficulties and 
preconceptions of students (Magnusson, Krajcik, & Borko 1999). This has argued to be central part of 
teacher training programs and argued to be a central area for research in the field of education (Van 



Constructionism 2018, Vilnius, Lithuania 

555 

 

Driel, Verloop, & de Vos, 1998). With more incorporation of technology in education, the idea of PCK 
has been extended to Technology-enhanced PCK (TPCK) (Niess, 2005). Niess (2005) mentions that 
with technology becoming an integral component or tool for learning, science and mathematics teachers 
must develop an overarching conception of their subject matter and what it means to teach with 
technology. All these constructs focus on role of teachers and on the art of teaching. In this paper, we 
combine these two strands the art of teaching in the context of subject-specific knowledge and 
technology, and the art of learning, which we call Mathetic Content Knowledge. 

Each discipline has a discipline specific practices of engaging in inquiry and construction of knowledge. 
MCK is strongly connected to these discipline specific practices. The art of learning and being good at 
this art is different for mathematics, languages, history or sciences. We argue that Emergent Systems 
Sandbox (ESM), a special kind of constructionist learning environment, allows students to develop MCK 
in the context of the inquiry practices they engage in. ESMs are a specifically designed to support 
students in creating, exploring, and sharing virtual models and model-based artifacts of dynamic 
systems that exhibit emergent phenomena. In this paper, we discuss how students develop MCK when 
learn genetics and evolution using an ESM-based curriculum called GenEvo. 

Research in mathematics and science education over the past few decades has investigated and shown 
the effectiveness of model-based inquiry in classrooms, both in fostering students’ thinking skills and in 
learning of mathematical and scientific concepts. Specifically, researchers have demonstrated that 
learning based on investigations of models leads to development of competence in disciplinary inquiry 
practices such as constructing argumentation based on evidence and communicating it effectively to 
others (Passmore & Svoboda, 2012; Windschitl et al., 2008; Schwarz et al. 2009) as well as can support 
content mastery (Stewart et al. 2005). The Next Generation Science Standards (NGSS) stipulate 
developing and using models as one of the eight core scientific practices (NGSS Lead States, 2013). 
In particular, these standards suggest that models should be developed ‘‘to predict and show 
relationships among variables between systems and their components in the natural and designed 
worlds’’.  We demonstrate that model-based inquiry using with an ESM goes beyond merely engaging 
students this specific scientific inquiry practices; in another paper, we have argued elsewhere that the 
students that participated in our ESM-based curriculum meaningfully engaged students in several other 
inquiry science practices recommended by the NGSS (Dabholkar et al., 2018). Engaging meaningfully 
in scientific inquiry practices is critical to develop Mathetic Content Knowledge for science. As students 
construct their own knowledge in a microworld by engaging in scientific inquiry practices, such as 
constructing explanations and engaging in arguments using evidence, they also understand the 
scientific process of knowledge construction. This understanding is critical for developing MCK for 
science. 

GenEvo: An ESM-based curriculum about genetics and evolution 
The GenEvo curriculum incorporates a series of computational models designed using NetLogo 
(Dabholkar et al., 2016). NetLogo is an agent-based modeling software that has been used for research 
work regarding emergent systems as well as to design educational curricular units (Wilensky, 1999). 
The design of computational models in the GenEvo follows the agent-based modeling approach to 
emergent systems that has been demonstrated to be effective for fostering deep understanding of 
disciplinary core ideas (e.g., electricity, the particulate nature of matter) as well as crosscutting ideas 
such as complex systems thinking and computational thinking (Blikstein & Wilensky, 2004; Levy & 
Wilensky, 2006; Wilkerson-Jerde & Wilensky, 2010). 

In this curriculum, students are first presented with a computational model of a bacterial cell with a 
genetic circuit in which certain components interact in specific manner (See Figure 1) (Dabholkar et al., 
2016).  

The students explore and play with the model to figure out these interactions and engineer the genetic 
circuit to make their cells ‘fitter’ to reproduce. In the next two subunits, students explore and tinker with 
the models of genetic drift and natural selection. Finally, the cells where genetic circuits are designed 
by the students will ‘compete for survival’ in a limited resource environment. These computational 
models are intestinally designed specifically from the agent-based perspective of modeling emergent 
systems. In each model, the agents and their behaviors at the micro-level are computationally coded. 



Constructionism 2018, Vilnius, Lithuania 

556 

 

The interactions between the agents and their interactions with the environment result in emergence of 
patterns at macro-level (Wilensky & Resnick, 1999; Wilensky, 1999b). In this curricular unit, the 
emergent properties of biological systems that students investigate include, genetic regulation, carrying 
capacity, genetic drift and natural selection. Students design and conduct computational experiments 
in the ESM learning environment to figure out the answers to the guiding questions in the curriculum. 
These answers collectively build towards the ideas about emergent properties in the ESM.  

Learning using ESM-based curricula 
There are two ideas that are central to the learning using ESMs and ESM-based curricula, which we 
call, ‘big-M’ Models and ‘little-m’ models. This theoretical framework has been developed and discussed 
in detail in the context of Emergent Systems Sandboxes, which is a specific kind of ESM (Brady et. al, 
2015). Big-M models are fundamental scientific paradigms (Kuhn, 2012) that form the fundamental basis 
for design of ESMs. Every entity in the microworld follows the rules that are specified by the Big-M 
model. Incorporation of these rules involves heavy simplifications of the existing scientific paradigm. 
However, an ESM is designed in a way that it captures Big-M principles in sufficient details for students 
to engage meaningfully with those. In contrast, when students participate in an ESM-based curriculum 
they construct little-m models. Little-m models can be thought of as personal hypotheses or theories 
about how a system functions. As students construct their little-m models, the consequence of these 
rules become salient to them. Since, in the most cases, these rules are not available for editing, a 
construction in an ESM will always be faithful to the Big-M model. It may not produce the aggregate-
level behaviors that a student intends, but the outcomes will always be logically determined by the rules 
of the Big-M Model. Exploring such ESMs and learning to construct little-m models in them would 
gradually nudge the learner’s intuitions into alignment with the Big-M model. Several studies that have 
used ESMs indicate that it’s not a smooth trajectory for students to move from little-m to Big-M in terms 
of their conceptual understanding of the system. The actual trajectories of these transitions are different 
for each student. Such open-ended scaffolded explorations along different trajectories have been 
demonstrated to be effective for students to develop deep understanding of ideas central to a Big-M 
model. 

Data collection and analysis 

The data used in this paper is from a Computational Modeling in Biology course based on the GenEvo 
curriculum. The first author of this paper was the lead-designer of the ESM and the curricular unit and 
the lead-teacher of these implementations. We conducted this course twice during a weekend extra-
school program for middle school students conducted by a talent-development center in a mid-western 
university in the United States; and in a residential summer camp in a western city in India where 
students from all over the India participated. The students participated in both these programs were of 
age 11 to 14 and intellectually advanced based on their academic performance. There were 6 female 
and 8 male students of mixed racial and ethnic backgrounds; the break-up of self-reported racial and 
ethnic backgrounds was, 6 White non- Hispanics, 4 Asians, 1 White Hispanic, 1 American Indian or 
Alaskan Native, 2 Others. In the summer residential program in India, 15 students participated of which 
8 were females and 7 were males. All the students were of Asian Indian origin. We collected data in 
various forms, namely videos of student discussions, screen-capture videos to capture students’ 
investigations of computer models, workbooks in which students wrote their observations and 
explanations, and the computational artifacts (models and screenshots) that students created.  

We use mixed-methods analysis to investigate whether students learned disciplinary core ideas through 
their participation in ESM-based curricula and how they engaged with science inquiry practices. Using 
quantitative approach, we have demonstrated elsewhere that the students learned disciplinary core 
ideas about genetics and evolution using pre- and post- tests (Dabholkar et al., 2018). In order to 
characterize students’ engagement in inquiry science practices used both bottom-up and top-down 
process coding approach. The bottom-up approach involved process coding to describe student 
engagement and teacher strategies, whereas the top-down codes are from NGSS recommended 
science and engineering practices (Miles, M. B., Huberman, A. M., & Saldaña, J., 2014; NGSS Lead 



Constructionism 2018, Vilnius, Lithuania 

557 

 

States, 2013). The analysis that we present in this paper is case-based analysis of student learning 
Mathetic Content Knowledge in this ESM-based computational learning environment.  

Developing MCK through scaffolded exploration of GenEvo curriculum 
In the course based on the GenEvo curriculum, students work in groups, conduct model investigations 
individually within a group, and then present, discuss and debate their observations, claims and 
theories. In this part, we present data of students-teacher discourse, where the students discuss their 
own theories about an emergent concept, a big-M idea, ‘carrying capacity’ and how it affected the growth 
of a population in a computational model. All the students had performed their experiments using the 
computational model in the GenEvo curriculum (based on the screen recording data) before this 
discussion started.  

Students used their prior knowledge as well as the knowledge they constructed through their 
explorations of computational models. Owen and Randi58 presented their arguments based on their 
prior knowledge. Owen had mentioned that ‘carrying capacity’ is the amount of food an organism carries 
and that led him to an incorrect inference of his observation. 

Owen: “….., if you have more carrying capacity, that means the cells can carry a lot more food 
which means they can split faster …..” 

In the above sentence, Owen attributes carrying capacity as a property of a cell, whereas in fact it is 
property of the environment. This is an example of level-slippage where a learner attributes patterns or 
properties of macro-level to micro-level or vice-versa (Wilensky & Resnick, 1999; Levy & Wilensky, 
2008). In the computational model, students can change carrying capacity settings to conduct different 
computational experiments in order to figure out what it means and how it influences the population 
growth. Such playful explorations resulted in Hasan constructing the knowledge about carrying capacity 
through his own explorations. When asked about who he knew that answer, Hasan mentioned, ‘I was 
just playing with it and I noticed…. the amount of cells….”  

The following is the complete except as an example of students arguing about what ‘carrying capacity’ 
means based on experimental evidences or their prior knowledge. 

Teacher – “Oh! Do you? I don’t. Can you explain it (what carrying capacity means) again to me?” 

Owen – “So pretty much, if you have more carrying capacity, that means the cells can carry a lot 
more food which means they can split faster like in the last thing, which means they will be bigger and 
eat a lot more and need a lot more food.” 

Teacher – “Do you all agree to that?” 

Hasan – “It seems like he is saying that carrying capacity is how much food they sustain but carrying 
capacity is how much the map…the square can hold.” 

Randi – “Ya, because carrying capacity is how many …” 

Hasan – “cells” 

Randi – “Ya, and he is talking about food.” 

(Transcript from video data, March-19, 2017)  

In this conversation, Owen attributed ‘carrying capacity’ as a property of a cell, which is based on his 
prior incorrect conception which he tries to connect with his experimental observation of cells splitting 
faster. The teacher then directed the question to the rest of the class. This is an important teacher 
strategy of not correcting Owen’s answer, rather than trying to correct Owen’s conception and 
reasoning. As a response to the teacher’s question, Hasan and Randi argued differently. Hasan referred 
to the map or the square which represents the environment in the computational model to demonstrate 
his little-m idea, which is his contextual understanding of the big-M concept, carrying capacity. Randi 
supported him in the argument. This analysis demonstrates that these students used different reasoning 

                                                
58 All the names used in this paper at pseudonyms.  



Constructionism 2018, Vilnius, Lithuania 

558 

 

approaches to explain their answer, some of which were based on the prior knowledge whereas some 
were based on the experimental investigations. It also shows that the student, Hasan, who did not have 
any prior knowledge, mentioned that he was just playing around with it and noticed the amount of cells. 
It is also important to notice that Hasan is referring to his explorations of computational model as playing 
around. In this class, as the students learn the concept of carrying capacity, they also investigate how 
to figure out what carrying capacity means and how it affects the system they are studying. This 
understanding that knowledge can be constructed and verified through systematic investigations, and 
that’s how the scientific knowledge is generated is critical for developing science MCK. 

This kind of development of MCK is also evident in another part of our analysis of students’ reflections 
of what they learned when they participated in systematic exploration of the computational models in 
the curriculum. In the weekend course at a Midwestern suburb in the United States, by the end of the 
second day the teacher asked what they learned in the two days and how. After Alex mentioned all the 
disciplinary ideas they learned like genetic regulation, cell producing energy and that effecting their 
growth rates, genetic drift and natural selection, the teacher asked about how they learned these ideas, 
if they worked like scientists, if they figured out stuff like scientists. Alex continued, “Yeah, because we 
came up with some kind of theory and we built off of it.” Tanya, another student in the class added, “Like 
Alex said, we came up with theories and we worked to either prove them right or prove them wrong.” 
(Italicized part is from the transcript from video data, April-01, 2017). In the further discussion, the 
students talked about which theory they proved to be right and which theory they proved to be wrong. 
Tanya, who had strongly supported a theory (her little-m idea) that lactose is bad for cells and blue color 
for death, was quick to point out that it was the theory that was proved to be wrong. Throughout the 
discussions over the two days the teacher never mentioned that a theory is right or wrong, until the 
students presented evidence in support of it and against it, and argued about it. When the teacher asked 
if this experience was different from the other learning experiences, Alex said, “Yeah, it was a lot 
different. Because we have done this kind of stuff before with the models that are interactive. But, 
normally it’s just like follow these steps and combine those to find answer.” He was possibly referring to 
the open-ended nature of the scaffolded explorations where there was no ‘standard procedure’ to arrive 
at a ‘correct answer’, rather the investigative approach for gathering evidence in support of arguments 
was emphasized in such kind of ESM learning environments.  

In the previous part, we have discussed how students engage in learning inquiry science practices with 
an ESM-based curriculum and what they think about that engagement in scientific practices. In this part, 
we discuss how students expressed what they learned the course and how they learned it. These are 
the quotes from the students in who participated in the Computational Modeling of Genetics and 
Evolution course in India. The first quote is from Amita, who did not participate much in the discussions 
and when she did, she made some very sharp points. Amita wrote that “In the past few days, I lived my 
life like a scientist. I made observations and presented those in front of others. I learnt a lot of stuff which 
I believed till now was impossible.” Amita referred to something new that she learned which was beyond 
her imagination. Dinesh wrote that “The most important thing I learnt is to observe and learn from others. 
I also learned that it is important to give credit to other people for their contributions….” Two important 
things reflected in Dinesh’s writing are science being a collective enterprise of constructing knowledge 
and citing others to give credit for their work. Dipti mentioned that “… I got to know a new way of 
learning.” Akshay mentioned that “For me, the most important thing to learn was how to learn.” Dipti and 
Akshay’s quotes are indicative of the fact that the students thought about the process of learning. 
Vasumitra’s quote captures how he thought he learned; he wrote “The thing I learnt was designing my 
own experiments, collect the proof and make observations. I also learnt that it is fine to be wrong and it 
ultimately leads to our betterment.” 

Reflections of these students on the process of learning in this learning environment indicate that how 
they understood the process of constructing knowledge by the scientific community as well as how they 
perceived their role in this science classroom. Vasumitra’s reflection is an indication of how he thought 
that science MCK, which is about constructing knowledge by conducting experiment, collecting proofs 
and making observations, and more importantly making mistakes is critical for one’s learning in a 
science class. 



Constructionism 2018, Vilnius, Lithuania 

559 

 

Conclusions and Implications 

In this paper, we argued for the importance of fostering Mathetic Content Knowledge, knowledge of how 
to learn by engaging in discipline specific inquiry practices, in general, and specifically for science 
education. We also discussed how an ESM-based curriculum can be effective in fostering learning of 
MCK. With increased emphasis on the scientific inquiry practices in science curricula and use of model-
based inquiry learning for the same, characterization of inquiry learning with environments like ESM and 
understanding design principles for such environments is critical. We have presented two kinds of 
evidences using case-based analysis in this paper. First, we analyzed student participation in an ESM-
based curriculum and demonstrated how students use various reasoning strategies in engagement in 
an argument, how they can use evidence from ESM to support their arguments, and to construct 
knowledge. We also presented data about how students view their own engagement in inquiry science 
practices and how they view their learning with an ESM-based curriculum. We argue that systematic 
exploration of computational models using ESM learning environments are effective in developing 
science MCK. 

Acknowledgements 

We thank Connor Bain and Ümit Aslan who helped us in designing the models and curricular units. We 
also thank Aniruddh Sastry who has helped in implementation of the curricular unit in India. We are 
grateful to Educational Initiative’s ASP for helping us conduct the research in India. Authors 1 and 2 
gratefully acknowledge Learning Sciences program at Northwestern University for the funding support.  

References  

Barnett, J. (2003). Examining pedagogical content knowledge: The construct and its implications for 
science education, 87(4), 615-618. 

Blikstein, P., & Wilensky, U. (2010). MaterialSim: A constructionist agent-based modeling approach to 
engineering education. In Designs for learning environments of the future (pp. 17-60). Springer US. 

Brady, C., Holbert, N., Soylu, F., Novak, M., & Wilensky, U. (2015). Sandboxes for model-based inquiry. 
Journal of Science Education and Technology, 24(2-3), 265-286. 

Dabholkar, S., Bain, C. and Wilensky, U. (2016). NetLogo GenEvo 1 Genetic Switch model. 
http://ccl.northwestern.edu/netlogo/models/GenEvo1GeneticSwitch. Center for Connected Learning 
and Computer-Based Modeling, Northwestern University, Evanston, IL. 

Dabholkar, S. & Wilensky, U. (2016). GenEvo Systems Biology curriculum. 
http://ccl.northwestern.edu/curriculum/genevo/. Center for Connected Learning and Computer-Based 
Modeling, Northwestern University, Evanston, IL. 

Dabholkar, S., Anton, G., & Wilensky, U. (2018) (accepted) GenEvo - An emergent systems microworld 
for model-based scientific inquiry in the context of genetics and evolution. Proceedings of the 
International Conference for the Learning Sciences. 

Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized 
simulations. The Journal of the Learning Sciences, 14(1), 69-110. 

Kuhn, T. S. (2012). The structure of scientific revolutions. University of Chicago press. 

Levy, S. T., & Wilensky, U. (2008). Inventing a “mid level” to make ends meet: Reasoning between the 
levels of complexity. Cognition and Instruction, 26(1), 1-47. 

Levy, S. T., & Wilensky, U. (2011). Mining students’ inquiry actions for understanding of complex 
systems. Computers & Education, 56(3), 556-573. 

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical 
content knowledge for science teaching. In Examining pedagogical content knowledge (pp. 95-132). 
Springer, Dordrecht. 



Constructionism 2018, Vilnius, Lithuania 

560 

 

Miles, M. B., & Huberman, A. M. (1984). Qualitative data analysis: A sourcebook of new methods. In 
Qualitative data analysis: a sourcebook of new methods. Sage publications. 

National Research Council. (2013). Next generation science standards: For states, by states.  

Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing 
a technology pedagogical content knowledge. Teaching and teacher education, 21(5), 509-523. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.. 

Papert, S. (1993). The children's machine: Rethinking school in the age of the computer. BasicBooks, 
10 East 53rd St., New York, NY. 

Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling 
classrooms. International Journal of Science Education, 34(10), 1535-1554. 

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., ... & Krajcik, J. (2009). 
Developing a learning progression for scientific modeling: Making scientific modeling accessible and 
meaningful for learners. Journal of research in science teaching, 46(6), 632-654. 

Sengupta, P., & Wilensky, U. (2009). Learning electricity with NIELS: Thinking with electrons and 
thinking in levels. International Journal of Computers for Mathematical Learning, 14(1), 21-50. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
researcher, 15(2), 4-14. 

Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based 
inquiry. How students learn, 515-565. 

Wilensky, U. (1999). GasLab NetLogo [computer software]. Evanston, IL: Center for Connected 
Learning and Computer-Based Modeling, Northwestern University. http://ccl.northwestern.edu/netlogo. 

Wilensky, U. (1999). GasLab—An extensible modeling toolkit for connecting micro-and macro-
properties of gases. In Modeling and simulation in science and mathematics education (pp. 151-178). 
Springer, New York, NY. 

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through 
constructing and testing computational theories—an embodied modeling approach. Cognition and 
instruction, 24(2), 171-209. 

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense 
of the world. Journal of Science Education and technology, 8(1), 3-19. 

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry 
as a new paradigm of preference for school science investigations. Science education, 92(5), 941-967. 

Van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers' pedagogical content 
knowledge. Journal of research in Science Teaching, 35(6), 673-695. 

  

http://ccl.northwestern.edu/netlogo


Constructionism 2018, Vilnius, Lithuania 

561 

 

Making Together: Cultivating Community of Practice 
in an All-Girl Constructionist Learning Environment 

Caitlin Davey, csd2126@tc.columbia.edu 
Teachers College, Columbia University USA 

Sawaros Thanapornsangsuth, st2839@tc.columbia.edu 
Teachers College, Columbia University USA 

Nathan Holbert, holbert@tc.columbia.edu 
Teachers College, Columbia University USA 

Abstract  
This practice paper investigates instructional practices that support relationships among young female 
makers. It summarizes a design-based research study where a group of all-female makers constructed 
toys for younger students in their immediate school community. Makers supported one another through 
contributing ideas, building together, sharing expertise, and providing helpful encouragement. The 
finding shows that the classroom practices extended beyond physical construction to include playful 
interactions amongst makers such as: switching projects, working together outside class time, and a 
myriad of other activities both related and unrelated to making. Through the process of making, they 
developed individual expertise that contributed to the sharing of knowledge within their classroom 
community. Drawing on literature from constructionist design paradigms and community of practices, 
data from this Making and Engineering class describes an emergent community of makers. Additionally, 
this paper highlights the value of makers creating personally and socially meaningful projects in 
collaboration with others. Finally, we describe the flexible and playful environment of the Making and 
Engineering classroom that contributed to how makers shape their shared practices.  

Keywords 
constructionism; community of practice; maker education; girls in making  

Introduction 

Makerspaces are venues where individuals gather around a shared interest in making to learn, create, 
and share expertise. Sharing of expertise has been identified as a key feature of these spaces that 
helps to induct new members and expand the making community (Halverson & Sheridan, 2014). This 
practice paper aims to illustrate the importance of near-peer communities of practice (Lave, 1991) within 
an all-female makerspace as research on collaboration in makerspaces has thus far focused on inter-
generational or adult learners who develop their expertise to teach or mentor younger makers (Blikstein, 
2013; Halverson & Sheridan, 2014; Resnick & Rusk, 1999; Holbert, 2016). Our study investigates the 
collaboration between elementary-aged makers in a Making and Engineering class. This paper 
examines how young makers who are newly introduced to Making and Engineering, support one 
another during the making process and gain individual expertise through their collaborations. In 
examining this community of young makers our paper aims to answer the following questions:   

 How does working alongside peers influence the process of making? 

 How do young female makers adopt and develop specialties when assisting one another during 
making activities? 

 How did the Making and Engineering classroom structure influence the practices developed by a 
community of young female makers?  

In making artifacts alongside their peers, an emergent set of practices developed among the makers. 
Several cases will be analyzed to examine evidence of peer-support indicative of a community of 
practice within the constructionist classroom project. The values of this community of practice uniquely 



Constructionism 2018, Vilnius, Lithuania 

562 

 

supported the peer-to-peer and peers-to-client relationships of this instructional design. Sharing newly 
formed expertise, collaborating, and providing supportive feedback were facets of their making practice. 
Through assisting others, makers reinforced their learning of essential engineering and design skills. 

This paper presents cases of students that exemplify the community of practice formed within the all-
girl maker classroom. These cases emerged from field note data analysis and one-on-one interviews.  

Literature Review 

Constructionism: “In the world” tangible and sharable knowledge 

The activities employed in the Making and Engineering class draw on the constructionist design 
paradigm. Papert’s constructionism extends Piaget’s constructivism by proposing that the construction 
of knowledge “in your head” happens best when constructing tangible and shareable objects “in the 
world” (Papert & Harel, 1991; Papert, 1993). Constructionism is a “framework for action” (DiSessa & 
Cobb, 2004,) situated and pragmatic (Ackermann, 2001; Noss, 2010). In constructionist design learners 
build public artifacts that are personally and socially meaningful. This construction process leverages 
diverse ways of thinking, knowing, and practicing (Turkle & Papert, 1990) and situated learning so it is 
about developing concrete relationships with objects and ideas (Ackermann, 2001; Wilensky, 1991). 

The creation of an artifact, which could be either physical or virtual, allows learners to externalize their 
mental models and iterate on their thinking throughout the making process. Additionally, it enables 
learners to see and critique one another’s work (Papert & Harel, 1991). Resnick (2004) highlights the 
value of learners playfully creating personally-meaningful projects in collaboration with their peers. He 
believes that learning should be a social activity where learners share ideas, collaborate on projects, 
and build on others’ work. In their “Instructional Software Design Project” research, Kafai and Harel 
(1991) found that by ensuring all students in a class worked towards the same goal, in this case creating 
math games to teach younger students about fractions, the students were able to support each other 
as they faced similar problems, shared ideas, helped others and discussed technical problems. Some 
students in this study choose to work together by discussing problems with a partner or working together 
as a team. Even those who chose to work alone, sought help or inspiration from others’ for their work. 
Working on the same project goal is an engine to drive constructionism and communities of practice. 
However, the environment needs to be designed to encourage and support learners’ collaboration and 
sharing. Learners learn better when they are immersed in an environment and community that supports 
their interests (Papert, 1980). Access to other creators can be especially important for deepening 
learner’s expertise through receiving feedback, brainstorming ideas, working on projects together, and 
finding encouragement (Ito et al., 2009). 

Community of practice 

Learning in a community of practice is inherently social (Lave & Wenger, 1991). “Communities of 
practice sprout everywhere, in the classroom as well as on the playground, officially or in the cracks” 
(Wenger, 1998, p.6). Instead of didactic instruction from a teacher to a learner, this viewpoint describes 
a diverse set of essential actors and forms of participation. Lave (1991) explains that structure and 
experience reinforce each other such that they shape the relations among persons acting, settings, 
situations, and systems of activity. Near-peers, members of a community matched in ability, are 
identified by Lave and Wenger (1991) as important in the circulation of knowledgeable skill.   

Just as there is a rich field of actors, there may be many different ways of participating in a community 
of practice. As members develop mastery through peripheral participation, they move into more central 
modes of participation within the community. However, there may be no such thing as a central role. 
The notion of legitimate peripheral participation outlined by Lave and Wenger (1991) is used to suggest 
that there are “multiple, varied, more- or less-engaged and inclusive ways of being located in the fields 
of participation” defined by a community (p. 36). Developing an identity gives meaning to shared skills 
which, are then incorporated into identities. Forming an identity as a member of a community and 
developing skills are mutually reinforcing.   

Participation is central to learning in a community of practice. Learners absorb and become absorbed 
in the culture of practice, which increasingly provides them with occasions to make the culture of practice 



Constructionism 2018, Vilnius, Lithuania 

563 

 

their own (Lave & Wenger, 1991). As described by Halverson and Sheridan, “communities of practice 
emerge around makerspaces as members co-participate in a range of activities” that go beyond making 
to unrelated socializing (Halverson & Sheridan, 2014, p. 502). Makerspaces can be understood as 
communities of practice where making activities are a part of a larger in-person, or online, community. 

Methodology  

Population and Site 

This practice paper is part of a larger design-based research project called “Bots for Tots” which aims 
to increase diversity in maker and engineering design activities (Holbert, 2016). In investigating girls’ 
participation in maker activities, we draw on data from the second iteration of the project, where the 
population is solely female participants. This iteration of Bots for Tots took place at an all-girls private 
school in a suburban area in the North-Eastern United States. 41 fourth-grade makers (aged 9-11) from 
two classes (20-21 students per class) participated in the study as a part of their Making and Engineering 
class, a bi-weekly class which ran 45-minutes per session. Throughout the academic year, students 
participated in 17 sessions in total as described in Table 1.  

The school has a long tradition of pairing fourth grade “Big Sisters” with first grade “Little Sisters” under 
its Big Sister/Little Sister mentorship program. For the first time, as part of the Bots for Tots project, the 
fourth grade Making and Engineering class had the explicit goal of designing and building “dream toys” 
for their first grade Little Sisters. The class began with two sessions of making with a 2D- to 3D-objects 
with cardboard in order to familiarize them with tools and materials in the lab as well as preparing them 
up for creative activities ahead. After the two cardboard sessions, the fourth-grade makers interviewed 
their Little Sisters using the “My Client Profile” worksheet. During this interview makers questioned their 
Little Sisters about toys by asking: What kind of toys do you like? If you could imagine any toy, what 
would it look like and how would you play with it? Makers then used the completed My Client Profile to 
discuss and brainstorm toy ideas with their classmates. After three sessions of prototyping, makers met 
their Little Sisters again to receive initial feedback on their prototypes before they began working on 
their final toy construction. The makers then spent seven sessions building and completing their final 
designs.  Finally, the makers delivered their newly constructed toys to their Little Sisters and had a 
playdate where the girls discussed the toy’s design and construction while playing together. 

Table 1. Structure of the Making and Engineering class. 

Name of activity # of sessions the activity 

occurs 

Major activities 

Make 2D to 3D cardboard 

animals 

3 Makers drew animals they selected on a piece of paper and used 

cardboard to make it 3-D. 

Interview with Little Sister 1 Interviewed first-graders about their dream toys 

Brainstorm with small group 2 Shared information. Each maker gained from their Little Sister 

and asked for classmates’ input about their design ideas. 

Prototype 2 Made prototypes 

Meet Little Sister for prototype 

feedback 

1 Showed Little Sister their prototype and asked for feedback 

Complete final toy design 7 Revisited the feedback from Little Sister and planned for 

improvements. 

Finalized toy construction 

Toy delivery and play date 1 Met Little Sister for toy delivery, explained the design of the toy, 

and played together. 

 



Constructionism 2018, Vilnius, Lithuania 

564 

 

Data Collection 

All names used in this paper are pseudonyms chosen by the makers.  

Interview: While all 41 makers participated in the study, 12 were randomly selected for one-on-one 
interviews. We interviewed the makers at the beginning of the year, before the Making and Engineering 
class had begun to determine makers’ experience with technology, construction, and crafts as well as 
knowledge of relevant Making and Engineering concepts or skills. Interviews lasted approximately 40 
minutes per participant. We interviewed the same makers again at the end of the year after the class 
had concluded. In the post interview, makers were asked about their experience working with their 
friends and making toys for their Little Sister. Our goal was to understand how making with others 
influenced the overall making process and how makers may have developed and adopted specialties 

when collaborating. All interviews were initially video-recorded then, transcribed first by both the authors 
and then by an independent service.  

Field notes: Detailed field notes were taken during observations of the Making and Engineering class. 
These observations focused on how the fourth-grade girls interacted with their classmates in the Making 
and Engineering learning environment (offering help, sharing materials, developing the sense of 
expertise, providing each other feedback and support).   

Artifacts: A variety of maker artifacts were produced throughout this project. These include worksheets 
(My Client Profile worksheet, a worksheet to record feedback from their Little Sisters, and others), 
photographs of participants working on their projects, as well as photographs of their toy designs 
throughout the construction process. These artifacts provided a broad picture of each participant’s work, 
such as whether they worked independently or alone, as well as their level of expertise both in technique 
and constructed toy. All artifacts were de-identified. 

Results 

Idea Generation 

Idea Sharing 

After conducting the initial client interviews with their Little Sisters, the teacher had makers gather in 
small groups to brainstorm ideas. Linda noted under “Concerns” on her “My Client Profile” worksheet 
that her Little Sister was, “hesitant about answering making me think that toys are not her favorite and 
she said that she likes toys that draw.” Three of her peers provided suggestions about how to design a 
toy that would address these concerns. One girl tried to convince Linda to make a huge stuffed crayon 
so it would be, “soft like a fuzz ball.” Another, added it could be a double-sided marker. Building on this 
idea, another maker told Linda the marker should have four colors. While Linda wasn’t initially interested 
in a multi-sided marker, at the end of the class session on her post-it note summary she wrote, “Double 
sided marker. Put a squishy thing on top. Four sided marker/crayon and put squishy things on the 
handle.”   

Co-constructing 

As there were more fourth-grade Big Sisters than first-grade Little Sisters, four makers had to share a 
Little Sister with another maker. Fourth-grade makers Susie and Paula decided to make a toy together 
for their Little Sister, while Betty and Chloe made two separate toys.  

Susie and Paula interviewed their Little Sister together and wrote similar findings on both of their “My 
Client Profile” worksheets. For example, under the heading “Likes” they wrote, “yellow, blue, medium, 
real animals, panda, cheetah, hard” and under “Concerns,” they wrote, “don’t break, no spider, and 
colorful”. She also made the observation that their Little Sister “likes dolls with clothes.” In order to assist 
the makers with planning their projects, the instructor made a “Brainstorming” worksheet as a helpful 
guide. The makers were asked to answer the following questions: “I want to explore:” and “My sketch 
for (Little Sister’s name)” Susie and Paula both crossed out the word “my” and “I” on their worksheets 
and changed those words to read, “we” and, “our” as shown in Figure 1.  They summarized their shared 
design plan as making a “wooden or plastic doll with movable parts and brown hair.” They worked 
together for the duration of the school year and consistently divided their making efforts. 



Constructionism 2018, Vilnius, Lithuania 

565 

 

 

Figure 1: Susie and Paula’s Brainstorming worksheet. 

In contrast, Betty and Chloe did not work together. In the post-interview Betty reflected back on her 
making process. She described how she didn’t make the toy her Little Sister asked for. Betty said, “I 
shared my Little Sister with my friend Chloe. I was trying to make her a stuffed bunny…I feel like we 
should have worked together. It would have turned out a lot better...yeah.” Betty described that as the 
making process progressed she realized, “that it was kinda dumb,” not working together. 

Making Process 

Overcoming challenges 

Betty intended her dollhouse to have two levels. But, she cut one piece of wood slightly smaller than 
the others so when she glued her house together it was slanted. She looked unhappy with her design 
so her classmate provided encouragement by saying that it looked “like a cool modern loft house!” 
Another agreed and said, Betty could decorate her dollhouse as a fun, whimsical witch house. However, 
Betty still appeared unsatisfied. She decided to take the second floor out and redesign her roof. Though 
this process delayed her work, Betty offered continued help to her friend Maya. 

Maya’s project was a stuffed animal and Betty said she “helped Maya a couple of times because [Maya] 
just didn’t know how to sew.” Betty taught Maya to hand sew because there was a queue to use the 
sewing machine. Betty humorously talked about her experience supporting Maya, “I just kind of showed 
her how to like sew, and she’s like, ‘Oh.’ And then she tried to use the sewing machine and it just got 
all bunched up. I’m like, ‘Okay Maya, you go hot glue this onto my house and I will cut all this off.” Maya 
and Betty worked on each other’s projects to finish their toys in time. 

Sharing expertise 

In the post-interview Hailey said, “I asked my mom to teach me the sewing machine at my house so 
that helped me a bit when I sat down at the sewing machine there [referring to the one in the classroom], 
I certainly know how to use it, to thread it and stuff so that’s a big help.” Hailey described the best part 
of the class as helping others saying, “you got to help other people….like...oh can you help me thread 
the needle?,” referring back to the sewing machine needle. She added that “[helping others] felt really 
good.” Hailey helped others sew by providing procedural cues such as, “you gotta pin it. You’re going 
to start here...leave a place open to stuff,” and to another maker, “pick the guide up. Pick the needle up. 
Rotate.” In one instance, Madison wanted to begin sewing her project. She asked Hailey, “can I sew it 
now?” Hailey responded, “can I just get you started?” Madison replied, “can I do it? I’m kind of a control 
freak.” Hailey then said, “trust me, I do it too.” After more prompting, Hailey stepped back from the 
machine. For Hailey’s own project she sewed a pillow for her Little Sister. To test it, Hailey placed the 
pillow on the ground and rested her head on it. She then solicited feedback on her pillow design by 
inviting a friend over to also rest their head.  

Wrapping up 



Constructionism 2018, Vilnius, Lithuania 

566 

 

Facing time constraints 

Towards the end of the school year, Margie had finished her toy early, a purple stuffed tennis ball. In 
the post-interview Margie said that her friend, Cathy suggested that she make a tennis court to go with 
the tennis ball. While Margie used her extra time to supplement her toy, Ellie walked around the class 
and shouted, “who needs help?”. LillyJane mentioned Ellie in her interview. She said that she received 
help from Ellie and that if she had extra time, she would have offered similar assistance to her peers, “If 
I was finished with mine, people were coming around and helping people like Ellie. She helped me. But 
like I didn’t get, because I was doing my stuff, and I didn’t have enough time to help other people.” 
Hailey also mentioned Ellie as a person she went to get confirmation from on her ideas.  

Erica had her friends help her by finding materials and painting her doll house because it “was pretty 
big”. Similarly, Betty was making a dollhouse and needed help making items to furnish it. She told us 
during the interview that she saw Chloe “just wandering around doing nothing, so it was like, ‘Can you 
help me make the chairs?’” Holly was also behind in finishing her toy doll during the final class period 
and enlisted her classmate Anna to help her make a skirt and hair for the doll. When the instructor told 
the class to clean up, Holly asked Anna if she could visit her house over the weekend to help her with 
the project. 

Discussion 

Making with others 

Working with others influenced the makers process of constructing toys for their Little Sisters. The 
Making and Engineering class created a community that involved making, brainstorming, designing, 
helping, valuing others’ ideas, and sharing their projects. When Linda was struggling to generate an 
idea that responded to her Little Sister’s toy preferences, she asked for input from her peers. Linda 
incorporated all of their ideas to create her soft three-sided marker project. Valuing the ideas of others 
emerged as a characteristic of this community. Makers reified their practices through the toys they 
created for their Little Sisters (Wenger, 1998). Though Linda was responsible for her own project, her 
work reflects the contributions of her four fellow makers.   

Making tangible objects acted as a medium for the makers to communicate their abstract ideas to each 
other. It became an external representation of the makers’ ideas that enabled them to play and to gain 
a better understanding of possibilities and limitations (Resnick, 2013). Sharing the same Little Sister, 
Susie and Paula needed a common vision to construct together effectively. From the beginning of the 
process, they compared their “My Client Profile” worksheets to generate toy ideas. On their 
“Brainstorming” worksheet, they both sketched out a picture of a girl wearing an apron with a paint 
palette as shown in Figure 2. This sketch can be understood as a mutual concrete representation of 
their project. While they individually sawed each wooden piece, they would frequently piece them 
together to align their designs. The artifact they shared allowed Susie and Paula to communicate more 
clearly about their progress towards their shared vision. 

 

Figure 2: Susie and Paula were sawing wood together to make different parts of their doll. 

 



Constructionism 2018, Vilnius, Lithuania 

567 

 

Creating an object allowed learners to explore and expand their ideas but also to see their thinking and 
provide feedback on a visible artifact (Peppler & Hall, 2016). When Betty was disappointed by her 
slanted two-level dollhouse and wanted to quickly make a pillow instead. She received feedback and 
encouragement from her peers, that the house looked “cool” and “whimsical,” after this reassurance 
she decided not to start a new project, but figured out a way to improve her existing one. Just as “having 
a tool to perform an activity changes the nature of the activity,” so did having objects to share their ideas 
around change the makers’ process of making and helping one another (Wenger, 1998, p. 59). Betty 
was able to refer to her project and how it differed from her intended design. But also, her classmates 
supported her by reframing her project, providing encouragement, and easing her disappointment so 
that she was able to progress past this mistake her project.  

Developing expertise 

As the makers progressed in their projects they began to develop specialized areas of expertise. In 
doing so, some members such as Hailey can be understood as moving into more central roles within 
their community of practice (Lave & Wenger, 1991). Though makers were not assigned stations to 
oversee, Hailey took it upon herself to improve her sewing skills by asking her mother to teach her at 
home. She used her expertise to provide support to her peers and assist them in developing their own 
abilities. Hailey is shown assisting her peers in Figure 3. The makers can be understood as displaying 
different learning trajectories or modes of participation, as not all makers developed expertise in one 
domain. Hailey’s proficiency was developed to support a core practice that emerged within this 
community, supporting others. As expressed by Hailey, “[helping others] felt really good.” Her 
knowledge of sewing allowed her to support others and made her feel proud.  

 

Figure 3: Hailey (first from the left) helping her friends at the sewing machine station. 

 

Similarly, Ellie positioned herself as a creative contributor to the classroom community by walking 
around the room and providing suggestions to her classmates. Ellie’s project, a giant stuffed purple 
snake, was highly praised by her friends and teachers. Ellie’s skills at making mutually reinforced her 
identity as a proficient maker that she adopted within the Making and Engineering classroom (Lave & 
Wenger, 1991). She expressed her expertise, by going around the classroom and providing help to her 
friends who were struggling with their own projects. For Ellie, being an expert wasn’t simply about having 
specific skill, soft toys, but being able to be a generalist who could assist anyone in the classroom. 

Making and Engineering classroom 

Though the makers were designing for others, by working alongside each other their construction 
became more personally meaningful. An important instructional decision within the Making and 
Engineering class was to allow makers the freedom to move around and express themselves. The 
program also ran throughout the academic year. This allowed makers to have enough time to 
experiment and tinker with multiple new ideas and iterate on their designs (Resnick, 2013). The makers 
practice within this space involved activities that extended beyond making. Halverson and Sheridan 
(2014) described communities of practice in makerspaces as involving activities that moved beyond 
making to include playing board games, caring for resident pets, and taking walks together. Similarly, 



Constructionism 2018, Vilnius, Lithuania 

568 

 

the much younger all-female makers in this Making and Engineering school-based class were able (and 
allowed) to talk, sing, and move around the classroom as they worked. The makers expressed their 
enjoyment of making together.  When Hailey wanted to test the pillow she had created she lied down 
on the floor and invited a friend to rest their head next to her to try out the pillow as well. The classroom 
environment allowed makers to more freely interact with their peers, whether it was inviting a friend to 
rest their head on your pillow or by singing a song together.  

Despite the open-ended instructional approach, many students experienced time constraints that 
impacted their making. As Lave (1991) explains structures and practices reinforce each other to shape 
the relations among actors, settings, and systems of activity. Structures contributing to the formation of 
this community can be understood as the single gender school, the “Little Sister” program, and the tight 
time restrictions of each classroom period. When Maya couldn’t complete her stuffed animal because 
she didn’t know how to use the sewing machine she sought help from a friend. Her friend, Betty tried to 
teach her but she still had difficulties operating the machine in Figure 4. Betty hadn’t finished her own 
project yet despite wanting to assist her friend. They switched their projects so their abilities could match 
the remaining tasks and they both could work more efficiently. Another set of makers, Anna and Holly, 
indicated that they would continue working together outside the classroom. Holly invited Anna to her 
house on the weekend to help her finish her toy.  Despite time-constraints, the flexible working 
environment allowed these makers to creatively address their problems whether by continuing to work 
together outside of class or by dividing up tasks across projects. 

 

Figure 4: Betty teaching Maya how to use the sewing machine. 

Conclusion 

Through our analysis of young female makers who formed an informal community of practice, we 
provide insights into what learning looks like in a school-based constructionist learning environment. 
Working with others influenced the makers processes of constructing toys for their Little Sisters. As 
clearly demonstrated in the collaborative efforts of Susie and Paula, making changed from being an “I” 
and “my” process to a “we” and an “our” one. As the makers created their projects, they developed 
different areas of expertise. Whether specific knowledge or general making skills, makers used their 
abilities to complete their own projects as well as assist others. The classroom practices extended 
beyond physical construction to include playful interactions amongst makers such as: singing, resting 
on the floor, switching projects, working together outside class time, and a myriad of other activities both 
related and unrelated to making. By looking into how young girls make and interact in a constructionist 
learning environment, we can better facilitate and cultivate the learning community where learners help 
one another, share their knowledge, and create meaningful projects together.  

 



Constructionism 2018, Vilnius, Lithuania 

569 

 

References  

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the  

difference. Future of learning group publication, 5(3), 438. 

Blikstein, P. (2013). Digital fabrication and ‘making’ in education: The democratization of  

invention. FabLabs: Of machines, makers and inventors, 4. 

DiSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. 
The journal of the learning sciences, 13(1), 77-103.  

Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard Educational 
Review, 84(4), 495-504. 

Holbert, N. (2016). Leveraging cultural values and “ways of knowing” to increase diversity in maker 
activities. International journal of child-computer interaction, 9, 33-39. 

Ito, M., Baumer, S., Bittanti, M., Cody, R., Stephenson, B. H., Horst, H. A., ... & Perkel, D. (2009). 
Hanging out, messing around, and geeking out: Kids living and learning with new media. MIT press. 

Kafai, Y., & Harel, I. (1991). Learning through design and teaching: Exploring social and  collaborative 
aspects of constructionism. 

Lave, J. (1991). Situating learning in communities of practice.(pp. 63-82). 

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge 
university press. 

Noss, R. (2010). Reconstructing Constructionism. In J. E. Clayson & I. Kalas (Eds.), Constructionist 
approaches to creative learning, thinking and education: Lessons for the 21st century. Paris, France. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc. 

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1—11. 

Papert, S. (1993). The children's machine: Rethinking school in the age of the computer. Basic books. 

Peppler, K., & Hall, T. (2016). The make-to-learn youth contest: Gaining youth perspectives on learning 
through making. Makeology: Makerspaces as learning environments, 1, 141-157. 

Resnick, M., & Rusk, N. (1999). 11. The Computer Clubhouse: Technological Fluency in the Inner City. 
High technology and low-income communities: prospects for the positive use of advanced information 
technology. 

Resnick, M. (2013). Lifelong Kindergarten. Cultures of Creativity. LEGO Foundation. 

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the computer culture. 
Signs: Journal of women in culture and society, 16(1), 128-157. 

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge university 
press. 

Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for  

mathematics education. Epistemology and Learning Group, MIT Media Laboratory. 

 

  



Constructionism 2018, Vilnius, Lithuania 

570 

 

Assessment of Modeling Projects in Informatics 
Class  

Natasa Grgurina, n.grgurina@rug.nl  
University of Groningen, Netherlands 

Erik Barendsen, e.barendsen@cs.ru.nl  
Radboud and Open University, Netherlands 

Cor Suhre, c.j.m.suhre@rug.nl  
University of Groningen, Netherlands 

Klaas van Veen, klaas.van.veen@rug.nl  
University of Groningen, Netherlands 

Bert Zwaneveld, zwane013@planet.nl  
Open University, Netherlands 

Abstract 
The introduction of the new Informatics curriculum in the Netherlands in 2019 raises the need for new 
teaching material that includes practical assignments and guidelines for their assessment. As a part of 
our research project on teaching Computational Science (modeling and simulation), we participate in 
these efforts and developed a curriculum intervention and an assessment instrument consisting of a 
practical assignment and grading rubrics to assess student’s level of understanding. The rubrics we 
developed can be used both for formative and summative assessment. In this paper we describe the 
design of this assessment instrument and indicate further research directions focusing on validation of 
this instrument.  

Keywords 
modeling and simulation; NetLogo; assessment; SOLO-taxonomy 

Introduction 

In the Netherlands, where informatics is an elective subject in grades 10 and 11 of the senior general 
secondary education spanning grades 7 through 11 (in Dutch: HAVO) and in grades 10 through 12 of 
the pre-university education spanning grades 7 through 12 (in Dutch: VWO), the new 2019 informatics 
curriculum recognizes the importance of modeling and includes an elective theme comprised of 
modeling and simulation, together called Computational Science. It is described by the high-level 
learning objectives: “Modeling: The candidate is able to model aspects of a different scientific discipline 
in computational terms” and “Simulation: The candidate is able to construct models and simulations, 
and use these for the research of phenomena in that other science field.” (Barendsen & Tolboom, 2016). 
The curriculum does not provide further details about these objectives, instruction or assessment. In 
line with the Dutch tradition, this is left to educators and authors of teaching materials. The elaboration 
of these learning objectives, the development of teaching materials, assessment tools and teacher 
training courses are already taking place and we both participate in these endeavors and monitor the 
developments. 

This study is a part of a larger research project on teaching Computational Science in the context of 
informatics in Dutch secondary education, investigating pedagogical aspects and teachers’ pedagogical 
content knowledge (PCK) about modeling. (For clarity, in this paper the terms modeling, simulation 
modeling and computational science all refer to the learning objective computational science.) Following 
Magnusson et al. (Magnusson, Krajcik, & Borko, 1999), we distinguish four elements of content-specific 
pedagogy: (M1) goals and objectives, (M2) students’ understanding and difficulties, (M3) instructional 
strategies, and (M4) assessment. Previously, we refined the CSTA definition of computational thinking 

mailto:e.barendsen@cs.ru.nl


Constructionism 2018, Vilnius, Lithuania 

571 

 

(CT) (Grgurina, Barendsen, Zwaneveld, van de Grift, & Stoker, 2013), made initial explorations of 
teachers’ PCK (Grgurina, Barendsen, Zwaneveld, van Veen, & Stoker, 2014a; Grgurina, Barendsen, 
Zwaneveld, van Veen, & Stoker, 2014b) and of the computational modeling process (Grgurina, 
Barendsen, van Veen, Suhre, & Zwaneveld, 2015), obtained an operational description of the intended 
learning outcomes (ILO) of the learning objective Computational science — thus focusing on 
Magnusson’s element M1, observed students working on modeling tasks — focusing on Magnusson’s 
element M2, and established what data sources were suitable for assessment — Magnusson’s element 
M4  (Grgurina, Barendsen, Zwaneveld, van Veen, & Suhre, 2016), and finally, investigated teachers’ 
initial pedagogical content knowledge on modeling and simulation (Grgurina, Barendsen, Suhre, van 
Veen, & Zwaneveld, 2017). In our subsequent study, we focus on monitoring the levels of understanding 
in the learning outcomes of students engaging in modeling projects - Magnusson’s element M4 - and 
address the following research question: What are the characteristics of the assessment instrument for 
assessment of the intended learning outcome for computational science? In this paper, we describe the 
design of this assessment instrument. The results of the entire study will be reported elsewhere. 

Background and Related Work 

Computational Thinking: Modeling 
Formulating problems in a way that enables us to use a computer to solve them and representing data 
through abstractions such as models and simulations are integral parts of computational thinking (CT) 
(CSTA Computational Thinking Task Force, 2011). With the arrival of computers into schools, new 
venues are created to aid students’ learning in various disciplines through the use of computer models 
(Blikstein & Wilensky, 2009; Van Overveld, Borghuis, & van Berkum, 2015). Wilensky argues, 
“Computational modeling has the potential to give students means of expressing and testing 
explanations of phenomena both in the natural and social worlds” (2014), as do Caspersen and Nowack 
(2013). Indeed, modeling plays a significant role in the development and learning of science (Justi & 
Gilbert, 2002) and informatics equips the students to actively engage in learning science by providing 
tools and techniques to engage in modeling, thus enabling them to provide meaning to the learning both 
of the discipline at hand (Gilbert, 2006) and informatics. In the Informatics curriculum, for the intended 
learning outcomes of the learning objective Computational science, in one of our previous studies we 
developed an operational description that describes the modeling cycle for simulation modeling through 
its elements purpose, research, abstraction, formulation, requirements/specification, implementation, 
verification/validation, experiment, analysis, and reflection (Grgurina et al., 2016).  

Assessment  
Brennan and Resnick focused on assessment of the development of CT during learning in informal 
settings and developed a CT framework distinguishing three dimensions: computational concepts 
describing the concepts designers employ as they program, namely “sequences, loops, parallelism, 
events, conditionals, operators, and data”; computational practices describing the practices designers 
develop as they program, namely “being incremental and iterative, testing and debugging, reusing and 
remixing, and abstracting and modularizing”, and computational perspectives describing the 
perspectives designers form about the world around them and about themselves, namely “expressing, 
connecting and questioning”. (Brennan & Resnick, 2012). Zhong et al. brought these three dimensions 
of CT into the classroom when designing an assessment framework for elementary school students and 
they redefined them as follows: computational concepts as ”objects, instructions, sequences, loops, 
parallelism, events, conditionals, operators, and data”; computational practices as “planning and 
designing, abstracting and modeling, modularizing and reusing, iterative and optimizing, and testing and 
debugging”, and computational perspectives as “creative and expressing, communicating and 
collaborating, and understanding and questioning” (Zhong, Wang, Chen, & Li, 2016). Using this 
framework, Lye and Koh analyzed 27 intervention studies in K-12 aimed at the development of 
computational thinking and found that the majority focuses on computational concepts and only six on 
computational practices. In order to promote focus on computational practices and computational 
perspectives in a K-12 classroom, they suggest an instructional approach providing “a constructionism-
based problem-solving learning environment, with information processing, scaffolding and reflection 



Constructionism 2018, Vilnius, Lithuania 

572 

 

activities.” (Lye & Koh, 2014) Since assessments can provide learning opportunities, Brennan and 
Resnick offer six suggestions for assessing computational thinking via programming, among others to 
make assessment useful to learners, to incorporate creating and examining artifacts, and to have the 
designer illuminate the whole process. (Brennan & Resnick, 2012).  

These views are corroborated by the findings in our prior study on informatics teachers’ pedagogical 
content knowledge (PCK) of modeling and simulation, where we learned that the interviewed teachers 
mostly suggest hands-on approach to learning and that the preferred assessment form for most of them 
would be a practical assignment lasting several weeks, where student groups would construct models 
and use them to run simulations and conduct research while extensively documenting the whole 
process. At the same time, we observed a great diversity in the assessment criteria teachers mentioned, 
yet very few corresponding quality indicators used to judge to what extent these criteria are met (Grgurina 

et al., 2017). 

In the eyes of the students, the assessment defines the actual curriculum, according to Biggs and Tang, 
who advocate a criterion-referenced system where the objectives are imbedded in the assessment 
tasks. In their constructive alignment network, the curriculum is stated in the form of clear intended 
learning objectives (ILO) specifying the required level of understanding, the teaching methods engage 
students in doing things nominated by the ILO’s and the assessment tasks address these ILO’s. The 
learning outcomes can be classified using the Structure of the Observed Learning Outcome (SOLO) 
which describe the learning progress through five levels of understanding. The first three levels — 
prestructural, unistructural and multistructural — are considered to be quantitative in the sense that 
prestructural indicates missing the point, unistructural means meeting only a part of the task and 
multistructural shows  a further quantitative increase in what is grasped: “knowing more”. Relational, on 
the other hand, indicates a qualitative change indicating conceptual restructuring of the components — 
“deepening understanding”, and extended abstract takes the argument into a new dimension: (Biggs & 
Tang, 2011). Meerbaum-Salant et al. interpreted SOLO as five ordered categories: 

 Prestructural: Mentioning or using unconnected and unorganized bits of information which make no sense.  
 Unistructural: A local perspective – mainly one item or aspect is used or emphasized. Others are missed, and 

no significant connections are made.  
 Multistructural: A multi-point perspective – several relevant items or aspects are used or acknowledged, 

but significant connections are missed and a whole picture is not yet formed.  
 Relational: A holistic perspective – meta-connections are grasped. The significance of parts with respect to 

the whole is demonstrated and appreciated.  
 Extended abstract: Generalization and transfer – the context is seen as one instance of a general case. 

According to them, while the strength of the SOLO taxonomy lies in the fact that it offers a holistic, rather 
than a local perspective, “using [it] for various types of activities, simultaneously, is not straightforward”, 
so they combined the Bloom’s taxonomy and the three intermediate categories of the SOLO taxonomy 
in order to assess how novice programmers learned programming with Scratch (Meerbaum-Salant, 
Armoni, & Ben-Ari, 2013). Whalley et al. noted that previous research had indicated difficulties in 
mapping from student code to the SOLO taxonomy “since the mapping process seems very context 
bound and question specific”. To alleviate this problem, they developed a mapping framework where 
first, the salient elements are identified at syntactic level of the code; subsequently, basic replicable and 
discernible features such as redundancy, efficiency, generalizability and integration are abstracted from 
the code itself, and finally, SOLO mapping takes place to the five SOLO categories they suggest for 
code writing solutions (Whalley, Clear, Robbins, & Thompson, 2011). 

The issue of assessing the learning of the students engaged in larger programming projects attracts attention as 

well. Casto and Fisler explored how to track program design skills through the entire CS1 course and suggest a 

multi-strand SOLO taxonomy, thus corroborating the idea that using SOLO taxonomy simultaneously for various 

types of activities is not straightforward. They suggest a multi-strand SOLO-taxonomy without the extended 

abstract level, since none of the students in their study reached that level (Castro & Fisler, 2017). A multi-strand 

SOLO taxonomy is in line with the idea that one assessment task might address several ILOs and vice versa, one 

ILO might be addressed by several assessment tasks (Biggs & Tang, 2011). Assignments for complex tasks 

encompassing diverse ILOs — such as going through a modeling cycle by formulating a problem, pinpointing the 



Constructionism 2018, Vilnius, Lithuania 

573 

 

research question, designing a model and using it to answer the research question — warrant the elaboration of 

criteria defining performance for each of the ILOs involved. 

Assessment instrument 

Based on these findings, we developed constructionist teaching material about agent-based modeling 
with NetLogo, meant for the informatics students in the 11th and 12th grades who are preferably no 
novice programmers but rather somewhat experienced, probably in other programming languages. The 
teaching material covers all the aspects of the ILO’s of Computational science we identified earlier 
(Grgurina et al., 2016), and focuses not only on computational concepts such as programming to 
implement the model, but also on computational practices such as the validation of the model and 
computational perspectives such as formulating the research question to be answered through the use 
of the model. Together with this teaching material, we also developed an assessment instrument on 
which we focus here. 

Following suggestions for the rubrics construction by Wolf and Stevens (2007), from the modeling cycle 
we first identified the criteria that defined performance as: stating the case and the research question, 
designing the model, implementation, validation, experiment, analysis, answering the research 
question, reflection, and additionally, logbooks. Subsequently, we designed an assessment instrument 
consisting of a practical assignment that provides several cases and research questions for students to 
choose from, a detailed description of the modeling process they need to engage in, and a 
corresponding rubric based on SOLO taxonomy with unequally weighted criteria defining performance. 
The description of SOLO categories was based on the interpretation by Meerbaum-Salant et al., 
stressing the progression from the local to the global perspective. 

An example of the cases provided is the question whether sustainable human life is possible on Mars. 
The students are pointed to the websites of NASA and SpaceX to learn about the current state of affairs 
and subsequently have to explore whether, after the initial supplies and shelter were delivered, it would 
be possible to produce sufficient water, air and food to survive and thus whether it would be possible to 
found a sustainable human colony on Mars. Among other cases are the questions, what is better for 
traffic flow on a junction: a roundabout or traffic lights, and to investigate the optimal number and task 
division of bank counters as to minimize the waiting time of the customers with various needs. In line 
with our dedication to stimulate student engagement, the students are allowed to come up with their 
own research questions instead. 

Assignment 
The assignment consists of a number of questions the students need to answer in writing while 
designing their model and using it to answer their research question. After forming groups and choosing 
a case to model, the students answer the following questions: 

Case and research question. Describe what you are going to model and with what purpose: (1) What 
do you know about this phenomenon? If need be, carry out the necessary research. (2) What part of 
your phenomenon would you like to build a model of? (3) What do you hope to observe from this model? 
(Questions 2 and 3 suggested by Wilensky & Rand (2015).) 

Design the model. Design a model following the questions listed here. Describe the considerations and choices 

you make. (E.g., “The sheep can reproduce. If two sheep meet, there is a chance of 20% that a new sheep will be 

breed. We decided not to take into account the gender of the sheep because that is not relevant in this case.”) (1) 

What are the principal types of agents involved in this phenomenon? (2) In what kind of environment do these 

agents operate? Are there environmental agents?  (3) What properties do these agents have (describe by agent 

type)?  (4) What actions (or behaviors) can these agents take (describe by agent type)? (5) How do these agents 

interact with this environment or each other?  (6) If you had to define the phenomenon as discrete time steps, what 

events would occur in each time step, and in what order? (All questions suggested by Wilensky & Rand (2015).) 

Implement the model. Implement the model in NetLogo. Write your code in small chunks and keep 
testing! 



Constructionism 2018, Vilnius, Lithuania 

574 

 

Validate the model. (1) Microvalidation: to what extent does the agents’ behavior resemble the 
observations of the phenomenon in reality? If the behaviors are (somewhat) dissimilar, is this variation 
relevant to your research question? (2) Macrovalidation: to what extent does the behavior of the system 
as a whole resemble the observations of the phenomenon in reality? If the behavior is (somewhat) 
dissimilar, is this variation relevant to your research question? 

Experiment, analysis and conclusion. Use the model to answer your research question: (1) Describe 
the experiment in detail. If you use Behavior Space, report the number of experiments conducted and 
the parameters used. (2) Report the findings in an appropriate manner (e.g., a narrative, a table, a 
graph, etc.) (3) Analyze the results. (4) Answer the research question. 

Reflection. Reflect on your modeling process: (1) What went well and what could be better? (2) Did 
you make any assumptions which, in retrospect, you would like to reconsider?  (3) Are there any aspects 
of your model which you would like to change? Are there any aspects of your model (agents or behavior) 
you decided not to include in you model while now you believe they do need to be included? Make a 
wish list of aspect of your model that need to be added, removed or changed in the next version of the 
model. 

In addition, the students were asked to keep a logbook recording all their activities, problems, successes 
and dead ends they encountered; possible explanations for problems and successes, and finally, 
lessons learned. 

Grading Rubrics 
After we identified the criteria that defined performance, we created performance descriptions (Wolf & 
Stevens, 2007) to describe the appropriate level of understanding for intended learning outcomes (Biggs 
& Tang, 2011). Here we quote some of these descriptions: 

Case and research question  

 Prestructural: (1) Nothing or simplistic idea of the phenomenon. Performed no research. (2) 
Nothing, or a few non-specific remarks but missing the point (3) Research question not clear 

 Unistructural: (1) Some general description. Performed no research or only limited to isolated 
aspects of the phenomenon (2) Few isolated aspects of the phenomenon identified. (3) Identified 
the question from a local perspective. 

 Multistructural: (1) Performed some research. Able to name more relevant aspects of the 
phenomenon, but mentions no relations among these aspects (2) Described what (part of the) 
phenomenon is being modeled. (3) Described the question from a multi-point perspective. 

 Relational: (1) Performed research. Complete idea of the phenomenon. Able to name relevant 
aspects of the phenomenon, have insight into relations among these aspects  
(2) Described what (part of the) phenomenon is being modeled. (3) The research question clear and 
predicts possible outcomes. 

 Extended abstract: (1) Additionally, described the relation of this phenomenon to other phenomena 
in the world and/or conceptualized this phenomenon so as to be able to use it other contexts 
restricted and its relevance explained. Stated its relevance for other phenomena. (2) Additionally, 
theorize about possible generalization of the model or transfer into a different context. (3) 
Additionally, theorize about possible generalization or transfer into a different context. 

Design the model and implement it  

 Prestructural: No agents mentioned. 
 Unistructural: A few agents and actions identified.  
 Multistructural: Several agents and actions described.  
 Relational: Agents, actions and interactions correct and substantiated. Their contribution to the 

whole acknowledged. 
 Extended abstract: Additionally, generalize or hypothesize about similar models in different 

contexts or extend the model beyond the minimal requirements. 



Constructionism 2018, Vilnius, Lithuania 

575 

 

Validate the model  

 Prestructural: Nothing. No working program. 
 Unistructural: Identified some resemblances and differences between the model and reality. 

Relevance for the research question not clear. 
 Multistructural: Described resemblances and differences between the model and reality. 

Relevance of the differences for the research question not clear. 
 Relational: Resemblances and differences between the model and reality described. Analyzed and 

explained their relevance for the research question. 
 Extended abstract: Additionally, hypothesized over model adjustments to improve its validity for a 

more general purpose. 

Results and Further Research Direction 

In this paper, we described the design of our assessment instrument for the assessment of the intended 
learning outcomes for Computational Science consisting of a practical assignment covering the ILO’s 
defining Computational Science and an accompanying rubric based on SOLO taxonomy that describes 
the levels of understanding. During the design process, we faced many challenges due to the fact that 
some ILO’s of modeling are at the core of informatics (e.g. implementation of the model), while others 
are not often seen in an informatics classroom (e.g. experiment). Even for implementation, which comes 
down to programming, it was not easy to find related work addressing assessment of programming at 
just the right level of granularity. The same holds true for validation: while there is plentiful literature on 
validation of computational models, to our best knowledge there is none focusing on the assessment of 
validation in a formal learning setting.  

So far, several teachers used our teaching material and assessment instrument to teach Computational 
Science in the Informatics class of the 11th and 12th grade of pre-university education (VWO) in the 
Netherlands. We are collecting and analyzing feedback from them and their students in order to aid the 
on-going project of development of teaching materials and assessment instruments. Specifically, the 
current version of the assessment instrument will be analyzed to establish its reliability, validity and 
objectivity, and in particular, it will be scrutinized in relation to the descriptions and attainability of 
currently proposed levels of understanding as specified in the rubrics. 

Acknowledgments  

This work is supported by the The Netherlands Organisation for Scientific Research grant nr. 
023.002.138.  

References 

Barendsen, E., & Tolboom, J. (2016). Advisory report (intended) curriculum for informatics for upper 
secondary education. Enschede: SLO.  

Biggs, J., & Tang, C. (2011). Teaching for quality learning at university. McGraw-Hill International. 

Blikstein, P., & Wilensky, U. (2009). An atom is known by the company it keeps: Content, representation 
and pedagogy within the epistemic revolution of the complexity sciences. 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of 
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research 
Association, Vancouver, Canada,  

Caspersen, M. E., & Nowack, P. (2013). Model-Based thinking & practice. 

Castro, F. E. V., & Fisler, K. (2017). Designing a multi-faceted SOLO taxonomy to track program design 
skills through an entire course. Proceedings of the 17th Koli Calling Conference on Computing 
Education Research, pp. 10-19.  

CSTA Computational Thinking Task Force. (2011). Operational definition of computational Thinking for 
K–12 education. Retrieved 10/16, 2013, from 
http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf  

http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf


Constructionism 2018, Vilnius, Lithuania 

576 

 

Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science 
Education, 28(9), 957-976.  

Grgurina, N., Barendsen, E., Suhre, C., van Veen, K., & Zwaneveld, B. (2017). Investigating informatics 
teachers’ initial pedagogical content knowledge on modeling and simulation. International Conference 
on Informatics in Schools: Situation, Evolution, and Perspectives, pp. 65-76.  

Grgurina, N., Barendsen, E., van Veen, K., Suhre, C., & Zwaneveld, B. (2015). Exploring students' 
computational thinking skills in modeling and simulation projects: A pilot study. Proceedings of the 
Workshop in Primary and Secondary Computing Education, pp. 65-68.  

Grgurina, N., Barendsen, E., Zwaneveld, B., van de Grift, W., & Stoker, I. (2013). Computational thinking 
skills in Dutch secondary education. Proceedings of the 8th Workshop in Primary and Secondary 
Computing Education, pp. 31-32.  

Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Stoker, I. (2014a). Computational thinking 
skills in Dutch secondary education: Exploring pedagogical content knowledge. Proceedings of the 14th 
Koli Calling International Conference on Computing Education Research, pp. 173-174.  

Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Stoker, I. (2014b). Computational thinking 
skills in Dutch secondary education: Exploring teacher's perspective. Proceedings of the 9th Workshop 
in Primary and Secondary Computing Education, pp. 124-125.  

Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., & Suhre, C. (2016). Defining and observing 
modeling and simulation in informatics. International Conference on Informatics in Schools: Situation, 
Evolution, and Perspectives, pp. 130-141.  

Justi, R. S., & Gilbert, J. K. (2002). Science teachers' knowledge about and attitudes towards the use 
of models and modelling in learning science. International Journal of Science Education, 24(12), 1273-
1292.  

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through 
programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.  

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical 
content knowledge for science teaching. In J. Gess-Newsome, & N. G. Lederman (Eds.), Examining 
pedagogical content knowledge (pp. 95-132) Kluwer. 

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with 
scratch. Computer Science Education, 23(3), 239-264.  

Van Overveld, K., Borghuis, T., & van Berkum, E. (2015). From problems to numbers and back. Lecture 
notes to ‘A discipline-neutral introduction to mathematical modelling’. Eindhoven: Eindhoven University 
of Technology. 

Whalley, J., Clear, T., Robbins, P., & Thompson, E. (2011). Salient elements in novice solutions to code 
writing problems. Proceedings of the Thirteenth Australasian Computing Education Conference-Volume 
114, pp. 37-46.  

Wilensky, U. (2014). Computational thinking through modeling and simulation. Whitepaper Presented 
at the Summit on Future Directions in Computer Education. Orlando, FL. Http://www.Stanford.Edu/~ 
coopers/2013Summit/WilenskyUriNorthwesternREV.Pdf. 

Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social, 
and engineered complex systems with NetLogo MIT Press. 

Wolf, K., & Stevens, E. (2007). The role of rubrics in advancing and assessing student learning. The 
Journal of Effective Teaching, 7(1), 3-14.  

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated 
assessment for computational thinking. Journal of Educational Computing Research, 53(4), 562-590.  

  



Constructionism 2018, Vilnius, Lithuania 

577 

 

Constructionist Experiences in Teacher 
Professional Development: A Tale of Five Years 

Daniel Hickmott, daniel.hickmott@uon.edu.au 
School of Education, The University of Newcastle, Australia 

Elena Prieto-Rodriguez, elena.prieto@newcastle.edu.au 
School of Education, The University of Newcastle, Australia 

Abstract 
Computational thinking and coding have recently become compulsory elements in the Australian K-8 
curriculum that should be taught using ‘authentic learning challenges’ (ACARA, 2018a). However, very 
few teachers, particularly in the primary school setting, have been schooled on computational thinking 
or coding and rarely possess pedagogies to teach them authentically. A range of professional 
development opportunities are currently being offered to impart this knowledge, both for content and 
pedagogy. In this paper, we provide an account of the evolution we have experienced when designing 
and improving professional development workshops for teachers in coding and computational thinking. 
We reflect on our challenges and successes, and attest that it was only after ‘discovering’ 
Constructionism in late 2015 that we have been able to prepare activities that truly emulate the authentic 
learning experiences that teachers are required to use in their classrooms. 

  

 Learning from pioneers: the influence of Seymour Papert on our professional development 

Keywords 
teacher professional development; constructionism; computing; programming 

Introduction 

Teacher preparation for new digital technologies curricula across the world has become a topic of 
interest in recent years. Globally, coding and computational thinking appear almost daily in the news, 
and there seems to be a strong sense within industry that they are skills essential for the workforce of 
the future (Chalmers & Quigley, 2017; Pappano, 2017).  

In September 2015, the national Australian Curriculum was officially endorsed. This curriculum includes 
the new Digital Technologies (DT) subject, within the Technologies learning area, which is focussed on 
the teaching of “computational thinking and information systems to define, design and implement digital 
solutions.” (ACARA, 2018b). This subject will be mandatory for all Australian students from Kindergarten 
to Year 8 and available as an elective for Year 9 and 10 students. 



Constructionism 2018, Vilnius, Lithuania 

578 

 

Introducing a subject that has a focus on computing reflects a current global trend in K-12 Information 
and Communications Technology (ICT) education. Several countries have begun to change ICT 
curricula to focus less on the learning of particular software packages and to focus more on the teaching 
of skills core to computing, such as computational thinking and programming (Webb et al., 2016). It is 
argued that teaching students these skills will allow them to become creators, rather than just 
consumers of, digital technologies (Bower & Falkner, 2015).  

Australian educational stakeholders have concerns about the feasibility of implementing the new DT 
subject. Falkner, Vivian, and Falkner (2014) revealed that “a consultation with Industry, Community and 
Education stakeholders in Australia showed that 55% of respondents had concerns about manageability 
of the implementation of the curriculum, while 45% of respondents did not think that its learning 
objectives were realistic” (p. 6). One of the stakeholders’ main concerns is whether teachers are 
adequately prepared to teach computational thinking and programming because, unless they have 
qualifications in computing, they are unlikely to have had formal experience learning these skills. This 
is particularly true for primary school teachers, who don’t usually have the option to complete a 
technology major and who are often generalist teachers (Vivian, Falkner, & Falkner, 2014). 

Several teacher Professional Development (PD) initiatives have been developed by universities and 
private organisations to address concerns related to teacher preparation for the Australian DT subject 
(Commonwealth of Australia, 2016). These initiatives include Massive Online Open Courses (MOOCs), 
such as those run by the University of Adelaide’s Computer Science Education Research (CSER) group 
(Vivian et al., 2014), and face-to-face workshops (Prieto-Rodriguez & Berretta, 2014). 

Similar PD initiatives have also been developed in other parts of the world. In Europe, for example, a 
transnational initiative, TACCLE, combines learning through a website, news related to coding in 
schools, and the sharing of resource reviews by teachers (García-Peñalvo, 2016). In England, 
researchers, who were working with the Computing At School (CAS) organisation, developed a model 
of PD that is holistic and sustained for teachers implementing the Computing curriculum (Sentance, 
Humphreys, & Dorling, 2014). In the United States (US), computing PD research has mainly been 
conducted by computer science academics (Menekse, 2015). Menekse (2015) systematically reviewed 
US articles on computing PD published between 2004 and 2014. One of the aims of this review was to 
evaluate the effectiveness of these programs, according to five factors that the author determined to be 
indicators of effective PD from a literature review. The results of the review indicated that many of the 
face-to-face PD opportunities did not have these factors of effective PD present in them. Menekse 
suggested that one of the reasons why these factors were not present could be that these PD 
opportunities are often conducted by computer science faculty academics, who may have limited 
collaboration with other education researchers and practitioners.  

In this paper, we reflect on our experience designing and improving PD for teachers in computing.  We 
describe the learning process that we followed, as computer science academics new to computing 
education, trying to implement relevant approaches to PD that are valued by Australian teachers and 
useful in preparing them for the DT curriculum. Looking back, it is clear to us that it was after we started 
looking at our work through the lens of Constructionism, that we were able to make meaningful changes 
to our PD. The learning process we underwent to identify the changes to be made, highlighted the need 
to explore certain forms of PD that are not prevalent in recent computing education literature. We believe 
these forms of PD are not only useful for preparing existing teachers, but also for assisting in the 
development of pre-service teaching courses in computing. These courses should be designed so that 
they are relevant to current practice, particularly for primary school teachers.   

Our Journey 

Our team has been conducting computing PD workshops over the last five years. These workshops 
have been held at our university, conducted face-to-face, and have ran over two or three days. In 2013 
and 2014, these were only available for high school teachers but in 2015 we began to include primary 
school teachers as well. Since their inception, the three overarching aims of the workshops have been 
to: 1) communicate the applicability and importance of computing to a wide range of research areas 
and careers, 2) provide examples of activities that address DT concepts and 3) provide resources for 



Constructionism 2018, Vilnius, Lithuania 

579 

 

teachers to use in their classrooms. These workshops have involved computational thinking and 
programming exercises with step-by-step instructions, collaborative problem-solving exercises, and 
presentations by academics and industry representatives. 

The design and implementation of the workshops has evolved each year as a result of participants’ 
feedback, which has been collected through validated surveys (Prieto-Rodriguez & Berretta, 2014), 
review of the literature, and reflection. Initially, the changes were a direct consequence of the feedback 
received through the surveys, particularly within the open-ended questions. Later, since the 2016 
workshops, changes were made to incorporate more constructionist activities.  

When comparing the responses to the items common to all our surveys, it became clear that, as we 
included Constructionist approaches to the design of the workshops, the satisfaction with the content 
presented and its applicability to classroom practices increased. In particular the major changes 
introduced in 2016, as seen in Figure 1, seemed to increase the ‘sense of community’, ‘inspiration to 
improve teaching’ and ‘use of applications of computer science’, as we included more collaborative and 
hands-on activities (note: the asterisk next to the year indicates a primary school focus, all others are 
secondary school). 

  

Figure 1. Mean responses to selected survey questions in the workshops delivered from 2013 to 2016. Items in 
a 4-point Likert scale with Strongly Disagree coded as 1 and Strongly Agree coded as 4. 

Before Constructionism 
The first PD workshop took place in 2013 and ran over three days. This workshop included a day of 
lectures presented by researchers from a variety of disciplines who incorporate computing in their work. 
The other two days involved a combination of presentations and some hands-on activities. Analysis of 
survey data of participants in 2013 showed that there were certain misconceptions with regards to the 
nature of computer science that we were able to unmask (XXX, 2014). In terms of the pedagogical 
approach utilised, feedback from the participants suggested that to improve future workshops we should 
include “…more hands on with Robotics…” and “more hands on activities that we can take back and 
use in school”. It was clear that many of the teachers preferred to build their own knowledge rather than 
have it delivered to them in an instructionist manner. 

In 2014, we increased the number of hands-on activities as a result of this feedback and reduced the 
workshop length to two days. Feedback from 2014 indicated that teachers wanted more ideas for 
projects that they could use with their students. One teacher suggested that we include “Realistic 
projects for school students e.g. project ideas when using C++” in future workshops. Reflecting back on 
these comments, we see now that teachers were looking for us to help them provide context and 
purpose to their students.  

In 2015, we took a more systematic approach to the design of the PD and explored the use of student-
centred learning approaches in the two two-day workshops that we ran that year. The hands-on 
activities included in the two previous years were written as step-by-step guides with explicit instruction 
on how to complete the activity. We adopted a framework for instruction based on constructivist 
principles to help us design and run collaborative problem-solving exercises. The Five Cs (5Cs) 

1

1,5

2

2,5

3

3,5

4
I felt a sense of
community among
participants of this
workshop.

This workshop
inspired me to
improve my teaching
skills.

I will use what I have
learned about
applications of
computer science
with my students.



Constructionism 2018, Vilnius, Lithuania 

580 

 

framework (Tom, 2015) is built on 5 constructs identified in the literature: Consistency, Collaboration, 
Cognition, Conception, and Creativity. The sessions in the two workshops were thus purposely designed 
to investigate participant responses to different pedagogies. 

We used self-reported measures to compare perceptions about the activities designed with the 5Cs 
Framework against those that were step-by-step activities. Preliminary results were presented at the 
Constructionism 2016 conference (Prieto-Rodriguez & Hickmott, 2016). Our analysis showed that while 
concepts were understood consistently for all constructs, the Scratch session was the one were the 
teaching methods were preferred by participants and higher order thinking was more present. This 
session was the only one not involving collaboration and it was not designed using the 5Cs Framework.  

The open-ended responses to the survey prompted us to reconsider what was valued by teachers and 
made us come to the realisation that higher order thinking and time to ‘tinker’ should be a focus of our 
PD. This can be illustrated with one of the participant’s survey responses stating that time to ‘tinker’ 
would have been desirable: “It would have been fantastic to have time to do a visual graphing 
experiment similar to the social media graphing presented on Tuesday morning. Use responses from 
the group to carry out an activity that could be done in the classroom”.  

After Constructionism  
In 2016, inspired by our attendance to the Constructionism in Action conference in Bangkok, we 
conducted two two-day workshops that incorporated Constructionist principles. The results from the 
2016 surveys seemed to indicate that the inclusion of Constructionist approaches enhanced the 
satisfaction with all aspects of the workshop (see Figure ). The workshops from that point thereafter, 
not only aimed to be more student-centred and include more hands-on experiences, but were also 
inspired by Constructionism. 

As suggested by participants in the surveys, we had begun including an increasing number of hands-
on activities in the workshops. However, it became apparent to us that it was important to incorporate 
hands-on activities that involved open-ended problem solving, in which teachers construct their 
knowledge in context, rather than just having hands-on activities that involved explicit step-by-step 
instruction.  

To incorporate these Constructionist activities, we considered suggestions outlined by several 
Constructionist PD researchers and practitioners. For example, Martinez and Stager (2013) argue that 
PD is often “too meta” (p. 200), and suggest that teacher educators should provide PD where teachers 
experience learning from a student’s perspective. Martinez and Stager designed and implemented 
Constructing Modern Knowledge, enabling teachers to spend four days of uninterrupted time working 
collaboratively on a project of their own creation. Brennan provides a similar argument concerning PD 
learning environments, stating, “teachers should have learning experiences that are comparable to their 
students’ learning experiences, situated within a supportive community of fellow teachers” (p.293).  

Brennan (2015) developed and implemented ScratchEd, a form of PD for computing that incorporated 
Constructionist principles. The main intent of ScratchEd is to support the use of technology for creating 
meaningful projects rather than focussing on the use of specific technologies. Like Martinez and 
Stager’s Constructing Modern Knowledge workshops, ScratchEd is designed to involve experiences for 
teachers that comparable to their students’ classroom experiences. Brennan, however, recognises that 
providing fully Constructionist learning environments can be at odds with K-12 mainstream education. 
She calls the difficulty of providing PD aligned with “the lived reality of K-12 education” (p.295) while 
preserving the ideal of a Constructionist environment, the “tension between the actual and the 
aspirational” (p.295). She also identifies four other tensions, which have guided and given focus to our 
reflections about the PD we provide. 

We agreed with the sentiment that PD is often “too meta” (Martinez & Stager, 2013), and upon reflection, 
recognised that our previous PD opportunities had suffered from being too instructionist at times. 
However, like Brenan, when we introduced Constructionist learning into our PD, we had to negotiate 
some tensions. 



Constructionism 2018, Vilnius, Lithuania 

581 

 

In 2016, we ran two two-day workshops: a workshop for primary school (K-6) teachers and a workshop 
for high school (Years 7-12) teachers. These workshops involved activities and presentations that were 
aligned with the curriculum outcomes for the relevant school level. For example, in the primary school 
workshop, teachers took part in an activity where they used Scratch to learn about visual programming, 
which is a concept in the K-6 Australian Digital Technologies curriculum. In the 2016 workshops, in an 
attempt to move towards more Constructionist learning, we began to include some activities where 
teachers could choose their own direction for learning. In the high school workshop, for example, 
teachers could choose between learning about teaching Data Science with R or being introduced to 
general-purpose programming with Sonic Pi. Also, in the primary school workshop, we included extra 
activities for teachers who were already proficient at visual programming. Additionally, in the primary 
school workshop, we included a collaborative lesson planning activity, in which teachers worked 
together to construct a plan for introducing computing into their classes. However, we could not include 
longer self-directed learning, and had to negotiate with pressures such as the limited time available to 
teachers to attend the workshops, or the number of PD staff offering support to teachers working on 
individual projects. 

In 2017, we revisited Brennan’s tensions (2015) as a lens to improve the PD. The analysis of these 
tensions and our own reflections on how we negotiated them, were instrumental to envisioning the 
changes we made to the workshops in 2017. One of the main changes introduced that year, which 
responded to our reflection on the tension between the actual and the aspirational identified by Brennan 
(2015), was the introduction of workshops addressing specific curriculum outcomes.  

In light of this, we ran two new specific workshops, one for primary teachers and one for high school 
mathematics teachers. These two workshops aligned entirely with areas of the curriculum and were 
designed to use computing as an exploratory tool for teachers (and subsequently their students) with 
mathematics. The first of these workshops utilised one of the modules produced for the ScratchMaths 
project (Benton, Hoyles, Kalas, & Noss, 2017). We mapped the content of the module to the Australian 
curriculum. The second workshop targeted a new area of the Year 12 curriculum, Minimum Spanning 
Tree algorithms. In this workshop, teachers learned and used Edgy, an adaptation of Snap! for graph 
theoretical explorations (Cox, Bird, & Meyer, 2017). Teachers coded Kruskal and Prim’s algorithms with 
varying degrees of guidance after reviewing other content, such as graph theory and data structures, 
necessary for the completion of the task. 

We also ran two more two-day workshops, similar to the ones in 2016 but more general in scope, and 
deliberately targeting outcomes, such as critical and creative thinking, from the General Capabilities of 
the Australian National Curriculum (ACARA, 2018b). These two workshops specifically addressed 
issues of differentiation of learning and learners - the tension between novice and expert identified by 
Brennan (2015). 

In workshops prior to 2017, we had assumed that the teachers attending were novice to computing, and 
we felt that most of the PD content had to be heavily scaffolded. However, teachers with expertise in 
computing also attended the workshops. To better support these expert teachers, thus helping us 
negotiate this last tension, we interviewed a local teacher who had participated in our workshops in 
2013, and had been invited to present in subsequent years’ workshops. This teacher is a high school 
DT teacher with an academic and professional background in computing.  She is experienced in 
teaching computing, regularly presents at conferences and assists in training her colleagues and thus 
fits in the category of Master Teacher in the classification devised by Sentance et al. (2014). Master 
Teachers are experienced educators chosen by CAS in England to organise and run face-to-face 
workshops with teachers in their local community. We asked questions to ascertain the extent to which 
her approach to teaching and learning was a constructionist one: 

Question: “Do you learn using YouTube, read instructions, or tinker?” 

Answer: “Yes! First place I go is YouTube and tinkering is the best part of learning and teaching.” 

Question: “Do you use learning resources created specifically for teachers? If so, what were the most 
helpful aspects of these sort of experiences?” 



Constructionism 2018, Vilnius, Lithuania 

582 

 

Answer: “Sometimes but these resources often lack room for creativity or make teachers into 
dependant zombies instead of content creators. However these can be great for networking and idea 
generation.” 

We also asked the teacher to provide insights into their learning for the classroom. We found that 
tinkering is also a part of the process to develop their pedagogy.  

Question: “Do you find that the activities you find need to be modified to suit your needs? If so, which 
type of activities and how do you modify them?” 

Answer: “Most often, yes. Usually tech PD or resources are aimed at beginners so I often extend or 
find additional bits to meet my needs or particular learning requirements for my students.” 

Her responses to these questions quite clearly indicate that her approach to both learning and teaching 
is a Constructionist one, and that she is at a level were step by step instruction is no longer necessary. 
One of the foci of our future PD endeavours will be to incorporate more differentiation, which would 
allow expert teachers to learn during our PD while respecting that other teachers need more guidance. 

Discussion and Future Work 

The recently endorsed Australian National Curriculum includes General Capabilities (such as critical 
and creative thinking), which teachers are expected to assess and report across all subject areas. In 
addition, this curriculum includes computational thinking and programming as part of the new DT subject 
that should be taught using ‘authentic learning challenges’ (ACARA, 2018a). These changes in the 
Australian curriculum provide an ideal opportunity for teachers to include Constructionist activities in K-
12, which involve computing and open-ended problem solving. As argued by Angeli et al. (2016), there 
are many opportunities for K-12 educators to include authentic learning challenges that incorporate 
computing and also address outcomes from diverse content areas. In Australia, these authentic learning 
challenges could be particularly beneficial to K-6 teachers, who often teach multiple content areas, as 
they could target outcomes from a variety of subjects and also address the General Capabilities. 

Due to the large number of teachers that need to be upskilled in computing, there has been a focus on 
creating computing PD that is scalable. An example of PD designed to be scalable that has been very 
successful, are the MOOCs designed by CSER. These MOOCs have reached many teachers, both 
nationally and internationally (Falkner, Vivian, Falkner, & Williams, 2017; Vivian et al., 2014), and CSER 
received government funding for a national rollout of their initiative, focussing on teachers in remote and 
disadvantaged areas (Birmingham, 2016).  

There are many advantages of providing PD through online courses. Online courses such as CSER’s 
MOOCs, are useful scalable solutions, as teachers can access them on their own time and at their own 
pace, and they are generally free of cost. However, as Brennan (2015) argues, it can be difficult to 
provide Constructionist learning experiences solely through an online course. As PD providers who 
have been influenced by Constructionist ideas, we believe that the inclusion of authentic learning 
challenges in K-12 should be encouraged. Thus, we reflect that our PD should include face-to-face 
components and authentic learning challenges to prepare teachers effectively. This reflection has led 
us to make further changes to our PD which we plan to implement in 2018.  

In 2018 we will run three PD programs. The first program will be a two-day workshop for ‘novices’, with 
a strong emphasis on the Australian General Capabilities and will incorporate authentic tasks that we 
will develop with the teachers. Our second PD program will focus on expert teachers who are interested 
in running professional learning events for other teachers at their school or in their professional learning 
communities. Like the first workshop, it will involve hands-on activities where teachers will familiarise 
themselves with the content to be delivered, but they will also learn to run workshops for colleagues. 
We will facilitate a session with the aim of teaching about the logistics of running this type of event. We 
believe that this scalable model can complement online learning platforms whilst providing opportunities 
for Constructionist learning. 

Our third PD program is focussed on sustained engagement and will run over six months with primary 
school teachers. This program will incorporate a greater depth of Constructionist experiences for 



Constructionism 2018, Vilnius, Lithuania 

583 

 

teachers. Finding ways to provide such PD is the main aim of our future research, and constitutes the 
core research of Author 1’s PhD studies. As well as improving PD, these studies could inform the design 
of learning experiences for pre-service teachers in computing, which could help address pipeline issues 
(Yadav, Sands, Good, & Lishinki, 2018).  

We believe that the insight gained from designing, reflecting on, and researching PD has not only 
improved our PD programs, but also has the potential to create Constructionist learning opportunities 
for pre-service teachers that will ensure that they are able to include authentic learning challenges in 
their future teaching. 

Acknowledgements  

The authors would like to thank Google Inc. for funding the CS4HS workshops held at our institution. 
We would also like to thank the university academics who presented talks and gave laboratory tours 
during the workshops, as well as the administrative staff of our institution. 

References  

ACARA. (2018a). Digital Technologies curriculum rationale. Retrieved from 
https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/digital-technologies/rationale/ 

ACARA. (2018b). F-10 Curriculum - General Capabilities. Retrieved from 
https://www.australiancurriculum.edu.au/f-10-curriculum/general-capabilities/ 

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 
computational thinking curriculum framework: implications for teacher knowledge. Journal of 
Educational Technology & Society, 19(3), 47.  

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging Primary Programming and Mathematics: 
some findings of design research in England. Digital Experiences in Mathematics Education.  

Birmingham, S. S. (2016). Closing the ‘digital divide’ for disadvantaged students [Press release]. 
Retrieved from http://www.senatorbirmingham.com.au/Latest-News/ID/2928/Closing-the-digital-divide-
for-disadvantaged-students 

Bower, M., & Falkner, K. (2015). Computational Thinking , the Notional Machine , Pre-service Teachers 
, and Research Opportunities. Paper presented at the Australasian Computing Education Conference, 
Sydney, Australia.  

Brennan, K. (2015). Beyond Technocentrism: Supporting Constructionism in the Classroom. 
Constructivist Foundations, 10(3), 289-296.  

Chalmers, J., & Quigley, M. (2017, 13 October). Twenty ideas for our schools and politicians in the new 
machine age. The Sydney Morning Herald. Retrieved from https://www.smh.com.au/technology/twenty-
ideas-for-our-schools-and-politicians-in-the-new-machine-age-20171012-gyzfm7.html 

Commonwealth of Australia. (2016). STEM Programme Index. Retrieved from 
http://www.chiefscientist.gov.au/2016/01/spi-2016-stem-programme-index-2016-2/  

Cox, R., Bird, S., & Meyer, B. (2017). Teaching Computer Science in the Victorian Certificate of 
Education: A Pilot Study. Paper presented at the Proceedings of the 2017 ACM SIGCSE Technical 
Symposium on Computer Science Education. 

Falkner, K., Vivian, R., & Falkner, N. (2014). The Australian Digital Technologies Curriculum: Challenge 
and Opportunity. Paper presented at the Australasian Computing Education, Auckland, New Zealand.  

Falkner, K., Vivian, R., Falkner, N., & Williams, S.-A. (2017). Reflecting on Three Offerings of a 
Community-Centric MOOC for K-6 Computer Science Teachers. Paper presented at the Proceedings 
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, Washington, 
USA.  



Constructionism 2018, Vilnius, Lithuania 

584 

 

García-Peñalvo, F. J. (2016). A brief introduction to TACCLE 3—coding European project. Paper 
presented at the International Symposium on Computers in Education (SIIE), Salamanca, Spain. 

Martinez, S. L., & Stager, G. (2013). Invent to learn: Making, tinkering, and engineering in the classroom: 
Constructing modern knowledge press Torrance, CA. 

Menekse, M. (2015). Computer science teacher professional development in the United States: a review 
of studies published between 2004 and 2014. Computer Science Education, 25(4), 325-350.  

Pappano, L. (2017, 4 April). Learning to Think Like a Computer. The New York Times. Retrieved from 
https://www.nytimes.com/2017/04/04/education/edlife/teaching-students-computer-code.html 

Prieto-Rodriguez, E., & Berretta, R. (2014). Digital technology teachers’ perceptions of computer 
science: It is not all about programming. Paper presented at the Frontiers in Education Conference 
(FIE2014), Madrid, Spain. 

Prieto-Rodriguez, E., & Hickmott, D. (2016). Preparing teachers for the Digital Technologies curriculum: 
preliminary results of a pilot study. Paper presented at the Constructionism 2016 Conference, Bangkok, 
Thailand. 

Sentance, S., Humphreys, S., & Dorling, M. (2014). The network of teaching excellence in computer 
science and master teachers. Paper presented at the Proceedings of the 9th Workshop in Primary and 
Secondary Computing Education, Berlin, Germany.  

Tom, M. (2015). Five C Framework : A student-centered approach for teaching programming courses 
to students with diverse disciplinary background. Journal of Learning Design, 8, 21-37.  

Vivian, R., Falkner, K., & Falkner, N. (2014). Addressing the challenges of a new digital technologies 
curriculum: MOOCs as a scalable solution for teacher professional development. Research in Learning 
Technology, 22.  

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2016). 
Computer science in K-12 school curricula of the 2lst century: Why, what and when? Education and 
Information Technologies, 1-24.  

Yadav, A., Sands, P., Good, J., & Lishinki, A. (2018). Computer Science and Computational Thinking 
in the Curriculum: Research and Practice. In J. Voogt, G. Knezek, R. Christensen, & K.-W. Lai (Eds.), 
Handbook of Information Technology in Primary and Secondary Education (pp. 1-18). Cham: Springer 
International Publishing.  



Constructionism 2018, Vilnius, Lithuania 

585 

 

Pictogramming: Learning Environment Using 
Human Pictograms Based on Constructionism 

Kazunari Ito, kaz@si.aoyama.ac.jp  
Aoyama Gakuin University, Japan 

Abstract  
We have been developing a pictogram authoring tool “Pictogramming.” Pictogramming is based on two 
words: “pictogram” and “programming.” The basis of this application is the use of a human-shaped 
pictogram (i.e., a “human pictogram”). Pictograms are an abstract representation of a person or an 
object. Creating a posture of a human pictogram is strongly associated with the embodies knowledge. 
And the works with free themes are created with one's ego syntonic and are firmly and positively based 
on ones' culture. A useful pictogram is made by strongly connecting with one's culture. That is, 
constructing human pictograms are very familiar with syntonic learning insisted on by Papert. We can 
expand this concept beyond the limits of the proposed application (we call this the "narrow meaning of 
Pictogramming") to any activities that correspond to human pictograms, which is termed the "broad 
meaning of Pictogramming."  

Narrow and broad meaning of Pictogramming 

In this paper, we first explain the function of the application and discuss the broad meaning of 
Pictogramming from the viewpoint of constructionism.  

Keywords  
Logo; human pictogram; syntonic learning; duplication of viewpoint, educational environment 



Constructionism 2018, Vilnius, Lithuania 

586 

 

Introduction  

A pictogram is a graphical symbol that is used to understand a semantic concept based on the meaning 
of its shape [Ota 1987]. Pictograms have been studied and used in various fields such as counseling, 
safety, and facilities management. Especially there is large amount of research related to the use 
pictograms as alternative and augmentative communication (AAC) [Martínez-Santiago 2016].    

Pictograms are designed to provide information regarding a human’s action or status. And especially 
human shaped pictograms are widely shown in the various international standard pictograms set. So, 
the appendix of ISO 3864 provides guidelines for the depiction of a human-shaped pictogram itself (i.e., 
a “human pictogram”).  

Various programming languages have been developed for learning purposes. Logo is multi purpose 
programming language, for example, for AI and logical programming. And Logo is widely used for 
children to help them learn various mathematical concepts by operating a turtle robot/character on the 
screen [Seymour 1977]. Papert developed Logo and called this method syntonic learning; he argued in 
favor of its importance as a learning method [Seymour 1980]. Numerous extensions based on Logo 
have been developed. Laubomir developed EasyLogo [Salanci 2010], which adopts a grid for 
simplification and has an easy-to-use environment. StarLogo [Resnick 1996] can handle more than one 
turtle and can simulate a multi-agent system. 

Scratch is a visual programming environment that was developed by the MIT Media Laboratory [Resnick 
2009]. Users program in Scratch by dropping blocks of code. Scratch is suitable for use as an 
introductory programming course because no specific knowledge of syntax is needed and syntax errors 
cannot occur. In addition, Alice allows novice programmers to generate virtual worlds by controlling 
three-dimensional (3D) objects [Cooper 2003]. The users operate a cat in Scratch, a turtle in Logo 
(sometimes represented as a simple triangle), or some 3D objects in Alice; thus, the working style of 
novice students may influence their learning techniques. The main character shown in the initial stage 
of the programming language is a highly important parameter with which one can understand the 
concept of the programming.   

So, unprecedented effectiveness may be achieved if a human pictogram is used as the main character 
in the programming learning environment. Indeed, virtual humans are used to enhance the learning 
environment [Halan 2012]. 

In this study, we developed a prototype programming learning environment called “Pictogramming” [Ito 
2018]. Pictogramming is based on two words: “pictogram” and “programming.” We evaluated and 
analyzed the effects and characteristics of Pictogramming from the viewpoint of constructionism.  

Pictogramming—Learning Programming Application using a 
Human Pictogram (Narrow meaning of Pictogramming) 

Overview 
The application was implemented using HTML5, CSS, and JavaScript. The JavaScript library 
“processing.js” was used to execute the Processing format program, which is to display the human 
pictogram. The application is compatible with typical browsers and other applications do not need to be 
installed. Figure 1 shows a screenshot of when the application is accessed using a PC or smartphone 
browser. This application can be accessed at http://pictogramming.org/. 



Constructionism 2018, Vilnius, Lithuania 

587 

 

Figure 1. Screenshot of Pictogramming 

A large human-shaped pictogram is displayed in the human pictogram display panel. The panel can 
display either the front or side views of the human pictogram, as defined by ISO 3864 Appendix, where 
both comprise nine parts: body and head (considered as a single part), two upper arms, two lower arms, 
two upper legs, and two lower legs. The size of each part conforms to ISO 3864 (see Figure 2). A 
programming panel indicating parts of the body in the human pictogram faces front, but it is assumed 
that the human pictogram is user yourself of reflected in a mirror. So, “left upper arm” and “left lower 
arm” are displayed on the left-hand side and users associate it with their left arm. 

                        

Figure 2. Front and side views of a human pictogram 

 



Constructionism 2018, Vilnius, Lithuania 

588 

 

Sample code 
Operations on the human pictogram are 
input and defined in the program code 
description area. The input string to change 
states (positions) follows a format59 that 
separates opcode and arguments with 
blanks, as follows. 

opcode  arg1 arg2 … 

Figure 3 shows a sample code. Line 1 
changes the scale of the human pictogram. 
Lines 2 to 8 are in accordance with the 
LOGO programmer; this draws a rectangle that 
represents the victor's platform. The 
"M(ove)" command shown in line 10 means 
move 50 px in the positive x-axis direction and 
200 px in the negative y-axis to get up on the 
box. The "R(otate)W(ait)" command 
means rotate a part of the body over some 
seconds and the next command is not 
executed until the movement is complete. For 
example, "RW LUA -120 1" shown in line 12 
means "rotate the Left Upper Arm (LUA) 
120° clockwise for 1 s." 

Lines 13 to 19 represent waving the left 
hand three times at a probability of 50%. 

The commands are classified into two 
types. First, the command that changes the shape of the human pictogram is the “Pictogram Animation 
Command.” The second type of command is almost equivalent to turtle graphics, i.e., the “Pictogram 
Graphics Command.” Command names, arguments, and each process can be easily predicted from 
personal experiences or existing knowledge. Moreover, the commands and movements of the human 
pictogram are associated with fine granularity.  

Thus, pictogram graphics focus on the movement of the human body, and pictogram animation focuses 
on the rotation of human body parts. The combination of these two types is a unique feature of 
Pictogramming. 

Figure 4 shows an example of pictogram animation, pictogram graphics, and a combination of both 
types. 

 

Figure 4. Examples of outputs from pictogram animation (left), pictogram graphics (center), and a combination of 
both types (right)  

 

                                                
59 The command list can be seen at http://pictogramming.org/?page_id=475 

01: SC 0.3 

02: PEN DOWN 

03: // Draw victor's platform 

04: REPEAT 4  

05: FD 100 

06: RT 90 

07: END 

08: PEN UP 

09: // Get up on the victor's platform 

10: M 50 -200 

11: // Raise the left arm diagonally 

12: RW LUA -120 1 

13: // Wave hands to left and right 3 times 

14: IF [rand(1,6) >= 4] 

15: REPEAT 3 

16: RW LLA -60 0.3 

17: RW LLA 60 0.3 

18: END 

19: END 

Figure 3.  Sample source and output 



Constructionism 2018, Vilnius, Lithuania 

589 

 

Syntonic Learning  

Papert developed Logo and noted that it is very important that children can execute Logo commands 
by pretending to be a turtle using their own bodies; this is called “syntonic learning” [Papert 1977][Papert 
1980]. Papert also noted the following: 

1. Body syntonic learning: Strongly associated with the senses of children and knowledge of their 
bodies. 

2. Ego syntonic learning: Consistent with the self-consciousness of children as humans with intention, 
purpose, desires, likes, and dislikes. 

3. Cultural syntonic learning: Linked to personal activities that are firmly and positively rooted in one’s 
culture. 

The human pictogram resembles a body that represents the ego and the illustrated pictograms 
represent one’s culture. Thus, the human pictogram conforms to these three types of syntonic learning. 
Figure 5 shows works that were all created by the application. Figure 5(A)–(B) shows typical human 
movement, created mainly based on body syntonic learning. Figure 5(C)–(D) represents artistic, humor, 
some major person's famous action, and so on. These pictograms are difficult to categorize, but all are 
based on ego syntonic. Figure 5(E)–(F) shows the pictograms linked to personal activities based on 
rules, morals, and culture, and some of these are widely used in one's culture. Of course, these types 
of syntonic learning cannot be separated clearly, but these works are based on a combination of various 
kinds of syntonic learning.  

 
  

 
  

(A) Running (B) Waving 
hand 

(C) Cupid (D) Famous 
Japanese TV 
character's 
pose 

(E) Do not use 
smartphone 
while walking 

(F) Please knock 
when you enter a 
room 

Figure 5. Example of works influenced by various type of syntonic learning 

Pictogramming —Enhance constructionism using Human 
Pictogram (Broad meaning of Pictogramming) 

Shift from instructionism to constructionism by reconstructing a human 
relationship 
Now, we consider a mass classroom. Figure 6(A) represents a typical relationship between members 
of the classroom. The teacher instructs the students unilaterally. The human pictogram is introduced 
and the student starts to command or operate it (Figure 6(B)), and then begins to communicate with 
one's human pictogram (Figure 6(C)). Figure 6(D) is a scene in a classroom using the Pictogramming 
application. One student talks to another student about his/her pictograms and mimics the movement. 
As the pictogram is highly visible, the student happens to see the pictograms in the monitors naturally 
and acts with them. This means that one student communicates with other students’ human pictograms 
(Figure 6(E)), and communicates with other students on human pictograms (Figure 6(F)). The students 
program and create numerous works via this process using the philosophy of constructionism. 



Constructionism 2018, Vilnius, Lithuania 

590 

 

 

Figure 6. Shifting relationship between the student and the teacher by interference of human pictograms 

Experimental cognition and reflective cognition 
A cognitive science researcher mentioned that the cognition could be classified into two types [Norman 
1993]. One is experiential cognition, which is data-driven information processing with reactivation of 
information patterns in human memory. The other one is reflective cognition, which is concept-driven 
processing in deep reasoning such as decision-making  
and planning. Table 1 shows an example of activities of experimental cognition and reflective cognition. 

Table 1. Example of activities of experimental cognition and reflective cognition 

Experimental cognition Reflective cognition 

 Participating in participatory activities.  Learning how to play. 

 Watching the state of activities and thinking 
instead of participating. 

Okamoto associated a duplex viewpoint with these two types of cognitive processes [Okamoto 2005]. 
Figure 7 shows an image of a duplex viewpoint realized by a human pictogram.  
One is an “object-level view,” and the other is a “meta-level view.” These two viewpoints are tightly 
linked through the self-identification of “ego” (reflective subject) and “self” (experiential subject). In 
observing the interaction of others from a distance, such duality is generally not established. However, 
if the observer can emphasize his viewpoint with one participant in the interaction, he can also acquire 
the virtual object-level view so that one can experience the interaction as if it were one's own. This 
duplex viewpoint via empathy shows how first-person engagement can be achieved. 



Constructionism 2018, Vilnius, Lithuania 

591 

 

  

(A) Part of Figure 6(E)–(F)     (B) Involvement as a participant       (C) Involvement as an observer    

Figure 7. Empathy channel: (B) involvement as a participant in an interaction using a human pictogram, (C) 
involvement as an observer of the interaction (panels (B) and (C) are based on [Okamoto 2005]) 

Conclusion 

 This paper presents an overview of a new programming learning application called Pictogramming and 
indicates the effectiveness of this application. Moreover, we proposed the broad meaning of 
Pictogramming, which is a learning environment based on the adoption of a human pictogram. We 
illustrated that this environment enhances the learning process with the philosophy of constructionism; 
then, we discussed the duplex viewpoint. In the future, we aim to demonstrate the effectiveness of using 
human pictograms by performing experiments and in practice. 

References 

Cooper, S., Dann, W. and Pausch, R. (2003) Teaching objects-first in introductory computer science. 
In Proceedings: 34th SIGCSE Technical Symposium on Computer Science Education (SIGCSE '03). 
ACM, Reno, NV, USA. p. 191-195.  

Martínez-Santiago, F., García-Cumbreras, Miguel., Montejo-Ráez, A., Díaz-Galiano, Manuel. (2016) 
Pictogrammar: an AAC device based on a semantic grammar. Proceedings of the 11th Workshop on 
Innovative Use of NLP for Building Educational Applications , p. 142-150.  

Halan, S., Rossen, B., Crary, M. and Lok, B. (2012) Constructionism of virtual humans to improve 
perceptions of conversational partners. In CHI '12 Extended Abstracts on Human Factors in Computing 
Systems (CHI EA '12). ACM, New York, NY, USA. p. 2387-2392.  

Ito, K. (2018) Pictogramming - Programming Learning Environment using Human Pictogram. IEEE 
EDUCON 2018.  

Norman, D. A. (1993) Things That Make Us Smart: Defending Human Attributes in the Age of the 
Machine. Addison. 

Okamoto, M., Nakano, Y. I. and Nishida, T. (2005) Toward enhancing user involvement via empathy 
channel in human-computer interface design. Bold. L., et al. (Edo.), Lecture Notes in Computer Science 
Vol. 3490, Intelligent Media Technology for Communicative Intelligence, p. 111-121, Springer. 

Ota, Y. (1987) Pictogram Design. Kashiwashobo. 

Salanci, L. (2010) EasyLogo – discovering basic programming concepts in a constructive manner. In 
Proceedings: Constructionism 2010. 

Resnick, M. (1996) StarLogo: an environment for decentralized modeling and decentralized thinking. In 
Conference Companion on Human Factors in Computing Systems (CHI '96), Michael J. Tauber (Ed.). 
ACM, New York, NY, USA, p. 11-12.  



Constructionism 2018, Vilnius, Lithuania 

592 

 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., 
Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y. (2009) Scratch: programming for all. Commun. 
ACM, 52, 11, p. 60–67.  

Seymour, S. (1977) A learning environment for children. Computers and Communication: Implications 
for Education, New York: Academic Press, p. 271-278. 

Seymour, S. (1980) Mindstorms, Children, computers, and powerful ideas. Basic Books, Inc.   



Constructionism 2018, Vilnius, Lithuania 

593 

 

Human Pictogram Unplugged: Unified Learning 
Environment of Computer Science Unplugged 
Using Human Pictograms 

Kazunari Ito, kaz@si.aoyama.ac.jp 
Aoyama Gakuin University, Japan 

Aoi Yoshida, aoi@si.aoyama.ac.jp 
Aoyama Gakuin University, Japan 

Takashi Yoneda, yoneda@port.kobe-u.ac.jp 
Kobe University Secondary School, Japan 

Yuichi Oie, c8116002@aoyama.jp 
Aoyama Gakuin University, Japan 

Abstract 
We have been developing a unified learning environment for computer science unplugged (CSU) using 
human pictograms called “Human Pictogram Unplugged” (HPU). CSU is a methodology of teaching 
computer science without the use of personal computers. One of HPU’s characteristics allows students 
to conduct activities with a set of unified human-shaped pictograms (i.e., a “human pictogram”). 
Educators usually must prepare and maintain teaching materials for each CSU activity: a balance for 
"sorting" activity, worksheets for "image representation," and special cards for "binary numbers," for 
example. To decrease this economic and temporal burden is an important and notable issue in 
education. Human pictograms are abstract representations of a people. Activity themes using human 
pictograms would at once be more strongly connected to one's experience and knowledge and also 
firmly and positively based on one’s culture. Therefore, HPU will promote syntonic learning. 

Activity examples of Human Pictogram Unplugged 

In this 

paper, we explain the concept of HPU, show example activities of HPU, and discuss HPU’s effects and 
characteristics from a constructionist viewpoint. 

Keywords  
human pictogram; computer science unplugged; syntonic learning; duplication of viewpoint; educational 
environment 

Introduction  

Computer Science Unplugged (CSU) is a methodology for teaching the principles of computer science 
without the use of personal computers. CSU was developed by Dr. Tim Bell and Mike Fellows[2009][Bell 
2012] and has since been adopted by many countries as a method of teaching computer science. The 
main approach of CSU is learning through indoor or outdoor physical activities. This is to say, the subject 

Binary Number                       Image Representation               Routing and Deadlock                   



Constructionism 2018, Vilnius, Lithuania 

594 

 

is person. So, we implemented an idea that engages physical activities to unify all teaching materials 
using human pictograms. 

A pictogram is a graphical symbol used to understand semantic concepts based on the meaning of its 
shape [Ota 1987]. Pictograms have been studied and used in fields such as counseling, safety, facility 
management, cross-cultural communication, and semiotics [Mori 2009, Hassan 2015]. Pictograms are 
also designed to provide information regarding a human’s action or status. So, if human pictograms are 
used as main characters in computer science education, we may expect very high levels of 
effectiveness since virtual humans are often used to enhance learning environments [Halan 2012]. 

The next Japanese national curriculum will begin in 2020, and it aims to expand informatics in K-12. In 
such situations, Japan increasingly emphasizes computational thinking [Wing 2008].   

Further, unplugged is the main activity used by teachers for ordinary school subjects, so teachers may 
come to think of unplugged as a more attractive method to teach computers. However, most elementary 
and secondary school teachers are not familiar with computer science. Indeed, the phrase “computer 
science” is often met with fear and disgust in the minds of teachers. Thus, using term “human pictogram” 
is one strategy to ease teacher anxiety about computer science activities.  

Educators usually must prepare and maintain teaching materials for each CSU activity. For example, 
balances are used for "sorting" activities, worksheets are used for "image representation," and cards 
are used for "binary numbers." To lessen these economic and temporal burdens, we can adopt unified 
learning materials that can be used for multiple activities. This is a very important, notable issue for 
education. 

For this study we developed "Human Pictogram Unplugged” (HPU), a unified computer science 
unplugged learning environment that uses human pictograms. We then discuss the effects and 
characteristics of HPU from a constructionist perspective.  

Learning Material 

We designed two types of pictograms: one made from wood, and one made from paper. Of course, 
human pictogram construction is not limited to these materials. 

Wooden Based Human Pictogram  
One type of pictogram is wooden and upright (Figure 1) . The 
material is a 5.5mm-thick MDF (Medium Density Fiberboard) cut 
by a laser. One side is painted black to distinguish it from the 
opposite side. A seal-type, 1cm width by 2cm height white sheet is 
affixed to the chest areas of both sides so that one can write or 
erase symbols such as numbers and characters with a marker 
or an eraser. 

Paper Based Human Pictogram 

The other pictogram is made from 55mm x 91mm name card 
paper (Figure 2). This paper is made of special material, so one 
can write and erase symbols such as numbers and characters 
using a marker or an eraser. 

 

A Set of Learning Material 

The learner then uses the human pictograms, a white board 
marker, and an eraser (Figure 3).  

 We introduce color information (black and white) to human pictogram, and permit to write some 
characters on one's chest. The pictogram has been used colors to inform specific information, and 
normally used for visually or cognitive impaired person. And the representation style that some 
characters are attached to pictogram is also widely adopted in the public used pictograms. That's key 

Figure 1. Wooden based pictogram 

     Figure 2.  Paper based pictogram 



Constructionism 2018, Vilnius, Lithuania 

595 

 

point that these human pictogram materials can be adopted to lots of unplugged activities. We also aim 
to help users imagine real humans who illustrate something to audience by paper or who play in some 
events with attaching bibs by drawing a rectangle shape on the chest area for writing some characters.       

He/she also uses restriction sheets to limit the human pictogram's movement for some activities.    

 

 

 

Activity List of Human Pictogram Unplugged  

Overview 
This section shows how we have taken Bell’s activities [Bell 2015] and redesigned them to incorporate 
human pictograms. These activities are listed in Table 1. 

Table 1. Activity list of HPU 

Binary numbers Data 
representation 

Image 
representation 

Information theory Error detection and 
error correction 

Search algorithms Sorting algorithms Sorting networks 
(Parallel processing) 

Finite state 
automata 

Routing  
and deadlock 

 

Binary numbers 
The original activity is called “Count the Dots” 
and uses binary or other notations to represent 
numbers. Five kinds of cards (labelled 16, 8, 4, 
2, and 1 dots respectively on one side) are 
displayed by five children. Here, Figure 4 on the 
left is real activity, and Figure 4 on the right is 
simulated version using human pictograms.  

Data representation 
This is one of additional activities for binary numbers. The original activity’s name is 
“Sending Secret Messages.” Data Representation here uses binary number 
representations of characters. For example, assign 0-25 to alphabet A-Z, and 
represent one character with five human pictograms. Figure  5 shows, as an 
example: “L (11: first row) O (14: second row) V (21: third row) E (4: fourth row).”  

Figure 3.  A set of learning material 

     Figure 4.  Real and simulation 

     Figure 5.   



Constructionism 2018, Vilnius, Lithuania 

596 

 

Image representation 
The original activity’s name is “Colour by Numbers.” Students learn 
image representation of pixel images and data compaction by 
expressing an array of numbers. The activity remixes "Forming human 
letter" by corresponding one pictogram to each pixel. Figure 6 shows 
arrangements, which can represent continuous number of same color's 
human pictograms “0131, 131, 5, 131, and 131.” 

 

Information theory 
The original activity’s name is “Twenty Guesses.” The “answerer” guesses correct answers 
by asking a maximum of 20 questions, to which the “question master” can reply “Yes” or 
“No” clearly. The question master sets a correct answer and writes it on the back side in 
advance. Figure 7 shows that question master sets a number "42." 

 

Error detection and error correction 
The original activity’s name is “Card Flip Magic.” Square magnet sheets are used, 
with different colors on each side arranged in a grid structure. First, a magician 
arranges an even number of same colored sheets in rows and columns. An 
audience member turns over one of sheets while the magician looks away. The 
magician later guesses the sheet. The HPU version of this activity uses human 
pictograms instead of magnet sheets. Figure 8 is an example. 

Search algorithms 
The original activity’s name is “Battleships.” An illustrated sheet with numbered 
warships is provided, and two players each guess the location of the other’s target 
warship. In the HPU version, one human pictogram is the equivalent of one warship 
(Figure 9). Players write a comparative sign (like a number or a friend’s family 
name) on a human pictogram’s chest area. 

 

Sorting algorithms 
The original activity’s name is “Lightest and Heaviest.” A balance and some weights are provided,   and 
player arranges the weights in order of weight. In the HPU version, each human pictogram’s weight is 
same. Player writes a comparative sign (like a number or a friend’s family name) on the chest area of a 
human pictogram, and sets each human pictogram’s value. Figure 10 on the left is the initial state 
(Japanese family name is written on one's chest). Figure 10 on the right is the final state, where human 
pictograms are arranged in alphabetical order.   

     Figure 6.  Example of character A 

     Figure 7.   

     Figure 8.   

     Figure 9.  Activity example 

            Figure 10.  Activity example of sorting algorithm 



Constructionism 2018, Vilnius, Lithuania 

597 

 

Sorting networks (Parallel processing) 
The original activity’s name is “Beat the Clock” and the goal of this activity is 
to teach parallel processing. Each pair of human pictograms in stored in one 
of the decks of first row (Figure 11). Each human pictogram is then compared 
to another pictogram in the same deck, and it moves to the next row deck as 
a result of comparison. The comparison and moving to next row level are 
conducted simultaneously. All human pictograms are sorted upon arriving at 
the final row level. 

 

 

Finite state automata 
The original activity’s name is “Treasure Hunt.” The transition source, input, and indications of whether 
it is an initial status are described on the front of a pictogram, and the transition target is described on 
the back. Figure 12 on the left shows an example of finite state automaton, and Figure 12 on the right 
shows the same structure as the state is constructed by several human  pictograms. The player turns 
over a pictogram with a status number written on the chest. The next status is then illustrated on the 
back of the selected pictogram. The player attempts 
to catch the target pictogram (Number 5 circled in 
the Figure 12(right)).     

 

 

 

 

Routing and deadlock 
The original activity’s name is “The Orange Game.” In this activity, the learner can easily experience 
first and third person viewpoints. Figure 13 on the left is an activity with first-person point of you. Each 
player holds a pictogram in their hand, and passes pictograms from hand to hand to satisfy the 
arrangement conditions. Figure 13 on the right demonstrates a third-person viewpoint. Flesh-colored 
human pictograms, equivalent to real people, are arranged in a circle. Black pictograms located on the 
both sides of the flesh-colored pictograms are equal to pictograms in a player's hand in first-person 
point of view. 

 

 

 

 

 

 

     Figure 11.  Example 

     Figure 12.  Example of finite state automaton (left) and representation by human pictograms (right) 

     Figure 13.  Activity with first-person point of you(left) and third-person viewpoint (right) 



Constructionism 2018, Vilnius, Lithuania 

598 

 

Enhance constructionism using Human Pictogram Unplugged 

Shift from instructionism to constructionism by reconstructing human 
relationships 
We now consider a large classroom. Figure 14(A) represents typical relationships between class 
members. The teacher instructs students unilaterally. Human pictogram unplugged is introduced, and 
the students handle (Figure 14(B)) and begin to communicate and reflect using their human pictograms 
(Figure 14(C)). Figure 14(D) portrays a multiplayer activity classroom scene. One student talks to the 
others about the human pictograms on the table. This means that one student communicates with other 
students using human pictograms (Figure 14(E)), and communicates with other students about human 
pictogram unplugged activities (Figure 14(F)). The students use the philosophy of constructionism in 
this process. 

 

Experimental cognition and reflective cognition 
A cognitive science researcher mentioned that cognition can be classified into two types [Norman 1993]. 
One is experiential cognition, which is data-driven information processing with reactivation of 
information patterns in human memory. The other is reflective cognition, which is concept-driven 
processing in the context of deep reasoning such as decision-making  
and planning. Table 2 shows examples of experimental cognition and reflective cognition activities. 

                    Table 2. Example of activities of experimental cognition and reflective cognition 

Experimental cognition Reflective cognition 

Participating in activities.  Learning how to perform the activities. 

 Watching the activities and thinking of 
participating. 

Okamoto associates a duplex viewpoint with these two types of cognitive processes [Okamoto 2005]. 
Figure 15 shows an image of a duplex viewpoint as realized by a human pictogram.  

Figure 14. Shifting relationships between students and teachers by human pictogram interference 



Constructionism 2018, Vilnius, Lithuania 

599 

 

One is an “object-level view,” and the other is a “meta-level view.” These two viewpoints are tightly 
linked through the self-identification of “ego” (reflective subject) and “self” (experiential subject). In 
observing the interaction of others from a distance, such duality is not generally established. However, 
if the observer can emphasize his viewpoint with another participant in the interaction, he can also 
acquire the virtual object-level view of another participant so that one can experience as his own 
perspective. This duplex viewpoint via empathy shows how first-person engagement can be achieved. 

 

 

 (a) Part of Figure 14(E)-(F)         (b) Involvement as a participant       (c) Involvement as an observer    

Figure 15. Empathy channel: (b) involvement as a participant in an interaction using a human pictogram,  
(c) involvement as an observer of the interaction (panels (b) and (c) are based on [Okamoto 2005]) 

Activities design conscious of syntonic learning, and scaffold for 
or simulation of real daily life 

Papert, who developed Logo, insists that children can execute Logo commands by using their bodies 
to pretend to be turtles; this is called “syntonic learning” [Papert 1977, 1980]. Papert also notes the 
following: 

1. Body syntonic learning: Strongly associated with children’s senses and knowledge of their bodies. 

2. Ego syntonic learning: Consistent with children’s self-consciousness as humans with intention, 
purpose, desires, likes, and dislikes. 

3. Cultural syntonic learning: Linked to personal activities that are firmly and positively rooted in one’s 
culture. 

Unplugged encourages learners to design and create new activities. When designing and performing 
unplugged activities, it is very important to be aware of syntonic learning. The human pictogram is a 
kind of human body projection that represents ego, and it becomes increasingly easy to create new, 
culturally friendly activities since the human pictogram conforms to these three types of syntonic 
learning. The final goal of unplugged activities is to identify with real daily life. Human pictogram 
unplugged activities are human-centric, so they scaffold real daily life or a simulation of it. 

Conclusion 

This paper proposes and presents an outline of a computer science unplugged unified learning 
environment using a human pictogram called "Human Pictogram Unplugged." We illustrated that this 
environment enhances learning processes using constructionist philosophy. We have already used this 
method in several schools, and we shall soon analyze the effectiveness of using human pictograms by 
experiments. 



Constructionism 2018, Vilnius, Lithuania 

600 

 

References 

Bell, T. et al. (2009) Computer Science Unplugged: School students doing real computing without 
computers. The New Zealand Journal of Applied Computing and Information Technology, Vol. 13, No 
1, pp. 20-29. 

Bell, T., Rosamond, F., & Casey, N. (2012). Computer Science Unplugged and Related Projects in Math 
and Computer Science Popularization. In H. L. Bodlaender, R. Downey, F. V. Fomin, & D. Marx (Eds.), 
The Multivariate Algorithmic Revolution and Beyond (pp. 398-456). (Lecture Notes in Computer 
Science; Vol. 7370). Online: Springer. DOI: 10.1007/978-3-642-30891-8_18 

Bell, T. et al. (2015) The English-language CS Unplugged activities in book form as a free download.   
https://classic.csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf (Last 
visited: March, 30th 2018)   

Hassan, M. M. E. (2015) The semiotics of pictogram in the Signage Systems. International Design 
Journal, Vol. 5, No 2, p. 301-315.  

Halan, S., Rossen, B., Crary, M. and Lok, B. (2012) Constructionism of virtual humans to improve 
perceptions of conversational partners. In CHI '12 Extended Abstracts on Human Factors in Computing 
Systems (CHI EA '12), ACM, New York, NY. p. 2387-2392. 

Mori, Y. Takasaki, T. and Ishida, T. (2009) Patterns in pictogram communication. In Proceedings of the 
2009 international workshop on Intercultural collaboration (IWIC '09), ACM, p. 277-280. 

Norman, D. A. (1993). Things That Make Us Smart: Defending Human Attributes in the Age of the 
Machine. Addison, Inc. 

Okamoto, M., Nakano, Y. I. and Nishida, T. (2005) Toward enhancing user involvement via empathy 
channel in human-computer interface design. Bold. L., et al. (Ed.), Lecture Notes in Computer Science 
Vol. 3490, Intelligent Media Technology for Communicative Intelligence, p. 111-121, Springer. 

Ota, Y. (1987) Pictogram Design. Kashiwashobo, Inc. 

Papert, S.(1977) A Learning Environment for Children. Computers and Communication: Implications for 
Education. New York, Academic Press, p. 271-278. 

Papert, S. (1980) Mindstorms, Children, Computers, and Powerful Ideas. Basic Books, Inc.  

Wing, J. M. (2008) Computational thinking and thinking about computing. Philosophical Transactions of 
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), pp. 
3717–3725. 

 

 

 

 

  



Constructionism 2018, Vilnius, Lithuania 

601 

 

Some Reflections on Designing Constructionist 
Activities for Classrooms 

Yasmin B. Kafai, kafai@upenn.edu  
University of Pennsylvania, Philadelphia, PA, USA  

Deborah A. Fields, deborah.fields@usu.edu  
Utah State University, Logan, UT, USA 

Abstract  
In this paper, we present our guiding principles for designing a constructionist curricular unit with 
electronic textiles called “Stitching the Loop,” which introduces high school students to key concepts in 
in crafting, circuit design and computing. Our principles were to design for (1) engagement, (2) 
expression, (3) depth, (4) experiences, (5) audience, (6) collaboration, (7) reflection, (8) failure, (9) 
practicalities, and (10) iteration. Over three years, we worked together with dozens of high school 
teachers and hundreds of students in designing, implementing and revising classroom activities where 
students create and craft a series of individual and collaborative electronic textiles. Situated within the 
larger framework of the Exploring Computer Science curriculum, we illustrate how these guiding 
principles fostered an equity- and inquiry-oriented pedagogy through which teachers can support 
students’ learning.  

Keywords  
curriculum; coding; computer science education; electronic textiles, constructionism, maker movement 

Introduction 

In constructionist approaches to learning and teaching, much emphasis has been placed on the design 
and development of construction tool kits (Resnick & Silverman, 2005). Hundreds, if not thousands, of 
digital, physical and hybrid construction kits have been developed to help students engage with STEM 
topics and express their ideas and personal interests (e.g., Blikstein, 2012). Far less attention has been 
given to the design and development of curricula where constructionism connects to academic content 
within a classroom. While curriculum design is often seen as contradictory to constructionist pedagogy 
because it constrains and directs student activities, we argue that it also can broaden access to both 
making and coding, deepen learning in those fields, and promote better diversity in what is being made. 
This is particularly important in coding and maker activities which have a longstanding history of 
inaccessibility to non-White, non-male students from working-class communities (Margolis, Estrella, 
Goode, Holme, & Nao, 2017).  

In this paper, we report on the design of an eight-week long formal curricular unit, called “Stitching the 
Loop,” which facilitated students’ interest-driven projects, supported peer collaboration, and applied 
equity-minded teaching. Our electronic textiles (e-textiles) unit was situated within Exploring Computer 
Science (ECS), an equity-focused and inquiry-based year-long introductory computer science course 
taught in public high school classrooms all over the country (Goode, Chapman & Margolis, 2012). We 
concentrated on bringing creative making in the form of e-textiles into computer science classrooms. 
E-textiles are hybrid designs, using conductive thread to sew LEDs, sewable microcontrollers (e.g., 
LilyPad Arduino, Adafruit Circuit Playground), sensors and other actuators into fabric or similarly soft 
media (Buechley & Eisenberg, 2008). The unit consists of a series of four open-ended projects (see 
Figure 1) with creative constraints that help students learn challenging concepts in computing, 
electronics, and crafting three-dimensional designs while also supporting personal expression and 
creativity. In the following sections we review different approaches to constructionist curriculum design 
and articulate the guiding principles we developed in designing the e-textile activities. 



Constructionism 2018, Vilnius, Lithuania 

602 

 

Background 

Arguably the first constructionist curriculum was published in 1971 as a memo titled “Twenty Things To 
Do With A Computer” in which Papert and Solomon suggested a variety of activities that could engage 
children in programming, among them: making a turtle draw images on paper by programming a pen to 
lift up and down; programming behaviors such as the turtle following along walls in a room; writing 
programs to draw geometric spirals, making an online movie by programming a change in petals on a 
flower, programming sounds to play a song, playing spacewar games, and many more. The memo 
concludes its list with the last recommendation asking the reader to come up with twenty more things 
to do with a computer.  

This curriculum consisted of a collection of different projects, not necessarily organized in a sequence. 
These projects promoted what Papert (1980) called “powerful ideas” about computing such as recursion 
or repetition by situating them in visible realizations such as drawing flowers or circles. They also 
connected to other academic subjects providing an alternative way for children to experience geometry 
or mathematics. Furthermore, they sought out compelling applications such as making music or movies 
or playing and designing games that would resonate with students’ interest. Many of these features 
have become guiding principles for other constructionist efforts, for instance, the development of the 
recent guide to Creative Computing (Brennan, Balch, & Chung, 2014) for Scratch activities.  

A different approach to constructionist curriculum has been software design for learning, where one 
project becomes the central focus, such as designing instructional software (Harel & Papert,1990). Here 
students work on designing software such as learning tools or educational games that teach academic 
content like mathematics or science. In this context, the learning of programming is connected with the 
learning of academic content by teaching subject areas to others through designed software. For 
instance, software games designed by students (Kafai, 1995) included multiple problems in words, 
graphics, and often provide stories and animations. Furthermore, students created a whole product by 
including package design and advertisements for their games. A key distinction to the previous efforts 
is that in designing software applications, students work on one complex, long term project rather than 
a collection of several smaller projects. Another dimension is that students journal about their ongoing 
design process in notebooks outlining project ideas and reflecting on their challenges. 

More recent efforts have combined elements from these two approaches by providing an explicit 
sequence of projects, such as game design as in Repenning and colleagues’ (2015) “Scalable Game 
Design,” which engaged students in a series of game design projects with Agentsheets. Likewise, the 
“Globaloria” platform (Caperton & Reynolds, 2011) included a year-long game design curriculum with a 
supporting social network where students can post and comment on games. Building on studio design 
pedagogy (Hetland, Winner, Veeenema, & Sheridan, 2013), Fields and colleagues (2016) also created 
a weeklong “Scratch Camp” where students engaged in an intentional series of projects with creative 
constraints interjected with mini-lessons, gallery walks, and a final interactive event sharing with families 
and friends. Our curricular e-textile unit combines the collection of projects and the one-project 
approaches by creating an intentional series of projects with creative constraints, culminating in a final 
project with a reflective portfolio. Below we share the guiding principles for designing the e-textile 
curricular unit. 

Guiding Principles for Stitching the Loop 

The Stitching the Loop curriculum contains big ideas, recommended lesson plans, and sample rubrics, 
with much room for students and teachers to interpret and bring in their own style, evidenced in the 
successful and nuanced ways it has been implemented by teachers over the past three years. It is 
accompanied by a 60+ page technical guide with fine-grained tutorials about crafting, circuit design, 
coding, and troubleshooting. By consciously combining traditionally masculine activities such as 
engineering and computing with traditionally feminine activities such as crafting and sewing, e-textiles 
can disrupt preconceptions about who can do computing, engineering, and crafting (Kafai, Fields & 
Searle, 2014). With this background, we brought together experts in e-textiles educational activities 
and the ECS development and implementation team. The curriculum was co-developed to combine 



Constructionism 2018, Vilnius, Lithuania 

603 

 

best practices of teaching and creating e-textiles based on a constructionist philosophy alongside ECS 
principles (inquiry, equity, and computing) and style.  

Over the past three years, we have written and piloted the curriculum with two teachers (Year 1—
Spring 2016), four teachers (Year 2—Spring 2017), and now 15 teachers (Year 3—Spring 2018) in one 
of the largest and most diverse school districts in the United States. All teachers participated in 3-4 
days of professional development, focusing on creating the core projects (see Table 1 and also Figure 
1) and reflecting on principles of the unit like valuing aesthetics, personalization, mistakes, and 
audience. Between implementations we used analysis of observations and interviews with teachers 
and students to revise the unit. Our experiences in creating, revising, and implementing this unit 
highlight the possibilities in introducing making to computer science in ways that promote equity, 
imagination, and personalization in classrooms. 

Table 1. Overview of projects in Stitching the Loop curricular unit 

 

Project Content Description 

#1 Paper 
Circuit 

(~1-2 hrs) 

Single circuit project design: Create a 
simple paper circuit greeting card that 
includes one LED. Introduce the concept 
of aesthetic design and personalization. 

· Simple circuit 

· Polarity 

· Materials: LEDs, copper tape (wire), paper 

#2 
Wristband 
(~5-6 hrs) 

Simple wearable project: Create a 
wristband with three LEDs in parallel and 
a switch that turns on the project when the 
ends of the wristband are snapped 
together. 

· Parallel circuit, switch 

· Reading circuit diagrams 

· Three-dimensional project 

· Deconstruction 

· Materials: Conductive thread, LEDs, fabric 

#3 
Collaborative 
Mural Project 

(~10 hrs) 

Collaborative project: As a class create a 
mural, with each panel made by two 
students. Each panel must have five 
independently programmable LEDs and 
two switches, allowing for four blinking 
light patterns. 

· Programming: Sequences, conditionals, 
embedded conditionals or Boolean 
statements 

· Collaborative work & division of labor 

· Materials: Conductive thread, LEDs, fabric 

#4 
Human 
Sensor 
Project 

(~10-14 hrs) 

Capstone project: Create a project with 
two aluminium foil patches that act as a 
sensor when both are touched by a 
person. Program four+ lighting patterns 
based on different sensor readings. 

· Sensor design (handcrafted) 

· Programming: operators, sensor range, 
Boolean statements 

· Materials: Conductive aluminium foil, 
human body, LEDs, fabric 

 

We made several changes as we developed the unit. One of the most important ones involved a change 
in assessment as we shifted from pre/post-tests to reflective portfolios where students summarized 
their final projects, shared challenges that came up, and wrote about their progression during the e-
textiles unit (Lui et al, 2018). The portfolio served to support student meta-reflection on their learning 
and to emphasize the process of making as much as the final product of making. The leadership model 
of the PD also changed as the two teachers from the first year of implementation took over nearly all 
training activities in the third year, bringing their hands-on expertise about managing students’ creative 
making, teaching students how to sew, organizing materials, and handling classroom management in 
the e-textiles unit.   

Designing for Engagement  
We designed the e-textiles unit for engagement by keeping all projects open-ended, allowing students 
to express their interests, hobbies, and personal relationships in their artifacts. This was demonstrated 
by the vast diversity of students’ projects and in students’ own consistent expressions of creative 
freedom in the projects. As one student related, “I was able to make something that I wanted, anything, 
and I just created that and I liked it. It was fun.” In some instances, students also displayed their 
engagement and relationships by designing their projects for others such as making a touch-sensitive 
soft toy for a little sister or making a blanket throw for a brother's birthday. 



Constructionism 2018, Vilnius, Lithuania 

604 

 

Designing for Expression 

The unit emphasized “aesthetics first” through a personal design or sketch at the beginning of every 
project. In prior studies we found that starting with instruction (i.e., ways to design circuits) instead of 
with design resulted in poor engagement by students (Kafai et al., 2014). In contrast, by having students 
sketch out what they wanted their projects to look like, even if ideas were technically or practically 
infeasible, encouraged personal ownership from the beginning and set up students up to persevere 
through challenges (Kafai, Lee, et al., 2014).  

Designing for Depth  
We also wanted students to learn deeply through providing increasingly complex projects. Too often 
constructionist projects stay at what Blikstein and Worsley (2016) call the “keychain phenomenon” 
where students enjoy “low floors” to design but do not continue onward to the “high ceilings” possible 
with more advanced ideas and skills (Resnick & Silverman, 2005). To this end, the unit had introductory 
and complex e-textiles projects (Figure 1 and Table 1) that built on design, crafting, circuitry, and coding 
skills, each increasing in both difficulty and open-endedness.  

Designing for Multiple Experiences  
The design of the e-textile unit also provided multiple experiences in learning about design, crafting, 
circuitry, and coding skills through having students conceptualize and then implement more than just 
one complex project. Initially we had six projects but worked with teachers to provide repeated 
opportunities for students to engage in practices such as debugging, revising, testing, collaborating, and 
designing for other users in just four projects.  

Designing for Audience  
We further supported project designs with authentic audiences by having teachers display their own 
and students’ projects at the beginning of the unit, during the unit as a way to share peer knowledge 
(see next section), and at the end of the unit as a form of collaborative show and tell. Some teachers 
went further to encourage students to show their projects to other teachers at the school or put projects 
on display in school hallways and display areas. This made students’ projects transparent to each other 
for idea generation and also provided authentic audiences for students, a common principle in studio 
design education (Hetland et al., 2013).  

Designing for Collaboration 

Peer pedagogy, or students teaching each other, was another design principle of the unit in both 
intentional and emergent ways. We deliberately used pair programming during coding instruction 
moments and chose to make one project (the mural) collaborative at both a classroom and partner level. 
But we were also surprised to find from our research how often students’ helped each other in 
unstructured ways. When reporting on challenges on their individual final projects in their Year 2 
portfolios, nearly one-fourth of students explicitly mentioned peer help as key to resolving bugs (see 
Jayathirtha, Fields & Kafai, 2018). Observations show even more frequent peer-to-peer help, 
encouragement, and support. Two things support this unstructured peer pedagogy in the unit. First, the 
physical structure of the classroom with students at small tables with shared supplies (scissors, thread, 
alligator clips, etc.) encouraged unstructured student collaboration. Student work (including errors) is 
visible and frustration is audible by sheer proximity. Second, teachers developed practices that support 
peer pedagogy, such as providing help to one student so that student could help others, connecting 
students to others who have expertise, and allowing student mobility in the classrooms, permitting them 
to get up and down and move around the room. 

Designing for Productive Failure  
Another goal of the unit was to support students in valuing the process of making projects, not just the 
final product. This meant finding ways to highlight mistakes and make them into learning opportunities 
rather than learning barriers. The teachers themselves developed several practices in this regard that 
we now explicitly model and name in professional development workshops (Fields, Kafai, Nakajima, 
Goode, & Margolis, in press). For instance, the teachers highlighted their own iterative practices of 



Constructionism 2018, Vilnius, Lithuania 

605 

 

creation, including their own mistakes, errors, and less-than-perfect projects in front of the classroom. 
This allowed the teachers to self-deprecatingly model practices of revision and iteration and coach 
students on tips for dealing with this process. The teachers encouraged students to think that it was 
okay not to be perfect the first (or the second, third, fourth) time.  

The teachers also showcased students’ challenges, mistakes, and in-process projects. They did this in 
multiple ways. First, teachers would highlight mistakes for the entire class during project time. One 
teacher created a tradition of saying, “This is my favorite mistake of the day!” and then would show the 
mistake and ask the rest of the class for help in identifying what was wrong and why. Second, teachers 
had students highlight mistakes through personal journal entries, some of which we adopted formally in 
later versions of the curriculum. For instance, one teacher added a journal question after the completion 
of the wristband project that solicited challenges that students had faced: “Think about this week’s 
project, what was the biggest challenge?” Students wrote their own reflections before sharing out ideas. 
These methods made students’ mistakes into a form of shared classroom knowledge, foregrounding 
students as experts in the classroom, a key practice of equity-based and constructionist teaching 
principles that situates knowledge in the hands of learners and not just teachers.  

Designing for Reflection  

Honouring the role of reflection in constructionist learning settings, another key element of the 
curriculum involves supporting students in consciously thinking about their processes of learning and 
honouring mistakes and challenges that occur during that process. Drawing on practices of reflection 
already present in the larger ECS curriculum (namely short journal entries and class discussion), we 
intentionally expanded these by including design notebooks and portfolios. Students responded very 
positively to the portfolio, saying that it helped them to see how much they had learned and appreciating 
that they were graded not just on the final product but also on their process of learning (Lui et al., 2018). 
In Year 3 we increased the supports for the portfolio by encouraging more frequent practices of 
documenting and reflecting on mistakes throughout the entire unit and not just on the final project. We 
included taking regular photographs of unfinished projects as “exit tickets” on crafting days, and made 
more “design notebook” entries where students suggested tips for others or noted changes that they 
made. 

Designing for Practicalities  
We also designed for the practicalities of managing materials and students, improving this each year. 
Teachers of Stitching the Loop taught in regular computer science classrooms not set up for the 
messiness of crafting. Early on the teachers developed practices to manage materials and set-up 
including 1) Using lidded boxes to contain table supplies; 2) Initiating set-up and clean-up practices 
where one student per table would pick up a craft box and later take it back; and 3) Organizing student 
work in individual Ziploc bags and storing these within the craft boxes. We also worked with 
manufacturers to make it easier to purchase materials for the e-textiles unit. This involved simplifying 
the number of merchants to order from (to satisfy school administrations) and lowering costs. The 
development of new microcontrollers like the Adafruit Circuit Playground that already had multiple 
switches and sensors onboard further allowed us to steeply lower the per-student cost of the unit to 
about $40/student (instead of $60+/student). We also negotiated with the manufacturer to create student 
and classroom kits that were easy to order and organize, with the added benefit of offering teachers of 
the unit bulk pricing for additional classes they needed supplies for. 

Design for Iterations  
Finally, as with any constructionist venture be it tools or activities, we iterated through the various 
aspects listed above. For instance, in the first year of the unit we had six projects, but this became 
overwhelming to fit into the limited 8-week window available as an ECS unit. We identified overlapping 
skills between projects and cut two projects that did not significantly add to students’ skills. In Year 2 
implementation we found that the four projects were sufficient for students developing the knowledge 
needed to carry out the final project and the time required was much more manageable. Furthermore, 
we shifted from a test-based assessment to a portfolio-based assessment where students shared 



Constructionism 2018, Vilnius, Lithuania 

606 

 

summaries of their projects, challenges and revisions that happened as they made them, and reflections 
on their learning overall.  

Conclusion and Discussion 

In Mindstorms Papert (1980) outlined a bold vision of how computers could help children learn, 
launching the development of numerous programming languages for learners, the design of various 
computational construction kits, and the creation of learning communities. Nearly forty years later this 
vision is making a comeback around the globe, promoting coding and making inside and outside of 
schools. Success stories of the Scratch platform and community and the Maker Movement have 
demonstrated that millions of kids can be interested in programming and in making electronics together 
in afterschool and online spaces. What does it mean for these activities to move back into the classroom 
with its focus on standards, curricula, and assessments within limited time periods and limited staffing? 

Our guiding principles for designing the e-textile curriculum unit embrace constructionist ideas and 
approaches in creating anew the conditions where personal projects can flourish, students can support 
each other, teachers can become members of the learning community, and failure is seen as part of the 
process. In many ways, constructionist-oriented teachers and researchers have adopted these 
principles for a long time. In designing “Stitching the Loop,” we hope we have made them explicit so 
that other teachers and designers can adopt them for bringing constructionist activities to classrooms 
and promoting more equitable teaching and learning opportunities for students. Though afterschool, 
out-of-school, and online constructionist experiences have much to offer, we believe that classrooms 
provide unique opportunities to reach out to broader numbers of children and youth who may not take 
the initiative to step into those more informal experiences. Further, classrooms furnish circumstances 
that can support greater rigor and depth because of consistent attendance and dedicated time to 
projects.  

In return we must of course consider the constraints of classrooms themselves, with the need to promote 
certain academic content and practices, limited staff, and physical and material constraints. Teachers 
report that “Stitching the Loop” has been a tremendous success with student engagement and 
preparation for more advanced computing courses. It provides a proven example that one teacher can 
work to support personalized project-creation with 25, 35 and even 40+ students. Projects with creative 
constraints, peer pedagogy, and process-based reflection all support depth of learning while legitimizing 
learners’ expertise and supporting interest-driven engagement. Robust professional development, 
building on the ECS model and educating in the way we hope teachers will educate their own students, 
is a key factor in ensuring the design principles are implemented fully. 

Of course, challenges remain. Supply costs for the unit have become more reasonable but not all 
schools can afford them consistently. Inevitably, not all teachers will embrace the principles of the unit 
equally, resulting in inconsistent implementation. This means we need to support teachers beyond the 
first year or two of implementation now that the curriculum is ready for national release. In developing 
“Stitching the Loop,” we illustrated how guiding principles need to apply to the design of construction 
tools and kits as well as to the constructionist projects and activities in which they are employed. Only 
then can we provide personally meaningful and equity-minded experiences to all learners. 

Acknowledgment  

This work was supported by a grant #1509245 from the National Science Foundation to Yasmin Kafai, 
Jane Margolis, and Joanna Goode. Any opinions, findings, and conclusions or recommendations 
expressed in this paper are those of the authors and do not necessarily reflect the views of the National 
Science Foundation, the University of Pennsylvania, or Utah State University. Special thanks to Tomoko 
Nakajima, Debora Lui, Justice Walker, Gayithri Jayathirtha, and Mia Shaw for their help with data 
collection and analysis. 



Constructionism 2018, Vilnius, Lithuania 

607 

 

References  

Blikstein, P. & Worsley, M. (2016). Children are not hackers: Building a culture of powerful ideas, deep 
learning, and equity in the Maker Movement. In K. Peppler, E. Halverson, & Y.B. Kafai (Eds.), 
Makeology: Makerspaces as learning environments (pp. 64-79). New York, NY: Routledge. 

Brennan, K., Balch, C. & Chung, M. (2014). Creative Computing. Harvard Graduate School of 
Education. Retrieved February 21, 2018 at http://scratched.gse.harvard.edu/guide/ download.html 

Buechley, L., & Eisenberg, M. (2008). The LilyPad Arduino: Toward wearable engineering for everyone. 
IEEE Pervasive Computing, 7(2), 12-15. 

Reynolds, R., & Caperton, I. H. (2011). Contrasts in student engagement, meaning-making, dislikes, 
and challenges in a discovery-based program of game design learning. Educational Technology 
Research and Development, 59(2), 267-289. 

Fields, D. A., Quirke, L., Horton, T., Velasquez, X., Amely, J. & Pantic, K. (2016). Working toward equity 
in a constructionist Scratch camp: Lessons learned in applying a studio design model. In A. Sipitakiat & 
N. Tutiyaphuengprasert (Eds.), Proceedings of Constructionism 2016 (pp. 290-297). Bangkok, 
Thailand: Suksapattana Foundation. 

Goode, J., Chapman, G., Margolis, J. (2012). Beyond curriculum: The Exploring Computer Science 

program. ACM Inroads, 3(2), 47-53. 

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning 

Environments, 1(1), 1-32. 

Hetland, L., Winner, E., Veenema, S., and Sheridan, K. (2013). Studio thinking 2: The real benefits of 
visual arts education. New York, NY: Teachers College Press. 

Jayathirtha, G., Fields, D. A., & Kafai, Y.B. (2018). Computational concepts, practices, and collaboration 
in high school students’ debugging electronic textile projects. Conference Proceedings of International 
Conference on Computational Thinking Education 2018, Hong Kong: The Education University of Hong 
Kong. 

Kafai, Y. B. (1995). Minds in play: Computer game design as a context for children’s learning. Mahwah, 
NJ: Lawrence Erlbaum Associates. 

Kafai, Y. B. Fields, D. A., & Searle, K. A. (2014). Electronic textiles as disruptive designs in schools: 
Supporting and challenging maker activities for learning. Harvard Educational Review, 84(4), 532-556. 

Kafai, Y. B., Lee, E., Searle, K. S., Fields, D. A., Kaplan, E., & Lui, D. (2014). A crafts-oriented approach 
to computing in high school. ACM Transactions of Computing Education, 14(1). 1-20. 

Lui, D., Walker, J. T., Hanna, S., Kafai, Y. B., Jayathirtha, G.,  & Fields, D. A. (2018). Communicating 
computational concepts and practices within high school students’ portfolios of making electronic 
textiles. In proceedings of the International Conference of the Learning Sciences, London, UK. 

Margolis, J., Estrella, R., Goode, J. & Holme, J. & Nao, K.  (2017). Towards the Shallow End (revised 
edition). Cambridge, MA: The MIT Press. 

Papert, S. (1980). Mindstorms. New York, NY: Basic Books. 

Papert, S., & Solomon, C. (1971). Twenty things to do with a computer. Artificial Intelligence Memo 248. 
Cambridge, MA: MIT AI Laboratory.  

Repenning, A., Webb, D. C.,  Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., Horses, I. H. M., 
Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K. & Repenning, N. (2015). Scalable game design: 
A strategy to bring systemic computer science education to schools through game design and simulation 
creation. ACM Transactions on Computing Education, 16(2), Article 11. 
DOI=http://dx.doi.org/10.1145/2700517 

Resnick, M. & Silverman, B. (2005). Some reflections on designing construction kits for kids. In 
Proceedings of the 2005 conference on Interaction design and children (pp. 117-122). New York, NY: 
ACM. 

 

  

http://scratched.gse.harvard.edu/


Constructionism 2018, Vilnius, Lithuania 

608 

 

Learning Analytics in Education: Objectives, 
Application Possibilities and Challenges 

Aleksandra Klašnja-Milićević, akm@dmi.uns.ac.rs  
Faculty of Sciences, University of Novi Sad, Serbia 

Mirjana Ivanović, mira@dmi.uns.ac.rs  
Faculty of Sciences, University of Novi Sad, Serbia 

Abstract  
With an increased amount of educational data in all domains of human activities, Learning Analytics 
(LA) become a powerful mechanism for supporting learners, instructors, teachers, learning system 
designers and developers to better understand and predict learners’ needs and performances. In this 
paper, we analyse the significant dimensions and objectives of LA, application possibilities and some 
challenges to the beneficial exploitation of educational data. We identify the required skills and 
capabilities that make meaningful use of LA techniques and technologies in this domain. They can act 
as a useful guide for setting up LA services in support of educational practice and learner guidance, in 
quality assurance, curriculum development, and in improving learning process effectiveness and 
efficiency. Furthermore, this paper proposes the most important constraints that affect LA technologies 
in education.  

Keywords (style: Keywords) 
learning analytics; education; application; learning environments; effective learning system 

Introduction  

During the last years, developments of new learning technologies, devices and environments, such as 
digital learner records, learner cards, mobile and eye-tracker devices, sensors, flexible classroom 
design, and Massive Open Online Course (MOOC) are completely transforming the approach of 
learning and teaching (Sharple, et. Al, 2014). Higher education institutions are collecting more data than 
ever before. Management of this vast amount of data, named “big data”, should offer valuable 
comprehension about the learning process, insights about risk of learner’s dropping out, and support 
for increasing learners’ success. In order to comprehend the patterns of value that exist within the large 
amount of data, new or innovative approaches are required. Lot of exploration and researches aim to 
handle the data with the proper techniques and new tools to produce real time solutions and predictions 
in this certain area. The utilities of proper techniques and new tools could be: operative self-learning, 
useful peer groups, available class time for creativeness, and possibilities for problem solving 
(Papamitsiou and Economides, 2014). 

Analysis techniques that extract information from “big data” such as discovering patterns and applying 
them to the education process are named Learning Analytics (LA). In its initial steps of evolving, there 
has been numerous definitions used for LA. Siemens defines it as “the use of intelligent data, learner 
product data and analysis models to discover information and social connections, and to predict and 
advise on learning” (Siemens, 2012). Elias described it as “an emerging field, in which sophisticated 
analytic tools are used to improve learning and education” (Elias, 2011). Learners and teachers leave 
many traces behind them in which LA can convert them to be beneficial for the education sector (Duval, 
2011). The most cited definition of LA came from an open online course on learning and knowledge 
analytics (LAK11) and was adopted by the associated First International Conference on LA and 
Knowledge in 2011 (Long, 2011): "the measurement, collection, analysis and reporting of data about 
learners and their contexts, for purposes of understanding and optimizing learning and the environments 
in which it occurs". 

Many researchers and developers study the use of LA in different fields related to the data availability, 
the competence, applicability, the cost, the privacy, the relevance and the ownership (Adams Becker, 



Constructionism 2018, Vilnius, Lithuania 

609 

 

2017; xxx et al., 2017). In this paper we will concentrate on contemporary study examines the 
applicability of LA in higher education institutions. 

The rest of the paper is organized as follow. The second section gives an overview of key trends in 
education environments, dataset and analytics. The third section is devoted to educational LA 
applications and their role in contemporary education. The challenges of implementation of LA in 
education environments are pointed out in the section 4. The fifth section of the paper provides the 
concluding remarks and possible future directions.  

Educational data - benefits for Learning environments  

LA can obtain advantages of available educational datasets from different Learning Management 
System (LMS), Content Management System (CMS), Tutoring system and other learning proposed 
systems (Davies, et al. 2017). Educational Institutions already have a large amount of student data and 
use these for different purposes. Administering student progress and reporting to receive funding from 
the public authorities are the most commonly known purpose. Linking such available datasets would 
facilitate the development of mash-up applications that can lead to more learner-oriented services and 
therefore improved personalization. LA strongly relies on data about learners and one of the major 
challenges LA researchers are facing is the accessibility of publicly available datasets to evaluate their 
LA methods. Most of the data produced in institutions is protected, and the protection of student data 
and created learning artefacts is a high priority for IT services departments. Nevertheless, analogous to 
Open Access publishing and related movements, calls for more openness of educational datasets have 
already been brought forward (Drachsler et al., 2010). 

Greller and Drachsler (2012) developed a framework that includes six critical dimensions related to an 
LA initiative. Each of the dimensions must be addressed to institutionalize an LA initiative successfully. 
Figure 1 illustrates critical dimensions according to educational environments. 

 

Figure 1. Critical dimensions of LA 

Some researchers specified that higher education has to include the analytics tool into the system in 
order to improve productivity (Daniel 2016; Hrabowski et al. 2011; Becker 2013). First, data analytics 
software can provide feedback to learners and teachers about educational performances: 

1. Feedback: Learner often might fail at a subject but not know what the reason was. It becomes 
valuable when the learner can look not just at himself, but at other people who have had the same 
experience. (S)he can get an insight either that would describe it so (s)he is not frustrated or that (s)he 
could use to correct it so that (s)he could be successful again. The improvement of electronic learning 
modules supports evaluation of learners in logical, real-time ways. In order to predict learner outcomes 
such as dropping out, needing extra help, or being capable of more demanding assignments, this 



Constructionism 2018, Vilnius, Lithuania 

610 

 

approach can analyze underlying patterns. Pedagogic approaches that seem most effective with 
particular learners could be identified. 

2. Tracking: In order to understand the real patterns of learners more effectively tracker devices can 
be used for teachers, by allowing them to track a learner’s experience in an e-learning course. In 
observing the digital paths learners leave overdue. Teachers can track learners’ passage during the 
whole learning experience.  

3. Efficiency: LA can save many hours of time and effort, when it comes to the achievement of our 
goals and strategies that we need to reach them. 

4. Understanding the learning process: By using LA in e-learning, teachers can see which parts of a 
course were too easy and which parts were so difficult that the learner has failed to solve. Other parts 
of the learner’s path teachers can analyse after that and consider pages re-entered often, preferred 
learning styles, sections recommended to peers, and the time of day, when learning operates at its best. 

5. Collaboration: Experts from many different fields have to come together to retain a Learning 
Management System function at its best. This encourages cooperation, teamwork, and interdisciplinary 
thought processes. 

6. Personalization: LA can be successful in the way we approach e-learning design by allowing 
designers to personalize courses to adjust their learners’ individual needs. This will allow e-learning 
developers to promote the standard for effective and exceptional e-learning courses. 

Regardless of the educational performances, many faculties, and universities have confirmed that 
analytics can support significant improvement of an institution, including resource distribution, learner 
achievement, administration, and finance. Some important features that LA offers to institutions are 
listed below (Daniel, 2015; Siemens, 2011). 

 Assisting in creating common sense of complex topics through the combination of social networks 
and technical and information networks. Algorithms can recognize and provide insight into data 
and at-risk challenges.  

 Innovating and transforming the college and university system, in addition to educational models 
and pedagogical approaches. 

 Improving administrative decision-making and organizational resource provision. 
 Helping leaders transition to holistic decision-making through analyses of “what-if” scenarios. 
 Exploring how different components within a complex discipline (e.g., remembering learners, 

decreasing costs) connects and discovers the influence of varying essential components.  
 Increasing administrative efficiency and productivity by providing latest information and allowing 

fast reaction to challenges. 
 Testing and evaluation of curricula. 
 Helping official leaders to control the hard (e.g., research, patent) and easy (e.g., quality of 

teaching, reputation, profile,) value created by faculty activities. 
 Evaluating typical grading techniques and instruments (i.e., departmental and licensing exams). 

Potential Application Areas of Educational Learning Analytics 

Nowadays, researchers in educational LA field tries to answer increasingly important and complex 
questions: what a student knowledge is and whether a student is engaged in learning process. Scientists 
and researchers have analysed and experimented with new techniques and new kinds of learning 
system data that have shown promise for predicting student learning outcomes (Jivet et. al. 2018, 
Adams Becker et al, 2017). In this section we present review of potential application areas for 
Educational LA. These areas represent the broad categories in which LA can be applied regarding 
online activities. Figure 2 presents a summary of selected areas and appropriate data types needed for 
analysis. In summary, LA systems apply models to answer such questions as: 

 When are students ready to move on to the next topic? 
 When are students falling behind in a course? 
 When is a student at risk for not completing a course? 



Constructionism 2018, Vilnius, Lithuania 

611 

 

 What grade is a student likely to get without intervention? 
 What is the best next course for a given student? 
 Should a student be referred to a teacher for help? 

Responding to these questions involves the collection of students’ entry and correctness of the answer, 
student activities on learning systems over time, when and to which group is specific for learning 
strategy, and performance of students on pre / post-tests. 

Research on the various components of the learning system can contribute to the design of better 
learning systems as it has strong implications for student learning. This area represents a key point for 
educational data processing and LA (Baker, 2010). Haixiang et al. (2017) proposed learning 
decomposition as an alternative and effective method. Learning decomposition method involves 
exponential learning curves to performance data and relating student success to the amount of each 
type of pedagogical support. The weights indicate how effective each type of pedagogical support is for 
improving learning. 

 

 Figure 2. Application areas for Learning Analytics and data types needed for analysis 

 

Scientists from Carnegie Mellon University have built cognitive models of mathematics, which have 
become the basis for high school programs that include intelligent tutorials (Ritter et al., 2007). In these 
systems, complex tasks are divided into individual components of knowledge, and the model is used to 



Constructionism 2018, Vilnius, Lithuania 

612 

 

improve the learning process and the problem-solving strategy. Each student activity is associated with 
one or more skills. In this way, researchers can use data from the tutorial system to dynamically assess 
the teaching efficiency. Evaluations and improvements to this model have been carried out over the last 
15 years.  

Challenges of Learning Analytics Technologies in Higher 
Education 

Regardless of the fast development of applications that support implementation of big data techniques 
in higher education, there are also several apprehensions that affect LA technologies. The main issues 
that can be observed in the application of LA in education are related to data profiling, privacy, and the 
rights of learners with respect to their individual behavior recording (Boyd, 2010). For example, some 
important issues must be taken into consideration (Picciano, 2012): 

 Should learners be informed that their activity is being followed?  
 How much information is necessary for faculty, students, parents, scholarships, and other issuers?  
 In what manner should faculty affiliates act in response?  
 Do learners have a requirement to look for support?  

Protection should be undertaken to confirm that the well-known collections of personal data of learner 
transactions are not hurt individuals. One encouraging approach to resolving these issues could be 
masking the data at its source (Barlow, 2013). Masking is one type of creative approaches that will 
make large-scale applications of data possible while still protecting the confidence of students’ and 
teachers’ information. New performances and competences for software applications permit sensitive 
data to be masked at the database level, when brought into a data warehouse. It can be concluded that 
even if someone has acquired physical access to database, delicate information like social security 
numbers will still be confused. 

With the adoption of LA in the educational fields, institutions are required to adjust their policies with 
legislative framework. Many institutional policies failed to fully reflect the ethical and privacy implications 
of LA (Prinsloo & Slade, 2013). In the rest of the section, we specify several possible principles that an 
ethical LA policy should describe:  

1. Collection of personal information: sex, date of birth, address, ethnicity, occupational status, 
qualifications and study records.  

2. The usage of personal information, if it is for the benefit of the students, such as predicting 
students’ behavior and advices based on LA, or if it is for research reasons to achieve LA 
objectives.  

3. Methodology of data collection either by the student’s input him/herself or by other services, such 
as browser cookies.  

4. Security principles for keeping the data protected.  
5. A description of the time period of keeping learners’ data and rules for deletion process. (Singer, 

2014) 
All LA tools should follow convenient security principles to keep the analysis results and the students’ 
records safe from any threat (Anciaux et al., 2006). 

 The confidentiality property promises that the data can never be accessed by an unauthorized 
access.  

 The integrity property promises that the data cannot be watched, changed, or transformed. 
 The availability property guarantees that the data should be available for authorized parties to 

access when needed.  
A key component of protecting learners’ information is encrypting their data in order to achieve the 
confidentiality concept. Encryption guarantees that only authorized people can use the data. Moreover, 
assuring confidentiality can include: invoking file permissions and granting a secure operating 
environment, while cryptographic hashing of datasets can assure the integrity property of students’ 
records (Chen & Wang, 2008). 



Constructionism 2018, Vilnius, Lithuania 

613 

 

As LA is an emerging research topic in the field of Technology Enhanced Learning and a forthcoming 
trend (Ebner & Schön, 2013), accuracy and validity of information is highly questionable. Faults related 
to selection a wrong dataset, or not recognizing the component relevant to data will negatively affect 
the accuracy of the outcome (Krasnow Waterman & Bruening, 2014). Therefore, a wrong selection of 
educational dataset will lead to inaccurate results. The questions we can ask here are: What if LA results 
were wrong? And what if the predications or the interventions went wrong? Accordingly, LA would aim 
to provide guarantees that it’s analyzing, and picking the data, fit quality criteria and produce an agreed 
level of accuracy. 

Data protection and copyright laws are legal restrictions that limit the beneficial use of LA. Such legal 
restrictions are: limitations of keeping the data for longer than a specific period, which are regulated 
differently in each country; the data should be kept secure and safe from internal and external threats; 
data should be used for specific purposes and the results of any process should be as accurate as 
possible. The restrictions could be stronger when it relates to personal information. Applying social 
network analysis as a method of LA causes the adoption of personal information. 

There are two main perspectives about who own the data: students and institutions. Jones et al. (2014) 
concluded that neither the students nor the institutions should win the ownership of the data. They 
suggested a hybrid module that merges both perspectives. Institutions can invest the students’ data in 
analytics, develop new personalized learning platforms and benchmark their learning management 
system. While students want to enhance their learning and maintain their performance, they would like 
to ensure that their information is kept confidential. An uprising question we like to address here is: What 
if LA methods have to modify the students’ data for prediction purpose.  

Conclusion  

Learning Analytics is a promising research field, which provides tools and platforms that influence 
researchers in Technology Enhanced Learning. Higher education institutions are applying LA to improve 
the facilities they provide and to improve observable and measurable learning outcomes (e.g. marks, 
success and awards, as well setback and obstruction) (Cooper, 2013). Nonetheless, this emerging new 
field lacks an approach that explains a complete overview of its processes. This research study revised 
the definitions of LA and the aspects that encourage its extension. This provides an entire overview 
consisting of: learning environment, dataset, analytics, constraints and the interventions which are 
interpreted to achieve the main goals of LA. Based on this approach, we identified the stakeholders, 
introduced examples of usage, presented methodologies and discussed the objectives. After that, we 
covered the way of determining the challenges that surround LA and shed the light on the privacy, 
security and ethical issues and anticipated questions that need a further research in near future. 

In the future, educational institutions should try to balance the institutions own philosophy of learner 
development on the one side and various federal privacy laws on the other side. It is significant that 
organizations comprehend the dynamic nature of educational success and retaining, offer surroundings 
for open dialogue, and enhance practices and approaches to solve these issues.  

We hope that research achievements presented in this paper and the implications derived from them 
will advance the discussion about building effective learning systems for learners, instructors, course 
designers, and similar activities in educational institutions. 

References  

Adams Becker, S., Cummins, M., Davis, A., Freeman, A., Hall Giesinger, C., & Ananthanarayanan, V. 
(2017). NMC Horizon Report: 2017 Higher Education Edition.  

Anciaux, N., Bouganim, L., & Pucheral, P. (2006). Data confidentiality: to which extent cryptography and 
secured hardware can help. In Annales des télécommunications (Vol. 61, No. 3-4, pp. 267-283). 
Springer-Verlag. 

Baker, R. (2010). Data mining for education. International encyclopedia of education,  112-118. 

Barlow, M. (2013). Real-time big data analytics: Emerging architecture. " O'Reilly Media, Inc.". 



Constructionism 2018, Vilnius, Lithuania 

614 

 

Becker B., (2013). Learning analytics: insights into the natural learningbehavior of our students, Behav. 
Soc. Sci. Librarian, 32,63–67. 

Boyd, D. (2010). Privacy and publicity in the context of big data. In Keynote Talk of The 19th Int’l Conf. 
on World Wide Web. 

Chen, L. & Wang, G. (2008). An efficient piecewise hashing method for computer forensics. In 
Knowledge Discovery and Data Mining, 2008. WKDD 2008. (pp. 635-638). IEEE. 

Daniel B. (2015). Big data and analytics in higher education: Opportunities and challenges, Brit. J. Educ. 
Technol, 46 904–920. 

Daniel, B. K. (Ed.). (2016). Big data and learning analytics in higher education: current theory and 
practice. Springer. 

Davies, R., Nyland, R., Bodily, R., Chapman, J., Jones, B., & Young, J. (2017). Designing technology-
enabled instruction to utilize learning analytics. TechTrends, 61(2), 155-161. 

Drachsler, H., Bogers, T., Vuorikari, R., Verbert, K., Duval, E., Manouselis, N., & Wolpers, M. (2010). 
Issues and considerations regarding sharable data sets for recommender systems in technology 
enhanced learning. Procedia Computer Science, 1(2), 2849-2858. 

Ebner, M., & Schön, M. (2013). Why learning analytics in primary education matters. Bulletin of the 
Technical Committee on Learning Technology, 15(2), 14-17. 

Elias, T. (2011). Learning Analytics: Definitions, Processes and Potential. Retrieved 10 March 2018 
from http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf 

Greller, W. and Drachsler, H. 2012. Translating Learning into Numbers: A Generic Framework for 
Learning Analytics. Educational Technology & Society. 15, 3 (2012), 42–57. 

Haixiang, G., Yijing, L., Shang, J., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced 
data: Review of methods and applications. Expert Systems with Applications, 73, 220-239. 

Hrabowski F. A., Suess, and J. Fritz, (2011). Assessment and analytics in institutional transformation, 
Assess. Analyt. Institut. Transform.46, 14–28. 

Jivet, I., Scheffel, M., Specht, M., &Drachsler, H. (2018). License to evaluate: Preparing learning 
analytics dashboards for educational practice. 

Jones, K., Thomson, J., and Arnold, K. (2014). Questions of Data Ownership on Campus. EDUCASE 
Review. Retrieved 2nd 
January 2018 from http://www.educause.edu/ero/article/questions-data-ownership-campus  

Xxx, (2017). 

Krasnow Waterman, K., & Bruening, P. J. (2014). Big Data analytics: risks and responsibilities. 
International Data Privacy Law, 4(2), 89-95. 

Long, P. (2011). LAK'11: Proceedings of the 1st International Conference on Learning Analytics and 
Knowledge, February 27-March 1, 2011, Banff, Alberta, Canada. ACM. 

Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher education. 
Journal of Asynchronous Learning Networks, 16(3), 9-20. 

Ritter, S., J. Anderson, K. Koedinger, and A. Corbett. 2007. “Cognitive Tutor: Applied Research 
in Mathematics Education.” Psychonomic Bulletin & Review 14 (2): 249–255. 

Sharples, M. et al. Innovating Pedagogy, (2014), 1–37. 

Siemens, G. (2012). Learning Analytics: Envisioning a Research Discipline and a Domain of Practice. 
In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK 2012) 
pp. 04-08, New York, USA: ACM.  

Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral 
Scientist, 57(10), 1510-1529.  

http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf


Constructionism 2018, Vilnius, Lithuania 

615 

 

Assessing Learning through Exploratory Projects in 
Cnstructionist R-based Statistics Courses for 
Environmental Science Students 

Maite Mascaró, mmm@ciencias.unam.mx 
UMDI-Sisal, National Autonomous University of Mexico (UNAM), Mexico 

Ana Isabel Sacristán, asacrist@cinvestav.mx 
Centre for Research and Advanced Studies (Cinvestav), Mexico 

Abstract  
For years we have been developing sequences of constructionist and collaborative activities where 
university environmental science students engage in computational programming tasks (using R code 
–http://www.r-project.org/) for exploring and learning statistical concepts and ideas. In this practice 
paper, we present a project-based method that we use for assessing students´ learning and 
appropriation of those statistical concepts.  

The exploratory projects that we use for assessment, are open-ended realistic problems in 
environmental contexts.  In these projects, students, working collaboratively in teams of up to 4 
members, are expected to make choices of the most appropriate statistical procedures and graphic 
representations to be used in portraying relevant statistical features in the data, and construct statistical 
models using any tool they choose, such as R code. They then have to defend the line of reasoning 
underlying their choices, through a formal presentation using their own communication resources, and 
where other students question and discuss the methods, results and interpretations presented. Such 
projects can be considered to be thought-revealing activities; i.e. they serve as a window into students’ 
thinking, and thus are means for assessing their learning. They also constitute an approach that is more 
in accordance with constructionist principles, since students explore and construct freely. Such projects 
thus, not only serve as a means for us to assess students’ learning, but can be, in themselves, learning 
experiences that help reinforce what has already been learned. 

Keywords 
statistics education; assessment; exploratory project; R-programming; constructionism 

Introduction 

For approximately 8 years, we have been researching how to enhance the teaching and learning of 
statistics and experimental analysis for environmental and biological sciences students at university 
level, using the constructionist approach (Papert & Harel, 1991). As we expressed in Mascaró & 
Sacristán (2016, p. 102): 

our concern is that environmental scientists require probability and statistical knowledge for 
experimental data analysis, decision-making, evidence to support theory, and communication of 
scientific results, so it is important for future researchers to have adequate understanding of these 
topics. However, learners in university programs in biology and related sciences tend to have 
difficulties in understanding and/or applying the concepts, and even researchers have a poor 
understanding and use incorrectly many statistics concepts (Batanero, 2001). Many teaching 
programs have had unsuccessful results (Bishop & Talbot, 2001) and there tends to be an 
aversion (including general ‘mathophobia’ – Papert, 1980) towards learning statistics.  

In order to address this concern, we have developed sequences of constructionist and collaborative 
activities where students engage in computational programming tasks (using R code –http://www.r-
project.org/) for learning and exploring statistical concepts. However, we then face the issue of how to 
assess the learning that takes place through our approach, without reverting fully to more traditional 
schooling methods, but rather utilizing means that are more in accordance with constructionist 



Constructionism 2018, Vilnius, Lithuania 

616 

 

principles. In this practice paper, we focus on a project-based method that we use for assessment 
purposes. Before that, we summarize the approach we take in our courses. 

The R-based statistics course approach 
Using as framework the constructionist philosophy (Papert & Harel, 1991) –which suggests that learning 
can be facilitated if students engage in exploring through construction, such as programming– as stated 
above, we have been developing and refining a series of approximately 35 student-centred computer 
programming activities for students to explore, implement and develop meaning for statistical concepts 
and ideas (see Mascaró, Sacristán & Rufino, 2016; Mascaró & Sacristán, 2016). The activities also 
attempt to integrate the following aspects: (i) the use of concrete examples with data from real research 
situations; (ii) emphasis on the use of diagrams, since graphic representations are essential in data 
organisation, statistical reasoning and analysis (Wild & Pfannkuch, 1999).  

All the activities are based and presented in the R programming language through R-code “worksheets” 
with instructions, examples, programming tasks, questions for reflection, and comments. We chose R, 
“because it is a transparent and powerful expressive ‘Logo-like’ language commonly used by 
statisticians, but simple to use (using a set of intuitive and relatively simple commands)” (Mascaró & 
Sacristán, 2016, p. 102).  The aims are for students to apply and explore statistical functions and 
concepts, and develop meanings for them, through the R-programming tasks; as well as develop 
competency in a statistical analysis tool (R) that they can use in their future research activities. 

The activities are usually carried out in teams of 2-3 students and moderated by a teacher. They are of 
two types: those for introducing the basics of R; and those on various topics of statistics courses (e.g. 
activities that deal with frequency distributions; activities on binomial, Poisson, and normal distributions; 
activities on ANOVA and comparisons between means; activities on linear regression; etc.). A sample 
task in ANOVA can be seen in Mascaró et al. (2016). 

The different activities have been implemented, repeatedly over the years, in at least two undergraduate 
courses (Probability and Statistics; Experimental Planning and Analysis) and three post-graduate ones 
(Experimental Design and Data Analysis; Introduction to Multivariate Statistics; and Univariate 
Statistics): in total, in approximately 20 courses (counting repetitions) in Mexico and Portugal.  

Assessing the learning and appropriation of statistics 

In order to assess students’ learning and appropriation of the statistical concepts and ideas, one 
approach that we have developed is through exploratory projects, carried out by teams of students, for 
solving realistic problems in environmental contexts. In these projects, students need to make choices 
of the most appropriate statistical procedures and graphic representations to be used in portraying 
relevant statistical features in the data, serving both exploratory and confirmatory purposes. They then 
have to defend the line of reasoning underlying their choices, through a formal presentation using their 
own communication resources, where other students question and discuss the methods, results and 
interpretations presented.  

These projects are similar to the learning programming activities of the lessons (including the 
collaborative work by teams of students), except that they are completely open-ended. In that sense, 
they are even more constructionist than the learning activities themselves. These projects share some 
commonalities with what Lesh et al. (2000) called thought-revealing activities (or model-eliciting 
activities) in the sense that students are faced with an open-ended realistic problem which they need to 
explore, and for which they need to build statistical models with whatever tools and methods they 
consider adequate, pose questions and present their conclusion in reasoned ways. Moreover, as Noss 
and Hoyles (1996) proposed, computer-based activities can serve as a window onto mathematical 
meaning-making. In those ways, students’ thought processes are revealed; we can thus assess the way 
in which students are able to create meanings and apply statistical concepts in solving the problems.  

Phases of the assessment exploratory projects 
An assessment session centred on an exploratory project, consists of three phases:  



Constructionism 2018, Vilnius, Lithuania 

617 

 

1. Each team (maximum 4 students) is given a concise, yet informative, description of a problem 
to be explored and solved, the context and the data produced by the investigation stated in the 
problem, together with an indicative list of important aspects to be considered as a guide for its 
solution. Teams are given 90 minutes to work on the problem, during which they have open 
access to every source of information: R scripts of their own, as well as those found on the 
internet; online documents on statistics, blogs, books, class notes and corrected exercises and 
homework. 

2. Teams are then given 30 minutes to prepare a 15-slide presentation of their findings. 
Presentations are expected to include a short introduction of the problem and research 
questions, a description of the exploratory and confirmatory techniques used, tables with 
statistical descriptors, numerical and graphic representations of relevant features in the data, 
and final conclusions. 

3. After a short break, teams present their results in random order. After each presentation, 
students in the other teams have to pose at least two questions that are graded depending on 
the degree of complexity and pertinence. Answers by the presenting team are also graded 
depending on precision, extensiveness and appropriateness. Students are previously instructed 
to ask questions in relation only to the statistical procedures and interpretations of the results 
obtained (thus knowledge on other contextual aspects –biological, chemical, geographical or 
social concepts– whilst superficially necessary for the discussion, is not considered for the 
grade). 

Assessment criteria 
During the presentations, members of each team are graded according the following categories using 
a scale of 1 to 3. (Note: we need to score students’ work, since we still are working in a formal school 
setting): 

A. How the problem and its general context are expressed and presented, and the explanation that 
is given on the experiment that was carried out 

B. Identification of the hypothesis of the problem (the cause-effect relationship) 
C. Identification of the factors (types, number of levels, arrays), of the response variables (units, 

SU, number and balance) 
D. Clear identification of the statistical model to be used and translation of the hypothesis of the 

problem, as expected from the different variation sources. 
E. Exploration of the data (trends of means, variances, internal distributions, extraordinary data) 
F. Execution of the analysis (types of tests and programmatic tools) 
G. Statistical interpretation of hypothesis tests 
H. Interpretation in the terms of the problem and the scope of the results 
I. Support elements to explain the results (use of tables, diagrams, graphs, etc.) 

 
Questions from other teams and answers during the discussion stage are also marked from 1 to 3 
according to the following criteria: 

1. Complexity of the question 
2. Articulation of the question 
3. Adequate question 
4. Quality and efficiency in the response 
5. Elaboration of the answer 

 

Grades in criteria A – I, are worth 60%; whereas those in criteria 1 – 5, 40% of the total score.  

Sample assessment related to Factorial ANOVA  

We now present an example of an exploratory evaluation project used to assess the way in which 
students apply statistical concepts related to factorial ANOVA for solving an environmental problem. As 



Constructionism 2018, Vilnius, Lithuania 

618 

 

can be seen in the text given to students (Figure 1) for the sample project discussed here, there are no 
specific questions but rather some guiding aspects to consider; so the project was open-ended and was 
specifically directed to assess whether students were competent in:  

 Identifying situations where the estimation and prediction of variance components and interaction 
terms between categorical explanatory variables (factors in nested and orthogonal ANOVA 
designs) is required. 

 Identifying the cause-effect relations of all explanatory and response variables involved, and the 
corresponding test hypotheses that need to be specified to confirm such relations. 

 Distinguishing between random and fixed effects in factorial designs, the computation of variance 
components and its interpretation in the context of the problem.  

 The application of test hypotheses using the F statistic, and the identification and interpretation of 
different elements in the numerical output of such tests i.e. degrees of freedom, residual standard 
error, probability of F value, coefficient of determination, etc.  

 Assessing the magnitude of estimates in the statistical model, particularly those related to nested 
factors and interaction terms.  

 The construction of graphic representations used to portray relevant statistical features in the data 
that will serve both exploratory and confirmatory purposes. 
 

Programming objectives were to learn, or improve, the use of the following R functions and libraries: 

 R-package GAD to adjust balanced models with different combinations of fixed and random factors 
in nested and factorial ANOVA designs. 

 The ‘anova’ function and compare its performance to that of ‘gad’. 
 The F-Distribution ‘pf’, ‘qf’, ‘df’ and ‘rf’. 
 The ‘interaction.plot’ and ‘coplot’ functions used to build working graphs that help assess 

interactions between explanatory variables. 
 Functions in the R-package ‘ggplot2’ to build graphs with different elements used often for final 

visualizations of statistical models. 

Specific example of a problem to be explored for the assessment 
Below (Figure 1), we present the text of a problem that guided one of the assessment projects. 

River San Pedro is the main body of superficial water in the Mexican state of Aguascalientes. It 
runs in an almost straight line from North to South through 90 km, until it meets River Santiago in 
the state of Jalisco. Prior to the construction and launching of the Industrial Park of the Valley of 
Aguascalientes, clustered in the southernmost part of the state, water pollution in the river, the 
aquifer and the soil in the river banks was negligible. Today, however, contamination by toxic 
organic substances, such as phenols, anilines and sulfacetamide (SAAM) has been reported as 
dramatic. 

In the attempt of confirming the environmental impact of organic toxins in the water, researchers 
from the Laboratory of Environmental Studies of University of Aguascalientes conducted a study 
repeating the same sampling design that their colleagues had used before the region's 
industrialization (1975). This consisted of taking 15 random water samples in 5 stations along the 
river, covering from the far north end of the industrial park (Sit1), an intermediate (Sit2), one near 
the industrial park (Sit3), one within the park (Sit4), and finally, one where most industries are 
located (Sit5). The concentrations of anilines (mg L-1) were determined in each water sample 
following the same procedures used previously, despite the idea that the old determinations were 
less precise than modern ones would be. 

The data can be found in sheet 'anilines' of file 'ex 2.10.xlsx'. 

Guide of important aspects to consider when solving the problem.  

a) Cause-effect relations and derived hypotheses.  
b) Type of statistical model, categorical factors included, level per factor and arrangement in the 
experimental design.  
c) Types of variables, experimental units, replication and balance in the model.  



Constructionism 2018, Vilnius, Lithuania 

619 

 

d) Strategy for the statistical analysis, including exploratory data analysis and the type of 
comparisons amongst means necessary to fully respond to the research questions posed in 
problem. 
e) Interpretation of results, both statistic and in the context of the problem.  
g) Presentation of results (format, graphs, tables, relevant statistical values, etc.), including final 
remarks and recommendations for future investigations. 

Figure 1. The problem given to students for an assessment related to Factorial ANOVA 

Sample answer by a team of students  

We discuss here the presentation created by a 4-member student team, after their exploration of the 
above problem, in one of courses in the Sustainable Coastal Zone Management undergraduate degree 
at the National Autonomous University of Mexico. This team got an overall score of 88/100 – the highest 
of the group. The team unequivocally identified the cause-effect relationship, the corresponding 
explanatory and response variables, and the fixed nature of the former; the experimental unit, number 
of replicates and levels in both factors (Figure 2).  

 

Figure 2. The factors of the problem from the student’s team slide  

 

  

Figure 3. The hypothesis of the problem as presented in the students team’s slides  

The team was also clear and resourceful in the description of the problem, supporting the introduction 
with a before-and-after diagram to explain how the impact assessment experiment had been conducted. 
They carried out an exploration for comparing, as an appropriate control, the data amongst years and 
the use of time, something that was straightforward; this allowed them to express a general hypothesis 
(in this case of differences in aniline concentration between years), (see Figure 3).  Whilst stating that 
“both time and site would affect aniline concentration in a dependant way (with differences in rate of 
change), there was some confusion in terms of which mean values would differ from each other. Despite 
some contradiction, a final relation amongst means per sites and years was appropriate, and the type 
of statistical model was correctly chosen, showing sufficient understanding of the need of an interaction 



Constructionism 2018, Vilnius, Lithuania 

620 

 

term to be assessed. The team applied several exploratory techniques to reveal features relevant to the 
problem and the data, including elements such as the magnitude and trend in the difference between 
means, size of internal dispersion, absence of outliers, etc. An important part of that exploratory 
analysis, is the construction of adequate graphical representations. In this case, the students used R to 
construct a variety of graphical resources (Figure 4), which they used effectively for describing 
adequately the elements of the problem and their interactions. 

 

 
 

Figure 4. The students team created different graphical representations to present the data of the problem: a) a 
scatter plot, b) a box plot, and c) line graphs for the sample interaction. 

This team of students carried out several statistical tests, such as ANOVA (see Figure 5) complemented 
and verified through a SNK test (Figure 6), which were correctly interpreted. They confirmed the 
hypothesis that the aniline concentration is dependent on both time and site. Nevertheless, whilst being 
able to recognize the need to assess the interaction term from the beginning, their strategy lacked 
consistence when they insisted on maintaining the analysis of the two main terms in the model. Also, in 
the final visualization of the model, this team didn’t portray the important conclusive elements regarding 
the interaction term drawn by them in their analysis, showing only differences amongst years; however, 
the model was correctly executed and included a measure of dispersion (Figure 7). 

 

 

 
Figure 5.  ANOVA table created by the team of 

students using R code 

 
Figure 6. The SNK test carried out by the students 

team and their interpretation. 

 



Constructionism 2018, Vilnius, Lithuania 

621 

 

 

Figure 7.  The team’s choice for the final visualisation showing the differences in concentration over time with 
measures of dispersion. 

So, in general, this team of students carried out a fairly successful exploration where they showed an 
understanding of the problem, were able to apply statistical concepts and generated adequate graphical 
representations and conclusions. This shows a good appropriation and learning of the concepts. They 
also used R programming for their statistical explorations, which shows, as well, that they appropriated 
that tool for their explorations. This example, although of the highest scored students, illustrates the 
potential of this type of approach for assessing students learning. 

We did not present here examples of the questions posed by individual students; but it is another 
important dimension of that assessment approach, since it reveals individual students thinking versus 
that of the team. 

Concluding remarks 

In this paper we showed how we use exploratory problem-solving projects in realistic contexts, as well 
as using a collaborative approach, in order for students to reveal their appropriation of the statistical 
concepts and ideas as they apply them in exploring, solving and presenting their interpretations, 
statistical model and conclusions. We consider this assessment approach more in accordance with 
constructionist principles, since students explore and construct freely, in a way that is also more realistic: 
where they actually have to think and work, more as they will have to, in their future careers. These 
projects thus, not only serve as a means for us to assess their learning, but are, in themselves, learning 
experiences that help reinforce what has already been learned. 

Acknowledgement 

The work presented in this paper has been financed in part by the PAPIME PE204614 and PE207416 
grants from DGAPA-UNAM. 

References 

Batanero, C. (2001). Main research problems in the training of researchers. In C. Batanero (Ed.), 
Training Researchers in the Use of Statistics (pp. 385-396). Granada, Spain: International Association 
for Statistical Education and International Statistical Institute.  

Bishop, G. & Talbot, M. (2001). Statistical thinking for novice researchers in the biological sciences. In 
C. Batanero (Ed.), Training Researchers in the Use of Statistics (pp. 215-226). Granada, Spain: Intl. 
Association for Statistical Education and International Statistical Institute.  



Constructionism 2018, Vilnius, Lithuania 

622 

 

Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing 
activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research design in 
mathematics and science education (pp. 591-645). Mahwah, NJ: L Erlbaum. 

Mascaró, M., & Sacristán, A. I. (2016). Exploring randomness and variability in statistics through R 
based programming tasks. In A. Sipitakiat & N. Tutiyaphuengprasert (Eds.), Constructionism in Action: 
Conference Proceedings Constructionism 2016 (pp. 101–108). Bangkok, Thailand: Suksapattana 
Foundation. http://e-school.kmutt.ac.th/constructionism2016/?p=772 

Mascaró, M., Sacristán, A. I., & Rufino, M. M. (2016). For the love of statistics: appreciating and learning 
to apply experimental analysis and statistics through computer programming activities. Teaching 
Mathematics and Its Applications, 35(2), 74–87. doi: 10.1093/teamat/hrw006 

Noss, R. and Hoyles, C. (1996). Windows on Mathematical Meanings. Dordrecht: Kluwer.  

Papert, S. (1980) Mindstorms: Children, Computers and Powerful Ideas. New York: Basic Books 

Papert, S. & Harel, I. (1991). Situating Constructionism. In I. Harel & S. Papert (Eds.), Constructionism. 
Norwood., NJ: Ablex Publishing Corporation. Retrieved from 
http://www.papert.org/articles/SituatingConstructionism.html 

Wild, C. & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review 
67 (3), 223-265.  

  



Constructionism 2018, Vilnius, Lithuania 

623 

 

How Students Struggled with Preparation of 
Activities for a Leisure Time Robotic Workshop  

Karolína Mayerová, mayerova@fmph.uniba.sk 
Comenius University, FMFI, Bratislava, Slovakia 

Michaela Veselovská, veselovska@fmph.uniba.sk  
Comenius University, FMFI, Bratislava, Slovakia 

Abstract  
In this article we describe university compulsory elective course, which we taught in the winter semester 
of 2017. We briefly explain specific conditions, which encourage transformation of the organization of 
the course. The aim of this article is to provide an overview of the process and results of a case study 
on integrating authentic learning into mentioned course. Not only from point of view of usage robotic 
kits during course lessons but also from the point of view of creating specific activities for leisure time 
workshop. This workshop was taught by our student (let's call her Jane), who also conducted 
observations there. In our research we used qualitative methods of data collection and data analysis 
including observations, recorded video, students' work process and outcomes (created activities). We 
introduce several activities with remarks from conducted observations. These activities were created 
with constructionist approach by our students during the course. We present several findings from Jane, 
from the teacher' point of view and also from pupils' point of view. She identified several requirements 
for content of activities for robotic workshop, which should include solutions of all the tasks in the 
activities and methodological guidelines for teaching. 

Based on Jane observations, we found out that number of pupils in the workshop was growing especially 
because of attractive nature of created activities. We hope that such increased internal motivation could 
help pupils to acquire a positive relationship to the compulsory school subject Informatics and to direct 
them in career growth.  

Keywords 
university elective course within teacher’s training; educational robotics; after school activities for 
primary and lower secondary school pupils; authentic learning 

Introduction 

Teacher education in the field of robotics can have a positive impact on teaching practice, such as, i.e. 
teaching focused on students (Bers, 2007). However, there are only few studies that include the training 
of future teachers with educational robotics (Kim et al., 2015). Nonetheless in these studies there is a 
serious lack of information and systematic evaluation about teacher education using robotics in teaching 
(Kim et al., 2015). Spolaôr and Benitti (2017) conducted a systematic review of studies about 
educational robotics that is being used in higher education institutions (tertiary institutions) and found 
out that studies do not focus on practical experience embedded in learning theories such as 
constructivism (Strommen, Lincoln, 1992) and project-based learning (Blumenfeld et al., 1991). 

For the several past years, we have been teaching course at the Comenius University in Bratislava that 
is engaged in educational robotics. This course is taught both in winter and summer semester and it 
aims to provide students experience with educational robotic kits (Kabátová, 2010). We try to lead the 
lessons in a way that allow students to get knowledge that cannot be obtained only by lecturing. They 
have the opportunity to get acquainted with the advantages and disadvantages of robotic kits in the 
context of teaching. This year, we had opportunity to apply the elements of authentic learning (Pasch, 
1991) in the natural way. During the winter semester of the academic year 2017/2018, in the course of 
Robotic kits in Education 2 (hereinafter RKiE2) we had a student (future teacher, we will call her Jane) 
whom started to run a robotic workshop at a leisure centre. This workshop had different Robotics kits 
than we have at our faculty. This was one of the reasons, why we decided to prepare opportunity for 



Constructionism 2018, Vilnius, Lithuania 

624 

 

students to try to work on an authentic problem, which was the creation of assignments with different 
robotic kits for real and diverse pupils at robotic workshop. So, we created activities that would be as 
useful as possible for our students and prepared them for situations in which beginning teachers can 
found them self. 

Constructionism in robotics 
In the creation of the syllabuses of our course, we were inspired by Papert et al. (1991), he states that 
simplest definition of constructivism evokes the idea of learning-by-making therefore, the whole content 
of the course is formed in a way that students acquire knowledge through active work. Therefore, 
students at our course are not only familiarizing themselves with robotic kits but they are actively 
exploring them and creating activities with them. This semester students also received feedback from 
their classmate, whom taught activities created during the course lessons. Students then adapted new 
activities, based on received feedback and new requirements. Papert et al. (1991) further states that: 
"Constructionism shares constructivism's view of learning as "building knowledge structures" through 
progressive internalization of actions. It then adds the idea that this happens especially felicitously in a 
context where the learner is consciously engaged in construction a public entity, whether it's a sand 
castle on the beach or a theory of the universe". In our case, it was about creating learning content for 
a leisure time robotic workshop. The main principles of constructivism include rich user-oriented 
interaction, the use of authentic problem situations, learning collaboration and learning experience in 
the process of constructing knowledge (Papert et al., 1991). Based on these principles, we have also 
changed the role of the student which verified the activity. She has become a helper for pupils in the 
process of actively construction their own concepts, structures of knowledge and skills. Thus, we have 
implemented constructionism as a learning theory and educational strategy, which also takes into 
account the importance of the enthusiasm for learning, as we confirmed by the results of our research. 
This theory states that the pupils will be more actively involved in the learning process by working on 
what is of individual significance (Kafai et al., 1996). In our case, it was mainly the student whom tested 
activities that was created during that week. Similarly, Papert (1993) argues that the construction of 
knowledge is more effective when pupils are involved in designing meaningful projects and creating 
artefacts. 

Papert et al. (1991) further states that digital technologies are perfect means of actively working on 
something real, when we construct and learn in a natural way (Kabátová, 2010). Work on something 
real takes place in authentic learning. 

Authentic learning in robotics 
In authentic learning, learning is organized with emphasis on the meaningful use of the learning material, 
which we have set as our primary goal in teaching our course. This way of learning reflects the process 
through which most of the knowledge and skills have been acquired through human history. It allows 
pupils to build on learning context and to use acquired knowledge in a meaningful way (Pasch, 1991). 
The basic characteristics of an authentic problem based on the Three-Step Model of Extension (Pasch, 
1991) are: 

 The real problem should be based on the interests of pupil or group of pupils, because it has 
personal value and is interesting for them. We have already seen this at the beginning of the 
semester, when we agreed with the students on the course details. 

 The real problem has no predetermined correct answer. However, while solving real problems, 
pupils should make the most by using authentic methods – they should approach the problem as 
well as experts. Each aspect of the project provides an opportunity to lead pupils to high-level work.  

 While solving the real problem, the pupils will in the end present gathered information to the real 
audience. This audience depends to a great extent on the pupils age and the complexity of the 
problem and should have and strong in interest in the problem. In our case, the audience was 
composed of real pupils from leisure time workshop. 



Constructionism 2018, Vilnius, Lithuania 

625 

 

Authentic teaching activities can be the main goal, during preparation of the course lessons. The 
ultimate goal in any course should be that pupils make meaningful use of acquired knowledge (Pasch, 
1991). 

University robotic course within teacher training 

RKiE2 is an elective course of master's degree program in Teacher's training during the winter 
semester. It is intended for all combinations of student of teacher's training that we have at our faculty, 
i.e.: mathematics, physics, chemistry, biology, physical education, geography. It continues the course 
from bachelor degree program entitled Robotic kits in Education 1. The content of this course was 
developed by our colleague a few years ago (Kabátová, 2010). We still use some of her findings, but 
we adjust content of the course according to the number of students and their needs. The aim of our 
course was to prepare opportunity for students to try to work on an authentic problem, which was the 
creation of activities with different robotic kits for real and diverse pupils at robotic workshop. Our 
students were exploring the elements that would be included in the curriculum for leisure robotic 
workshop. Experience with creating this kind of curriculum should be beneficial, because in Slovakia 
educational robotics is most often appearing in leisure workshops.  
Our school own robotic kits LEGO WeDo 1.0, WeDo 2.0 and LEGO NXT. From her own initiative, Jane 
brought robotic kits used at the workshop from leisure centre. Course RKiE2 at our faculty lasted 13 
weeks (one lesson per week = 90 minutes) and we were dealing with following topics: 

o Simulation of an inexperienced teacher: The students simulated a teacher who does not have 
any prior experience with robotics and is about to begin teaching it. They should search for 
suitable materials, tutorials and blogs on the internet to inspire them or direct them how to teach 
with robotic kit LEGO NXT / Ev3. 

o Getting to know the LEGO NXT and Sphero: Students have tried to work with the LEGO NXT 
and the Sphero robot. At the end of the lesson they evaluated the advantages, difficulties and 
predict how pupils could react to these robotic kits. 

o Getting to know BeeBot, Albi Robot and Code-a-Pillar: At the beginning of the lesson 
students get acquitted with three simple robotic kits. Subsequently, they should design a series 
of activities with these kits to be used at robotic workshop in leisure centre. 

o Getting to know LEGO WeDo 1.0 and WeDo 2.0: The students experienced work with both 
robotic kits by getting to know the programming environment and building a few simple models 
according to the instructions. 

o Getting to know Ozobot: The students were getting acquainted with the possibilities of 
programming the Ozobot robot and creating simple activities for this robot. 

o Creation of activities for robotic kits LEGO WeDo 1.0 and WeDo 2.0: The students choose 
one tutorial for each robotic kit and created a story that incorporated both. For the first time, they 
were given instructions that the created activities for workshop should include story, be focused 
on design and program, develop interdisciplinarity and wrote down the learning objectives of the 
activity. 

o Web searching and testing specific activity for the robotic kit LEGO Mindstorms NXT: 
Modification of activity for workshop needs. 

o Characterizing and defining recommendations and experiences from whole process of 
creation of activities 

Constructionist design of the course 

During the design of the course we applied eight Papert's big ideas (Papert, 1999): 

 Learning by doing - we have implemented by the exploration of different robots, robotic kits and 
preparation of assignments, that were used for real pupils at robotic workshop in leisure centre. 



Constructionism 2018, Vilnius, Lithuania 

626 

 

 Using technology as a building material - students worked with robots but also created 
assignments for pupils using a text editor. At the beginning of the course assignments contained 
mostly text, but later students also included e.g. images, various web links and samples of 
programs for robot control 

 Hard fun - robots are basically toys but solving complex tasks with them could be difficult (XXX, 
2010). Likewise, creating interesting and appropriate assignments that follow educational goals 
for robotic workshop at leisure centre is demanding. 

 Learning to learn - students learned what assignments or types of tasks with different robots 
are appropriate for specific groups of pupils. 

 Taking time – proper time for the job – syllabus of the course was flexible, so students had 
enough space to explore robots and to create assignments. If needed, some of the assignments 
were finished at home or took two lessons. 

 The opportunity to make mistakes and learn from them - students had enough space to 
create their own solutions where they committed many mistakes. We did not point them out 
immediately but we tried to engage in dialogue with students to find out where the problem was 
and with the help of questions direct them to the solution.  

 Teachers also learn - teachers cannot be fully prepared for any problems that may arise, but 
they can take them as opportunity for further learning and so they learn with students. In our 
case, we did not know most of the new robotic kits. 

 The use of digital technologies for further learning - robot exploration and creating 
assignments for pupils created opportunity for students to discover important information 
technology concepts. 

Methodology 

The aim of this article is to provide an overview and results of a case study on integrating authentic 
learning into university course about educational robotics. Not only from point of view of usage robotic 
kits during course lessons but also from the point of view of creating specific activities for leisure time 
workshop, that take place each week. In the lessons we worked with robots and robotic kits BeeBot, 
Albi Robot, Code-a-Pillar, Ozobot Evo, Sphero, LEGO WeDo 1.0, LEGO WeDo 2.0 a LEGO Mindstorms 
NXT. The students' work process was reported in the moodle system, where they at the end of each 
lesson submitted the assignments – the design of activities they created. This was the data that we 
analysed by qualitative methods (Creswell, 2002). In addition, students shared all activities through 
google documents. We also recorded some audio from course lessons and final lesson was recorded 
on the video. The student who taught these activities at the workshop informed us about results and 
feedback at the next lesson. Further she provided her field notes with the photographs for each 
workshop lesson. 

Participants 
Our course was attended by five college students, one male and four females. Three students were 
enrolled in the first year of master's degree program in Teacher's Training and other two students did 
not attend any didactically oriented subjects or pedagogical-psychological subjects. They were students 
of master's degree program in Applied Informatics and another in Mathematics of Economy, Finance 
and Modelling. The activities created by the students of the course were verified in the workshop at 
leisure time centre which was taught by one of our students Jane. The number of pupils in the workshop 
at leisure time centre has changed over the weeks. There were two groups of pupils. The pupils were 
aged between 8 and 14 (mostly boys) and in one group there were from 2 to 10 pupils.  

Activities created by students 

In this chapter, we provide preview of the activities that students have created during the course. In the 
figures below, we can see how length and form of the proposed activities have changed during the 



Constructionism 2018, Vilnius, Lithuania 

627 

 

semester. After getting acquainted with robotic kits, students tried to create activities to be implemented 
by two groups of pupils in a row and to be interesting. They tried to take into account the time constraints 
and area in which the robotic workshop was running. They created a series of four activities that took 
place during five lessons within workshop. The aim of activities created by students was to develop 
pupil’s interest in the workshop theme and to explore pupil’s potential. The educational goals of activities 
were defined by our students. During our course, students discovered why well defined educational 
goals for teachers are needed. They did not define goals based on National educational curriculum, 
because it did not exist for leisure workshops. Students focused mostly on increasing of motivation of 
pupils. We did not edit the activities to see change in form, amount of text used, grammatical or 
formatting errors. To each activity we added a comment from the student who tested it in the workshop 
at leisure centre. 

BeeBot, Albi Robot a Code-a-Pillar 

 

Figure 1. Activities with BeeBot, Albi Robot and Code-a-Pillar 

Comment to activity Bee-Bot (left part of Figure 1): "In this assignment, we had to improvise on the 
lesson because of the lack of props. Some pupils had experience with this robot from the nursery. In 
general, Bee-Bot was least attractive for pupils." 

Comment to activity Albi robot (middle part of Figure 1): "Pupils were most familiar with this robot 
because many have it at home or their friends have it. Pupils also highlighted an error in the assignment 
and stated that assignment could be shorter." 

Comment to activity Code-a-Pillar (right part of Figure 1): "Activity was longer than expected. 
Assignment could be shorter. The pupils very accurately measured the route and tested it several times, 
so it was time consuming." 

Ozobot 

 

Figure 2. Activities with Ozobot 

 



Constructionism 2018, Vilnius, Lithuania 

628 

 

Comment to activity Ozobot painting (Figure 2): "The pupils were very fond of drawing a trail for 
Ozobot. Difficulties in this activity were cause by having only one robot available for all pupils. But the 
pupils were very creative and drawn a lot of trails for the robot." 

Comment to activity Ozobot programming with the app: "The assignment was inaccurate, I had 
troubles to see the aim of the students that created it. So, the pupils improvised but they really liked 
results of how the robot lighted up." 

LEGO WeDo 1.0 and LEGO WeDo 2.0 

 

Figure 3. Activities with LEGO WeDo 1.0 and LEGO WeDo 2.0 

Comment to activity Lego WeDo (Figure 3): "This was very interesting for kids, only a pity that there 
was only one computer. It would be better if we could have had more robotic kits, because there were 
a lot of pupils in one group." 

LEGO Mindstorms NXT 

 

Figure 4. Activities with LEGO Mindstorms NXT 

Comment to activity LEGO Mindstorms NXT (Figure 4): "The construction was not difficult, but 
programming was unrealistic for pupils this young. But they enjoyed moving of robot." 

Experiences from authentic learning  

Jane was most engaged in authentic learning, so she summed up conclusions from the course. She 
comments content, formal implementation, positive and negative aspects of the whole course. Most 
positive comments are directly related to authentic learning e. i.: "I did not have to invent my own 
activities.", "I really enjoyed the joy of the pupils. They relished the workshop mainly due to the activities 



Constructionism 2018, Vilnius, Lithuania 

629 

 

that we have created." In a descriptive manner, she stated that methodical materials need to be 
prepared alongside created activities. Emphasis should be placed not only on correct content by also 
on motivation aspect: "Attention should by focus on process of activity, not only on activity goals." The 
differences between students of Teacher' training and other students were summarized as follows: "The 
group made up of the future teachers cared too much about the pupils and their age, so they created 
too simple activities – pupil could manage even more challenging tasks. Other students invented 
awesome activities but lacked greater focus on pupils' abilities." 

In addition, she stated, that from pupils’ point of view, they were the most fascinated by the results of 
what they were doing – the movement of the robot and its interaction. The pupils were incredibly happy 
when Ozobot began to shine as traffic light, when the Bee-Bot managed to get through the challenging 
route, when Code-a-Pillar simultaneously sang and move to the marked spot. They were also very 
happy when they could choose what to do with the LEGO building blocks and already knew how to 
control robot, so on the basis of their new knowledge, they could create something completely alone. 

From the teacher's point of view, it was demanding that the assignments were created mainly for the 
pupils. There were no instructions for the teacher, no expected results, no pre-programmed codes that 
were expected to be done by pupils. Furthermore, there were quite a lot of pupils on each lesson, so 
they worked in pairs but each pair had their own assignment. This crated a lot of work, because teacher 
needed to help each group on different tasks.  

Conclusion and Discussion 

In this article we presented activities, which our students created for robotic workshop at leisure time 
centre. The content and the form of activities were developed based on observations of our student, 
who taught these activities. Although we have been teaching this course for several years, we have 
experienced for the first time that students actively used their acquired knowledge directly in practice - 
in real robotic workshop with diverse pupils. Over the past few years, only few students used the 
acquired knowledge from this course in practice as participation in the robotic competition Istrobot. 
Based on the data analysis, we found out that during one semester students are able to get deeper 
knowledge with a certain number of robotic kits - we used eight robotic kits and it was too many for our 
students. Based on the observations from the workshop, we found out that number of pupils in the 
workshop was growing especially because of attractive nature of created activities. We hope that such 
increased internal motivation could help pupils to acquire a positive relationship to the compulsory 
school subject Informatics and to direct them in their career growth. Based on the experience from this 
semester, we managed to buy other types of robotic kits within our department. In the current summer 
semester of the academic year 2017/2018, our students have already been able to use some of these 
new robotic kits with pupils during another leisure time robotic workshop. 

References  

Bers, M. U. (2007) Blocks to robots: Learning with technology in the early childhood classroom. 

Blumenfeld, P. C. et al. (1991) Motivating project-based learning: Sustaining the doing, supporting the 
learning. Educational psychologist, Vol. 26, No 3-4, p. 369−398. 

Creswell, J. W. (2002) Educational research: Planning, conducting, and evaluating quantitative. Upper 
Saddle River, New Jersey.  

Kabátová, M. (2010) Constructionist approach at teaching pre-service teachers educational robotics. 
Ph.D. thesis, Comenius University, Bratislava. 

Kabátová, M. and Pekárová, J. (2010) Learning how to teach robotics. In Proceedings: Constructionism 
2010 conference.  

Kafai, Y. and Resnick, M. (1996) Constructionism in practice. Mahwah. Lawrence Erlbaum Asociates, 
New Jersey. ISBN 0-8058-1985-1. 



Constructionism 2018, Vilnius, Lithuania 

630 

 

Kim, Ch. M., et al. (2015) Robotics to promote elementary education pre-service teachers' STEM 
engagement, learning, and teaching. Computers & Education 91, p. 14−31. 

Papert, S. (1999) The Eight Big Ideas of the Constructionist Learning Laboratory. Unpublished internal 
document. South Portland: Maine (1999) Cited in STAGER, G. Papertian Constructionism and the 
Design of Productive Contexts for Learning. In Proceedings: EuroLogo X 2005. 
http://www.stager.org/articles/eurologo2005.pdf [Accessed: 2018-05-02] 

Papert, S. (1993) Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic Books, New 
York. 

Papert, S. E. and Harel, I. E. (1991) Constructionism. Ablex Publishing. 

Pasch, M. (1991) Teaching as Decision Making: Instructional Practices for the Successful Teacher. 
Addison Wesley Publishing Company.  

Spolaôr, N. and Benitti, F. B. V. (2017) Robotics applications grounded in learning theories on tertiary 
education: A systematic review. Computers & Education, Vol. 112, p. 97−107. 

Strommen, E. F. and Lincoln, B. (1992) Constructivism, technology, and the future of classroom 
learning. Education and Urban Society, Vol. 24, p. 466−476. 

  



Constructionism 2018, Vilnius, Lithuania 

631 

 

Constructionism as an Epistemological Option in 
Courses of Youth Center for Science and Culture – 
Bahia – Brazil  

Elmara Pereira de Souza, elmarasouza@gmail.com 
Youth Center for Science and Culture – Vitória da Conquista – Bahia, Brazil 

Luísa Souza Moura, luisasouzamoura@gmail.com 
University of São Paulo (USP) – São Paulo, Brazil 

Abstract 
The goal of this paper is to report on the practice of the Youth Center for Science and Culture, Vitória 
da Conquista, Bahia, Brazil, a public school for secondary school students. The Youth Center uses a 
constructionist perspective as an epistemological basis in their courses. The students are the main 
characters in the learning process and they use the coding languages Logo and Scratch in their projects’ 
development.  

 

 Figure 1.  Pedagogical structure of the courses of Youth Center for Science and Culture – Vitória da Conquista 
– Bahia - Brazil 

This experience shows that it is possible to create spaces of authorship so that the public school’s 
students don’t turn out to be just users of the technologies, but authors of socially relevant content, that 
can change their lives and that can provide future perspectives. 

Keywords 
constructionism; authorship; protagonism of young people 

Introduction 

We undergo, in Brazil, an educational crisis that has worsened with public political impositions and 
methodological proposals that are unlinked to the students’ realities; pedagogies that reinforce the 
status quo and that, most of the time, are insufficient with regard to the diversity, to the multiplicity, to 
the singularity and don’t favor the autonomy, the authorship of our students. In the Brazilian educational 
system, the problems are innumerable. 



Constructionism 2018, Vilnius, Lithuania 

632 

 

These problems can be seen by analyzing the indexes of the students’ evaluations, the indexes related 
to the teachers’ training; also our own teaching practice in the basic education and, specially, in the 
secondary school. 

The Program for International Student Assessment (PISA, 2015), for example, was applied in 70 
countries, and Brazil got the 63rd position in sciences, 59th in reading and 66th in math. Analyzing the 
Basic Education Development Index (BEDI, 2015), it is verified that, in a scale from 0 to 10, Brazil got 
a 3.7 average.  

When we analyze the data related to the teachers’ training, we verify that, from the state public 
secondary school teachers, 56.2% don’t have postgraduate studies and 74.9% don’t participate in 
continuous training (Universidade Federal do Rio Grande do Sul, 2018). 

We understand that there are a lot of variables to analyze Brazilian education, only the indexes are not 
enough to present the real situation of our education, but they can be used to cause a search for 
innovational educational proposals, that are close to the interest and to the reality of the students and 
that can deal with the youths’ desire for knowledge. The effective usage of information and 
communication technologies (ICT), of the cyberspace’s resources in the pedagogical process and of 
the insertion of creative learning in the classrooms can be made possible, since the young have a close 
relation with technology. 

The usage of the ICT, of the mobility, of the ubiquitous resources in education can favor the agency of 
the student’s desire to build new knowledge. With pedagogical practices based on constructionism 
(Papert, 1994 and 1986), on dialogism (Bakhtin, 2000), on affection-joy (Deleuze, 2008; Spinoza, 2009) 
subjective singularities can be produced in education favoring the training of our young people.  

We present, in this paper, the experience of the Youth Center for Science and Culture, a public school 
of the State of Bahia - Brazil, specially, the experience of the “ProgramAÍ” and “Criando Games” 
courses, developed for secondary school students, in addition to the Project Incubator, having 
constructionism as an epistemological option. 

Youth Centers for Science and Culture 

The Youth Centers for Science and Culture are public schools created by the Education Department of 
the State of Bahia and instituted through the decree nº 12.829, of May 4th, 2011. They have the goal of 
offering complementary education and diversifying the public school curriculum, as well as promoting 
the students’ access to contemporary thematics, through studies and interdisciplinary activities. The 
main pillars of the pedagogic activities developed in the Youth Centers are: (1) the student is the author 
of his own journey; (2) the school's connection; (3) the knowledge is transmedia; (4) learning is fun. 

The Youth Centers are interschool spaces and bring as a feature the logic “one-lots”, which means, 
they are after-school programs offering courses, workshops and activities to students of any state public 
school of the region covered by the Center. This feature multiplies the attendance and, at the same 
time, promotes the interaction of students from different schools, ages and degrees, as in every 
workshop, there may be students from elementary school to secondary school and from multiple 
schools. 

The Centers are a pedagogical innovation laboratory, they are active learning spaces, and they enhance 
the usage of digital technologies in the creative learning perspective (Resnick, 2017). The proposal is 
to provoke the students’ curiosity and encourage them to create a new relation with the act of learning, 
motivated by the pleasure of discovery. No Youth Centers activity is required. The students choose if, 
when and how they’ll participate, making possible the effective protagonism of their training. 

There are five Youth Centers for Science and Culture in Bahia in the following cities: Salvador, Senhor 
do Bonfim, Itabuna, Barreiras and Vitória da Conquista. 

In this paper we present the experience of the Youth Center from Vitória da Conquista, specially the 
experience of the “ProgramAÍ” and “Criando Games” courses and the Project Incubator. 



Constructionism 2018, Vilnius, Lithuania 

633 

 

The courses “ProgramAÍ”, “Criando Games” and the Project incubator 
The “ProgramAÍ” is a course of introduction to programming logic and it was created to address the 
need of implementing courses that are close to the students’ interest. It has the objective of providing 
to the secondary school students the initial contact with robotics systems control and coding, and also 
stimulate the development of logical thinking, creativity and teamwork for problem solving.  

The course “Criando Games” aims to provide the students with the knowledge of Scratch programming 
language to the development of games and animations. The activities are created in a practical way so 
that the students can be authors of their projects and the gaming and animation development can be a 
fun and attractive way of learning. The students are part of the Scratch community, sharing their 
products and interacting with other youth. 

The first experiences happened in 2016 with two classes of 20 students from 1st to 3rd years of secondary 
school. The workload of the courses was 30 hours each, with two weekly face-to-face meetings and 
distance activities in virtual learning environments (cjccvc.org60). 

After one year of performance in the courses “ProgramAÍ” and “Criando Games”, we identified the 
potential of many students in the digital technologies fields and we noticed that they had innovative 
ideas, but they couldn’t keep and/or finish their projects because the courses time was limited. After that 
observation, we created the Project Incubator, a space of authorship so the students can deepen their 
projects or develop research projects and innovative products after their own ideas. There is one weekly 
meeting and what determines the time that each student will be in the Incubator is the project he/she is 
developing. Any Youth Center student can integrate the Incubator at any time of the year; he/she only 
needs to develop a project in the digital technologies field, join a project that is being developed or just 
be welcomed in the group and learn with the others. The objective is to be an open and productive 
space in which the students can exercise creativity and produce knowledges through research projects 
and products development. 

In all these courses and in the Project Incubator we follow the constructionism as epistemological basis. 

Constructionist as epistemological option 

The Youth Center is a public school opened to pedagogical innovation, so we chose constructionism as 
an epistemological basis in the courses “ProgramAÍ” and “Criando Games”, and also in the Project 
incubator. 

In his investigations, Papert (1994) looked for different ways to learn, in which kids could be producers 
of knowledge, leaving their spot as just users to become active in the knowledge construction process. 
As an author, the students should take control of their own development along with the school as a 
learning place. So, inspired in Jean Piaget’s psychogenic theory, he created a set of ideas called 
constructionism. 

According to Papert (1986 and 1994), with the use of computers, the student visualizes and verifies 
his/her mental constructions related to the concrete as well as the abstract, following an interactive 
process that favors knowledge production. 

The creation of active learning environments is one of the constructionism principles and, in Center’s 
experiences, is one of the most important actions for the students to be able to develop creativity and 
produce knowledge. The active environments allow the students to test their ideas, theories or 
hypotheses and try the creation and implementation of projects. Papert (1993) realized that with the 
computers, there was the possibility of creating conditions for significant changes in the developing 
process of the children and, along with a group of researchers from MIT, developed the Logo 
programming language. Logo is a language that is considered simple, allowing the development of 
projects, and at the same time as it has the power of a professional programming language. 

                                                
60 This is the address of virtual learning environment of Youth Center. 



Constructionism 2018, Vilnius, Lithuania 

634 

 

Recently, the Lifelong Kindergarten Group of the MIT Media Lab, led by Mitchel Resnick, inspired in 
Logo, created Scratch, a free programming language and an online community in which you can create 
your own interactive stories, games and animations. Scratch has an easier and more friendly graphical 
interface that is free and it’s available on and offline. By using Logo and Scratch, the children and 
teenagers have the opportunity to be in control of the knowledge production and the development of 
their own ideas through the exercise of creative learning. 

Creative learning experience is based on four P´s: Projects, Peers, Passion, and Play. Resnick (2017) 
describes each P: 

 Projects. People learn best when they are actively working on meaningful projects – generating 
new ideas, designing prototypes, refining iteratively.  

 Peers. Learning flourishes as a social activity, with people sharing ideas, collaborating on 
projects, and building on one another’s work.  

 Passion. When people work on projects they care about, they work longer and harder, persist in 
the face of challenges, and learn more in the process.  

 Play. Learning involves playful experimentation – trying new things, tinkering with materials, 
testing boundaries, taking risks, iterating again and again. (Resnick, 2017).  

In Youth Center, Logo is used in the course “ProgramAÍ” and Scratch in the course “Criando Games”. 
Both languages promote the development of creative thinking. 

Some projects developed in Project Incubator 

In the Youth Center´s Project Incubator, many projects were produced using Scratch, among them we 
can highlight the game “Choices”, the interactive animation “Are your behaviors ecologically 
sustainable?” and the game “Aedes Adventure”. All projects have the objective of being educational 
actions and social relevant proposals.  

In Brazil, 8.4% of the teenagers from 12 to 17 years old are obese and 25.5% are above the ideal 
weight. Identifying these indexes and knowing that the teenagers like using digital games, the project 
“Choices” proposed the creation of a fun and interesting game, that could be an educational channel to 
make the youth aware of the importance of a healthy diet, physical activity and the consequence of the 
choices (individual and collective) to life quality. (figure 2). 

 

Figure 2. The first screen of the game “Choices”. Player can measure the body mass index - BMI (2017). 

In the project “Are your behaviors ecologically sustainable? the students developed an interactive 
animation with Scratch that was used as data production methodology (variables were created to keep 



Constructionism 2018, Vilnius, Lithuania 

635 

 

the users’ answers) to know if the students from a public school had sustainable attitudes related to 
water, energy, consumption, waste disposal and transportation usage. 

This project was also an educational action, as the subjects of the research, by having fun with the 
animation and answering the proposed questions, gave feedback about each theme related to 
sustainability and could reflect about their own attitudes (figure 3). 

 

 Figure 3. A girl using the animation “Are your behaviors ecologically sustainable?” developed in Scratch (2017) 

The game “Aedes Adventure” was created so people could think about the importance of combating the 
bug Aedes Aegypti’s breeder. In this game, we used augmented reality and, with a computer’s camera, 
the players could use their bodies to “kick” the breeders and the bugs.  

Besides providing the students’ authorship, we had exciting results with this project that have been 
changing these boys’ and girls’ lives, as well as their families’. (1) The game “Choices” has won 3rd 
place in the Edital Tecnologies for Education from FAPESB and the students got a R$ 5,000,00 prize; 
(2) we wrote an article about this experience in the development of the game “Choices” that was 
presented in the Meeting of the Brazilian Society for the Progress of Science (boys who had never left 
their hometown had the opportunity of being in one of the greatest events on the science field from Latin 
America, of presenting a paper among ungraduate and postgraduation students); (3) we received 
honored mention in this event, for the merit of the work; (4) we received a motion of Applause at the 
Vitória de Conquista City Council because of the developed work; (5) the project of the interactive 
animation “Are your behaviors ecologically sustainable?” was finalist of the Brazilian Science and 
Engineering Fair 2018; (6) the students presented their Scratch developed projects in the Campus Party 
2017 and in the Meeting of Students that took place in Salvador - Bahia. 
In the Project Incubator, there are no proofs or traditional learning measurements. The evaluation is 
effectively developed in the process of knowledge construction. We evaluate every stage of the project, 
the involvement of each student; we reflect about all the steps taken and we identify which path to follow, 
which subjects to deepen and to study. The partnerships with teachers and Universities are fundamental 
to the Incubator’s projects development. 

In the Incubator, everything is built in partnerships, after the students’ ideas, who are protagonists in 
this project. Each one learns and contributes according to his rhythm and knowledge. In the end, we all 
learn about contents and about coding, about how to relate with the other, about group work, about 
overcoming our own limits and going beyond the imagined, about trusting our capacity. The Project 
Incubator brings secondary school students in contact with University education, providing them with 
future perspectives. 

The projects of the Project Incubator are available in the repository of learning objects cjccvc.org. 

Conclusion 

Considering that the contemporary subjectivity is anchored in capitalistic devices that try to standardize, 
form consumer subjects and social, economic and cultural products users, developing educational 



Constructionism 2018, Vilnius, Lithuania 

636 

 

proposals that allow the students’ authorship, the youth’s protagonism is relevant, especially in an 
unequal country such as Brazil. 

Constructionism as epistemological option in the courses and activities in Youth Center for Science and 
Culture from Vitória da Conquista have shown themselves very productive, since, in the courses 
“ProgramAÍ” and “Criando Games” as well as in the Project Incubator, the students express their 
feelings and ideas through the project development; they, are authors, share their productions, work in 
groups and learn with interaction and technological artifacts. 

The experience of projects, games and digital animation production shows that it is possible to create 
authorship spaces so that public school youth don’t turn out to be reproducers and users of what’s 
already made, but producers and authors of socially relevant educational content. 

References 

Bakhtin, M. (2000). Estética da Criação Verbal. 4. ed. São Paulo: Martins Fontes. 

Deleuze, G. Em medio de Spinoza. Buenos Aires: Cactus, 2008. 

Papert, S. (1993). The Children’s Machine: Rethinking School in the Age of the Computer. New York: 
Basic Books. 

Papert, S. (1986) LOGO: Computadores e Educação. São Paulo: Brasiliense.  

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects, Passion, Peers, and 
Play. MIT Media Lab. MIT Press. 

Spinoza, B. (1996) Ethics. E. Curley (trans.). London: Penguin. 

Universidade Federal do Rio Grande do Sul (2018). Carvalho, M. J. S, Neves, B. G. B, Melo, R. S. 
Cultiveduca. Brasil no. BR512014001340-5, 18 mai. 2014, 25 jan. 2016. Source:  
http://cultiveduca.ufrgs.br/pg.index.html. 

 

  

http://cultiveduca.ufrgs.br/pg.index.html


Constructionism 2018, Vilnius, Lithuania 

637 

 

Female Teenagers and Coding: Create Gender 
Sensitive and Creative Learning Environments 

Bernadette Spieler, bernadette.spieler@ist.tugraz.at 
Institute of Software Technology, Graz University of Technology, Austria 

Wolfgang Slany, wolfgang.slany@tugraz.at 
Institute of Software Technology, Graz University of Technology, Austria 

Abstract  
The number of women in technical fields is far below the average number of males, especially in 
developed countries. Gender differences in STEM are already present in secondary schools in students 
aged between 12 to 15 years. It is during this intermediate female adolescence that girls begin to make 
critical career choices, which therefore makes this a key age to reinforce them and reduce the gender 
disparities in ICT. Acquiring computational thinking (CT) skills, particularly coding, is important for 
building a positive economic, developmental, and innovative future. To address the gender bias in 
schools, one of the goals of the European H2020 project No One Left Behind (NOLB) included 
integrating Pocket Code, a free open source app developed by the non-profit project Catrobat, into 
different school lessons. Through game design, Pocket Code allows teenage girls to incorporate 
diversity and inclusiveness, as well as the ability to reflect their cultural identity, their likes, and their 
ways of interacting and thinking. To evaluate the impact of the use of the app in these courses, we 
captured the results on engaging girls in design and coding activities. For this paper, the authors present 
the data of surveys via a qualitative content analysis during the second cycle of the project. The results 
let the researchers conclude that the organization and the setting of the coding courses (for example, 
guidance and supporting material, freedom of choice) had much more influence on female students’ 
engagement than the coding aspects or the app itself. In contrast, male students more frequently 
mentioned missing features in the app, and stated that they liked the coding. With a focus on female 
teenagers, the results allow us to conclude that a suitable classroom setting is significantly more 
important for them than the coding tool itself. 

 

Figure 1. Providing inclusive coding environments for female teenagers 

Keywords 
pocket code; game design; gender inclusion; coding; mobile learning; STEM; social inclusion; 

constructionism; girls; learning environment  



Constructionism 2018, Vilnius, Lithuania 

638 

 

Introduction 

Secondary school is the place where students make the critical choices which decide their future 
careers, develop a more realistic picture of their future jobs, and assess their career-relevant abilities. 
Researchers observe that girls’ interest in IT drops significantly from the age of 12 to 15 (Tsan, Boyer, 
and Lynch, 2016). To address this gender bias at an early stage, a goal of the European project No One 
Left Behind (NOLB) was to integrate Pocket Code, an app developed at Graz University of Technology, 
into different school subjects, thus making coding more accessible and attractive to female students. 
Although promoting gender equality is a longstanding policy which all European countries place on their 
agendas (EC, 2014), a gender-based inequity in ICT still poses barriers for women. Thus, the acquisition 
of digital skills is more important than ever and represents a key professional qualification (Balanskat 
and Engelhardt, 2015, Kahn, 2017, Tedre and Denning, 2016). For the NOLB project, the authors 
assumed that according to related literature it is possible to spark girls’ interests by getting them 
engaged in computational thinking through collaborative, creative, and engaging coding activities (Khan 
and Luxton-Reilly, 2016). Thus, the team studied whether the design of mobile games has an impact 
on inclusion and satisfaction of female students. Thus, the following research question has been 
defined: How can we organize coding activities to reinforce female teenagers in computer science? 

The paper is organized as follows: First, we describe the challenges of teaching CS in Europe and 
discuss several learning theories, with a focus on constructionism. Second, we present solutions on 
how to provide suitable learning environments for girls, followed by a brief description of the NOLB 
project and our educational apps for coding. Third, we present the results of the quantitative and 
qualitative surveys which show insights for framing suitable classroom settings for coding activities for 
girls. Finally, the last sections conclude the paper and describe our future work. 

Learn Coding: A Worldwide Challenge 

The European Commission states, “All of Europe's citizens need to be educated in both digital literacy 
and informatics” (Informatics Europe/ACM Europe, 2013, EC, 2016). Thus, IT education is seen as an 
interdisciplinary field that bridges the gap between the use of digital media and information-processing 
technology as well as basic concepts and fundamental ideas of computer science. The EC recommend 
that students should benefit from computer literacy at an early stage and that it is important to find a 
standardized definition of the informatics curricula through all countries. However, in Austria and in 
many other European countries, computer science topics are underrepresented in school curricula, 
hence, teaching time for these topics is limited (Informatics Europe/ACM Europe, 2016). From primary 
through secondary school, only a few opportunities exist for students to explore coding and CS topics.  

Learning theories from the past serve as an organized set of principles, clarifying how people acquire, 
retain, and recall knowledge (Schunk, 2016). These theories helped researchers to gain a better 
understanding of how learning occurs and help us to select appropriate techniques, tools, and strategies 
to support learning and teaching how to code. Three basic types of learning theory exist: Behaviorism, 
Cognitivism, and Constructivism, and some subtypes or variations, e.g., Instructionism, and 
Constructionism.  

Figure 2 provides an overview of important findings of each theory, how each theory handles students’ 
motivations, and shows details on how teaching and learning should be done. 



Constructionism 2018, Vilnius, Lithuania 

639 

 

 

Figure 2. Learning theories of the 20th century: Behaviorism/Instructionism (Pavlov, 1927, Skinner, 1976, von 
Foerster et al., 2009), Cognitivism (Piaget, 1968, Perry, 1999), Constructivism (Piaget, 1968, Vygotsky, 1978), 
Constructionism (Papert, 1980, Paper, 1991). 

Constructionism  
The Constructionist approach (Papert, 1980) is interested in building knowledge through active 
engagement and personal experience. Papert noted that individual learning occurred more effectively 
when students understood the world around them and were creating something that was meaningful to 
them. This experiential and discovery learning by challenges should inspire creativity, and project work 
allows for independent thinking and new ways of constructing information. The iterative process of self-
directed learning underlines that humans learn most effectively when they are actively involved in the 
learning process and build their own structures of knowledge. In this theory, communication between 
students about the work, and the process of learning with peers, teachers, and collaborators, is seen 
an indispensable part of a students’ learning (Papert, 1993, Papert, 1991).  

“The construction of knowledge through experience and the creation of 
personally relevant products. The theory proposes that whatever the product, 
e.g. a birdhouse, computer program, or robot, the design and implementation 
of products are meaningful to those creating and that learning becomes active 
and self-directed through the construction of artefacts.” [Papert, 1980, p.2] 

Thus, Papert described the huge potential of bringing new technology into the classroom (Papert, 1993). 
For this reason, he co-invented the LOGO programming language in the late 1960s at the MIT. LOGO 
was designed to have a “low threshold and no ceiling” and was indeed used to help novice 
programmers, and to support complex explorations and the creation of sophisticated projects (Tinker 
and Papert, 1989). LOGO set the basis for later visual programming tools, such as Etoys (Kay et al., 
1997) or Scratch (Resnick et al., 2009). Such block based visually oriented tools made programming 
accessible for a large number of people and taught new skills such as engineering, design, and coding 
(Blikstein and Krannich, 2013). They allow students to recognize blocks instead of recalling syntax. 
They are broadly integrated in schools, or even at universities all over the world (Meerbaum-Salant et 
al., 2010). 

To conclude, psychologists and pedagogues from today following the constructionist approach state 
three main goals. First, they wish to rethink traditional education without step-by-step guidance and to 
create new social and open environments. Second, they strive to allow students to engage in meaningful 



Constructionism 2018, Vilnius, Lithuania 

640 

 

and relevant problem-solving activities, and third, they want to integrate new tools, media, and 
technologies in school lessons (Neo and Neo, 2009).  

Jeannette Wing, 2006 shaped the term “Computational Thinking” (CT):  

“Computational thinking involves solving problems, designing systems, 
and understanding human behavior, by drawing on the concepts 
fundamental to computer science” (Wing, 2006) 

Wing’s idea that children who are introduced to CS learn more than just programming opened a new 
way of thinking, e.g., it showed the benefits of learning to think like a technician (Wing, 2008). Wing’s 
findings have been incorporated into the CS curriculum of many countries (Kahn, 2017) and into K-12 
movements (Mannila et al., 2014). However, CT is just a small subset of Seymour Papert's ideas in the 
80s (see previous section). Papert was the first who used the phrase computational thinking and defined 
it in a much broader way. For instance, Wing focuses mainly on computer programs, whereas Papert 
stated that there are more kinds of constructionist projects, and computational ideas could serve 
learning in a broad variety of subjects, this “can change the way [children] learn everything else” (Papert, 
1980, p. 8). In comparison, CT concepts lack creativity and student-directed projects (Kahn, 2017). To 
summarize, CT concentrates on the importance of coding and computer science activities, thus 
delivering concepts that are more applicable and successful on a number of levels (Tedre and Denning, 
2016). However, critics argue that coding should not be seen as a unitary skill but instead as a meta-
skill for a complex network of other skills.  

Creative Environments to Reinforce Female Teenagers in Coding 
Teaching good game design and development skills is especially important for girls because they are 
not that likely to play games (Krieger, Allen and Rawn, 2015). In addition, the literature argues that even 
if the number of female students who plays video games increased in recent years, male students have 
a greater interest in playing games (Jenson, Castell and Fisher, 2007). However, a recent study which 
examined American female players’ experiences showed that 65% of women play mobile games, 
compared to 2011 when only 31% of women played mobile games (Google and NewZoo, 2017). 
Furthermore, 64% of women prefer smartphones to other platforms (38% of the men do so). Thus, to 
use smartphones to design mobile games seems to be a very promising approach to attract young 
females. Furthermore, framing a supportive classroom setting for coding activities is a critical factor, 
and literature suggests that interventions should specifically target the classroom climate to strengthen 
teenage girls’ confidence to motivate female students extrinsically as well (Beyer et al., 2003). Such first 
positive experiences in coding may direct their future career choices towards STEM fields. If they 
become game designers and creators of their own learning content through a constructionist, creative, 
and engaging learning environment, this can significantly contribute to closing the divide and 
participation gap in digital culture (Veilleux et al., 2013, Allison, Cheryan, and Meltzoff, 2016). Thus, the 
literature states that for young women, creativity and interest in STEM professions are often related, but 
there is a lack of practical relevance in a lot of these subjects. A European-wide study in which 11,500 
young women between 11 and 30 were interviewed (Microsoft, 2017) showed that girls between the 
ages of 12 and 16 are the most creative. Approximately every third women that has been asked (33%) 
criticized how scientific topics were explained in schools and that those subjects are taught from a more 
"male perspective". Thus, it is important to make CS more attractive for girls in order to sustain a balance 
in this very strongly male-dominated IT labor market. It is therefore important to eliminate the prejudice 
that STEM professions are not creative. Through game design activities, creative environments, and 
customization, a broader spectrum of girls can be reached (Subsol, 2005). If facilitators promote 
especially IT careers that are more driven by creative thinking and design, more female students will 
expressed their interest in IT careers (Wong and Kemp, 2017). 



Constructionism 2018, Vilnius, Lithuania 

641 

 

The European No One Left Behind (NOLB) Project 

The focus in the subsequent sections lies on the European No One Left Behind61 (NOLB) project and 
the Catrobat62 learning apps, Pocket Code and Create@School. The NOLB project has been funded by 
the Horizon 2020 framework and involved partners from Germany, Spain, the UK, and Austria. The 
vision of the NOLB project was to unlock inclusive game creation and to construct experiences in formal 
and informal learning situations from primary to secondary level, particularly for students at risk of social 
exclusion. This project started in January 2015 and reached its conclusion in June 2017 by validating 
its outcome in different phases: preparation phase, feasibility study, first, and second cycle. To limit the 
scope of topics to those relevant to this paper, the remainder of this section focuses on the results of 
the second cycle and on the Austrian pilot. In the past the authors’ work concentrated on the feasibility 
study (Petri et al., 2016), evaluation of performed Pocket Code Game Jams (Spieler et al., 2016), and 
analyzing female teenagers’ performance in regard to the learning goal achievement of submitted 
programs (Spieler, 2018). 

Educational Coding Apps 
Our app Pocket Code (Slany, 2014), is a visual programming language environment that allows the 
creation of games, stories, animations, and many types of other apps directly on smartphones or tablets, 
thereby teaching fundamental programming skills. Programs in Pocket Code follow a similar syntax to 
the one used in Scratch. During NOLB an enhanced version of the app has been developed and 
adapted for use in schools. This new version is called Create@School and integrated the results of the 
observations during the pilot studies as well as feedback from teachers and students. Furthermore, a 
web based Project Management Dashboard (PMD) for teachers was developed. The app was released 
in October 2016 for first test runs during the second cycle of the project. Important components of the 
new Create@School flavor of Pocket Code were the gathering of analytics data, the integration of 
accessibility preferences for children with special needs, and pre-coded game design templates. In 
previous work the authors focused on the evaluation of the Create@School features (Spieler et al., 2017 
[1]) and the teachers’ perspective during NOLB (Spieler et al., 2017 [2]). This paper focuses on the 
evaluation of the NOLB coding environments, thus the apps will not be explained in more detail.  

In Austria, the NOLB project piloted in three different schools, in total, 478 students participated in 
Austria (281 female students and 197 male students). Altogether, 22 coding courses were conducted, 
and the coding apps were integrated in the curricula of English, computer science, physics, fine arts, 
and music (Spieler et al., 2017 [2]). 

Gender Inclusiveness in NOLB 
The idea of NOLB included that game creation challenges in classes should enhance female students’ 
abilities across all academic subjects, including logical reasoning, creativity, and the development of 
social and computational thinking skills (see previous section). Moreover, students had the opportunity 
to socialize with their peers during the game making process by working in teams. To address the 
gender bias in coding classes, the goal of the Austrian study included how to make the coding 
environment more suitable for female teenagers. From the literature, the assumption for NOLB was to 
attract girls by: 

 Increasing their personal attachment to programming by improving our services with appropriate 
example games/templates, new assets, and themed tutorials/templates. 

 Increasing their involvement by encouraging them to become active members of the Pocket 
Code community by providing them a safe and interesting environment to join, with featured 
games from female users for female users. 

 Asking them to design their own games rather than just to code programs. 

                                                
61 http://no1leftbehind.eu/ 
62 https://www.catrobat.org/ 



Constructionism 2018, Vilnius, Lithuania 

642 

 

The intent was to discover how to organize the coding units in ways that specifically empower girls by 
engaging them with playful and creative activities. 

Evaluation of NOLB Activities in Austria 

In this section, the NOLB results from the Austrian case study are evaluated to investigate female 
students’ experiences, behaviors, and outcomes when using our tools and services in different courses. 
With the help of a quantitative and qualitative survey, students’ opinions about the user experience (UX) 
of the Create@School app and the courses in which the app was used has been collected to gain a 
deeper understanding of the experience evaluation. Overall, a total of 131 students filled out feedback 
forms in Austria during the second cycle (63 male and 68 female students). Based on the research 
design, a t-test was performed which compares whether two groups (female/male students) have 
different average values. The evaluation is part of the NOLB Delivery 5.4 (Spieler and Mashkina, 2017). 
Results are collected by answering like/dislike questions: How was your experience with 
Create@School? (very good – very bad). Figure 3 illustrates students’ opinions per answer in 
percentage. The percentage of female students (in orange) who rated the experience as “good” was 
29% (38), and the percentage of male students (in cyan) account for 21% (27). The answer option “bad” 
was chosen by 13% of the girls (17) and 14% of the boys (19). In general, girls rated the app experience 
more positively (mean female = 2.63) as their male colleagues did (mean male = 2.37, but not 
significantly: p = .130, α = .05).  

 

Figure 3. Distribution of answers about the experience with the Create@School app. 

To clarify the motivation for these answers, it is necessary to take a closer look at the analysis of the 
open-ended questions: What did you like the most? The answers of the participants describe their 
positive impressions about the Create@School experience. Answers could be classified into five 
different categories: “working process”, “the app”, “the results (their game)”, “organization”, or “others”. 
The distribution of the answers among the categories can be seen in Figure 4. This time a Mann-Whitney 
U test was performed to analyse whether the central trends of the two independent samples are 
different. 

 

Figure 4. Categorization of the positive impressions during NOLB.  
Note that one answer could contribute to two categories, for instance the feedback "the finished products + the 

facilitators" contributed to both, results and organization categories.  

 



Constructionism 2018, Vilnius, Lithuania 

643 

 

The category “working process” contains feedback about preferred actions (e.g., I like to program, to 
play the game, to design), or properties of the school units (e.g., having a freedom of choice, that you 
could be very creative). The largest statistically significant difference between the responses of male 
and female participants was observed for this category, namely 26% of the girls (36) and 13% of the 
boys (18) provided positive working process related feedback (z = 2.402; p = .016, α =  .05). The 
category “app” contains the answers mentioning the experiences directly connected with the app itself, 
e.g., “the simplicity of the app”, or “the different effects and backgrounds”. Male students seemed to be 
significantly more positively impressed by the app than girls were (z = -1.969; p = .049, α = .05). A 
number of 8 girls and 20 boys evaluated the app qualities as positive. Some students were especially 
satisfied with the results of their work or the concept of game creation, and the category “results (own 
game)” contains this type of feedback. For instance, “the results and how everything turned out”, or “I 
liked the idea of creating a game” demonstrates this feedback. Of the girls, 9% (12) and 11% of the 
boys (7) were satisfied with the results or their personal game. The answers from the category 
“organization” highlights feelings about how the unit was structured. This includes if students were 
enjoying teamwork or solving the problems on their own, the presence of external people (facilitators of 
the workshop), usage of tablets during the school units, etc. It was noticeable that students in the 
younger age group of 12 - 14 years old were very excited about using the tablets during the school 
units. Typical responses for this category were, e.g., “to work in a team with your friends”, “when you 
(the facilitators) explained to us how the app really worked”, “that we had our own tablets”. The same 
number of the male and female participants’ feedback falls into the category of “organization” with nine 
responses from boys and from girls. The replies that could not be clearly classified into any of the 
described categories above were summarized into the “other” category. For example, answers with no 
clear message, or containing feedback connected to a particular game or classroom setting, as well as 
such responses as “nothing” or “everything”.  

Next, we will take a closer look on the categories “working process” and “app”. The category “working 
process” was divided into six subcategories: “designing”, ”creativity”, “playing”, “freedom of choice”, 
“programming”, and “other”. Figure 5 shows the distribution of the responses. 

 

Figure 5. Detailed overview of positive impressions category “working process”  

The subcategory with the name “designing” summarizes the feedback related to drawing, taking 
pictures, personalization of the characters, etc. For instance, “drawing our pictures” or “creating the 
characters” fall into this subcategory. There were 32% of the girls (17) and only two boys who identified 
design related activities as the essence of their positive experience (significant: z = 2.151; p = .032, α = 
.05). The subcategory “creativity” represents the feedback praising the creative side of the school units, 
for instance, “you could be very creative”, “you could do almost any game you wanted”. A total of seven 
female students and two male students evaluated creativity as the positive aspect of the Create@School 
experience. A total of six boys and three girls stated that they considered “playing” as a positive 
experience. Answers like “you were allowed to play” were typical for this subcategory. No constraints in 
choice or actions were valued by two boys and five girls. These responses were summarized within the 
subcategory “freedom of choice”. A representative statement for this subcategory was “That you could 
do whatever you want”. There were four boys and two girls who enjoyed the programming process itself. 



Constructionism 2018, Vilnius, Lithuania 

644 

 

Typical responses for the subcategory “programming” were “programming the rocket” or “programming 
by ourselves”. 

The category “app” was divided into four subcategories: “LEGO®-style bricks”, “features”, and “design”. 
The distribution of the feedback can be seen in Figure 6. 

 

Figure 6. Detailed overview of positive impressions of the category “app”. 

None of the girls but six boys stated that they were pleased about the LEGO-style bricks in 
Create@School. Although the number of answers is too small to be significant, the insights are 
interesting. The response “brick system” was representative for this subcategory. A total of nine boys 
and four girls liked the “simplicity” of the app. Feedback included “It was relatively self-explaining!”, or 
“components are easy to understand”. The subcategory “features” consists of answers like “the different 
effects and backgrounds” or “variables were available”. Four boys and two girls contributed to this 
subcategory. Equally, two of each gender liked the design of the app. 

What did you like the least? Any suggestions for app improvement? The answers to the questions were 
the basis for the negative feedback evaluation. Note that some students responded with everything was 
fine (6) and some did not give any answer to this question (10). Figure 7 categorizes the negative 
impressions about the app and the school units. 

 

Figure 7. Categorization of the negative impressions about the app and the school unit.  
Note that one answer can contribute to two categories, for instance the feedback “It was too complicated and it 

took too long to finish the game” contributed to both the “organization” and “complicated” categories. 

The category “app” consists of the feedback related only to the Create@School app, for example, “it 
looked kind of tacky, complicated, confusing”, “the axis of the screen”, or “it was buggy”. There were 
33% of the boys (41) and 17% of the girls (21) who provided this kind of feedback (significant: z = -
3.372; p = .0007, α = .01). Responses such as “it took too long to finish up the game”, “introduction of 



Constructionism 2018, Vilnius, Lithuania 

645 

 

the app was boring”, or “The instructors were not able to explain everything to us” about the unit were 
summarized into the category “organization”. There were 8 boys and 14 girls who gave this kind of 
responses. The feedback of the contents of the type “I found some things complicated”, “make it simpler 
for people that are not technical”, or “you needed help a lot” were summarized under the category 
“complicated”. There were 21 girls (17%) and only 2 boys who gave this type of feedback about their 
experience with Create@School. The replies that could not be clearly classified into any of the 
categories described above were summarized into “other”, for example, the answers with no clear 
message, or complaints about the devices and other apps. A breakdown of the category “app” into 
subcategories can be seen in Figure 8. 

 

Figure 8. Detailed overview of negative impressions of the category “app”. 

The subcategory “buggy” contains the feedback about the app behavior that students considered as 
bugs, responses about slow performance, and mentions of app crashes. 32% of the boys (23) and only 
8% of the girls (6) gave this type of feedback about the app (significant: z = -2.73; p = .006, α = .01). 
The representative answers for this subcategory were “Create@School crashes ALL the time”, “It 
sometimes stopped, didn't always work smoothly”, or “it took AGES to load”. Seven boys and one girl 
stated that the app lacks structural clarity, and is confusing, e.g. “the app totally lacks the structure”, or 
“some things should be easier to find”. These answers were summarized within the subcategory 
“confusing”. Nine girls and eleven boys complained about the complexity of the app (subcategory 
“complicated”). Comments characterizing the subcategory “unattractive design” were, for example “It 
looked kind of tacky” or “the design is rather boring”. The subcategory “other” contains all other 
responses that were related to the app, e.g., missing features (“the axes of the screen should be like in 
Scratch”). 

Conclusion and Discussion 

The results of the UX experiences with Create@School showed many significant responses and helped 
the authors to shape future workshops. Overall, the answers about likes and dislikes can be clearly 
separated by gender. On the one hand, female students significantly preferred the aspects of the 
Create@School units (“working process”) and mostly related to design activities, but did not mention 
the programming aspect explicitly. Negative impressions from female students concentrated more on 
the organization of the units or on the level of complexity, and less on the app itself. On the other hand, 
male students mentioned app related aspects, like programming and Create@School’s simplicity, as 
positive impressions significantly much more often than the units. Their dislikes significantly 
concentrated on the app, e.g., that it was buggy. This reflects the complaints of only six girls. 
Surprisingly, answers from girls also included that they did not like coding at all, whereas this was not 
an answer given by boys. The low performance and high error rate of the app is still a serious issue, but 
seems to have been more problematic for the male students. Possible reasons are again that boys are 
more used to utility apps (“tools”) and game engines than girls are (Krieger, Allen, and Rawn, 2015).  

To conclude, there are statistically significant different aspects which are more important for girls than 
for boys. In the literature review, the authors already described that CS lessons are mostly constructed 
to suit the interests of males. However, this evaluation shows that the working process and the 
sequence of the units are particularly important for engaging female students. Thus, for them not only 
is the tool essential but the learning environment as a whole, as well as the ability to express their own 



Constructionism 2018, Vilnius, Lithuania 

646 

 

interests, e.g., through designing and creative activities. Based on these statistically significant results 
and our analysis of the existing literature, and after the completion of the NOLB project, we started to 
design more suitable learning environments for girls, particularly focussing on aspects of gender 
sensibility and awareness (McLean and Harlow, 2017). We shortly describe them in the next section 
and will publish a more detailed description in a future paper.  

Outlook 

One result of NOLB, the Create@School app, was a great opportunity to provide schools with a tailored 
package of tools and services to help them integrate coding in their classrooms and to apply the app 
for interdisciplinary project work. This is important for the future to support teachers in Austria with the 
upcoming challenge to integrate a basic set of digital literacy education63 in secondary schools. After 
NOLB, the authors concentrated their research on how to apply the NOLB results to tailor the Catrobat 
services to female needs. Therefore, we have developed a new course model that includes extrinsic 
and intrinsic motivators as well as four key fields which have been considered as important for coding 
activities: playfulness, engagement, creativity, and coding. This model has already been tested with two 
classes of 23 students (one mixed gender class and one girls-only class). This sample clearly was very 
small, and thus we plan further larger studies in the same and in different contexts (outside school). As 
a first step, an intensive “Girls Coding Week” will be performed later in 2018 to test the model’s 
efficiency. 

References 

Allison, M., Cheryan, S., and Meltzoff, A.N. (2016) Computing Whether She Belongs: Stereotypes 
Undermine Girls’ Interest and Sense of Belonging in Computer Science. In: Journal of Educational 
Psychology, Vol. 108, No. 3, p. 424–437. 

Balanskat, A., and Engelhardt, K. (2015) Computing our future. Computer programming and coding 
Priorities, school curricula and initiatives across Europe. European Schoolnet.  

Blikstein, P., and Krannich, D. (2013) The Makers’ Movement and FabLabs in Education: Experiences, 
Technologies, and Research. In Proceedings: 12th International Conference on Interaction Design and 
Children. New York. June, p. 613-616. 

Beyer, S., Rynes, K., Perraul, J., Hay, K., and Haller, S. (2003) Gender differences in computer science 
students. In: SIGCSE Bull, Vol. 35, No. 1, p. 49–53. 

European Commission (2016) A new skills agenda for Europe. Working together to strengthen human 
capital, employability and competitiveness, [online] http://ec.europa.eu/social/main.jsp?catId=1223, 
accessed: 1.3.2018. 

European Commission (2014) Key priorities, [online]: https://ec.europa.eu/digital-single-market/key-
priorities-grand-coalition, accessed: 1.3.2018. 

Google and NewZoo (2017) Change the Game. THE WORLD OF WOMEN AND MOBILE GAMING. A 
White Paper. [online] http://services.google.com/fh/files/misc/changethegame_white_paper.pdf, 
accessed: 8.3.2018. 

Informatics Europe/ACM Europe (2016) Informatics Education in Europe: Are We All in the Same Boat? 
Report by The Committee on European Computing Education (CECE) Jointly established by Informatics 
Europe & ACM Europe. [online] http://www.informatics-europe.org/news/382-informatics-education-in-
europe-are-we-on-the-same-boat.html, accessed: 1.3.2018. 

Informatics Europe/ACM Europe (2013) Informatics education: Europe cannot afford to miss the boat. 
Report of the joint Informatics Europe & ACM Europe Working Group on Informatics Education, [online] 
http://www.informatics-europe.org/images/documents/informatics-education-acm-ie.pdf, accessed: 
1.3.2018. 

                                                
63 Mandatory exercise "Digital literacy" in secondary education 1, Content for piloting in the school year 2017/18, [online] 
https://tinyurl.com/y78wov7a, accessed: 8.3.2018. 

http://services.google.com/fh/files/misc/changethegame_white_paper.pdf
http://www.informatics-europe.org/news/382-informatics-education-in-europe-are-we-on-the-same-boat.html
http://www.informatics-europe.org/news/382-informatics-education-in-europe-are-we-on-the-same-boat.html
http://www.informatics-europe.org/images/documents/informatics-education-acm-ie.pdf
https://tinyurl.com/y78wov7a


Constructionism 2018, Vilnius, Lithuania 

647 

 

Jenson, J., de Castell, S., and Fisher, S. (2007) Girls playing games: Rethinking stereotypes. In 
Proceedings: 2007 conference on Future Play (Future Play '07). ACM, New York, USA, p. 9-16. 

Khan, N.Z., and Luxton-Reilly, A. (2016) Is computing for social good the solution to closing the gender 
gap in computer science? In Proceedings: Australasian Computer Science Week Multiconference, New 
York, USA, Article 17, 5 pages. 

Kahn, K. (2017) A half-century perspective on Computational Thinking, In: The Future of Learning, 
Music Learning with Massive Open Online Courses (MOOCs), Vol. 6, No 14 , p. 213-224. 

Kay, A., Rose, K., Ingalls, D., Kaehler, T., Maloney, J., and Wallace S. (1997) Etoys & SimStories. In: 
ImagiLearning Group, Walt Disney Imagineering 

Krieger, S., Allen, M., and Rawn, C. (2015) Are females disinclined to tinker in computer science? In 
Proceedings: 46th ACM Technical Symposium on Computer Science Education (SIGCSE '15). ACM, 
New York, NY, USA, p. 102-107. 

Neo, M., and Neo, T.K. (2009) Engaging students in multimedia-mediated Constructivist learning – 
Students’ perceptions. In: Educational Technology & Society, Vol. 2, p. 254–266. 

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., and Settle, A. (2014) 
Computational thinking in K–9 education. In Proceedings: Working Group Reports of the 2014 on 
Innovation & Technology in Computer Science Education Conference, ITiCSE-WGR ’14, p. 1-29. 

McLean, M., and Harlow, D. (2017) Designing Inclusive STEM Activities: A Comparison of Playful 
Interactive Experiences Across Gender. In Proceedings of the 2017 Conference on Interaction Design 
and Children (IDC '17), p. 567-574. 

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. (2010) Learning computer science concepts with 
scratch. In Proceedings of the Sixth international workshop on Computing education research, p. 69-
76. 

Microsoft (2017) Why don’t European girls like science or technology?, [online] 
https://news.microsoft.com/de-de/microsoft-studie-mehr-frauen-mint-berufen/, accessed: 1.3.2018. 

Papert, S. (1993) The Children's Machine: Rethinking School In The Age Of The Computer: Bringing 
the Computer Revolution to Our Schools. Basic Books. 

Papert , S., and Harel, I. (1991) Constructionism. New Jersey: Ablex Publishing Corporation. 

Papert, S. (1980) Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books. 

Pavlov, I.P. (1927).  Conditioned reflexes (G. V. Anrep,Trans.). London: Oxford University Press. 

Perry, W.G. (1999) Forms of Ethical and Intellectual Development in the College Years. San Francisco: 

Jossey-Bass Publishers. 

Petri, A., Slany, W., Schindler, C., and Spieler, B. (2016) Game Design with Pocket Code: Providing a 
Constructionist Environment for Girls in the School Context. In Proceedings: Constructionism 2016, 
Bangkok, Thailand, p. 109-116. 

Piaget, J. (1968) Six Psychological Studies. Anita Tenzer (Trans.), New York: Vintage Books. 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., 
Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y. (2009) Scratch: programming for all. Commun. 
November, Vol. 52, No 11, p. 60-67. 

Schunk, D.H. (2016) Learning Theories: An Educational Perspective, Pearson eText, 7th edition. 

Skinner, B.F. (1976) About Behaviorism. New York: Vintage Books. 

Slany, W. (2014) Tinkering with Pocket Code, a Scratch-like programming app for your smartphone. In 
Proceedings: Constructionism 2014, Vienna, August 2014.  

https://news.microsoft.com/de-de/microsoft-studie-mehr-frauen-mint-berufen/


Constructionism 2018, Vilnius, Lithuania 

648 

 

Subsol, G. (2005) Virtual Storytelling – using virtual reality technogies for storytelling, In Proceedings: 
3rd international conference, ICVS 2005, Strasbourg, France, p. 251-259, Springer Verlag Berlin 
Heideberg. 

Spieler, B. (2018) Reinforcing Gender Equality by Analysing Female Teenagers’ Performances in 
Coding Activities: A Lesson Learned, In Proceedings: Conference on Gender IT 2018 / GEWINN-
Konferenz 2018, Heilbronn, Germany, May 2018, 10 pages. 

Spieler, B., and Mashkina, O. (2017) D5.4 – Report and findings from experimental pilot in Austria. 
Agreement 645215. 

Spieler, B., Schindler, C., Slany, W., Mashkina, O., Beltrán, M.E., Boulton, H., and Brown D. (2017 [1]) 
Evaluation of Game Templates to support Programming Activities in Schools, In Proceedings: 11th 
European Conference on Games Based Learning, 5-6 October 2017, Graz, Austria. p. 600-609. 

Spieler, B., Schindler, C., Slany, W., and Mashkina, O. (2017 [2]) App Creation in Schools for different 
Curricula Subjects - Lessons Learned, In Proceedings 9th International Conference on Education and 
New Learning Technologies (Edulearn17), 3-5.July 2017, Barcelona, Spain, p. 5814-5824. 

Spieler, B., Petri, A., Slany, W., Schindler, C., Beltrán, M.E., and Boulton H. (2016) Pocket Code: A 
Mobile App for Game Jams to facilitate Classroom Learning through Game Creation. In Proceedings: 
The Irish Conference on Game-Based Learning (iGBL). Dublin. Ireland, p. 61-79. 

Tedre, M., and Denning, P.J. (2016) The Long Quest for Computational Thinking. In Proceedings: 16th 
Koli Calling Conference on Computing Education Research, November 24-27, Finland. p. 120-129. 

Tinker, R.F., and Papert, S. (1989) Tools for science education. In J. D. Ellis, editor, Information 
Technology and Science Education. 1988 AETS Yearbook, Chapter 1, p. 1-23. Columbus: SMEAC 
Information Reference Center (SMEAC/IRC), The Ohio State University, 1989. 

Tsan, J., Boyer, K.E., and Lynch, C.F. (2016) How Early Does the CS Gender Gap Emerge?: A Study 
of Collaborative project Solving in 5th Grade Computer Science. In Proceedings of the 47th ACM 
Technical Symposium on Computing Science Education (SIGCSE ’16). ACM, p. 388–393. 

Veilleux, N., Bates, R., Allendoerfer, C., Jones, D., Crawford, J., and Floyd Smith, T. (2013) The 
relationship between belonging and ability in computer science. In Proceeding: 44th ACM technical 
symposium on computer science education (SIGCSE '13). ACM, New York, NY, USA, p. 65-70.  

Vygotsky, L. (1978) Mind in Society. London: Harvard University Press. 

von Foerster, H., von Glasersfeld, E., Heijl, B.M., Schmidt, S.J., and Watzlawick, P. (2009) Einführung 
in den Konstruktivismus, 11th Edition, München: Piper. 

Wing, J.M. (2008) Computational thinking and thinking about computing. In: Philosophical Transactions 
of the Royal Society A, Vol. 36, No 1881, p. 3717–3725. 

Wing, J.M. (2006) Computational thinking. In Commun. ACM, Vol. 49, No 3, p. 33-35. 

Wong, B., and Kemp, P.E.J. (2017) Technical boys and creative girls: the career aspirations of 
digitallyskilled youths. The Cambridge Journal of Education. ISSN 14693577, Available [online] 
http://centaur.reading.ac.uk/70247/ 

  



Constructionism 2018, Vilnius, Lithuania 

649 

 

Visualizing Mathematics with the MathBot: a 
Constructionist Activity to Explore Mathematical 
Concepts through Robotics 

Christina Todorova, tina@esicenter.bg  

European Software Institute – Center Eastern Europe, Sofia, Bulgaria 

Carina Girvan, girvanc@cardiff.ac.uk  

School of Social Sciences, Cardiff University, Wales, UK 

Nikoleta Yiannoutsou, nyiannoutsou@ppp.uoa.gr  
Marianthi Grizioti, mgriziot@ppp.uoa.gr 
UoA ETL, National and Kapodistrian University of Athens, Athens, Greece 

Ivaylo Gueorguiev, ivo@esicenter.bg  

Pavel Varbanov, pavel@esicenter.bg  

George Sharkov, gesha@esicenter.bg  

European Software Institute – Center Eastern Europe, Sofia, Bulgaria 

Abstract  
In this practice paper, we aim to share our experience with the design and implementation of 
constructionist educational robotics activities tailored to primary school students (4th grade, age 9-11 
years) implemented in a series of robotics workshops, which took place within a real school setting in 
Sofia, Bulgaria.  

Through this contribution, we will further present an activity plan, which involves student engagement 
with mathematical concepts (angle measuring and properties of the circle) in order to program the 
behaviour of a robot. Our paper reports insights on the implementation of the activity plan focusing 
students’ evaluation of their experience during the workshop. These insights are drawn from quantitative 
data from 131 participants (63 boys and 68 girls), capturing the overall student attitude.  

The activity plan behind this set of educational robotics workshops was designed, adapted and piloted 
in alignment to the guidelines of the Bulgarian national curriculum for mathematics for the 4th grade. 
However, it could function as a practical example, which could be adapted, enriched and modified to 
benefit other age groups, nationalities and desired learning outcomes.  

Keywords  
educational robotics; mathematics; programming; Scratch; primary education 

Introduction 

The increasing difficulty related to maintaining students’ positive attitude and motivation towards the 
educational process is not a new topic neither for the Bulgarian education scene, nor internationally. 
Furthermore, against the backdrop of the rapidly changing technological landscape, which demands the 
continuous improvement of computer science curricula in general education schools, providing students 
with a functional understanding of how technology works becomes a paramount and a challenge.  



Constructionism 2018, Vilnius, Lithuania 

650 

 

The ICT general education in Bulgaria is already undergoing a renaissance of a sort with subjects such 
as computer modelling646566 with Scratch for primary school students being gradually included within the 
official school curriculum. Furthermore, curriculum strategies are being developed in order to include a 
multidisciplinary approach towards learning, an example being the Ministry of Education’s “Innovative 
Schools”676869 initiative granting schools a certain level of curriculum flexibility and allowing them to 
include innovative learning approaches and multidisciplinary subjects.  

At the same time, there is a worldwide turn to robotics and STEM education alike, with a big number of 
robotics kits launched during the last few years. According to the International Federation of Robotics 
in October 2016, from 2014 to 2015, unit sales of entertainment robots, including educational robotics 
kits jumped by 29 percent to around 1.7 million units. The entire segment is projected to increase to a 
total of 11 million units (2016-2019). The sales value adds up to around US$ 9 billion in the same 
period.70 Robotics activities for STEM have been considered as interdisciplinary with a strong emphasis 
on collaborative learning, and robots have been perceived as a potentially powerful “vehicle” providing 
opportunities for construction, experimentation and collaboration between learners (Alimissis 2013). 
However, most of the robotics kits and activities tend to focus mainly on Programming and Engineering 
leaving aside the Mathematics and Science elements of STEM education. Additionally, in many 
educational robotics activities the element of construction and active exploration is limited as they are 
based on instructional, “step-by-step” type of exercises and closed quizzes. Nevertheless, the field of 
robotics bares an enormous educational potential as children’s fascination for robots, along with the 
variety of fields and topics covered by robotics (Johnson, 2003), make robots a powerful idea to engage 
with, including gears and computers (Papert, 1980). At the same time, robotics is an excellent tool for 
teaching science and technology (Mataric, 2004; Mead 2012), therefore many educational robotics 
activities already focus on STEM (Baretto, 2012), which unfortunately attracts predominantly children 
who have not lost their interest in these subjects.  

We do believe, however, that robots are a powerful tool for teaching STEM disciplines not only to the 
children who are already interested in those subjects. Thus, inspired by the spirit of the undergoing 
educational reform but also by the current state of educational robotics, involving mainly students with 
established interest in STEM, under the ER4STEM project, we undertook an exploration on how robotics 
activity plans could be designed to support teaching concepts, stipulated within an official mathematics 
curriculum. With the term activity plans, we refer to structured descriptions of robotics activities, which 
are built on the ER4STEM Activity Plan Template. This template provides a generic design tool that 
identifies critical elements of teaching and learning with robotics based in theory and practice and is 
expected to contribute to the description of effective learning and teaching with robotics (Yiannoutsou 
et al., 2017). 

In this practice paper, we begin by introducing an activity plan, applied to a set of educational robotics 
workshops carried out between November and December 2016, within one public general education 
school in Sofia, Bulgaria. Each of the six 4th grade classes went through one educational workshop 
which comprised two 4-hour sessions. By involving experimentation with virtual and physical 
constructions within the activity, serving as tools of learning, we attempted to design an activity plan, 
which helps expand student’s access to powerful ideas, in the sense of being immediately useful to the 
learner, by association to other productive ideas (Papert, 1980, 2000). We believe that this activity plan 

                                                
64 Ordinance No 5 of 30.11.2015 on general education in force from 08.12.2015 issued by the Minister of Education and Science, obtained 
online in Bulgarian on March 10, 2018 at http://zareformata.mon.bg/documents/nrdb5_30.11.2015_obshtoobr_podgotovka.pdf  
65 Educational curriculum for computer modelling for the third grade issued by the Minister of Education and Science, obtained online in 
Bulgarian on March 10, 2018 at https://www.mon.bg/upload/12205/UP_KM_3kl.pdf  
66 Educational curriculum for computer modelling for the fourth grade issued by the Minister of Education and Science, obtained online in 
Bulgarian on March 10, 2018 at https://www.mon.bg/upload/13660/pr_UP_KM_4kl.pdf  
67 Again in Ordinance No 5 of 30.11.2015 on general education in force from 08.12.2015 issued by the Minister of Education and Science, 
obtained online in Bulgarian on March 10, 2018 at http://zareformata.mon.bg/documents/nrdb5_30.11.2015_obshtoobr_podgotovka.pdf  
68 Guidelines for application for inclusion in the network of innovative schools in Bulgaria for the academic year 2018/2019, obtained online in 
Bulgarian on March 10, 2018 at https://www.mon.bg/upload/12192/Nasoki_2018_2019_iSchools.pdf  
69 COUNCIL DECISION No 391 from 17 July 2017 on adopting a list of innovative schools for the academic year 2017/2018 
(promulgated, SG No. 60/25 July 2017), obtained online in Bulgarian on March 10, 2018 at 
https://www.mon.bg/upload/12193/rms_391_17072017.pdf  
70 International Federation of Robotics, Press Release, Seoul, Oct 12, 2016, obtained online in English on March 10, 2018 at 
https://ifr.org/ifr-press-releases/news/service-robotics  

http://zareformata.mon.bg/documents/nrdb5_30.11.2015_obshtoobr_podgotovka.pdf
https://www.mon.bg/upload/12205/UP_KM_3kl.pdf
https://www.mon.bg/upload/13660/pr_UP_KM_4kl.pdf
http://zareformata.mon.bg/documents/nrdb5_30.11.2015_obshtoobr_podgotovka.pdf
https://www.mon.bg/upload/12192/Nasoki_2018_2019_iSchools.pdf
https://www.mon.bg/upload/12193/rms_391_17072017.pdf
https://ifr.org/ifr-press-releases/news/service-robotics


Constructionism 2018, Vilnius, Lithuania 

651 

 

could be adapted to fit a variety of educational and cultural contexts and might be of use to educators 
looking for strategies to improve their student’s involvement in subjects such as mathematics.  

In addition to the pedagogic goals of this set of workshops, qualitative and quantitative data were 
collected through pre- and post-activity questionnaires completed by students (63 boys and 68 girls), 
and 6 groups of learners participated in semi-structured interviews to explore students’ interactions and 
feedback. For the purposes of this paper, we will focus on data collected through questionnaires at the 
end of the workshops. The specific question we aimed to answer was what are Bulgarian students’ 
attitudes towards constructionist robotics activities. 

Finally, in this contribution we further share our experience with integrating collaborative work, aimed at 
developing an activity that could support the cultivation of some important 21st century skills within 
students (Dede, 2010), namely problem solving, collaboration, flexibility and adaptability.  

Implementation Context 

Overview 
This activity plan was developed for boys and girls (age 9-11 years) studying at the 4th grade of one 
public general education school in Sofia, Bulgaria in 2016. The students have previously participated in 
educational robotics activities carried out by the implementation team and are expected to have previous 
experience programming with Scratch (however, previous programming knowledge was not required). 
They were also familiar with the collaboration requirements of the activity as well as the research 
protocol. This activity was developed following the guidelines of the Bulgarian national curriculum for 
mathematics for the 4th grade, thus knowledge of third grade mathematics was a prerequisite for the 
participation. 

The educational robotics activities took place within regular school time. For each 4th grade class a 
separate workshop was organized, thus resulting in six workshops in total. Every workshop was of an 
eight-hour duration, with breaks, and was divided into two sessions of equal duration, with not more 
than one-week time between sessions. A regular school class in a public general education school in 
Bulgaria consists of anywhere within 24 and 28 students. Each session was led by 2-3 tutors.  

Following our strong belief that the collaborative work plays a very important role for the effective 
engagement of students in the educational process, we apply the engagement theory (Kearsley & 
Shneiderman, 1998) as a significant part of the Constructionist teaching methods. Based also on their 
empirical conclusions that “technology can facilitate engagement in ways, difficult to achieve otherwise” 
(Kearsley & Shneiderman, 1998), we also asked students to assess their feelings on problem-based 
learning, working with robots and collaborative work. 

Bulgaria’s Mathematics Curriculum for the 4th Grade for General Education 
Schools 
The fourth-grade curriculum in mathematics of Bulgaria71 is designed by the Ministry of Education in 
accordance to the State Educational Requirements and is developed in accordance to a set of 
principles, several of which served as a common ground for the design of the activity plan for the 
educational robotics workshops:  

 Arithmetic operations with one and two-digit numbers and the properties of these actions; 
 Deepening and expanding knowledge on the units of measurement by introducing angle 

measurement;  
 Deepening and expanding the knowledge of the basic geometric shapes, types of triangles, types 

of angles, rectangle, square, knowledge of the circle and its elements 
 Making evident how mathematics connects to subjects of other cultural and educational fields; 

                                                
71 Educational curriculum for mathematics for the fourth grade issued by the Minister of Education and Science, obtained online in Bulgarian 
on March 10, 2018 at https://www.mon.bg/upload/2645/matematika_4kl.pdf 



Constructionism 2018, Vilnius, Lithuania 

652 

 

 Improving collaboration, communication, formulating and expressing ideas and cultivating skills 
such as observance, logical thinking, comparative thinking, critical analysis, formulating 
statements, making conclusions, experimentation;  

 Develop interest and motivation to study mathematics and form a positive attitude towards the 
subject; 

Following these guidelines, we created a multi-layered activity plan, to support the mission of the 
curriculum and possibly transfer this experience to fourth-grade mathematics educators, in order to 
contribute to the student’s confidence in the subject and to inspire their curiosity in it. 

Visualizing Mathematics with the MathBot 

A Constructionist Activity Plan for Mathematical Experimentation  
The educational robotics activities presented here are structured around the constructionist pedagogical 
approach, where the activity is organized around powerful ideas, facilitated through collaborative and 
group-centred games. Our focus was put on promoting a social dimension of robotics, which includes 
sharing personal knowledge and experiences on STEM related concepts while learning from others 
(Kafai & Burke, 2015). In this context, robotic construction and programming are seen as expressive 
medium to externalize ideas and thoughts, which through the sharing are becoming objects for 
discussion and change (Kynigos, 1995). Thus, all the activities are designed to take place in a common 
space and integrate virtual and physical constructions (Papert, 1980, 2000).  

The pedagogical approach, as well as the background for the elaboration of the educational robotics 
workshops within the ER4STEM project are coordinated and structured with the means of an Activity 
Plan Template. This template was developed in the project as a design tool for planning robotics 
activities and depicts what we have identified as essential and transferrable elements of learning with 
robotics.  

The Activity plan template, addresses the following aspects: a) Focus and resources: reference to the 
different domains involved, different types of objectives, duration and necessary material; b) contextual 
information regarding space and characteristics of the participants; c) social orchestration of the activity 
(i.e. group or individual work, formulation of groups etc.); d) a description of the teaching and learning 
procedures where the influence of the pedagogical theory is mostly demonstrated; e) expected student 
constructions; f) description of the sequencing and the focus of activities; g) means of evaluation 
(Yiannoutsou et al., 2017) 

Social Orchestration and the Role of Discussion 
The students were assigned to groups, each group consisting of 3-4 members. Every group was working 
around one table with one computer and one robot. We applied no specific grouping criteria, as we 
wanted the students to be able to sit together based on pre-established friendships. We wanted students 
to be positively influenced by the idea that the workshops they were participating in were a fun group 
activity, which they could share with their friends.  

As the students in one general education school class are about 25 boys and girls, this resulted in the 
formation of about 6-7 student groups in total.  

Students were given discussion opportunities to reinforce their understanding by sharing with peers 
their constructions and working strategies. Students were supposed to verbally, and visually present 
their solutions to the tutors and the other teams, which required them to communicate their learning 
curve and solution in an understandable and clear manner. Student groups were encouraged to invite 
other student groups to present their solution and could go and ask for consultation with other student 
groups. By answering questions from other students and student groups, the presenting group was 
required to be able to explain their reasons and articulate their chosen strategy. The ability to clearly 
identify and communicate the reasoning underlying group decisions is at the core of the “thinking about 
one’s own thinking” (Han & Bhattacharya 2001) constructionist approach, which we aimed to integrate 
in our activity. Furthermore, in relation to the subject of mathematics itself, language can facilitate 



Constructionism 2018, Vilnius, Lithuania 

653 

 

reflection and internal regulation, which is of importance to realize which parts of the mathematical idea 
are important (Hoyles, 1985). 

Furthermore, we wanted our students to remain motivated to learn and participate throughout the 
activity. Motivation and understanding are shown to be increased when encouraged to explain 
knowledge (Brown, 1988). By enabling such discussions, the robot’s behaviour or the code is becoming 
a subject of common reflection, which empowers learning by providing the learner with an expertise to 
share.  

To this end, apart from meaning generation we argue that constructionist robotics activities can also 
help the development of a number of 21st century skills including problem solving, flexibility and 
adaptability. With flexibility and adaptability, we refer to the abilities of a) incorporating feedback 
effectively, understanding, negotiating and balancing diverse views and beliefs to reach workable 
solutions and b) adapting to varied roles, schedules and context. In our workshops, we aim to reinforce 
these abilities through collaborative reflection, public discussion, role rotation and redistribution.   

Implementation  
For this particular set of workshops, we chose to use the Finch Robot, designed and developed by 
Birdbrain Technologies. Among the advantages of the Finch Robot is its cost-effectiveness, durability 
and the minimal amount of required knowledge or preparations in order to install all necessary software 
and run it. The Finch Robot is a black-box technology, equipped with many programmable sensors to 
support learning activities that emphasize programming the behaviour of the robot. 

The Finch robot is programmable through the offline version of the visual programming language 
Scratch, which makes it highly accessible to students of this age group with little to no experience with 
programming and discrete logic. Furthermore, as Scratch allows the students to focus on tackling 
mathematical problems and easily create logical constructions, which becomes increasingly challenging 
with other, non-visual programming environments (Utting et al., 2010), where the focus falls on the code 
itself, thus making the programming process a purpose, instead of a tool for learning.   

The activity plan was structured in seven phases of gradual complexity, apart from the first and the last 
one, which were introductory and evaluation-related. Every phase offered games with multiple sub-
quests, which allowed for differentiation and made it possible for all groups to learn and problem-solve 
at their own pace. As cultural context, the activities were designed for Bulgarian students or students 
representing Bulgaria-based minorities and required fluency in Bulgarian language as game tasks are 
written in Bulgarian. 

Phases 2 and 3 were more programming-oriented, allowing the students to reach a level of comfort in 
programming the robot and included basic command of the robot, programming it to perform a sequence 
of actions, programming its nose to blink in different colours while performing certain movements and 
others. Phase 4 included games related to drawing and measuring lines with the robot and rulers. In 
phase 5, students are engaged in a mathematical game of measuring the angle at which the robot turns 
with a protractor. Phase 6 aimed at exercising knowledge on the elements of a circle and included 
drawing circles with the robot and measuring its elements. 

Ultimately, at the end of the workshop students gain understanding of what a robot is and know some 
common robotic parts. They understand that robots are programmable and gain knowledge on sensors 
and some different types of sensors and are aware that different sensors serve different purpose. At the 
end of the workshop, students would have exercised basic age-appropriate concepts from the subject 
of mathematics. 

The full activity plan, with more information about all phases is available at repository.er4stem.com. 

Activity Evaluation 

In order to be able to evaluate the activities and answer our research questions data was collected from 
students whose parents had given informed written consent. From 6 workshops held with different 
classes, data was obtained from 131 participants (63 boys and 68 girls). The majority of them had 



Constructionism 2018, Vilnius, Lithuania 

654 

 

previously participated in educational robotics workshops in Bulgaria organized by the European 
Software Institute, under the ER4STEM project.  

Quantitative data was obtained through pre and post workshop questionnaires. Interviews were 
conducted with one focus group from each class (6 interviews in total) and were transcribed, allowing 
more insight of the participants’ experience and immediately after participating in the workshops. 
Additionally, reflections and observations were collected from tutors, along with student reflections and 
artefacts of learning.  

This section presents the findings of the analysis of the questionnaires aims to provide insight on the 
participants’ experience. It should be noted that some participants chose not to give an answer to some 
questions. Considering this, the percentage of students who left a question blank will be indicated next 
to the answers’ report.  

It is noteworthy to mention that this paper will report on insights related to the implementation of 
the activity plan focusing students’ evaluation of their experience during the workshop. The activity’s 
quantitative evaluation was carried out under the ER4STEM evaluation protocol, which is not specifically 
targeted at assessing student’s understanding of mathematical concepts or student’s attitude towards 
mathematic in general. The quantitative evaluation results reported below focus more, but not only on 
exploring boys and girls' interests in STEM, whether the approaches/activities appeal to them, on 
reporting on their intra-relational and interpersonal skills, and their feelings towards collaborative work 
experience.  

Students’ understanding of mathematical concepts, specifically for this activity, is qualitatively assessed 
through open answers in the questionnaires, focus group interviews, by collecting artefacts of learning, 
tutor observations and group reflections. The qualitative data obtained throughout ER4STEM 
workshops under analysis (May 2018) and will be reported on following the project.  

What are Bulgarian students’ attitude towards constructionist robotics activities? 
The majority of the students who participated in the study reported the educational robotics workshop 

activities for mathematics as interesting, fun and not very difficult.  

 
Strongly 
disagree 

Disagree 
Neither 
Agree Nor 
Disagree 

Agree 
Strongly 
agree 

Blank 

The problems we had to 
solve were: 

      
Interesting 1% 0% 2% 9% 88% 0% 

Difficult 39% 20% 28% 8% 3% 0% 

Fun 2% 0% 3% 10% 83% 0% 

Working with robots was: 
      

Interesting 1% 0% 0% 8% 89% 0% 

Difficult 42% 23% 22% 8% 5% 0% 

Fun 2% 1% 0% 8% 89% 0% 

Working in a team was:       

Interesting 3% 0% 8% 16% 71% 0% 

Difficult 44% 22% 15% 8% 7% 0% 

Fun 5% 1% 7% 16% 68% 0% 

Figure 1. Aggregated students’ feedback related to the problems solved, their work with robots and teamwork 

Most students reported working in a team as interesting, fun and not difficult (Figure 1). Tutors’ 
observation show that regardless of group conflicts that inevitably arose in some groups, the students 
generally manifested positive attitudes towards group work and felt excited for the opportunity to work 
in a team.  



Constructionism 2018, Vilnius, Lithuania 

655 

 

 

Strongly 
disagree 

Disagree 
Neither 

Agree Nor 
Disagree 

Agree 
Strongly 
agree 

Blank 

During the workshop… 
      

I solved a problem 
9% 5% 23% 15% 45% 3% 

I worked as part of a team 
4% 2% 5% 14% 73% 2% 

I programmed a robot 
2% 1% 2% 4% 89% 2% 

I was good at listening 
2% 2% 15% 27% 50% 3% 

I gave up quickly 
80% 12% 3% 1% 3% 2% 

I worked hard 
3% 3% 8% 21% 64% 2% 

I was bored 
74% 12% 7% 5% 1% 2% 

I helped someone 
6% 2% 20% 24% 48% 1% 

 
The students also gave a relatively high rating to the workshop they participated in with 4.93 stars out 
of 5.  

Some students also reported increased confidence in mathematics and felt encouraged to participate 
in more activities such as this one.  

Closing remarks 

In this practice paper, we concentrated on providing insights on the design, implementation and 
pedagogical theory underlying an educational robotics activity, designed in support to the guidelines of 
a national educational curriculum in mathematics. We further provided aggregated feedback data 
reporting on students’ experience with this activity, obtained by the primary school students who took 
part in the activities and we have given a brief overview on the evaluation protocol of the activities.  

As practitioners in the field of educational robotics, we realize the importance of applying "powerful 
ideas" (Papert, 1980) as tools for learning. Through the Visualizing Mathematics with the MathBot 
activities, we aim to engage students in experimentation with digital and robotics artefacts to solve 
mathematical problems, in order to construct a better understanding of the interdisciplinary application 
of mathematical concepts and to further develop a collaborative mind set to problem-solving. We believe 
that constructionist activities such as this one, bare the potential to enhance the properties of the linked 
curricula, and the possibility of adapting such activities to a plethora of robotics kits, programming 
environments and learning contexts makes this activity an idea worth sharing.  

References 

Alimissis, D. 2013. Educational robotics: Open questions and new challenges. Themes in Science and 
Technology Education, 6 (1), 63-71 

Barreto, F. and Vavassori, B. 2012. Exploring the educational potential of robotics in schools: A 
systematic review. Comput. Educ. 58, 3 (April 2012), 978-988. 

Brown, A.L., 1988. Motivation to learn and understand: On taking charge of one’s own learning. 
Cognition and Instruction, 5, pp.311–322. 

Dede, C. (2010). Comparing frameworks for 21st century skills. 21st century skills: Rethinking how 
students learn, 20, 51-76. 

Johnson, J. 2003. Children, robotics and education. In Proceedings of 7th international symposium on 
artificial life and robotics (Vol. 7, pp. 16-21), Oita, Japan. 

Han, S. & Bhattacharya, K., 2001. Constructionism, Learning by Design, and Project Based Learning. 
In Emerging perspectives on learning, teaching, and technology. 

Hoyles, C., 1985. What is the point of group discussion in mathematics? Educational studies in 
mathematics, 16(2), pp.205–214. 



Constructionism 2018, Vilnius, Lithuania 

656 

 

Kafai, Y. B., & Burke, Q. (2015). Constructionist Gaming: Understanding the Benefits of Making Games 
for Learning. Educational Psychologist, 50(4), 313–334. 
https://doi.org/10.1080/00461520.2015.1124022 

Kafai, Y. B., Burke, Q., & Mote, C. (2012). What makes competitions fun to participate? The role of 
audience for middle school game designers, Proceedings of the 11th International Conference on 
Interaction Design and Children, 284–287. 

Kynigos, Chronis. 1995. Programming as a Means of Expressing and Exploring Ideas in a Directive 
Educational System: Three Case Studies. Computers and Exploratory Learning, diSessa, A, Hoyles, C. 
and Noss, R. (eds), Springer Verlag NATO ASI Series, 399-420. 

Matarić, M. 2004. Robotics Education for All Ages, Proceedings, AAAI Spring Symposium on 
Accessible, Hands-on AI and Robotics Education, Palo Alto, CA, Mar 22-24. 

Mead, R.A., Thomas, S.L., and Weinberg, J.B. 2012. From Grade School to Grad School: An Integrated 
STEM Pipeline Model through Robotics in Robots in K-12 Education: A New Technology for Learning, 
IGI Global.  

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic books  

Papert, S. (2000). What's the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 
39(3.4), 720-729. 

Utting, I., Cooper, S., Kölling, M., Maloney, J., and Resnick, M. (2010) Alice, Greenfoot, and Scratch: A 
Discussion. ACM Transactions on Computing Education, Vol. 10, No. 4, Article 17, November 2010. 



Constructionism 2018, Vilnius, Lithuania 

657 

 

Ethnomathematics in Teacher Education: Analysis 
and Construction of Geometric Ornaments 

Igor Verner, ttrigor@technion.ac.il  
Technion – Israel Institute of Technology, Israel 

Khayriah Massarwe, massarwe@technion.ac.il 
Technion – Israel Institute of Technology, The Arab Academic College for Education, Israel 

Daoud Bshouty, daoud@technion.ac.il 
Technion – Israel Institute of Technology, Israel 

Abstract  
This paper presents a study in which we developed, implemented, and evaluated a teacher education 
course for teaching geometry based on the ethnomathematics approach. The participants, prospective 
and in-service teachers with different cultural backgrounds studied geometry through analysis and 
construction of geometric ornaments from diverse cultures, and acquired knowledge and skills in 
multicultural education. The students inquired geometrical properties and symbolism of the ornaments 
from the cultures they chose. In the study we analysed motivating desires observed in the course using 
the theory of engagement structures proposed by Goldin and colleagues. We found that some of the 
engagement structures that are typical for conventional mathematics classes, emerged in our course 
while other structures were not observed. We propose a new, additional engagement structure to 
embody motivational desires arising from multicultural interactions in diverse classes. 

The figure below presents the Druze Star, the prominent symbol of the Druze culture. It also shows the 
geometric construction of the Star performed by a Druze student. She figured out the meaning of colours 
of the Star: green symbolizes nature; red symbolizes courage and love; yellow symbolizes 
enlightenment; blue indicates patience and brotherhood; white indicates reconciliation and peace.   

 

Keywords 
ethnomathematics; geometric ornaments; teacher education; learning engagement. 

Introduction 

Creative hands-on practices and projects are increasingly included in the school mathematics curricula. 
In these activities students learn mathematics with applications through practical activities in 
technological environments. They construct artefacts that drive their thinking, inquiry, and 
communication. Teachers should have knowledge of the constructionist approach and skills to apply it 
in choosing suitable learning environments, activities, and strategies of students' guidance.  



Constructionism 2018, Vilnius, Lithuania 

658 

 

The challenges facing the mathematics teacher in implementing the constructionist approach are to 
engage every student in the class, to make the activities accessible for the students, and provide them 
opportunity for systematic mathematical learning. To meet these challenges, research points out to the 
important role of affective factors on the constructionist learning behaviour (Picard et al., 2004). 

Geometry underlies construction of artefacts. As such, development of geometry is rooted in the 
constructional practice while learning geometry is naturally embedded in the constructionist educational 
processes. Since ancient times, geometric constructions, in addition to functionality, possessed 
symbolism and cultural values. This duality stands out in geometric ornaments, decorative and symbolic 
patterns of cultural value, composed of basic geometric figures that are repeated under different 
transformations. Ornaments are complex geometric objects that carry within a variety of properties of 
Euclidean geometry. They are part of the world cultural heritage, created in folk art and crafts throughout 
the history of nations (El-Said, 1993(. Historically, people constructed ornaments with compass and 
straightedge to express their feelings, spiritual believes, and cultural identity. 

Our aspiration for teaching geometry with ornaments is to make geometry lovable to students who 
perceived it as a dry subject, as expressed by Papert (2006) "Let's stop trying to make children like the 
mathematics they hate. Let's make a mathematics they will love." For the past ten years, we developed 
and guided practices of analysis and construction of geometric ornaments in mathematics teacher 
education. The two theories that underlie our teaching were constructionism and ethnomathematics. 

Ethnomathematics approach 

D'Ambrosio (2004) defines ethnomathematics as the mathematics practiced among identifiable cultural 
groups, meaning that ethnomathematics deals with mathematical conceptions and techniques 
developed in different cultures to solve real-life problems. In education, the ethnomathematical 
approach generates learning processes, in which learners inquire into mathematical experiences from 
their own and other cultures to understand how mathematical ideas are formulated and applied (Rosa, 
& Shirley, 2016). 

 The ethnomathematical approach promotes mathematical learning by activating the factors of students' 
engagement related to context, culture, and ethnicity. Ethnomathematically based courses introduce 
mathematical concepts in such a way that they are better understood, and their power, beauty and utility 
are better appreciated (Achor, 2009). Affective processes in ethnomathematics courses are influenced 
by both cultural context and diversity. The majority of ethnomathematically based courses in schools 
and teacher colleges consider situations in which students in culturally homogeneous groups study 
mathematics in the context of their culture (Gerdes, 2001; Rosa & Orey, 2011).  

Presmeg (1998) studies a different situation in which pre-service teachers with different cultural 
backgrounds inquired into mathematics embedded in their cultures and shared findings with the class. 
Her study shows that using students’ cultural practices in the mathematics classroom had a positive 
impact on their awareness of diversity and multiculturalism. Presmeg calls for seeing cultural diversity 
as an asset and not a burden. Gay (2010) emphasizes the need to enhance teacher education through 
special training to develop the skills of teaching in a culturally diverse classroom and creating cross-
cultural dialog. The teacher can reinforce students’ energy and learning engagement by encouraging 
classroom discussions on interesting and joyful experiences and by asking questions that help maintain 
students' positive mood (Gay, 2002; Vomvoridi-Ivanovic, 2012). 

Our research started with pilot experiments, in which high school students in geometry lessons 
performed a constructionist exercise involving analysis and construction of geometrical ornaments 
(Massarwe, Verner, & Bshouty, 2010). The experiments revealed that the students and teachers 
perceived learning geometry through ornaments as a meaningful and joyful experience. Then we took 
part in the program of the Israel National Council of Higher Education for development of academic 
courses on the theme “academy–community partnership for social change.” Our Technion course 
“Issues in ethnomathematics” attracted interest of prospective and in-service teachers of mathematics 
and other subjects. It prompted us to study culturally responsive teaching of geometry and the ways to 



Constructionism 2018, Vilnius, Lithuania 

659 

 

treat issues of diversity and cultural identity. In this way we came to an understanding of the educational 
value of ethnomathematics and its potential for promoting constructionist mathematical learning.  

Our study explored learning engagement of students participated in the ethnomathematically based 
teacher education course. The study applied the methodology engagement structures proposed by 
Goldin et al. (2011). The theory focuses on identifying typical patterns of engagement observed in the 
learning process and characterizing the patterns by means of engagement structures. An engagement 
structure is considered as a construct including the statement of the motivating desire, the scheme of 
the social interaction, the characteristics of situations which are likely to evoke the desire, and the 
behavior pattern. Goldin et al. (2011) presented patterns of learning engagement typical for 
conventional middle school mathematics classes and characterized them by a number of engagement 
structures. The study presented in this paper identified and characterized the patterns of engagement 
that are typical for our course.  

Characteristics of learning engagement 

This case study followed up the course delivered at the Technion Department of Education in Science 
and Technology. The goal was to investigate motivations that drive students to perform mathematical, 
cultural and pedagogical activities in our ethnomathematically-based teacher training course. We 
sought to answer the question: what are the features of student engagement in the course and how can 
the methodology of engagement structures be applied to analyze these features? 

The course "Issues in ethnomathematics" has been developed and given to prospective and in-service 
teachers as part of the Technion teacher education program. The 29 students participated in the course 
had different academic and cultural backgrounds. The 42-hour course included the following learning 
activities:  

 Acquisition of geometrical skills required for construction and analysis of ornaments. 
The students learned basic geometric constructions with compass and straightedge and applied 
this knowledge to analyze and construct given ornaments. They learned to define geometrical 
problems related to the constructed ornaments. 

 Studying mathematical and pedagogical concepts for teaching geometry in cultural context. 
The students learned the principles of teaching mathematics with applications and cognitive 
mechanisms of learning in context. They inquired how geometric concepts are embedded in 
culturally meaningful ornaments and serve to express symbolism and beauty. They discussed the 
concept of diversity and the value of multicultural education.  

 Development of instructional units on analysis and construction of geometric ornaments. 
The lectures exposed students to the common historical, mathematical, and cultural roots of 
geometric ornaments.  They discussed applicability of the ethnomathematics approach in class. 
Each student developed and gave in class a presentation of the selected culture, which included 
a collection of ornaments, a detailed construction procedure of the chosen ornament, related 
geometric problems, and their solutions.  

 Workshop "Joyful learning of geometry in multicultural context". 
The workshop "Joyful learning of geometry in multicultural context" was the culmination of the 
course. Each of the students guided a multicultural group of school students to make a poster. 
Each poster consisted of an ornament constructed by compass and straightedge, its variation 
made using the graphics software tool Kaledomania, geometric problems and solutions, and an 
essay on the chosen culture. The posters were publicly exhibited at the end of the workshop. 

 Analysis and presentation of the workshop results, and a final report. 
In the last part of the course, the students analyzed the data collected during the workshop, and 
presented findings.   

When teaching the course we paid attention to the strong engagement of students in the 
ethnomathematical learning activities and decided to investigate motivating desires that drive the 
engagement. We applied the methodology of engagement structures proposed by Goldin et al. (2011).  

To answer the research question, observations of classroom activities were recorded and videotaped 
throughout the course. We collected and analyzed repeated patterns of engagement that indicated the 



Constructionism 2018, Vilnius, Lithuania 

660 

 

presence of the engagement structures proposed by Goldin et al. and of new structures that emerged 
through our teaching. We also analyzed the homework tasks and materials prepared by the students 
for the workshop, as well as in-class discussions, final reports, and post-course reflections. In these 
reflections, we paid attention to patterns associated with cultural awareness of students with different 
cultural backgrounds. We found that studying geometry in cultural context touched student’s feelings of 
cultural identity and raised their desires for learning. This way we came to a new engagement structure 
that we named “Acknowledge my culture.” 

Below we present structures from the ones proposed by Goldin et al. (2011) that appeared in our course.  

Get the Job Done. In this engagement structure "emotional satisfaction accompanies fulfilling the 
obligation through task completion" (ibid.). Our observations in the course showed that this engagement 
structure arises in the constructionist learning process. This feature was especially prominent when the 
students learned to construct ornaments and prove their geometric properties. In the beginning, the 
students had difficulties in constructing the ornament using compass and straightedge because they 
lacked this skill. They asked for guidance to construct the first ornament step by step and they showed 
commitment to accomplish the task correctly and accurately (Figure 1). The post-course reflections 
indicated that students’ desire to “get the job done” in the task, was determined by the added value of 
the experience for developing construction skills and understanding geometry of ornaments. 

 

Figure 1. Student's commitment to accomplish the construction task. 

Look How Smart I Am. “The student's motivating desire behind this engagement structure is to impress 
classmates and achieve positive self-regard by demonstrating high mathematical ability” (ibid.). We 
found indications of this desire in our students when they strived to perform the course assignments in 
the best way possible and to demonstrate their competences in geometry and culturally responsive 
teaching. The desire for superior achievement was indicated also by creative solutions developed in the 
course.  

 

Figure 2. Students expressing positive self-regard.  

Check this Out. For this engagement structure the source of motivating desire is "that solving a 
mathematical problem can give a benefit" (ibid.). This desire can be stimulated by extrinsic benefits, but 
our course used intrinsic payoffs: (a) feeling of invention aroused when the students practiced in posing 



Constructionism 2018, Vilnius, Lithuania 

661 

 

and solving non-conventional geometric problems; (b) satisfaction about coping with a real geometric 
problem of practical value; and (c) discovery of geometric properties, methods of creation of ornaments, 
and cultural meanings. An example of a geometric problem proposed by one of the students is 
presented below. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. A. An ornament; B. problem related to the.  

Problem: The ornament in Figure 3A is constructed as shown in Figures 3B and 3C. Given that the 
radius of the circles is R, find the area of the selected shape. 

Solution: We draw a circle of radius R with the centre B. In triangle OAB , 
0

0360
60

6
AOB    

from the construction and BO OA R  . So, OAB  is an isosceles triangle and its area equals 

23

4
AOBS R  . The area of the sector AOB  is: 

0
2 2

0

60 1

360 6
AOBS R R   . Then the area of the selected 

shape is  
2 2 23 3

2 ( ) 2 ( ) ( )
6 4 3 2

AOB AOBS S S R R R
 

        .  

I’m Really into This. The meaning of the structure is that “the student is intrigued by solving a 
challenging mathematical problem and tunes out from other elements of the environment (ibid.)”. Our 
course involved students in the geometric analysis of ornaments, they proposed problems related on 
the ornament and solved the applied geometric problems with enthusiasm. Being intrigued by the 
geometric problem, the students did not abstract from the cultural meaning of the ornament and from 
the way of its construction. 

Let Me Teach You. This structure presents “the motivation desire of a student to mentor the classmate 
who has difficulties in solving mathematical problems. (ibid.)”. This role motivates the student to learn 
and master the subject. Satisfaction from the progress of the classmate is an additional stimulator of 
the motivation desire. In our course each student developed an instructional unit on geometric 
ornaments from the culture that she/he selected. The student taught the unit to peers with the intention 
of getting feedback for improving the presentation. The course created an atmosphere in which the 
students felt invited to share information on heritage artifacts, proposals for geometric constructions and 
proofs, and ideas on how to present the material to school students. 

From our observations, in peer teaching the students shared proposals of alternative solutions for 
geometric constructions and proofs, pedagogical ideas on how to present the material to school 
students, and findings on traditional customs and visual artefacts in different cultures. A repeated 
reflection: 

The discussions on geometry greatly helped me to understand the way other people looked 
at the same subjects and even taught me some new tricks.  

Observations in the course indicated occurrence of motivating desires rooted in cultural diversity of the 
participants and pointed out the need to introduce a new engagement structure which is presented 
below. 

A. B. C. 



Constructionism 2018, Vilnius, Lithuania 

662 

 

Acknowledge My Culture. Here, ”the motivating desire awakes when the student feels urged to be a 
representative of his or her own culture” (Goldin et al., 2011). In our course some of the students elected 
to investigate ornaments from their own culture and others from cultures to which their families belonged 
before immigration to Israel. Passion, inflamed by exposure to artefacts from different cultures, drove 
the students to indulge in collections of artefacts, and impress the class by distinguished mathematical 
features of artefacts from these cultures. A repeated reflection: 

In the course I learned about my culture in a more elaborate way and tried to represent it 
in the best way possible. 

Discussion and Conclusion  
Today's students prefer hands-on, visual, joyful, and socially meaningful learning. To meet their 
preferences, teachers of mathematics should be able to effectively use the learning resources of 
context, affect, culture, and ethnicity. Therefore, teaching in a cultural context becomes a necessary 
subject of mathematics teacher education. Our course addressed this subject with regard to teaching 
geometry based on the ethnomathematical approach. This approach focuses on learning by inquiry into 
mathematical practices developed in different cultures to solve real-life problems. 

In our course students inquired properties and symbolism of geometric ornaments from different 
cultures. Following the constructionist pedagogy, the course included practice in constructing 
ornaments by compass and straightedge, posing and solving geometric problems, creating aesthetic 
presentations, developing instructional units, and teaching them to diverse groups of school students. 

In the course we assessed student's performance in the construction of the ornament of her/his choice 
using compass and straightedge and the analysis of the construction procedure. Through the 
construction process the students gained insight into geometric analysis that justifies the practice. In 
the assignment of posing and solving geometric problems, we assessed the ability to identify and 
formulate an interesting problem related to the complex geometric pattern, solve it formally, and present 
the solution. Assessment of the instructional units on geometric ornaments and the feedback from the 
peers and the school students indicated that the prospective teachers developed the skill of teaching 
geometry in cultural context to diverse groups. The experiences were perceived by the prospective 
teachers as interesting, joyful, and engaging.  

Our research focused on students' engagement in the course. We applied the methodology of 
engagement structures proposed by Goldin et al. (2011). The analysis of students' motivational desires 
observed in our course revealed their significant differences from that typically observed in conventional 
mathematics classrooms: 

 High level of engagement of all the students participated in the course. 
 The diminished role of external motivation (rewards and sanctions), and of competition for 

superiority. 
 The increased role of interest, enjoyment, self-realization, and perceived relevance. 
 Strong impact of personally meaningful cultural context. 

Based on the positive results of this study, we continue to develop and implement the 
ethnomathematical approach in teacher professional development as a way to facilitate more 
constructive, contextualized, and culturally responsive mathematics education in schools. 

References  
Achor, E. E., Imoko, B. I. & Uloko, S. E. (2009). Effect of ethnomathematics teaching approach on senior 
secondary students’ achievement and retention in Locus. Educational Research and Review, 4(8), p. 
385-390. 

D'Ambrosio, U. (2004) Prefix. In Proceedings: Ethnomathematics and Mathematics Education,  ICME 
10 Discussion Group on Ethnomathematics, Copenhagen (p. V-X). 

El-Said I. (1993) Islamic art and architecture. The system of geometric design. Reading, UK: Garnet 
Publishing. 



Constructionism 2018, Vilnius, Lithuania 

663 

 

Gay, G. (2002). Culturally responsive teaching in special education for ethnically diverse students: 
Setting the stage. Qualitative Studies in Education, 15(6), 613-629. 

Gay, G. (2010). Culturally Responsive Teaching: Theory, Research, and Practice (2nd edition). New 
York: Teachers College Press. 

Gerdes, P. (2001). Ethnomathematics as a new research field, illustrated by studies of mathematical 
ideas in African history. In J. J. Saldana (Ed.): Science and Cultural Diversity. Filling a Gap in the History 
of Science (p. 11-36). Mexico, Cuadernos de Quipu. 

Goldin, G. A., Epstein, Y. M., Schorr, R. Y. & Warner, L. B. (2011) Beliefs and engagement structures: 

Behind the affective dimension of mathematical learning. ZDM, 43(4), p. 547–560.  

Massarwe, K., Verner, I. & Bshouty, D. (2010) Fostering creativity through geometrical and cultural 
inquiry into ornaments. In: B. Sriraman and K.H. Lee (Eds.), The Elements of Creativity and Giftedness 
in Mathematics, p. 217-241, Sense Publishers. 

Papert, S. (2006) From math wars to the new new math. Plenary lecture at the 17th ICMI Study 
conference, Digital Technologies and Mathematics Teaching and Learning: Rethinking the Terrain. 
Hanoi, Vietnam. 

Picard, R., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., 

Roy, D., & Strohecker, C. (2004) Affective learning – A manifesto. BT Technology Journal, 22(4), p. 

253–269. 

Presmeg, N. C. (1998) Ethnomathematics in teacher education. Journal of Mathematics Teacher 
Education, 1(3), p. 317-339. 

Rosa, M. & Orey, D. C. (2011) Ethnomathematics: the cultural aspects of mathematics. Revista 
Latinoamericana de Etnomatemática, 4(2), p. 32-54. 

Rosa, M., & Shirley, L. (2016) In Guise of Conclusion. In: M. Rosa et al. (Eds.), Current and Future 
Perspectives of Ethnomathematics as a Program. ICME-13 Topical Surveys, pp. 39-40, Hamburg, 
Germany: SpringerOpen. 

Vomvoridi-Ivanovic, E. (2012) Using culture as a resource in mathematics: The case of four Mexican–
American prospective teachers in a bilingual after-school program. Journal of Mathematics Teacher 
Education, 15(1), p. 53–66. 



Constructionism 2018, Vilnius, Lithuania 

664 

 

Coding to Learn – Informatics in Science Education 

Michael Weigend, mw@creative-informatics.de 
Holzkamp-Gesamtschule Witten, Germany 

Abstract 
Programming is a way to explore and elaborate scientific content. Software projects might (to some 
extend) replace traditional pencil-and-paper textbook problems that require algebra skills. This 
contribution discusses a Python workshop which has been conducted with 34 students from three 
German high school chemistry classes in grades 11 and 12. The participants (mostly programming 
novices) developed interactive programs solving quantitative Chemistry problems. They claimed to 
enjoy programming, the girls almost as much as the boys. A majority agreed that programming implies 
practising logical thinking, precise communication and creativity as well as elaborating chemistry 
knowledge. 

Keywords 
science education; programming; computational thinking 

Programming and Science Education 

Computational Thinking (CT)  is the thought processes involved in developing computer programs. 
However, CT is not just relevant for professional software engineers. Like reading, writing and 
calculating it is considered to be a “universally applicable attitude and skill set“ that everybody should 
learn at school (Wing 2006 p. 32). This includes abstraction, decomposition, algorithmic thinking, 
evaluation and generalization (Selby and Woolard 2013). CT concepts are already (silently) used in 
science and science education. For example, the concept of generalization is used in chemistry, when 
students find principles and rules for chemical reactions based on individual observations. Chemical 
formulas like H2O are abstract models of real molecules. There are several suggestions how to integrate 
computational thinking into curricula. One of the goals of the Google “Online course on CT for educators” 
(https://computationalthinkingcourse.withgoogle.com) is to “increase the awareness of CT concepts 
among educators”. Sometimes elements of traditional science curricula are reinterpreted as related to 
CT. On the other hand, coding (an obvious application of CT) can be a way to explore and elaborate 
scientific content.  Before discussing examples of science-related programming projects let me briefly 
point out a few facets of traditional learning units in textbooks. Beside general information about a topic, 
STEM textbooks contain elements that are meant to evoke active elaboration of content: worked out 
examples, exercises (tasks) and solutions to tasks. Worked out examples have proved to be an efficient 
way to learn (Stark et al. 2002). There are different patterns of elaboration, which correspond to different 
levels of mental effort. Students may for example reconstruct an example in depth and anticipate the 
solution by themselves or they just take the (metacognitive) information about a possible structure of a 
solution.  

When the learning objects contain quantitative aspects, exercises usually imply algebraic 
transformations and calculations. A typical task from a popular German chemistry text book is this: 

Calculate the pH of these solutions: 

 Sodium hydroxide solution, c0(NaOH) = 1 mol/L 
 Ammonia solution, c0(NH3) = 0.2 mol/L 

(Tausch& von Wachtendonk, 2015, p.52) 

The solution of this task requires these activities: 

 Find relevant formulas like pH + pOH = 14. 
 Do algebraic transformations and solve equations. 
 Look up chemical constants (like pKB(NH3)) in a table. 

http://link.cs.cmu.edu/article.php?a=600
http://link.cs.cmu.edu/article.php?a=600
http://link.cs.cmu.edu/article.php?a=600
https://computationalthinkingcourse.withgoogle.com/


Constructionism 2018, Vilnius, Lithuania 

665 

 

 Use correct wording, in particular write correct units like mol/L for concentrations. 
The primary goal of these exercises (as part of chemistry education) is not to practise algebra and to 
solve these problems quickly and error-free but to elaborate chemistry concepts like acids, bases and 
chemical equilibrium. In Germany, high school students usually do not have to learn formulas by heart. 
But they are expected to develop the competence of using given formulas to solve problems. For this 
they need a general understanding of relevant chemistry facts and a more general competence of 
mathematical modelling and problem solving. 

In contrast to conventional pencil and paper textbook exercises, a programming task requires to develop 
a digital artefact, that is useful for other people. That implies almost the same activities as during solving 
a textbook problem, but they are now part of a design process. The programmer must create verbal 
system responses that are precise and well understandable and uses scientific vocabular and units 
because they are essential, when asking for input data. Example “Input the molar weight M of the solved 
substance (g/mol).” 

An Introductory Python Programming Workshop for Chemistry 
Classes 

In winter 2017/2018, students from chemistry classes in grades 11 and 12 at a German high school 
participated at a 90-min programming workshop. Among the 34 students whose data were evaluated, 
there were 21 girls and 11 boys (2 did not tell the gender), the average age was 17.5 years.  Most of 
the participants (73%) had never written a program before. They got a short introduction and then 
worked on their own, following a written tutorial. They were free to collaborate and ask questions. In 
contrast to a regular computer science class, the primary goal of this workshop was not to discover 
programming techniques as such but to get an idea about how to use programming as a tool to solve 
Chemistry-related problems.  

Thus, the 6-page tutorial was designed to be self-explaining for absolute beginners. It consisted of 
instructions, Python listings, visual and verbal explanations and tasks. Except for the very first task, all 
examples and tasks were related to chemistry. At some points the students were asked to note the time. 
So it was possible to calculate the time they needed for the exercises. 

Interactive Exercises 
The tutorial starts with three exercises which must be performed in the interactive Python Shell (Idle). 
The Python Shell displays a command line starting with the prompt >>>. When a user enters a Python 
statement and hits the ENTER-key, the Python runtime system interprets the statement (for example a 
mathematical expression) and returns the result in the following lines (read-eval-print loop, REPL).   
Example: 

>>> 23*5.2 

119.60000000000001 

The first task is to try out four expression commands and discover the little differences between Python 
syntax and mathematical notation. In the workshops, this took two minutes in average.  

In the second exercise the students use the Python Shell as calculator for three little computational 
problems from a typical chemistry textbook. Example: Calculate the mass (in g) of 0.2 mol sodium 
chloride (NaCl). For this they needed seven minutes. 

In the third activity the students are asked to follow step-by step instructions to solve a more complex 
problem from Chemistry using the Python Shell. In this context the tutorial introduces variables to name 
data and split a complex calculation into separate steps (CT concept:  decomposition). 

Task: Through a hole in a pipe, the amount of 100 g methane went into a cylindric building (height 20 
m, radius 5 m). Calculate the concentration in mol/L. 

Step 1: Calculate the volume of the cylinder (m³). 

>>> V = 20 * 3.14 * 5**2 



Constructionism 2018, Vilnius, Lithuania 

666 

 

The result of the term is assigned to the variable V. One can check the value of V by calling the print() 

function: 

>>>print(V) 

1570.0 

Step 2: Calculate the number of mol: 

>>> n = 100/16 

Step 3: Calculate the concentration c in mol/m³: 

>>> c = n/V 
>>>print(c) 

0.003980891719745223 

And so on. 

In cartoon-like explanations, variables are visualised as containers for data. The name of the variable 
in this metaphor is a label, making it possible to refer to the container. 

 

Figure1. Two frames from a cartoon-like explanation of Python statements. 

Interactive Programs 

In the next exercise the students write a script consisting of six lines of code using the Idle editor. They 
have to figure out how to use the editor and manage to write error-free program text. In the workshops 
this took in average 16 minutes. 

The interactive program has a simple Input-Processing-Output design. The user is asked to input the 
number of carbon and hydrogen atoms. The program calculates the molar weight of a hydrocarbon 
compound consisting if these atoms and returns the value using proper units (g/mol). 

print("Calculate the molar weight of a hydrocarbon compound.") 

inp = input("Number of C atoms: ") 

n_C = int(inp) 

n_H = int(input("Number of H atoms: ")) 

M = n_C*12 + n_H*1 

print("Molar weight of the compound: ", M, "g/mol.") 

The execution of the program is explained in a cartoon with five frames in the style of figure 1. The 
average self-rated comprehension of the program was 75%. Note that understanding the calculation in 
line 5 requires Chemistry knowledge. 

The students are then asked to extend this program and add a new feature on their own. The new 
version should now be able to calculate the molar weight of organic compounds additionally containing 
oxygen atoms. This program should be tested with methanol (CH3OH). 90% of the participants were 
able to do this and theses students needed in average eight minutes to finish the extension. 



Constructionism 2018, Vilnius, Lithuania 

667 

 

The final challenge is to implement an interactive program that helps preparing solutions. The students 
have to transfer the techniques they learned from the prototype to create their own project.  

Evaluation  

Table 1 displays the results of the evaluation. The participants claimed to enjoy programming, the girls 
almost as much as the boys. The average agreement to “Programming is fun” was 4.55/5 for boys and 
4.05/5 for girls. A majority said that programming implies practising logical thinking, precise 
communication and creativity as well as practising chemistry knowledge. There were only a few critics. 
Four of those seven students who stated that they had lost time doing unimportant things had the 
opinion that programming is useless knowledge anyway. 

Table 1. Evaluation of the programming workshop (n=34). 

Statement Average level of 
agreement (1 to 5) 

Complete and partly 
agreement 

Programming was fun. 4.2  85% 

While programming I have practised logical thinking. 4.2 79% 

During programming I have practised chemical 
knowledge. 

3.9 74% 

I could imagine to do more programming projects. 3.7 62% 

While programming I have practised expressing things 
precisely. 

3.6 59% 

While developing the programs I could be creative. 3.5 56% 

For my projects I did some research on chemistry 
knowledge. 

2.9 47% 

While programming I lost time doing unimportant things. 2.4 21% 

To me programming is useless additional knowledge. 2.3 18% 

Starter Projects for Science Education: Reconstruct-Improve-
Create 

The Python workshop, which was discussed in the previous section follows a “Reconstruct-Improve-
Create” design pattern. This can be considered as a simple version of agile programming (Beck 1999). 
“Stories” are implemented in a few short iterations. The tutorial contains these elements: 

Reconstruct 

 A story: Visual and verbal description of a useful software covering a certain topic in chemistry 
(e.g. molar weight), 

 An easy-to-understand prototype Python program implementing the story (starter project), 
 Visual and verbal explanations helping to understand the program code. 

 Improve 

 Suggestions, how to improve the prototype program. 
Create  

 A new story that can be implemented using the techniques introduced in the prototype. 
Note that the students are supposed to use the editor, to type a few lines of code themselves and to 
understand and modify the program (reconstruction). This contrasts for example with the Google 
“Exploring Computational Thinking” approach, which is based on copy and paste rather than on 
reconstructing. In the example simulating radioactive decay, learners are supposed to copy and paste 



Constructionism 2018, Vilnius, Lithuania 

668 

 

more than 40 lines of rather complex code in a VPython environment and then run the program 
(https://docs.google.com/document/d/1HotPQxfK1w1SytPtJg5qqKkxFrqmZpiZrxyaIHRKZIE/edit). 

Programming Scientific Experiments  

Taking advantage of the CT concepts “abstraction” and “generalization”, it is possible to create relevant 
software without specific programming experience. This section discusses example projects using a 
Raspberry Pi and a non-dispersive infrared (NDIR) CO2 sensor. These projects are part of a workshop 
on sensor technology for chemistry teachers in North Rhine-Westphalia, Germany. The NDIR consists 
of an infrared source, a filter and a photo sensor in a tube with some holes. The IR radiation travels 
through the tube and is partly absorbed by the carbon dioxide molecules in the tube. A fraction of the 
IR with a certain wavelength passes the filter and is detected by the photosensor. A small digital device 
processes the detector output and creates data that are sent to the Raspberry Pi via the serial I2C bus.  

 

Figure 2.Raspberry Pi with NDIR CO2-sensor module MH-Z16 

Story 1: The carbon dioxide concentration in a room is an important factor of wellbeing. Connect the 
sensor to the GPIO of a Raspberry Pi with jumper wires and observe the carbon dioxide concentration 
in the room (ppm) for five seconds. The output on screen might look like this: 

540 ppm 

540 ppm 

543 ppm 

545 ppm 

550 ppm 

The hardware is prepared in a few minutes. This already gives an idea how the serial data transfer 
works. The digital sensor device has four pins: VCC, GND, CLK and SDA, which must be connected 
via jumper wires to the GPIO of the Raspberry Pi. The pins VCC (+5 Volts), GND (ground) are for the 
power supply. The data are transferred bitwise via the SDA line. The CLK line is for a clock signal that 
synchronizes the data transfer. 

The following Python program implements the story and illustrates the CT concepts abstraction and 
generalization. 

from ndir import get_ppm     #1 

from time  import sleep      #2 

for i in range(5):           #3 

    c = get_ppm()            #4  

    print(c, "ppm")          #5 

    sleep(1)                 #6 

All text elements at the end of a line starting with # are comments and are not part of the formal text.  

#1: Import the function get_ppm() from the module ndir. 



Constructionism 2018, Vilnius, Lithuania 

669 

 

#2: Import the function sleep() from the standard module time. 

#3: Repeat the following indented block 5 times. 

#4: Get the current CO2-concentration in ppm and store the value in the variable c. 

#5: Print the value of c in the current line of the output window. Then start a new line. 

#6: Wait for one second and continue then. 

Programming implies abstraction. A computer program can be considered as a simplified model of 
reality. Unnecessary details are ignored.  In this case, measuring the CO2-concentration is reduced to 
a function call in line #4. In industrial software development, abstraction takes place on many levels - 
from system design to coding. Abstraction is considered as a key competence for programmers (Kramer 
2007). But even a tiny project like this example illustrates the benefits of abstraction by using a formal 
language. From the perspective of working memory theory (Baddely 2013, Dehn 2008) abstraction is 
essential for problem solving. Humans can only keep a very limited number of chunks of information in 
mind while thinking about a solution. Unnecessary details would be disturbing. Therefore, for a human 
it is easier to comprehend the semantics of a concise program, than the semantics of an algorithm 
written informally in natural language. However, the prerequisite for understanding is that she or he 
masters the programming language.  

Thus, all language elements in a Python starter project must be explained well to the novice learner.   
Some Python commands in the example can be understood almost at once, since they use familiar 

concepts metaphorically. The function call sleep(1) makes the Python interpreter to stop the 

execution of the program and to continue it after one second. The concept of falling asleep and being 
awaked after a while is well known from everyday-life. 

Some other language elements are more complex and might need some active exploration and 
rehearsal before they are fully understood. Learners might want to try out some calls of the functions 

range() and print() in the Python Shell. Generalisation means solving new problems based on 

already-solved problems. This includes reusing software (for example classes or functions) in new 
contexts. In this example, the import of Python modules demonstrates the CT concept of generalisation. 

The module ndir encapsulates all the details of reading sensor values vis the I²C bus. It was designed 

to be useful in many projects. 

However, this is only a rather weak demonstration.  Learners get a deeper understanding, when they 
define functions, classes and modules on their own and use them at different places in their project 
software.  

Automatic Experiments With Human Actors 

Measuring the CO2 concentration may be a part of a scientific experiment about diffusion. In special 
environments like space satellites, experiments may be conducted completely automatically. In the 
class room it is possible to involve humans as actors. The program tells the actor what to do (instead of 
controlling motors directly) and calculates useful information from sensor data. This way the program 
represents a precise description of the experiment. The program text is rather simple and concise, but 
one can imagine that with some effort it is possible to automatize the experiment completely.  

Story 2: Create an interactive program that helps to conduct an experiment that demonstrates the 
diffusion of a gas. 

The implementation of this story is an extension of the starter project.   

from ndir import get_ppm 

from time  import sleep 

print("Watch the diffusion of carbon dioxide.") 

number = input("Number of measurements: ") 

print("Now, breath to the NDIR sensor!") 

 



Constructionism 2018, Vilnius, Lithuania 

670 

 

for i in range(number):  

c = get_ppm()           

    print(c, "ppm" )         

    sleep(5) 

Example Dialog 

Watch the diffusion of carbon dioxide! 

Number of measurements: 10 

Now, breathe to the NDIR sensor! 

722 ppm 

709 ppm 

935 ppm 

1264 ppm 

1181 ppm 

1032 ppm 

1012 ppm 

1018 ppm 

960 ppm 

883 ppm 

Summary and Conclusion 

Developing interactive programs with Python may be an element of science education at high schools. 
When students develop interactive assistant programs or semi-automatized experiments with sensor 
readings, they both elaborate scientific content and apply computational thinking. During the process 
they are challenged to 

 design man-machine dialogs using appropriate scientific terms und units 
 create and explicate precisely activities that are necessary to conduct an experiment 
 apply scientific laws for calculating useful information from sensor reading. 

The results of a study with 34 high school students from chemistry classes suggest that young people 
find introductory programming projects in chemistry lessons instructive and stimulating. Using Python 
as programming language, even novices can write relevant programs without previous training within a 
regular lesson. They may get an idea of some CT concepts. But there are limitations and several 
reasons, why computational thinking is developed best in dedicated computer science classes:   

 To experience the benefits of decomposition and generalization, students need to create rather 
complex software projects. Object oriented modelling by creating class structures requires a lot of 
specific instruction and cannot be learned “on the fly” in chemistry classes. 

 To deal with code that is more than a few lines, learners must know debugging techniques. These 
include special technical knowledge about the IDE, debugging tools and defensive programming. 
All this is not related to the core topics of traditional science. 

 Beginners need a lot of time and some assistance, when they search for errors. Science teachers 
(who are not programmers) may not be able to help.  

 Debugging – which is a necessary part of a complex project – is not very helpful for learning 
science content. Debugging and testing are genuine software engineering activities. The goal is to 
increase the technical quality of a software product.  Science students might consider the need of 
coping with complexity as an annoying distraction. 

Programming projects in pure science classes need to be simple. But they can still be relevant. The 
pedagogical potential includes three facets: 

 Learning activities may get more interesting and more rewarding, since the students create useful 
and relevant products. 

 Learning activities get more challenging, since the software design requires broad knowledge 
about a field. 



Constructionism 2018, Vilnius, Lithuania 

671 

 

 Learning can be more individual. In an iterative process, each student can individually decide how 
far she or he wants to develop the project. 

References 

Baddeley, A. (2003): Working Memory Looking Back and Looking Forward. Nature Reviews 
Neuroscience, Vol. 4, p. 829–839.  

Beck, K. (1999) Extreme Programming Explained. Addison Wesley. 

Beheshti, E., Weintrop, D., Swanson, H., Orton, K., Horn, M., Jona, K., ... & Wilensky, U. (2017, April). 
Computational Thinking in Practice: How STEM Professionals Use CT in Their Work. In American 
Education Research Association Annual Meeting 2017. 

Dehn, M. J. (2008): Working Memory and Academic Learning. John Wiley & Sons, Hoboken, New 
Jersey. 

Google (2018): Computational Thinking for Educators. 
 https://computationalthinkingcourse.withgoogle.com/course . 

Kramer, J. (2007). Is Abstraction the key to computing? In Communications of the ACM, 50(4), 37. 

Swaid, S. I. (2015). Bringing computational thinking to STEM education. Procedia Manufacturing, 3, 
3657-3662. 

Selby, C., &Woollard, J. (2013). Computational thinking: the developing definition. 
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf . 

Stark, R., Mandl, H., Gruber, H., & Renkl, A. (2002). Conditions and effects of example elaboration. 
Learning and Instruction, 12(1), p. 39-60. 

Tausch, M.   & von Wachtendonk, M. (2012) Chemie 2000+. Qualifikationsphase. Bamberg, Germany. 

  

https://computationalthinkingcourse.withgoogle.com/course
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf


Constructionism 2018, Vilnius, Lithuania 

672 

 

Media Parkour– Experiential Learning Activities for 
Media Education 

Michael Weigend, mw@creative-informatics.de 
Holzkamp-Gesamtschule Witten, Germany 

Fenja Göcking, fenja.goecking@gmx.de 

Alexander Knuth, knuthalex@web.de 

Patrick Pais Pereira, patrick-pais-pereira@hotmail.com 

Laura Schmidt, laurakathleen2305@gmail.com 

Abstract 
This contribution presents a sequence of quick and easy experiential learning activities for sixth graders, 
which were developed, performed and evaluated by a high school pedagogy class. The activities mainly 
take place outside in the schoolyard and challenge creativity, computational thinking and collaboration. 
The learning arrangements are inspired by ideas of experiential learning and cover topics from media 
education like appropriate reactions to cyber bullying, data transmission between mobile phones, 
recognizing commercial advertisements, falsification of news etc. The Media Parkour was conducted 
with almost fifty sixth-graders in the age of 11 to 12. They performed the activities in teams of four and 
then rated them in a questionnaire.  

Keywords 
media education; computational thinking; gamification; experiential learning 

Introduction 

In most German schools, media education is not a dedicated subject. But since media are omnipresent, 
media education is included in the curricula of several school subjects. Obviously, in language lessons 
students learn to distinguish between different text types, while in art classes they create and interpret 
visual media. In science digital models or simulations are used to visualize all kinds of processes. 
Computer science education takes place, if digital technology is not just used as a tool but underlying 
principles and ideas are made aware and discussed. This contribution presents a 90-minutes workshop 
called “Media Parkour” for sixth graders, which has been created by a high school pedagogy class 
(grade 12). It consists of eight experiential activities with the primary goal to develop the competence of 
using digital technology in a responsible way. Additionally, computational thinking is challenged. The 
design of the activities is based on the "NRW-Medienpass" and inspired by ideas of experiential 
learning.  

"NRW-Medienpass" and Digital Competencies 

Germany is a federal republic and each federal state has its own regulations on media education at 
schools. In North Rhine-Westphalia (NRW), the government has published a collection of media 
competencies – the “NRW Medienpass” (media passport) – the schools are encouraged to consider in 
their curricula. The primary goal is to help young people and children to use media in a safe, creative 
and responsible way. The "NRW Medienpass" consists of six groups of competencies for different age 
groups from Kindergarten to grade 13. These are "operating and applying digital technology", 
"researching with digital technology", "communication and co-operation", "creating and presenting", 
"analysing and reflecting" and since recently "problem solving and modelling". The "Media Parkour" has 
been designed for pupils in grade five and six and focuses on "communication and co-operation with 
digital technology". The skills include  

 using digital tools for communication, 



Constructionism 2018, Vilnius, Lithuania 

673 

 

 knowing and following rules for digital communication and co-operation, 
 reflecting ethical principles and cultural and social norms when communicating or cooperating via 

digital media, 
 being aware of social, personal and economical risks of technology usage, knowing consequences 

of cybercrimes and knowing how to deal with them. 

Learning Activities for Media Education 

During the winter 2017/2018 two sixth grade classes of a comprehensive school in Witten, Germany 
participated in the "Media Parkour". 

The 90-minutes workshop has been designed by high school students from a Pedagogy class and 
consists of eight learning activities or challenges, which were located at certain places community areas 
of the school building and on the schoolyard. Each activity was supervised by an adult student from the 
pedagogy class. The sixth graders went through the parkour in groups of four, solved tasks and received 
points from the students responsible for the activity. Each group was guided by a pedagogy student. At 
the end, the points were added up and a prize awaited the winning team. 

The activity "What now?" is about correct comprehension of text messages and responsible 
communication. The team receives cards with WhatsApp messages with different intentions of the 
sender (insulting a classmate, requesting to spread a chain letters, important information given by the 
class teacher). The challenge is to recognize the sender's intention and suggest a procedure how to 
deal with the message. 

In the arrangement "How to react best?" two members of the team must improvise a role play on cyber 
mobbing in a WhatsApp group chat using role cards. The other two are audience. They must recognize 
the roles and suggest how to react when watching such a dialogue. 

The activity "Silent mail" is inspired by the well-known game and illustrates mechanisms of falsifying 
information that is spread on the Internet. Each member of the team draws a card with instructions. The 
first person additionally gets a photo depicting a playground scene. The children on the photo are 
labelled with their names. One can see a harmless scene: "Anna" and "Lisa" are playing on a swing. 
The first person’s instructions say that she or he should describe the situation to the second person 
(whispering silently into his or her ear) and mention the names of the kids on the photo. The second 
person's role card says: "Anna once hurt you and you do not like her. When you tell stories about Anna, 
you usually make her look bad." Person 3 often mixes up names and Person 4 is asked to tell the story 
aloud, he or she had just heard but to exaggerate. At the end the team gets a list of possible reasons 
why spread information might get falsified and find the one which was not effective in this case. 

In the arrangement "Who is it?" three members of the team mime a bullying situation as living statues. 
The fourth person is then asked to identify the different roles.  

At the activity "The GPS" one member of the team (the “runner”) gets a blanket put over the head. Under 
the blanket the “runner” can read text messages on a smartphone. The “navigator” writes text messages 
thus guiding the “runner” through a course.  

"The Maze" is very similar. A blindfolded person must find a way through a maze while the “navigator” 
gives directions by tapping on the shoulders. 

In "The Advertisement Quiz" the students must identify images from commercial advertisements. 

The activity "Data Transmission" simulates a bit-by-bit data transfer from one mobile phone to another.  

Three of these learning arrangements will be discussed in depth later. 

Pedagogical Background of the Task Design 

The content of the activities presented in the last section is based on the "NRW-Medienpass". The main 
goal is to improve responsible media usage. This section discusses some methodological aspects. 



Constructionism 2018, Vilnius, Lithuania 

674 

 

All learning arrangements are designed to challenge the children’s imaginations and creativity. This is 
obvious in activities which contain role plays and “living statues”. But even if the main task is pure logical 
reasoning, there is always space for creativity and individual solutions in details.  

The activities have the character of experiential learning arrangements (Heckmeir & Michl, 2012). They 
take place in the outdoors and many of them include physical activity (e.g. "The GPS" and “Data 
transmission”. All challenges are performed in groups and require cooperation. 

The French philosopher Roger Caillois(1958) defines game as a voluntary activity characterized by 
competition (agôn), unpredictability or chance nature (alea), adrenaline rushes (illinx) and masking 
(mimicry). According to this model, the “Media Parkour” is game-like. First, it is a competition. The teams 
collect points according to their performance. The activities involving physical activity (like “The GPS”) 
may (occasionally) lead to this emotional excitement that Caillois calls illinx. Role plays involve 
pretending to be someone (or something) else which is a type of mimicry. Elements of chance, which 
make an activity more suspenseful and game-like (alea) appear in little details like drawing role-cards. 

The book "Computer Science Unplugged" (Bell, Witten, Fellows 2015) has inspired many educators to 
develop learning activities on computer science without using a computer (e.g. Futschek & Moschitz 
2010, Gallenbacher 2006, Weigend 2017). The "Media Parkour" follows the "unplugged" idea, but differs 
in some points slightly from the classic concept: 

 All activities challenge creativity in some way. The participants are supposed to invent 
(subjectively) new algorithms, visual representations, verbal explanations and ideas. According to 
the constructionist idea, each activity should lead to some product that is individual and might be 
unique and surprising. On the other hand, “Computer Science Unplugged” contains a lot of 
(wonderful) tasks that are pure “brain teasers” and have just one correct solution, which must be 
found out. 

 The "Media Parkour" is not completely "unplugged" since smartphones are involved.  
 The activities of CS Unplugged are explicitly related to computer science techniques like data 

compression, binary numbers, fault tolerance and so on. The activities of the "Media Parkour" are 
primarily related to media education. But many of them are connected to computer science at a 
second glance. This will be discussed in the next section. 

Computational concepts in media-related activities 

Jeannette Wing (2006) popularised the term "computational thinking" as an approach to problem solving 
that is typically adopted by computer scientists. Selby & Woollard (2013) identify five facets of 
computational thinking: abstraction, algorithmic thinking, deconstruction, generalisation and evaluation. 
This section discusses three example activities of the “Media Parkour” with respect to their contribution 
to the development of computational thinking.  We speculate about the educational potential; however, 
we cannot provide an empirical evidence of effectiveness.  

Identifying advertisements – algorithmic thinking 
The team picks one of three cards with items (soda, chocolate, car). For each of these items there are 
two photographs somewhere placed at the wall. One photo is from an internet advertisement and the 
other one is from an informative article just showing the item but not advertising for it. The task is: Go 
to the photo, which is from an advertisement for the picked item. There are several strategies to identify 
the correct photo: 

 Check whether the item appears in the photo. 
 Look for traces of post-processing. In one of the photos letters have been removed. By detecting 

areas of pixels with exactly the same colour, such manipulations can be identified.  
 Check the uniqueness of the item. For example, if the photo depicts bottles of multiple soda brands, 

it is probably not from an advertisement for one of these brands.  
 Check whether this photo is exciting and evokes positive emotions in the viewer.  

While discussing how to distinguish ad photos from non-ad photos, the children develop algorithmic 
ideas. Additionally, the limitations of algorithms may become obvious.  For example, humans decide 



Constructionism 2018, Vilnius, Lithuania 

675 

 

whether a photo is boring or exciting rather "intuitively" than algorithmically. In fact, modern software for 
recognising commercials (perceptual ad highlighter) uses artificial intelligence (Hwang 2017). 

Data Transmission – Evaluation of Algorithms 
At the beginning, the children listen to a story: Tom (sender) wants to send a WhatsApp message to his 
sister Tina (receiver). The characters of the message are (somehow) represented by zeros and ones 
(bits) and sent via multiple intermediate stations form the sender to the receiver. This process will be 
reconstructed in a role play on the schoolyard. The challenge is to transmit a sequence of bits from the 
sender to the receiver whose location is at least 100 meters away from the sender and around the 
corner of the school building so that the receiver cannot see the sender. The other two members of the 
team are intermediate transmitters. 
The children are not allowed to talk during the transmission and must represent the bits through body 
postures. They get three minutes to develop a method for the transmission.  
Then they form a chain of transmitting stations, the sender picks a piece of paper with a sequence of 
zeros and ones and starts the transmission. The receiver at the other end of the chain writes down the 
received bits. After one minute the transmission stops and the received sequence is compared with the 
original. The team gets points according to the number of correctly transmitted bits. 
In this activity the students need to solve problems which are related to efficiency: 

 Zeros and ones must be mimed in a way that is well recognizable from the distance.  

 Sequences of identical bits must be handled. Transmitters must be able to recognize, when the 
transmission of a bit starts and ends. Some teams chose relatively complex movements using 
the whole body ("disco moves") to represent zeros and ones. This made is easy to recognize 
individual bits correctly; however, this method was time consuming. 

 The speed of the data transmission must be adjusted to a pace, in which each repeater station 
has enough time to recognize a bit and to send it then to the next station. Usually, each student 
watched his or her successor and waited until he or she was ready again for the transmission of 
the next bit. 

Of course there was not enough time to develop special data compression techniques to speed up data 
transfer. But the students were put in a situation where they had to judge algorithms in terms of their 
effectiveness and efficiency. 

The GPS – abstraction and formal language 
Each team chooses a "navigator" and a "runner". The runner puts a blanket over the head, which is 
then attached to his body so that she or he cannot see the surrounding area. But he or she can read 
text messages on a smartphone. The navigator (advised by the rest of the team) leads the “runner” 
through a course by writing WhatsApp text messages (commands). Any other form of communication 
is forbidden, and the runner is not allowed to ask questions. 

During the exercise the team encounters the following problems related to controlling by verbal 
commands: 

 The navigator’s commands must be clear and unambiguous. 
 Writing a command should not take too much time. The message must be short.  
 The navigator observes the runner to see if he or she interpreted and executed the latest command 

correctly. If necessary the navigator can improve the commands. 
 It is advantageous to have a limited set of commands that are fully understood. 

During the workshop, not a single team had agreed on a set of commands beforehand. The WhatsApp 
messages were semantically elementary ("right", "left", "straight ahead", "stop") but often decorated – 
sometimes (especially among boys) with friendly insults (“Go left, you bastard!”).  Communication 
problems were frequently observed. For example, the command "Go to the right!" does not clarify how 
far the runner should move to the right. Some runners were cautious and had little confidence in the 
navigator. They made just one single step and then waited for the next command. There were also 
nasty navigators who occasionally guided their runners against a wall on purpose.  



Constructionism 2018, Vilnius, Lithuania 

676 

 

The participants got the opportunity to “play with language” and recognize the benefits of a formal 
language with well-defined semantics. Short commands involve abstraction since all unnecessary 
details are omitted.  

Another activity of this kind was developed at the Vienna University of Technology. Two players sit back 
to back and cannot see each other. Both players have the same set of building blocks. Person A builds 
a figure. Afterwards, person B must reconstruct the figure according to A’s oral instructions. Person B 
has only three ways to give feedback: 

 "Ok” ("I’m ready for the next instruction”)  
 "Repeat the last instruction” 
 "All over again!”  

The activity "The GPS" follows the same idea but is much simpler, which makes it suitable for younger 
students. Additionally it includes physical exercise and can be performed on the schoolyard in the fresh 
air. 

Evaluation  

At the end of the workshop, the children filled a questionnaire. The data of 38 persons (20 boys and 18 
girls, average age 11.4 years) could be used for evaluation. It turned out that most children loved the 
"Media Parkour". They were asked to give a grade from 1 to 6 (equivalent to A to F in American schools). 
The average grade was 1.9.The workshop has been designed as a contest. There is a controversial 
discussion on the question whether competition has a positive effect on learning (see for example 
Cantador 2015). In the questionnaire most of the participants claimed that that the competitive character 
of this workshop was important to them. On a scale from 1 ("super important") to 6 (“totally unimportant") 
the score reached an average of 2.4. There was only a small difference between girls (2.6) and boys 
(2.2). 

Table 1 shows the results of the evaluation of the individual activities. The students could choose a 
maximum of three activities for each of the following categories: 

 Activities that were the most fun. 
 Activities that were the least fun. 
 The easiest activities. 
 The hardest activities. 
 Activities that dealt with important topics. 

Table 1. Evaluation of the eight activities 

Activity most fun least fun easy hard important 

What now? (1) 16% (6) 29% (11) 24% (9) 11% (4) 42% (16) 

How do I react correctly? (2) 13% (5) 24% (9) 34% (13) 13% (5) 50% (19) 

Silent Mail (3) 26% (10) 37% (14) 16% (6) 42% (16) 24% (9) 

Who is it? (4) 26% (10) 21% (8) 42% (16) 13% (5) 11% (4) 

The GPS (5) 66% (25) 8% (3) 11% (4) 34% (13) 24% (9) 

The Maze (6) 55% (21) 0% (0) 18% (7) 24% (9) 13% (5) 

The Advertisement Quiz (7) 18% (7) 42% (16) 45% (17) 26% (10) 8% (3) 

Data Transmission (8) 61% (23) 13% (5) 34% (13) 8% (3) 24% (9) 

The children had most fun with those tasks that involve self-directed activity and body movement. At 
"The GPS" (66%) and "The Maze" (55%) one person had to go through a path while being "remote-
controlled" by a classmate. In "Data Transmission" (61%) digital zeroes and ones were represented by 
body movements.  Other activities were more like a quiz or exam offering the children relatively little 
opportunity for free action or interpretation. In the exercise "What now?" the children must find out the 
intentions of a sender of various text messages and assign them to the categories "chain letter", "cyber 



Constructionism 2018, Vilnius, Lithuania 

677 

 

bullying" or "informative message". Only 16% of the children rated this activity as the most fun and 29% 
rated it as one of the least enjoyable exercises. In "The Advertisement Quiz" the children had to 
distinguish normal photos from advertisements (most fun: 18%, least fun: 42%).  

Most participants claimed that "The Advertisement Quiz" was especially easy (45%) while others found 
it to be difficult (26%). Other tasks that were found to be easy are "Who is it?" (Interpreting a “living 
statue” and recognizing roles, 42%), "Data Transmission" (34%) and "How do I react correctly?" (34%). 
On the other hand children found the exercise "Silent Mail" (falsification of news, 42%) particularly 
difficult. 

All activities were on topics that were relevant for media education according to the “NRW Medienpass”. 
But how do the children rate the relevance of the activities? A very important topic seems to be 
cyberbullying which was addressed in two activities, “How do I react correctly?" (50%) and "What now?" 
(42%). Only 8% considered the recognition of advertisement photos in "The Advertisement Quiz" as 
particularly important. The activities "Silent Mail" and "Data Transmission" which are about explaining 
how certain things work, were marked as relevant by 24% of the participants each. 

Media and Computer Science – Educational Perspective 

At the beginning of each activity the children got a little introduction, explicating the related technology 
concepts and media competencies, if they were not obvious: Recognizing commercial advertising is an 
important media skill. When sending messages, data is transmitted, and so on. For explaining the 
computer science aspects in more detail, specific technical expertise is required. But the tutors of the 
small groups were pedagogic students and not computer scientists. An improvement of the setting might 
be the use of audio-visual material (designed with the support of experts) presented on tablet 
computers. This could help the students to connect the activities to serious computer science 
knowledge. 

References 

Caillois, R. (1958) Les jeux et les hommes. Paris 1958. 

Bell T. ,Witten, I. H., Fellow, M. (2015) CS Unplugged, Computer Science Without a Computer. URL: 
https://classic.csunplugged.org/books/ 2015. 

Boroditsky, L.; Ramscar, M.; Frank, M. C. (2001) The Roles of Body and Mind in Abstract Thought. In 
Psychological science, 13(2), p. 185 – 189. 

Cantador, I. (2015). An example of healthy competition in education. In Proceedings of the 2nd 
International Workshop on Gamification in Education (gEducation 2015). 

Caillois, R. (1958) Les jeux et les hommes. Paris 1958. 

Futschek, G, Moschitz, J.: Developing algorithmic thinking by inventing and playing algorithms. In 
Proceedings: Constructionism 2010. 

Gallenbacher, J. (2006)Abenteuer Informatik. IT zum Anfassen. Spektrum Akademischer Verlag  

Heckmair, B., & Michl, W. (2012)Erleben und lernen. 7th edition 

Hwang, Y. (2017) The Best Adblocker – Using Artificial Intelligence to Perfectly Block Ads. In IT for All, 
18. April 2017. URL: https://www.iotforall.com/best-adblocker-artificial-intelligence-to-perfectly-block-
ads/ 

Selby, C., &Woollard, J. (2013) Computational thinking: the developing definition. 
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf, 2013. 

Weigend, M. (2017) Smartwalk: computer science on the schoolyard. In Proceedings: IFIP World 
Conference on Computers in Education. Springer, Cham. 

Wing, J. M. (2006) Computational Thinking. In Communications of the ACM, 49/3,p. 33–35. 



Constructionism 2018, Vilnius, Lithuania 

678 

 

A Creative Learning Sequence in an Introductory 
Programming MOOC 

Elisabeth Wetzinger, elisabeth.wetzinger@tuwien.ac.at 
Vienna University of Technology, Austria 

Gerald Futschek, gerald.futschek@tuwien.ac.at 
Vienna University of Technology, Austria 

Bernhard Standl, bernhard.standl@ifs.tuwien.ac.at 
Vienna University of Technology, Austria 

Abstract 
Since January 2017 we have designed and developed a Massive Open Online Course (MOOC) for 
learning computer programming, addressing high-school students without or with little experience in 
programming who intend to start studying at a technical University. The objective of this MOOC is to 
conform the heterogeneous levels of our freshmen students’ pre-knowledge in computer programming. 
We decided to use Processing72 as programming language because Processing supports an easy 
learning start to programming by using graphics and animations. We included already at a very early 
stage of the MOOC a challenging learning sequence that involves creativity, peer feedback and 
communication with other participants: We asked students to create a graphical artwork through coding 
using previously in the course presented graphical procedures. Further, we ask them to create a fake 
copy of an artwork coded by a peer. Finally, artists and fakers should discuss their experiences. This 
paper summarizes and discusses our experiences with this learning sequence gained during the first 
run of the MOOC in summer 2017. 

Keywords 

creative learning sequence; MOOC; learning computer programming 

Introduction 
In the first-year of the bachelor programs of Computer Science and Business Informatics (CSBI), 
students have a heterogeneous knowledge and experience levels in coding due to different high-school 
pre-experiences. This fact challenges teaching and studying at the Faculty of Informatics and lead to a 
high drop-out rate73. In order to address these issues, our faculty has set measures to improve the 
bachelor programme curricula as well as teaching practice. The faculty also has established pre-study 
bridging courses supporting students at the beginning of their studies in September before the actual 
lectures start by learning basic skills in programming, maths and other topics of Computer Science. The 
bridging courses are implemented as on-site workshops of which the programming course is limited to 
100 participants following a first-come-first-serve rule. This means, that approximately 80% of students 
accepted for a CSBI bachelor programme are not able to attend the programming bridging course. 

As an additional bridging course for prospective students of the Computer Science and Business 
Informatics (CSBI) and other STEM undergraduate programs, we developed and provided a massive 
open online course (MOOC) on introductory programming in German language called “Programmieren 
mit Processing” (engl.: Programming with Processing). We followed the guidelines published by Ebner 
et al (2014). Especially prospective students, who are not able to attend on-site workshops benefit from 
the online course as it can be accomplished at one’s own pace and can be accessed from anywhere 
only requiring internet access. As it supports massive numbers of participants, literally every prospective 
or interested student is guaranteed to be able to accomplish the MOOC. 

                                                
72 http://processing.org (last access: 06/2018) 
73 Source: http://www.tuwien.ac.at (Data from our institution) 

mailto:elisabeth.wetzinger@tuwien.ac.at
mailto:gerald.futschek@tuwien.ac.at
http://www.xxxx.xxx/


Constructionism 2018, Vilnius, Lithuania 

679 

 

This MOOC has started in April 2018 at the public MOOC platform iMoox.at74 and aims at serving 
everybody who is interested in learning programming using Processing. Our goal is to provide a course 
that involves constructive learning sequences that provoke the students’ creativity, interest, and 
passion.   

In the next sections, we first present the idea of our MOOC and then the description of the learning 
sequence in detail. We will close our paper with an overview on students’ outcomes and conclusions. 

Background 

Resnick (2014) claims to give P’s a chance: Projects, peers, passion, play. He calls them “The 4 P’s of 
Creative Learning: Projects, Peers, Passion, Play”. He argues that active working on meaningful 
projects supports new ideas in finding solutions. Also, exchange with peers and building on work of 
others can boost motivation and creative learning processes. Therefore, he also remarks that projects 
should be rich enough to create passion in finding a good solution. Further, he underlines that a playful 
way with room for experimentation helps to explore different solutions. Based on that, we are convinced, 
that learn to code can also be more efficient when these 4 P’s of Creative Learning are involved in the 
instructional design. In order to trigger these so called 4 P’s we need not only a suitable programming 
system but also excellent learning activities. Nevertheless, typical Massive Open Online Courses 
(MOOCs) rely mostly on passive instructional video learning combined with text-based scripts and 
multiple choice self-assessment. Koedinger et al (2015) showed that interactive activities support 
learning more than instructional MOOCs.  

For over a decade, computational thinking has been in the focus of educators and researchers in 
computer science, particularly when it comes to learn how to code. Even though computational thinking 
has become popular since Wing discussed and reintroduced the topic in 2006 (Wing 2006), 
computational thinking still has a long tradition in history over decades (Tedre et al 2016). Despite the 
lack of an overall definition of computational thinking, there is for the most part consensus in including 
problem-solving involving the thinking skills abstraction, decomposition, algorithmic thinking, evaluation 
and generalization (Dagiene et al 2017). Hence, learning programming should by its nature support 
computational thinking skills. At any rate it comprises algorithmic thinking, but while analysing programs 
and program output also evaluation skills are trained. Since a program is a kind of model of its outcome 
also abstraction skills may be learned. 

Considering both, Resnick’s 4P as a framework for building a useful learning environment that 
conformed to the constructivist approach to coding, and computational thinking as a definition for 
describing problem-solving in the field of computer science, we developed creative coding tasks as part 
of our MOOC. In particular, the learning sequence, as presented in this paper allows a playful 
experimentation while building on another’s work and bringing in own ideas leading to a motivating and 
passionate learning environment. Techniques and skills required in the implementation of the solution 
are based on the decomposition of existing work, algorithmic reconstruction and the evaluation of the 
solution. 

MOOC: Learning Programming with Processing    

The MOOC comprises ten course lectures and is implemented on the virtual learning environment 
Moodle hosted by our college. The first lecture includes a course welcome and starts the course with a 
brief overview on fundamental questions about CS and programming, such as “What parts do 
computers consist of?”, “How can we communicate with computers in order to make them solve our 
problems?”, “What are algorithms and abstraction?” and “Why should I learn to program?” 

In order to comply with the curricula of the on-site pre-study courses and the Introductory Programming 
lecture (which is compulsory for all CSBI bachelor students) the remaining course lectures follows a 
non-objects-first approach, which means, that the object-oriented programming paradigm is not 
introduced from the beginning explicitly. Course lectures 2 to 10 introduce the Processing Integrated 

                                                
74 http://www.imoox.at (last access: 06/2018) 

http://www.imoox.at/


Constructionism 2018, Vilnius, Lithuania 

680 

 

Development Environment (IDE) and basic programming concepts, such as: variables, operators, data 
types, basic animations and user interactions, decisions using if- and if-else-statements and loops as 
well as functions, arrays and recursions. 

Learning Sequence: Creating Visual Art with Code  

The first practical programming exercise is positioned at the end of lecture 2. This lecture introduces 
the Processing Programming Integrated Development Environment (Processing IDE) which is used 
throughout the MOOC to write the Processing source code. Three videos and three handouts guide the 
students through downloading and installing the IDE as well as using it. In addition, they learn how to 
“draw” simple geometric objects and text by programming basic Processing commands. These include 
lines, triangles, rectangles or ellipses of different sizes, orientations, positions and the use of colours 
and transparencies. Finally, an overview of the Processing Reference is given which the course 
participants are encouraged to use to look up available Processing commands, functions and operators. 

The overall exercise topic is to create graphical artworks through coding and to fake-copy a peer’s 
artwork. The assignment consists of three parts: 

Part 1: Programming an artwork 

In the first part of the exercise, the participants are asked to create a new sketch (i.e. Processing 
program) and program a graphical artwork of their own choice by using their previously acquired 
Programming skills and exploring the Processing Reference. 

To keep the challenge of the second part of the exercise feasible especially for programming beginners, 
we have set the following constraints for each artwork: The sketch canvas size should not exceed 800 
by 800 pixels. Only geometric objects of the types “2D Primitives” and “Typography”, referring to the 
Processing Reference, are allowed. The artwork should not consist of more than 20 of such objects. 
However, we did not limit the use of colours, contours and transparencies. As part of the exercise, we 
guide the participants through saving and executing their programs as well as we support them in 
creating a screenshot of their visual outcome. The submission consists of two parts: 

1.  Uploading the respective Processing source code file as well as the screenshot of the sketch window, 
which displays the artwork upon code execution. 

2. Creating a thread in a forum provided for the exercise and uploading only the screenshot (but not the 
source code file) of the artwork, a fitting artwork title, as well as a short description of oneself 
(programming skills, motivation to take part in the course, optionally intended study programme, or 
similar). 

Part 2: Faking a peer’s artwork through coding 

After students have programmed and uploaded their artwork to the forum, every participant is asked to 
browse through the forum and choose one artwork programmed by a peer. Based on the provided 
screenshot he or she has to fake the artwork by programming it with Processing. The goal is to create 
a replica which is as close to the original as possible. The result, both the source code as well as a 
screenshot of the artwork copy, should be uploaded as a reply to the original forum entry. Along with it 
they are assigned to describe the main challenges they faced while copying the artwork and encouraged 
to respond to the personal introduction of the peer by stating similarities or differences concerning 
motivation for course participation, programming skill, study programme or similar. 

Part 3: Discussion  

Every participant is encouraged to check his or her own forum thread regularly for replies (i.e. artwork 
fakes programmed by peers). If a reply is received, the student should compare the fake to the original 
artwork and explain in the forum how the copy can be identified as such. Also, the original author is 
supposed to check the fake source code, compare it to the original code and discuss how the Processing 
programs differ and whether as well as how this is apparent in the resulting visual output or not. 

Exercise Grading 



Constructionism 2018, Vilnius, Lithuania 

681 

 

Our main objective behind the exercise is to follow the four P’s by Resnick, to foster a creative, playful 
and individual experimentation with coding and to overcome potential fears or doubts of programming 
easily. Therefore, we set only the first part of the exercise as compulsory. This means, for the overall 
course accomplishment we took into account if a student has uploaded an artwork as well as created a 
forum topic.  

The second and third parts are voluntary yet strongly recommended, but not taken into account for 
grading or a successful course accomplishment. The reason for this decision are the students’ 
heterogeneous pre-course programming skills which result in various levels of individual challenge and 
time needed to accomplish the assignments. Our priority was to challenge both beginners as well as 
advanced students at their individual levels. They should have fun and be able to solve the exercise to 
their own abilities, rather than leave anyone feeling overloaded or even unable to solve the exercise 
especially at this early stage of the course. 

Didactic Background 

With this exercise, we aim at encouraging the students to experiment with code and to take their first 
steps in programming in a playful, creative and interactive way while practicing the use of the Processing 
language and the use of the IDE. Without being much aware of the underlying programming concepts 
or processes the participants should explore and experiment with the use of functions, parameters and 
the computer graphics coordinate system as well as with the order of code execution. The graphical 
focus of the exercise and the immediate visual output of their programmed code enables visible 
feedback of the impact of their programmed code to the output sketch immediately. This supports them 
in reflecting their written code and the corresponding graphical results through learning by doing.  

As the assignment is implemented as the first hands-on programming exercise in the whole course, 
programming skills are explicitly not needed as a prerequisite. Participants are provided only with basic 
tools they need to solve the exercise and are encouraged to explore and “play” creatively and 
individually using these tools as a starting point in order to create visual art.  

Through this playful hands-on experience, we foster the students’ curiosity and support them in 
experimenting with coding independently. With the programming reference, they are also equipped to 
try out further commands and extend their programming skills already at this early stage of the course. 
Using this approach potential fears and barriers concerning programming and technology can be 
overcome easily and stress as well as pressure to perform or deliver are avoided. Students are 
supported to study at their individual level, i.e. by creating simpler or more sophisticated and detailed 
artworks depending on their own programming experience.  

Finally, this exercise aims at community-building among the course participants, i.e. prospective CSBI 
students already before they start their study programs. We consider this as important as our university 
is located in downtown Vienna and its distributed building structure does not support informal student 
socializing well. This means, that in addition to the challenges freshmen face with regard to 
administrative and organizational aspects as well as the contents of their studies, they also have to start 
networking with their peers, find friends and build study groups on their own at semester start. With the 
interactions encouraged between peers especially during this exercise, we support prospective students 
in getting to know each other prior their studies start so they might be able to master the challenging 
first weeks of their studies in teams rather on their own.  

Results 

During the summer holiday break in 2017 we pilot-tested the course with prospective students of the 
CSBI bachelor programmes. From a total of 315 active course participants, 126 students (i.e. 40%) 
submitted an artwork (exercise part 1). Active refers to having at least one compulsory course activity 
accomplished successfully. Figure 1 shows examples of artworks programmed and uploaded by MOOC 
students.   



Constructionism 2018, Vilnius, Lithuania 

682 

 

 

 

Figure 1. Examples of artworks programmed by course participants (ref. exercise part 1)  

These examples visualize the huge variety and level of creativity of the resulting artworks programmed 
by the course participants using simple Processing commands only. 

In total 38 artwork fakes were created by the students. Despite the fact that not every artwork was faked, 
the resulting copies are incredibly close to the original as Figure 2 shows exemplarily. Based on the 
results, it can be assumed that the course participants took high efforts in copying the original artworks 
as exact as possible. Hence, only subtle differences are perceivable, such as in different colour or 
transparency nuances or command order i.e. occlusion (e.g. artworks in Figure 2, rows 2 and 5) or small 
differences in position and scale of objects (e.g. artworks in Figure 2, rows 1, 3 and 4).    

Participants’ Feedback 

At the end of each course lecture we asked the students for a brief feedback about what they liked and 
disliked about it and how they would grade the lecture. In addition, we conducted an anonymous online 
survey at the end of the course in order to get feedback about the overall course. With respect to the 
assignment the received feedback shows that the assignment was well-accepted among the students.  

“The exercise was very much fun…” 

“The exercises were cool. I personally find the interaction with other course participants through a 
discussion forum a really very good idea. By analysing the others’ contributions one gets to know new 
ways of thinking and becomes more familiar with the geometric objects to be used in the exercise in 
general. The more participants in the course, the better the result!” 

On the one hand, two students were concerned that their artworks should be shared in a forum, on the 
other hand there were also requests for more exercise of this style throughout the course, because it 
supports creativity and requires interaction with peers. 

   



Constructionism 2018, Vilnius, Lithuania 

683 

 

  

  

  

  

 

 

Figure 2. Examples of original artworks (left) and their fakes (right) programmed by course participants  
(ref. exercise parts 1 and 2)  

In several comments, they appreciated that the artwork exercise allowed them to apply the learned 
content in a creative task and that they could independently create and program their own artwork as 



Constructionism 2018, Vilnius, Lithuania 

684 

 

well as having the opportunity to choose and be creative in copying artworks of peers. However, one 
student found it “very challenging to create an exact copy of the original artwork”. The “simple 
introduction to programming allowing for visible feeling of success immediately” was appreciated and 
another course participant evaluated the exercise as “playful yet professional introduction to 
programming with Processing”. 

We compared the feedback on this learning sequence with feedback received on other parts of the 
course and conclude that this exercise was experienced as very exciting and encouraging. 

Conclusion and Discussion 

Although we intended to create a task that allows creativity, communication and peer feedback, we were 
overwhelmed by the passion and playful way of learning by the participants. It is a further proof that the 
4 P’s of Creativity are powerful. It also shows that creative tasks can enrich a mainly instructive MOOC. 
The only disadvantage was the relatively low completion rate of the fakes compared to the original 
artworks observed in our first run of the MOOC. In our opinion task part 2 provokes less creativity, has 
a higher difficulty and needs a high effort to complete, although it boosts learning evaluation CT skills. 
In the next runs of the MOOC we will improve this learning sequence according to our gained 
experiences and we will include further learning sessions that support creativity. 

References 

Dagienė, V., Sentance, S., & Stupurienė, G. (2017). Developing a two-dimensional categorization 
system for educational tasks in informatics. Informatica, 28(1), 23-44. 

Ebner, M., Lackner, E., & Kopp, M. (2014, October). How to MOOC? - A pedagogical guideline for 
practitioners. In The International Scientific Conference eLearning and Software for Education (Vol. 4, 
p. 215). " Carol I" National Defence University. 

Koedinger, K. R., Kim, J., Jia, J. Z., McLaughlin, E. A., & Bier, N. L. (2015, March). Learning is not a 
spectator sport: Doing is better than watching for learning from a MOOC. In Proceedings of the second 
(2015) ACM conference on learning@ scale (pp. 111-120). ACM. 

Resnick, M. (2014, August). Give P's a chance: Projects, peers, passion, play. In Constructionism and 
creativity: Proceedings of the Third International Constructionism Conference. Austrian Computer 
Society, Vienna (pp. 13-20). 

Tedre, M., & Denning, P. J. (2016, November). The long quest for computational thinking. In 
Proceedings of the 16th Koli Calling International Conference on Computing Education Research (pp. 
120-129). ACM. 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. 

  



Constructionism 2018, Vilnius, Lithuania 

685 

 

Posters 
  



Constructionism 2018, Vilnius, Lithuania 

686 

 

Educational Robotics for STEM: From Workshops 
to Curricula and Framework 

Carina Girvan, girvanc@cardiff.ac.uk  
School of Social Sciences, Cardiff University, 
Wales, UK  

Wilfried Lepuschitz, lepuschitz@pria.at 
Practical Robotics Institute Austria, Austria 

Ivaylo Gueorguiev, ivo@esicenter.bg  

Christina Todorova, tina@esicenter.bg  
European Software Institute – Center Eastern 
Europe, Sofia, Bulgaria. 
 

Chronis Kynigos, kynigos@ppp.uoa.gr  
Marianthi Grizioti, margrizioti@gmail.com 
UoA ETL, National and Kapodistrian University of 
Athens, Athens, Greece. 

Angele Giuliano, angele@acrosslimits.com 
Annalise Duca, annalise@acrosslimits.com 
AcrossLimits, Malta 

Julian M. Angel-Fernandez , 
julian.angel.fernandez@tuwien.ac.at 
Markus Vincze, vincze@acin.tuwien.ac.at 
Technical University Wein, Vienna, Austria 

Abstract 
This poster presents the outcomes of the first two years of a three-year project exploring and refining 
the use of educational robotics to engage young people in STEM education. It shows the development 
of activity plans which leverage constructionist concepts such as powerful ideas, objects to think with 
and the construction and sharing of personally meaningful artefacts in order to explore, test and extend 
understanding within STEM domains. Workshops in which these activity plans have been tested and 
refined, have so far engaged over 3,000 children between the ages of 7 and 18 in six European 
countries. Additionally, conferences and competitions for young people have been held each year where 
they compete and collaborate with others. These workshops and competitions have been systematically 
evaluated through QUAL+quant mixed methods, in order to inform the development of future activities 
and refinement of existing ones. Through this process we identify key components of successful 
educational robotics activities for STEM education. These have, in-turn, informed the design of a 
framework for educational robotics. The activity plans have informed the bottom-up development of a 
generic curriculum for educational robotics in STEM and are available on a dedicated repository.  This 
poster presents a snapshot of each of these project outcomes. 

Keywords 
Constructionism; educational robotics; science; technology; engineering; mathematics; learning; STEM 

Introduction 

Constructionism and the use of robots in education seemingly go hand-in-hand.  Yet, any review of the 
literature on the potential of educational robotics to engage young people in science, technology, 
engineering and mathematics (STEM), shows that it is often only lip-service that is paid to the ideas of 
Seymour Papert.  Simply stating an activity to be constructionist, does not make it so. Educational 
robotics, as an area of research, is also one that cuts across various fields with academics from 
education, psychology, mathematics, engineering, computer science and science conducting research 
in this space, with various pedagogical approaches, research methods and objectives, with activities 
and research often implemented outside of the constraints of the traditional school system.  Teachers, 
keen to embrace robotics in the classroom, can struggle to know how to design activities.  They face 
pressures such as demonstrating measurable learning outcomes for individual students, siloed subject 
teaching and packed curricula.  Should concepts be taught in advance and applied to robotics activities, 
should activities be structured to provide or require engagement with specific concepts to be completed, 
or should we allow students to explore, test and extend their own understanding in their own time and 
in their own way, potentially never explicitly engaging with the concept which should be learned? 



Constructionism 2018, Vilnius, Lithuania 

687 

 

The project presented in this poster aims to foster the interest in STEM and powerful ideas that children 
have at a young age (Lammer, et al., 2017), but is often lost as they progress through formal education 
and are increasingly exposed to societal pressures. In particular we are interested in the potential of 
educational robotics to engage all young people with STEM, particularly girls (Nugent, et al., 2010).  The 
project involves the development and redesign of robotics tools and learning spaces for young people, 
implementing these and other commercially available robotics tools in workshops and competitions with 
over 4,000 children ages 7-18, in six European countries.  The workshops and competitions have been 
systematically evaluated through a large-scale, QUAL+quant mixed methods research design, involving 
in-depth case studies in each country. This research has informed the design of new and the 
development of existing educational robotics activities.  It has contributed to the development of activity 
plans which guide the design of activities and exemplify a generic curriculum for robotics.  As this work 
matures, we aim to develop a framework for the design of educational robotics activities, which is 
accessible to both teachers and researchers. 

Constructionist concepts such as powerful ideas, objects to think with and the construction and sharing 
of personally meaningful artefacts in order to explore, test and extend understanding within STEM 
domains, are used to underpin the design of activity plans and in-turn workshops. They also provide a 
way to explicitly introduce 21st Century Skills, the creative arts and creative expression in such 
educational robotics activities. 

Activity Plans and Curricula 

A standardised activity planning template acts as a common learning design instrument through which 
project partners design and communicate their design of educational robotics workshops to each other. 
The activity plan template aims to raise awareness of the key characteristics of constructionist 
educational robotics activities (Yiannoutsou, et al., 2017) and has developed in response to partner 
feedback as well as issues and opportunities highlighted in the evaluation. This template has also 
informed the design of a bespoke online repository of workshops for teachers and others interested in 
the use of educational robotics. 

Activity plans, act as a mediating artefact through which various groups involved in the project such as 
teachers, academics, commercial partners, engineers and computer scientists, are able to share their 
own beliefs and experiences. They provide a way to identify and question assumptions.  Ultimately, they 
act as a tool through which a shared understanding of the key components of the design of educational 
activities can be developed and expressed. 

Reviewing the activity plans and other freely accessible educational robotics resources, a bottom-up 
approach is currently being used to organise the implemented activity plans and develop a series of 
generic curriculum paths, organised around STEM domains and complemented by arts, business and 
21st century skills. 

Workshops and Competitions 

By the end of the project, activity plans will have been implemented in workshops involving more than 
4,000 students in Austria, Bulgaria, Greece, Ireland, Malta and the UK, between the ages of 7 and 18.  
Workshops typically take place in schools during normal hours.  Some workshops are held as one/two 
full-day events, where the normal timetable is suspended, whilst others occur over several weeks, 
integrated into subject specific lessons and the regular school timetable.  A wide variety of robotics tools 
and learning environments have been used or created and integrated into the workshops, including 
LEGO Mindstorms, LEGO WeDo, Finch, Hedgehog (Koza et al., 2016) and also SLurtles (Girvan et al., 
2013) in purpose designed virtual worlds.  Workshops may be delivered by a small team including the 
class teacher, or delivered solely by the teacher, without any additional support. There are advantages 
and disadvantages to these different approaches, both in terms of learner outcomes and research. 

There are a range of national and international robotics competitions for young people in Europe.  This 
project examines the European regional Botball tournament which involves multiple rounds and different 
forms of competition. While teams competing against each other are the most common form of robotics 



Constructionism 2018, Vilnius, Lithuania 

688 

 

competitions, the Botball competition includes an Alliance round in which two teams collaborate to score 
the most points together. Alongside the competition there is also a conference for which each team 
prepares and delivers a paper.  These often focus on technical developments or suggested 
improvements to the kit identified by the students and tend to focus on the engineering and technology 
domains. 

Research 

One of the primary aims of the project was to increase young people’s interest and engagement in 
STEM subjects and careers.  The research team were interested to find out about what concepts 
students participating in workshops and competitions learned, whether gender stereotypes were 
challenged and whether those who were originally not interested in STEM became interested through 
the activities, and why.  The research explores whether there is a gender dimension to the roles students 
take and their participation in activities, in addition to whether children develop soft-skills.  Another aim 
of the project was to develop multiple ways for students to engage with robotics activities and for 
students to take ownership of the activities they were involved in. 

To evaluate whether the aims of the project have been met and to begin to answer the research 
questions, data collection has been ongoing throughout this project.  Students involved in the workshops 
and competitions have been invited to participate in the research, with parental consent.  A single 
evaluation kit is used by all partners, which provides all data collection instruments and schedules, 
including: pre and post workshop/competition questionnaires, interview and observation schedules, 
procedures for artefact collection (robots constructed, code written, drawing produced, etc) and 
reflective activities for teachers and students. 

In the first year of the project the aim was to pilot the evaluation kit and explore existing practices, to 
inform the development of the framework and activity plans, which in turn would influence the design of 
activities in the second year of the project.  Each workshop or competition was treated as a single case 
study.  Within each case study, data was analysed using the constant comparative approach, allowing 
the researcher to remain open to emerging themes throughout.  Single case studies could then be 
drawn together to allow analysis across or within countries, age groups, gender or other factors. 

The second year of the project focused on the recommendations which emerged from the first year, 
their implementation and the impact, in addition to exploring the original research aims of the project.  
While analysis of the data was more focused, it remained largely interpretivist, allowing researchers to 
remaining open to emerging codes and themes.  Currently the project is in its final year, in which the 
data analysis has become yet more focused on a specific set of issues raised in the second year, 
however interpretivist approaches remain central.  In addition, the third year provides an opportunity to 
explore the impact of the developing framework by contrasting the findings with the previous two years. 

Developing a Framework 

The development of an inclusive framework for the design of educational robotics activities in STEM 
began with a review of the literature and existing frameworks.  Synthesising this work and considering 
it in relation to the findings of the research evaluation in years one and two, demonstrated that whilst 
many aspects of these frameworks were relevant, there were aspects such as team formation and 
modes of collaboration which were either missing or lacking insufficient detail. 

Informed by the evaluation, the project team are currently developing a framework for educational 
robotics activities which is underpinned by constructionist ideas. 

Acknowledgements  

The project has received funding from the European Union’s Horizon 2020 research and innovation 
program under grant agreement No. 665972. Project Educational Robotics for STEM: ER4STEM 



Constructionism 2018, Vilnius, Lithuania 

689 

 

References 

Girvan, C., Tangney, B. & Savage, T. (2013). SLurtles: A tool to support constructionist learning in 
Second Life. Computers & Education 61(1) 115-132. 

Lammer, L., Lepuschitz, W., Kynigos, C., Giuliano, A., & Girvan, C. (2017). ER4STEM Educational 
Robotics for Science, Technology, Engineering and Mathematics. In M. Merdan, W. Lepuschitz, G. 
Koppensteiner & R. Balogh (Eds.) Robotics in Education Advances in Intelligent Systems and 
Computing, vol. 457. Switzerland: Springer International Publishing, 95-101. 

Koza, C., Lepuschitz, W., Wolff, M., Frank, D., & Koppensteiner, G. (2016, November). Hedgehog light–
a versatile, white box educational robotics controller. In International Conference EduRobotics 2016 
(pp. 229-232). Springer, Cham. 

Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics and geospatial 
technology interventions on youth STEM learning and attitudes. Journal of Research on Technology in 
Education, 42(4), 391-408. 

Yiannoutsou, N., Nikitopoulou, S., Kynigos, C., Gueorguiev, I., & Fernandez, J. A. (2017). Activity plan 
template: a mediating tool for supporting learning design with robotics In M. Merdan, W. Lepuschitz, G. 
Koppensteiner & R. Balogh (Eds.) Robotics in Education Advances in Intelligent Systems and 
Computing, vol. 457. Switzerland: Springer International Publishing, 3-13. doi:10.1007/978-3-319-
42975-5_1 

  



Constructionism 2018, Vilnius, Lithuania 

690 

 

Towards a Generic Curriculum for Educational 
Robotics in STEM: From Scientific Concepts to 
Technologies and Powerful Ideas 

Ivaylo Gueorguiev, ivo@esicenter.bg  
Christina Todorova, tina@esicenter.bg 
European Software Institute – Center Eastern 
Europe, Sofia, Bulgaria 

Nikoleta Yiannoutsou, 
nyiannoutsou@ppp.uoa.gr  
Xristina Greka xristgreka@gmail.com 
UoA ETL, National and Kapodistrian University of 
Athens, Athens, Greece 

Pavel Varbanov, pavel@esicenter.bg  
George Sharkov, gesha@esicenter.bg  
European Software Institute – Center Eastern 
Europe, Sofia, Bulgaria 

Carina Girvan, girvanc@cardiff.ac.uk  
School of Social Sciences, Cardiff University, 
Wales, UK 

Julian M. Angel-Fernandez , 
julian.angel.fernandez@tuwien.ac.at 
Vienna University of Technology, Vienna, Austria 

Lisa Vittori, vittori@pria.at 
Practical Robotics Institute Austria, Austria  

Annalise Duca, 
annalise@acrosslimits.com 
AcrossLimits, Malta 

 

Abstract 
This paper and its corresponding poster present a “work in progress” concept for the visualization of 19 
activity plans, into a generic curriculum map for teaching STEM concepts through constructionist 
robotics activities. There are six educational paths that represent potential use cases and these have 
been validated through 148 educational robotics workshops implemented with children between the 
ages of 7 and 18 in six European countries. 

Keywords 
educational robotics; curricula; robotics; workshop; science; technology; engineering; mathematics; 
learning; STEM 

Introduction 

Many children lose their natural curiosity for how things function and interrelate to each other along the 
way into their lives as young adults. The ER4STEM project aims to turn curious young children into 
young adults passionate about science and technology with a hands-on use case: robotics. In this poster 
we present our effort to develop a generic curriculum for robotics using a bottom-up approach: i.e. 
analysing several activity plans produced as part of the project. Our analysis follows different 
educational paths aiming to construct a curriculum that addresses the different facets of educational 
robotics: a) powerful ideas; b) scientific concepts and skills; c) technologies and engineering; d) 
mathematics. The result of this analysis is presented in the form of a ‘metro map’ showing how an 
educator could navigate through the educational robotics activity plans taking each of these educational 
paths. 

We embarked on this effort understanding that a curriculum is a complex concept, which ends up being 
a matter of profound philosophical discussion, as it yet revolves around the notion of knowledge and 
notably, of what is of importance to be learned for the individual within the context of the society, in 
which they function (Bers, 2003). However, in our case, instead of following a top-down approach and 
looking at what should be learned in terms of educational robotics, we followed a bottom-up approach. 
Consequently, we analyse how we can identify teaching and learning elements, which are connected 
to the nature of educational robotics: i.e. constructionist technology, multidisciplinary domain, subject 
matter and a domain for contextualized learning of other subject matters. 

mailto:julian.angel.fernandez@tuwien.ac.at


Constructionism 2018, Vilnius, Lithuania 

691 

 

ER4STEM project is funded by the European Commission through the Horizon 2020 Program (H2020, 
Grant agreement no: 665972). 

A Generic Curriculum for Applying Educational Robotics in 
STEM-Related Education  

Among the core goals of the project is to deliver a generic educational robotics curriculum.  It aims to 
facilitate usability of the project’s products by a broader community of relevant stakeholders such as, 
but not limited to, teachers, researchers and 3rd sector organisations.  

Assuming the general definition of curriculum being a general plan for educational activities, Adams and 
Adams (2003) define a curriculum as everything that goes in the learners’ life such as planned and not 
planned interaction of pupils with educational objectives, instructional content, materials and resources 
used and materials and resources not used, the sequence of courses, objective, standards and 
interpersonal relationships. 

In order to accomplish the project objectives and to research the domain of using robotics in education, 
we organise educational robotics workshops. The activities developed follow a learning design 
instrument “Activity Plan Template”, which aims at raising teachers’ awareness of the key characteristics 
of educational robotics implemented in constructionist ways (Yiannoutsou et al 2017).  

Taking into account the above mentioned curriculum definition and the experience gained so far, we 
decided to use a bottom-up approach for organising the 19 Activity Plans as adoptable generic 
curriculum paths organised around Science, Technology, Engineering and Mathematics domains and 
further complemented by arts, business and 21st century skills. 

The activity plans were designed, implemented and validated through 148 educational robotics 
workshops with more than 3500 students implemented in Austria, Bulgaria, Greece, Malta, Ireland and 
the UK, over two years. However, due to time constraints, the entire curricula paths, consisting of an 
educational sequence of activity plans as a single entity were not implemented. Therefore, we consider 
the curricula on the level of educational paths of a generic nature by design and they will need to be 
further adapted to meet context specific desired learning outcomes, specific objectives and classroom 
needs. 

The Six Educational Paths Visualised as a “Metro Map” 

With this generic educational robotics curriculum, we want to assist teachers in adapting a learning path, 
consisting of a set of educational robotics workshops or single activities within the workshops activity 
plans, that are suitable for their context, students, specific objectives and prior knowledge. 

The six educational paths built around the STEM domains, are based on the following use cases: 

1. An educator aims to teach technology and engineering with Lego Mindstorms robots. This 
is a typical use case of using robots for education  

2. An educator aims to teach concepts of science, technology and engineering while 
demonstrating various technology platforms such as Arduino, Beebots, Hedgehog, LEGO 
Mindstorms and LEGO WeDo as well as a vast plethora of programing languages C++, 
Python, LEGO Mindstorms Programming, Scratch or SNAP.  

3. An educator aims to cover all STEM domains, Science, Technology, Engineering and 
Mathematics, while also developing creativity and business skills among the students.  

4. An educator aims to teach concepts in science, technology and engineering through “white 
box” platforms such as:” Arduino, Hedgehog, LEGO WeDo with a stronger focus on electronics 
and widely used industrial programming languages such as C++ and Python 

5. An educator aims to teach Mathematics by using educational robotics technology. This path 
covers multiple mathematical concepts; 

6. An educator aims to teach concepts in Technology, Engineering and Mathematics. 



Constructionism 2018, Vilnius, Lithuania 

692 

 

While providing those generic educational paths, we still consider it of utmost importance for teachers, 
pedagogues and researchers, while following the suggested curriculum paths, to tailor the activity plans 
to their context and thus design their own, separate curriculum. 

The generic learning paths are a curriculum property, which will be further elaborated in the next months 
and will represent certain relationships between the activity plans contained in the curriculum.  

 

Figure 1. Six educational paths of generic curricula presented as a metro map in which each point is an activity 
plan for and educational robotics workshop 

To illustrate the concept, we could take for instance red line 3, as presented in Figure 1. The entire 
educational path, represented by the red line, consists of 37 hours of educational robotics content to 
cover all STEM domains complemented by concepts from domains such as business and art. The first 
“metro stop” where we “start the journey” is ES01 named “Educational Robotics and Creativity 
Workshop. Within this workshops, students with no prior experience, related to the implementation of a 
technical project in a collaborative environment explore the fields of technology and engineering while 
constructing and programing a robotic vehicle and applying mind-mapping to generate ideas on the 
application of robotics in various fields. The provoked students’ interest and curiosity in technology are 
further developed within the second workshop ES02: Visualising Mathematics with Mathbot” where the 
students, who are already familiar with the basics of programming robot in Scratch, are exploring 
mathematical concepts, such as measuring angles, types of triangles, properties of a circle and 
proportions. In the next “metro stop”, UA01 named “An introduction to robotics - exploring planet ektonis” 
students have a chance to learn, further develop and practice concepts of science, technology and 
engineering while also using mathematics and art. At the last “metro stops” TW01 named “Robot-video 
elementary” and TW02 named “Robot-video advanced” the students are embarking on a hands-on 
learning experience in technology and engineering, while developing business skills and expressing 
their creativity through video and robotics. The same “metro line” could be taken the other way around, 
just by following the dashed red lines. As one can notice, the “metro map” illustrated in Figure 1, three 
of the five “metro stops” of the red line are also part of other proposed generic educational paths, serving 
different desired learning outcomes. 

Powerful ideas 

Our work in this dimension is in progress and focuses on what the central ideas are around which the 
activities evolve and how these are expressed in the robotic constructions. Powerful ideas are a central 
theoretical construct of constructionism and involve the use of knowledge in new ways where learners 
can establish personal epistemological connections with various domains of knowledge (Paret, 2000). 
Furthermore, analysing powerful ideas Bers (2008) describes them as domains of knowledge where 
many diverse topics or subjects co-exist and become explicit. Viewing activity plans from this lens poses 
the following challenges: a) powerful ideas might not imply a “progress” from one activity plan to another 



Constructionism 2018, Vilnius, Lithuania 

693 

 

(in terms of student age, prerequisites etc) so we need to seek other connections that can be 
meaningful; b) not all activity plans are built around powerful ideas but they might have the potential to 
evolve in this direction. While traveling in the STEM metro line, students also develop collaborative 
skills, take roles within groups, solve practical problems in teams, communicate with other teams to 
exchange ideas and tips in the social and actions domains. 

Conclusion 

We are confident that the presented approach for the organization of a generic curriculum will provide 
value to educators that are considering to apply educational robotics activities in their classrooms or 
would like to generate ideas on how to diversify their already applied approach. Furthermore, the work 
presented will attempt at visualizing the context and content of the educational robotics activities 
designed and developed within the project.  

References 

Adams, K. L., & Adams, D. E. (2003). Urban Education a Reference Handbook. Santa Barbara, 
California: ABC Clio. 

Bers, M. (2008). Blocks, robots and computers: Learning about technology in early childhood. New 
York: Teacher’s College Press 

Papert, S. (2000). What’s the big idea? Towards a pedagogy of idea power. IBM Systems Journal, 39(3-
4), 720–729. 

Walker,D.F (2003) Fundamentals of curriculum: passion and professionalism, Mahwah, N.J: L. Erlbaum 
Associates. 

Yiannoutsou N., Nikitopoulou S., Kynigos C., Gueorguiev I., Fernandez J.A. (2017) Activity Plan 
Template: A Mediating Tool for Supporting Learning Design with Robotics. In: Merdan M., Lepuschitz 
W., Koppensteiner G., Balogh R. (eds) Robotics in Education. Advances in Intelligent Systems and 
Computing, vol 457. Springer 

  



Constructionism 2018, Vilnius, Lithuania 

694 

 

Heuristic Potential of Open Institutional Models in 
Researchers Education 

Liudmyla Kryvoruchka, kryvoruchkald@ukma.edu.ua  
National University of Kyiv-Mohyla Academy, Ukraine 

Abstract 
The national and cross-border training networks for PhD education established in accordance with EU 
Principles for Innovative Doctoral Training (2011) and Open Science agenda have already contributed 
to significant transformation of traditional researcher education settings across Europe.  This poster 
presents the preliminary results of Erasmus+ DocHub project (2016-2018) being implemented in 
Ukraine by partnership of 5 Ukrainian and 4 EU HEIs together with 6 Ukrainian research institutions. 
The obvious impact of such collaborative efforts at organisational and systematic level often hides 
substantial heuristic potential of diverse instructional and mentoring strategies as well as learners’ 
experiences. The jointly established learning environment of DocHub is structured by the idea of 
openness and aimed at engaging PhD students and early researchers in active and continuous 
exchange and thus enhance dialogic and innovative mind-set and support experimentation.  

Keywords  
Openness, inter-institutional cooperation, dialogic and innovative mind-set 

Background 

The need for educating doctoral students as competent innovative researchers has been actively 
discussed during the last decade. Rapidly increasing complexity of research work in the open global 
research community encourages HEI to search for the best practices and institutional structures to 
ensure their PhD graduates are ready for future challenges. 

Doctoral education is considered a key contribution to all 3 main policy goals of EU research and 
innovation introduced in 2015: Open Innovation, Open Science and Open to the World. Open Science 
creates the vision of research as collaborative and transparent, therefore, recommendations from the 
Bologna Process (“Salzburg Recommendations” 2005, “Salzburg II Recommendations” 2010; “EU 
Principles for Innovative Doctoral Training” 2011) have to be re-interpreted by HEIs to implement an 
open collaborative model of doctoral programs.  

In the context of Ukrainian educational system the need for the collaborative model is crucial to 
accelerate the Bologna 3rd cycle reform. Traditional one-to-one mentorship system remains a basis for 
the academic practices of Ukraine, so implementation of structured PhD training according to the Law 
“On Higher Education” (enacted in 2014) is still challenging for both HEIs and research institutes of the 
National Academy of Sciences. Though in 2016 the structured PhD training model became obligatory, 
only few institutions have developed PhD training programs of sufficient quality and relevant teaching 
methodologies compliant with the EU recommendations. National reform of the 3rd cycle in Ukraine 
requires cultural change through exposure to an alternative approach to researchers’ training.   

The EU funded Erasmus+ project “Structuring cooperation in doctoral research, transferrable skills 
training, and academic writing instruction in Ukraine's regions/DocHub (2016-2019), engaged 5 
Ukrainian universities and 6 research institutes of the National Academy of Sciences of Ukraine (with 
the expertise input from 4 EU HEIs) into establishing national centers of excellence in PhD training for 
aggregation of critical mass, boosting research capacity and provisioning of high-quality transferrable 
skills and language training programs.  
In this paper, we present and discuss the tools and models of collaborative doctoral training to show 
how open culture being established by DocHub project activities can foster both institutional 
development and the personal development of doctoral candidates and educators.  



Constructionism 2018, Vilnius, Lithuania 

695 

 

Impact of the DocHub community  

In the diverse landscape of European doctoral education we see many examples of successful open 
models of doctoral training implemented on institutional and/or national level, such as: Innovative 
Training Networks (ITN), European Industrial Doctorates (EID) funded by Marie Skłodovska-Curie 
actions in Horizon2020, Doctoral Centers of Excellence, Doctoral Training Networks (UK), Finnish 
Doctoral Training Network (Finland), Regional Doctoral Schools (France). The key benefits of 
collaborative practice are establishing a high-level research environment with complementary 
competences, sharing of knowledge and infrastructure, the exchange and sharing training 
modules/courses, building supervision and mentoring groups for individual research projects, creating 
possibilities to work in interdisciplinary area, enhancing future employability of doctoral candidates, and 
an increase in mobility.  

As we can see the networks are based either on regional models (i.e.  Finnish Doctoral Training 
Network, Finland) or research subject model (i.e. Doctoral Training Networks, UK). The DocHub project 
will use both models in Ukraine by establishing:  

(1) 5 HEI-based regional centers of excellence (DocHubs in Kyiv, Lviv, Dnipro, Mykolaiv and 
Kharkiv) with developed infrastructure and systems for training advanced academic writing in 
English, including components of the blended learning format which has become crucial for the 
internationalization of research and innovation at the national level; providing validated curricula 
of transferrable skills according to EU quality assurance standards; 

(2) 5 subject-based inter-institutional research groups (Educational Policy, Chemistry/Biochemistry, 
IT, Political Sciences, and Finances, more than 110 in total) to provide collaborative professional 
training, supervising and mentorship by the cooperation of university researchers and scholars 
from research institutes. 

To accomplish the above goals the project group is developing (with the support of the Ministry of 
Education and Science of Ukraine) the regulatory framework for inter-institutional cooperation and 
further development of the 3rd cycle of reforms based on the EU best practices. This involves drafting 
and adopting policies and national regulations (including changes to legislation) related to licensing and 
accreditation of PhD programs, funding of doctoral education, procedures of qualification. Project group 
initiated a regular open seminar with the participation of doctoral education stakeholders for 2018-2019 
academic year. 

A regional-based networking model in Ukrainian context proved to be an effective tool of enhancing 
institutional capacity of the regional universities: the modular courses (Advanced Academic 
Communications, Transferrable Skills Curricula) were designed and developed as a result of joint effort 
and active discussion of peer-group with the expert input from EU partners; but after internal and 
external evaluation the curricula was piloted by each lecturer/trainer individually with episodic co-
teaching sessions. Using more advanced course materials increased the level of teaching skills and 
knowledge. As a result of DocHub activities all institutions introduced new courses and research topics 
in their doctoral training programs 

In a subject-based model DocHub partners actively used the complimentary expertise and developed 
training programs based on the individual research interests and achievements of engaged researchers 
from research institutes and universities (36 courses). The aggregated groups of PhD students from 
different HEIs (up to 900 in total) participated in piloting curricula introduced by academicians from 
different regions and institutions.  

Both models of networking can be a solution for most of Ukrainian HEIs that typically receive just a few 
state-budgeted PhD positions in each subject area and have difficulties with provisioning effective 
training and establishing critical mass. One of the objectives of the DocHub is to develop a legal 
framework and a model for “national credit mobility” to boost inter-HEIs cooperation and overcome the 
rapture between institutions of the National Academy of Sciences of Ukraine and universities inherited 
from the USSR.  



Constructionism 2018, Vilnius, Lithuania 

696 

 

Adoption of the DocHub Code of Practice and the formal establishing of collaborative units at the 
institutional level was re-scheduled from the 1st to the 2nd year of the project to give time for defining a 
common vision and a shared understanding of responsibilities based on realistic research-based 
connections. On the basis of agreed general framework (principles of inclusiveness, high academic 
standards, internationalization, research integrity) each DocHub should now set up a working model for 
decision making and management (via Academic Councils and administrative group) and tools for 
effective communications (seminars, conferences, working groups, groups for supervision and 
mentoring). 

Mandatory national regulations on doctoral training (enacted in 2016) require provision of structural 
educational programs for at least 2 years of study totaling from 30 to 60 ECTS. In accordance with 
“Salzburg Recommendations” and “EU Principles for Innovative Doctoral Training” the significant part 
(at least 20 ECTS) of obligatory credit workload should be aimed at developing transferrable skills 
(research ethics, informational literacy, research management and language skills). However the issue 
of instructional design differentiated from 1st and 2nd cycles in content and purposes and suitable 
instructional methods for effective language and transferrable skills training is the most challenging area 
of doctoral education in Ukraine due to the lack of  skills required by new framework of global research 
practice (like Open Science model) and issues with research integrity. Therefore project group initiated 
training on trends in 3rd cycle best practices and established a regular seminar on 3rd cycle teaching for 
2018-2019.  

DocHub project team is actively promoting collaborative scheme of doctoral training at regional and 
national level. Upon project completion regional DocHubs should be considered as centers of expertise 
for provision not only PhD students training, but for continuing professional development of researchers 
at all stages of career. DocHubs research communities will contribute to regional development serving 
as points of cooperation with interested public and business entities. 

Collaboration and networking in doctoral education is a transformative concept related to the emerging 
Open Education practices and Open Learning culture and thus will move the discussion about the model 
of researchers’ professional development forward.   

Heuristic potential of open institutional models 

DocHub allows doctoral students access to a large pool of concepts, techniques, methods, skillset as 
well as personal experience and micro-networks of each senior scholar. The obvious efficiency of such 
collaborative efforts at the organisational and systematic level of doctoral education hides substantial 
heuristic potential of diverse instructional and mentoring strategies. 

Any partnership strives to seamless connections, but institutional collaboration not only increases the 
rates of knowledge exchange, but also conflicts of approaches and values that need to be resolved 
through individual reflective efforts.  

DocHub networks generate a unique learning environment driven by epistemological tension between 
distinct academic cultures (often under-articulated) and scholar approaches, though aligning in the basic 
objective to produce original research.  

According to the EU Principles of Innovative Doctoral Training (2011) “research excellence” is 
expressed by a researcher that was trained as a “creative, critical and autonomous intellectual risk taker, 
pushing the boundaries of frontier research”. In this context DocHub sets the “attractive institutional 
environment” for researchers that would be ready to take risk of holding the uncertainty of open 
dialogue.  

To ensure continuation in such open research collaboration an individual is to be committed to accept 
the complementary role of any individual position or expertise and this is possible when a participant 
develops dialogic mind-set. At the institutional level partnership should establish the scheme for 
constant communications to minimize misunderstanding.   
When co-teaching and group discussion of doctoral projects in an institutionally open supervisory group, 
as well as national and international mobility, become a routine practice amongst PhD students, we can 
infer that such settings encourage open learning culture. In collaborative schemes, both doctoral 



Constructionism 2018, Vilnius, Lithuania 

697 

 

students and senior researchers are directly exposed to diversified communities and practices. This will 
aid them in the transition to new technology-driven and societally engaged research. 

Conclusions 

It is apparent that Ukrainian universities and research institutions are highly committed to develop 
innovative training networks to increase their research and learning capacities to equip doctoral students 
and early researchers with competences needed in a knowledge-based economy. 

The Open Institutional Model is now considered a very effective tool for engaging researchers in a 
cooperative model of research work in globalized context. 

The joint learning environment of DocHub is structured around the idea of openness, the support of 
experimentation, and focused on engaging researchers in an active and continuous exchange, thus 
promoting the development of a dialogic and innovative mind-set.  

Acknowledgments 

The author gratefully acknowledge the support of the Erasmus+ KA2 – Cooperation for innovation and 
the exchange of good practices – Capacity Building in the field of Higher Education. In particular through 
the funding of the three year project “Structuring cooperation in doctoral research, transferrable skills 
training, and academic writing instruction in Ukraine’s regions / DocHub” with project code 574064-EPP-
2016-LT-EPPKA2-SNHE-SP. 

References 

A Renewed EU Agenda for Higher Education.COM (2017) 

Doctoral Education – Taking Salzburg Forward. Implementation and new challenges. (2016) EUA-CDA  

Castaño Muñoz, J., Punie, Y., Inamorato dos Santos, A., Mitic, M. & Morais, R. (2016): How are Higher 
Education Institutions Dealing with Openness? A Survey of Practices, Beliefs and Strategies in Five 
European Countries. Institute for Prospective Technological Studies. JRC Science for Policy Report, 

Huitt, W G, & Monetti, D M. (2017). Openness and the Transformation of Education and Schooling. 
Open: The Philosophy and Practices that are Revolutionizing Education and Science. Ubiquity Press, 
43–65. 

Principles for Innovative Doctoral Training (2011). 

Statement from the EUA-CDE Global Strategic Forum on Doctoral Education (2013). 

  



Constructionism 2018, Vilnius, Lithuania 

698 

 

Construction of a Project Monitoring Application 
Iteratively and Incrementally 

Pekka Mäkiaho, pekka.makiaho@uta.fi 
Timo Poranen, timo.t.poranen@uta.fi 
Katriina Vartiainen, katriina.vartiainen@uta.fi 
University of Tampere, Finland 

Abstract 
Developing complex software applications is a challenging task. It is hard to recognise all needed 
features in advance, and therefore software development is often done iteratively and incrementally. 
Every iteration usually contains activities like planning, refining requirements, implementation and 
testing. In this paper, we describe how university student teams developed Metrics Monitoring Tool 
(MMT) application during the years 2014-2018. The construction process of the MMT has contained 
five larger development iterations so far. All versions have been tested comprehensively with dozens of 
real users. 

Keywords 
Iterative and incremental development; metrics monitoring; application 

Background 

“Learning by making” is a simplification of ideas behind constructionism learning theory (Papert and 
Harel, 1991). Constructionism underlines student-centered learning where students use information 
they already know to acquire more knowledge. (Alesandrini and Larson, 2002) 

In computer sciences, students learn by studying different concepts and then implementing the concepts 
as small exercises (simple programs, algorithms, user interface  designs etc.) or larger course works. 
The course works often implement many concepts at the same time. Larger software application are 
very complex, and they can contain hundreds or thousands of minor concepts that the developer team 
integrates to work as a whole.  

To manage complexity, iterative, incremental and agile software development models (Sommerville, 
2010) have become mainstream in software construction. Main idea behind these models is to build 
software piece by piece in iterative manner. This ensures that there is no need to plan everything 
beforehand, but instead it is enough to plan next development iteration carefully and to have a wider 
vision of the project goal. Knowledge of the development team increases, and vision can be adjusted 
regularly.   

Design science research methodology focuses on the development of artifacts, like software. Hevner 
and others (2004) have given seven principles for design science research: i) Design as an artifact, ii) 
Problem relevance, iii) Design evaluation, iv) Research contributions, v) Research rigor, vi) Design as 
a search process, and vii) Communication of research. 

In this paper, we describe incremental construction of Metrics Monitoring Tool (MMT) application. The 
research follows design science methodology principles. 

Incremental development of the MMT 

Metrics Monitoring Tool (MMT) is a tool designed to support project managers, project members and 
upper management in reporting and observing projects’ proceedings. Version 2.9 was introduced in an 
article “MMT: A tool for Observing Metrics in software Projects” (Mäkiaho et al., 2017). Main screen of 
the MMT is shown in Figure 1. 



Constructionism 2018, Vilnius, Lithuania 

699 

 

 

 Figure 1. Main screen of the MMT 

The Figure 2 shows how MMT was developed incrementally and iteratively. The current version of MMT 
is 4.0. The tool was developed in Tampere University’s Software Project Management and Project Work 
courses during three academic years. The paradigm used was Design Science Research (Hevner et 
al., 2004). According to the Design Science principles an artefact (increment) was built to solve a 
problem and then evaluated how it was succeeded. 



Constructionism 2018, Vilnius, Lithuania 

700 

 

 

 Figure 2. Development process of MMT 

Version 0 - proof of concept 
The first versions (0.1-0.16) were developed during the academic year 2014-2015. The client evaluated 
the version by reading the test report and decided that the quality of the software was too low for taking 
this version to pilot use. The versions 0.17-0.19 were developed during the summer 2015 by one 
individual member. However, it was also evaluated that the mature of the software was not good enough 
even for the piloting. 



Constructionism 2018, Vilnius, Lithuania 

701 

 

Version 1 - piloting 
A new project team was formed at fall 2015. The first task of the team was to evaluate the previous 
version and the decision was made to begin the developing from the scratch. The version 1.0 was ready 
by the end of the fall semester and it was piloted on the project work courses during the spring semester 
2016. The new versions (1.2-1.3) were also developed parallelly so that the version 1.3 was deployed 
by the end of the semester. 

Version 2 - production use 
During the summer 2016 it was evaluated the experience of the piloting and a single student from the 
team continued the developing by correcting bugs, adding some new features and increasing the 
usability. The main features of this version were Logging Hours, Viewing Reports, Viewing Charts and 
Composing Reports (Mäkiaho, et al., 2017). This version was on the production use on the Project Work 
courses at fall semester 2016. 

Version 3 - different roles and rights 
During the fall semester 2016, the developer of the version 2 continued the developing as a project 
manager of a new team.  The tool was on the production use, it was evaluated and the team developed 
and deployed new increments . The version 3.0 was deployed by the end of the semester having new 
features based on different user rights and roles like project manager, member, supervisor and client. 

Version 4 - mobile use and interfaces 
During the production use of the version 3 at spring 2017, the tool was still continuously evaluated and 
feedback was gathered. A single student developed new increments and the version 4.0 was deployed 
by the end of the semester. The version 4.0 is currently in the production use and it handles new metric: 
risks. There are also interfaces to common software project tools like Trello and Slack. Moreover, the 
software was made mobile friendly by adding responsive UI. Example visualisations of number of 
commits, requirements, test cases, and the working hours by type of the version 4.0 are shown in the 
Figure 3. 

 

     

Figure 3. Example visualisations of number of commits, requirements, test cases and working hours 



Constructionism 2018, Vilnius, Lithuania 

702 

 

Conclusions 

Construction of the MMT has been a long process that started in 2014. There have been roughly 20 
people involved in the development of the MMT. Roughly 160 students from 30 projects have so far 
used the application. There have been also projects clients and teachers using the application. 
Experiences on constructing and using the application have been positive among students, teachers 
and project clients.  

MMT is a software artifact that solves project reporting and monitoring problem. Design has been 
evaluated in dozens of software development projects. Future plans for further developing the MMT 
include enhancing user experience and adding a possibility to archive projects. 

References 

Alesandrini, K. & Larson, L. (2002) Teachers bridge to constructivism. The Clearing House, 119-121. 

Hevner, A., March, S., Park, J., & Ram, S. (2004) Design Science in Information Systems Research. 
Management Information Systems Quarterly, 28(1), 75–105. 

Mäkiaho, P., Vartiainen, K., and Poranen, T. (2017) MMT - A Tool for Observing Metrics in Software 
Projects, International Journal of Human Capital and Information Technology Professionals 8(4), 2017.  

Papert, S. and Harel, I. (1991) Constructionism. Situating constructionism. Ablex Publishing 
Corporation, 193–206.  

Sommerville, I. (2010) Software Engineering, 9th edition, Pearson. 

  



Constructionism 2018, Vilnius, Lithuania 

703 

 

Exploration of Algorithm Abstraction Process with 
Cubetto and Middle Grade Elementary Kids 

Yoshiaki Matsuzawa, matsuzawa@si.aoyama.ac.jp 
Misako Noguchi, a8115165@aoyama.jp 
Issei Nakano, a8115156@aoyama.jp 
Aoyama Gakuin University, Japan 

Abstract 
In this research, the question of how lower grade elementary school students can solve a programming 
task which requires algorithm abstraction, was examined using the programming kit "Cubetto" designed 
for kids. In order to scaffold kids thinking abstraction, the following tools were introduced: (1) the 
"human-size robot simulator" where kids can simulate their algorithm using their embodied knowledge, 
and (2) the "Whiteboarding" method where kids can think of an abstraction by finding patterns in a 
visualized concrete algorithm. In-depth qualitative analysis conducted for the two task-solving episodes 
illustrates the contrast of the procedures: the one where a young kid could maintain high concentration 
over thirty minutes with the prepared scaffolds, whereas another where the kids lost interest in their 
haphazard trial-and-error process. 

Keywords 
computational thinking; algorithm abstraction; cubetto; lower grade elementary kids 

Introduction 

At Montessori school, distinct educational practices have been carried out over hundred years with the 
aim of fostering a love of learning. One of the insights of Montessori is the discovery of what children 
learn a lot through play (Montessori, 1936). The Montessori toys designed for kids are attractive enough 
for students to maintain a high concentration, and while kids "play" (called "work" in the school) with the 
toys, they can learn embedded scientific concepts deeply beyond the developmental stage. 

“Cubetto” is a programming kit which was designed with being inspired by the Montessori toys. The 
wooden, lovely face robot can be controlled by physical programming blocks. The kit, itself, highly 
abstracts the concept of programming in children’s playing activities. In this study, we developed a 
learning environment with Cubetto, and practiced it with elementary school kids. The main theme is to 
clarify how children learn the concept of abstraction, which is the core of Computational Thinking (Wing, 
2006) through their experiences in this learning environment. 

Method 

Cubetto 
"Cubetto" is a programming kit in which a user controls a wooden robot by the instructions defined by 
programming blocks on the board. A user can use four types of blocks. The green block works as "move 
forward," the yellow block works as "turn left," and the red block works as "turn right." Thus, the robot 
can move around on a map which is made of 6 x 6 tiles, on each tile has a figure which characterizes 
the tile place (mountain, tree, castle, etc)(Figure 1). A blue block works as a function call: the block calls 
the operation which is defined using other blocks at the bottom part of the programming board. 

The Task 
We designed a curriculum to develop skills of playing Cubetto for early elementary kids. The curriculum 
is composed of some tasks that are categorized into five levels. Students are expected to start from the 
first level which is comprised of simple, easy tasks and then go up to the upper level comprised of more 
complex, difficult tasks. 



Constructionism 2018, Vilnius, Lithuania 

704 

 

The task which used in the analysis, described in the result section, is categorized as level 5 (most 
difficult). The task is described as “Start from compass, and pass through tree, mountain, and finally get 
ship.” The trajectory of a robot expected as an answer of this task is shown in Figure 1.  

 

 Figure 1.  Robot(Cubetto), Board, and Map, and The Trajectory of Robot as an answer of the task. 

The task requires algorithm abstraction due to the limitation of the number of blocks. The number of 
cells which a robot has to pass through is nine, whereas the number of green blocks (move forward) is 
four. In order to solve the task, students have to find a pattern to repeat, and implement it using function 
definition and calling (by blue blocks). The abstraction is one of the keys in Computational Thinking 
(Wing, 2006); accordingly, we thought this would be an appropriate task for use as a benchmark to 
explore the learning process. 

Tools to Scaffold Thinking 
We developed tools to scaffold children’s thinking to solve the designed tasks. The developed tools 
are shown in Figure 2.  

 

Figure 2.  Scaffolding Tools for Thinking (left:  human-size robot simulator, right: whiteboarding) 

The “Human-sized robot simulator" (hereinafter called "Self Simulator") is shown in the left of Figure 2. 
It includes the same map as the moving robot, but it is scaled up to the children's size. The aim of the 
tool is to think of an algorithm by simulating it by they themselves becoming a robot, so that the children 
can use their embodied knowledge in their thinking. "Whiteboarding," a sub tool used with “Self 
Simulator,” is shown in the right of Figure 2. It includes coloured sticky notes aimed to support thinking 
program abstraction by temporarily avoiding constraints of the number of blocks. Learners can at once 
illustrate concrete algorithm without the constraints, which enables them to easily discover the patterns 
of a block sequence. 



Constructionism 2018, Vilnius, Lithuania 

705 

 

Empirical Study Field and Analysis Method 
The educational environment was examined at the workshop for kids. Approximately 30 elementary 
school kids participated over two days. University students participated as a teaching assistant for 
each elementary student. Learners' learning process in practice was recorded by a camcorder, and 
two episodes were selected for in-depth qualitative analysis. 

Results 

The timeline of the selected two episodes in this study are illustrated in Figure 3. In the figure, a star 
indicates a notable event described in a script, white circles indicate trial points using “Self Simulator,” 
and black circles indicate execution points with the Cubetto program. 

 
(a) Episode I                                                   (b) Episode II 

 Figure 3. The Timelines of the two episodes analysed in this study   

Episode I 
The learner of Episode I is a boy (hereinafter called Kid A) who is estimated to be a mid-grade 
elementary school student. Before tackling this task, Kid A solved 9 tasks in about 30 minutes. As shown 
in Figure 3, the process is roughly divided into two phases. Phase I is the 21-minute phase of thinking 
without running Cubetto. Phase II is a 7-minute phase in which Cubetto is examined using "Self 
Simulator," and finally succeeded to implement a workable program with Cubetto. 

Three patterns of actions by Kid A were observed in Phase I. They include "Thinking without moving", 
"Thinking while moving your finger in the air", and "Thinking while actually getting up and confirming the 
direction with your body”. No blocks had been put on the board until Ev1 (09 '17’’).  After Ev1, Kid A 
started putting blocks on the board, but it had not been run. 

Kid A was concentrating on thinking by himself. For example, although an instructor advised, "Why do 
not you think about using simulator?" (06'40"), or his mother advised, “It may be difficult to think with 
your head, it might be better to try it by yourself "(11'20"), this advice was ignored and he kept thinking 
in his own way. 

Phase II has started from C1 (21'00"), C1 is the first trial with “Self Simulator.” Unfortunately, there was 
a bug in the program and it did not work correctly. C2 (23'06’’) is a scene where the second trial by 
correcting the bug found in C1. Although it did not work correctly, Kid A seemed to get some clue, as 
he said “better, almost.” Although his father tried to give advice, he refused it by saying "I'm thinking 
myself, do not say anything”. 

C3 (24'13") is a scene where he corrected the bug found in C2. During the trial, Kid A suddenly hit his 
hands and said, “I should use a (particular) block here.” He seemed to come up with something[sL1]. 
After putting a yellow block to the board, Kid A raised his voice saying "Yeah, I made it!" Even if he had 
not run yet at this point, he seemed to have gained strong confidence with his success. 

Ex1 (25'12 ") was the first time to run Cubetto, and surprisingly it worked correctly. Kid A was watching 
the execution with a pose of praying. When Cubetto approached the destination, a smile came. Finally, 
Cubetto arrived, he screamed "Ya-ha!" with a big gut. 

Episode II 
The learners of Episode II were two girls (hereinafter called Kids B, and C) and three boys. They were 
estimated to be mid-grade elementary school students. The durations were 48 minutes and 59 seconds. 
As shown in Figure 3(b), the process was divided into three phases. 



Constructionism 2018, Vilnius, Lithuania 

706 

 

Phase I is the first “attack” to the task by all five kids. During three runs of Cubetto during this phase, 
students became aware that the number of blocks was short for the solution by a concrete algorithm. 
They were also aware that they must use blue blocks. However, they failed to solve it within 13 minutes.  

As they felt a difficulty in the task during Phase I, they went back to solve lower level tasks. Phase II 
was about 10 minutes where the kids tried the lower level tasks. They succeeded to solve several tasks, 
but they became tired as kid C commented during the phase.  

C: “I got tired playing with (Cubetto). But Cubetto is cute.” 

Phase III was about 25 minutes where kids tried the initial task again. However, three boys dropped 
out, and the only two girls (B and C) participated in this trial. The girls finally succeeded to solve after 
eight times execution [sL2]of Cubetto, without the “Self Simulator.” They had already understood they 
should use blue block; however, the patterns they tried seemed to be at random. The phenomena they 
were getting boring could be observed as the following conversation implies: 

B: “I wish Cubetto could run faster” 

C: “I wish we had a button that ran faster. I hate this kind of slow system.” 

After this conversation, C seemed to neglect participating in the thinking process. She tried to check the 
next Cubetto booth (there were two Cubetto booths), and tried to copy the next program. B continued 
to try alone and finally found a solution. Although she had a happy face, she looked tired and she did 
not look like she found something deeply. 

Discussion 

In both two Episodes, the children could reach a workable solution. Algorithm abstraction is known as 
requiring a high level cognitive operation for kids at this age[sL3]. One notable thing is that Kid A in 
Episode I maintained a high concentration over 30 minutes on the cognitive operation and achieved the 
solution. The episode indicates to us that constraints are the mother of invention (Stokes, 2005).  

However, contrasting the two episodes clearly shows us the importance of supporting their tinkering 
process. In Episode II, the kids lost interest in their haphazard trial-and-error process, and a single kid 
barely achieved the solution on the sacrifice of the four drop-outs. Kid A ran the program with a 
confidence in his solution, whereas kid B found a solution almost by accident through her trial-and-error 
process. The difference of deepness in their level of understanding is obvious. We believe the 
experience of kid A merely fostered “a greater sense of empowerment” (Papert, 1987). 

References 

Montessori, M. (1936): “The Secret of Childhood”, (Mass Market version, Ballantine Books, 1982). 

Wing,J.M. (2006): Computational Thinking, Communications of the ACM, Vol.49, No.3, pp.33–35. 

Stokes, P. (2005): "Creativity from Constraints: The Psychology of Breakthrough 1st Edition", Springer. 

Papert, S. (1987): "A Critique of Technocentrism in Thinking About the School of the Future" talk 
presented at Children in an Information Age: Opportunities for Creativity, Innovation, and New Activities.  



Constructionism 2018, Vilnius, Lithuania 

707 

 

Influence of Students’ Self-perceived Use of 
Metacognitive Strategies and Sensory Preferences 
on Academic Achievement in Science and 
Technology 

Enric Ortega Torres, eortega@florida-uni.es  
Florida Universitària, Valencia, Spain 

Vincent Sanjosé López,  
Joan-Josep Solaz Portolés  

Universitat de Valencia, Spain 

Abstract  
The present work gives empirical evidence of the influence of Secondary students’ self-perceived use 
of learning strategies (including self-efficacy beliefs) and sensory preferences on academic 
achievement in Science &Technology subjects. MLSQ scales and VARK scores were used as 
predictors of the average academic marks. A significant percentage of the variance was explained, with 
a specific contribution from strategies with a metacognitive component.  

Our data suggested that about 17% of the variance in academic achievement could be explained by the 
students’ perceptions on their use of learning strategies and individual sensory preferences. When only 
the strategies with metacognitive basis were considered, the explained variance reached 16%. In 
particular, main contributions were obtained from Self-Efficacy and Metacognitive Regulation strategies, 
and also from the Kinaesthetic score from VARK questionnaire. 

Keywords 
science and technology education; MSLQ learning strategies, VARK sensory preferences, secondary 
students, academic achievement 

Introduction 

In Science and Technology academic subjects (S&T onwards), the personal construction of meaning is 
a fundamental learning process, so meaning construction should be related to academic success in 
S&T. As Ausubel exposed in The Psychology of Meaningful Verbal Learning (1963), that the personal 
construction of meaning has some prerequisites of different nature: 1) Well-organized, relevant prior 
knowledge student’s structures (cognitive prerequisite); 2) Conceptually clear learning materials, with a 
potential logical meaning (logistic-instructional prerequisite); 3) A learner’s emotional commitment to 
make the necessary effort to integrate the new information with his/her prior knowledge (emotional 
prerequisite). Constructivism also emphasized the student’s self-implication in learning because he/she 
is considered as “active meaning builder”. Therefore, when the instructional materials provided to 
students are not well-adjusted to their cognitive capabilities and emotional dispositions, constructional 
learning could be impeded. Thus, knowing students’ preferences on particular learning materials, or on 
combinations of different types of learning materials, it could be useful to adapt these materials to 
students. 

Among the variated features in learning materials influencing students’ preferences, the format exciting 
particular sensory channels to capture and process information seems to be of main interest. In fact, 
Mayer (2005) developed the multimedia learning theory on the basis that human brain uses different 
cognitive resources to process incoming information with different physical support (images, sounds, 
text, textures, etc.). By means of associative processes, the brain relates these inputs and then builds 
a mental representation. Therefore, appropriate combinations of formats for the information provided 
could increase students’ comprehension. Students’ preferences for particular formats could be 



Constructionism 2018, Vilnius, Lithuania 

708 

 

associated with the easiness of processing and comprehension. In addition to the cognitive, affective 
and logistic-instructional prerequisites, metacognition has proved to be another influencing factor in 
academic success. Consistent evidence has been obtained on the academic benefits of a proper 
development of metacognitive skills (Wang, Haertel and Walberg, 1993). Developing metacognition 
implies making students’ aware of their own strengths and weaknesses, and also the possibility of 
transferring responsibility from teachers to students themselves to make decisions on learning 
processes. This is also the claim of the Constructivist approach to learning and teaching (Dewey, 2007): 
students have to engage in planning, monitoring and evaluating the learning goals, processes and 
outcomes (Brown and Palincsar, 1982) in order to be active learners and meaning-constructors. Thus, 
developing metacognitive skills should imply greater academic success, especially in S&T: the 
consciousness of the internal construction of meaning allows the early detection of discrepancies and 
incoherencies, and fosters the student’s active use of resources at hand to overcome perceived learning 
obstacles. 

Methodology 

A total of 365 male and female high school students in grades 7th to 11th participated, belonging to 8 
high schools of different ownership located in the surroundings of a big Spanish city. 

The instrument called Motivated Strategies for Learning Questionnaire (MSLQ, Pintrich, Smith, Garcia, 
and McKeachie, 1993) was used to obtain the students’ self-perceived use of metacognitive strategies 
in S&T learning. 

The VARK questionnaire (Fleming and Mills, 1992) was used to assign one of the 15 different types of 
SP to each participant: V: Visual; A: Auditory; R: Read/ Write; K: Kinaesthetic, or combinations of these 
“pure” preferences (i.e. VK, AR, ARK, etc.).  

The academic achievement of each participant was obtained directly from the science and technology 
teachers of each secondary school. We used a scale of 4 levels, whose relationship with the usual 0-
10 scale in Spain was chosen as follows: D: up to 5,0 points; C: 5,5-6.5; B: 7,0-8.5; A: 9.0-10.0. 

Results 

Influence of students self-perceived use of strategies on academic achievement in S&T 

The scales included on MSLQ and the five scores considered in the VARK-questionnaire appeared to 
be independent, as any of their cross correlations were significant (r< 0,093; p> 0,089 in any case). 
Hence, MSLQ and VARK might have specific, unique contributions to the students’ achievement in S&T. 
Together, all scales of the MSLQ explained almost 13% of the students’ general achievement in S&T 
(F(15,341) = 3,240; p< 0,001; R= 0,35). However, only a part of the scales involved in this instrument 
had significant correlations with the achievement as shown in Table 1. These scales with significant 
correlations together accounted for 11% of the variance of general academic achievement in S&T 
(F(10,346)= 4,081; p< 0,001; R= 0,33).  

 

 

 

 

 

 

 

 



Constructionism 2018, Vilnius, Lithuania 

709 

 

Table 1. MSLQ scales with significant correlations with achievement in S&T 

MSLQ scales r-Pearson (p) 

MOTIVATION 

Extrinsic Goal Orientation: EO 

Task Value: TV 

Self-Efficacy: SE 

0,12 (0,013) 

0,17 (0,000) 

0,26 (<0,001) 

COGNITIVE & METACOGNITIVE 

Rehearsal: R 

Elaboration: E 

Organization: O 

Metacognitive Regulation: ME 

0,20 (<0,001) 

0,15 (0,005) 

0,15 (0,005) 

0,19 (<0,001) 

MANAGEMENT 

Time and study environment: TE 

Effort regulation: ER 

Support of others (or Help seeking): SO 

0,19 (<0,001) 

0,18 (0,001) 

0,14 (0,009) 

 

As for the VARK concerns, four of its five scores had significant correlations with the students’ 
achievement in S&T (Table 2): the V-score reached only a marginal signification. 

Table 2. Correlations between VARK scores and students’ achievement in S&T 

VARK scores r-Pearson (p) 

V 0,08 (0,082) 

A 0,11 (0,014) 

R 0,11 (0,015) 

K 0,16 (<0,001) 

Total Responses 0,20 (<0,001) 

 

When the VARK scores were added to the MSLQ scales, this extended set of predictors explained 17% 
of the variance of the academic achievement in S&T (Method: Intro; F(13,313)= 4,772; p> 0,001; R= 
0,41). Using the back-step method to keep only the significant contributions, the linear regression 
explained 15% of the variance of the dependent variable (F(5,321)=11,494; p< 0,001; R= 0,39), with a 

sub set of remaining predictors: Self-Efficacy (= 0,25); K-score (= 0,17); Support of Others (or Help-

Seeking; = 0,13); Organization (= 0,11); R-score (= 0,09). 

Importance of the metacognitive strategies on students’ achievement 

Some MSLQ scales have metacognitive essence, when this set of scales was taken as a predictor of 
academic achievement in S&T, the explained variance was also 11% (Intro method), A very close result 
to the one explained by all the MSLQ scales together. Using the back-step method to compute the linear 
regression, only GO, SE; CT, ME, SO remained as significant predictors explaining again 11% of the 
variance of the academic achievement in S&T  (F(5,351)= 8,467; p<0,001; R=0,33), being SE the most 

influent predictor ( = 0,33), followed by ME ( = 0,14) and SO (or Help-Seeking;  = 0,11). A detailed 

inspection showed that the negative contributions of GO (= -0,16) and CT (= -0,11) were due to fine-
tuning compensatory adjustment in the regression, but not to negative correlations with the achievement 
in S&T. 



Constructionism 2018, Vilnius, Lithuania 

710 

 

Conclusion and Discussion 

The main purpose of the present study was to shed light on the importance of the students’ use of 
learning strategies and sensory preferences to improve their academic achievement in S&T. Our data 
suggested that about 17% of the variance in academic achievement could be explained by the students’ 
perceptions of their use of learning strategies and individual sensory preferences. When only the 
strategies with metacognitive basis were considered, the explained variance reached 16%. In particular, 

main contributions were obtained from Self-Efficacy (= 0,26), and Metacognitive Regulation (= 0,16) 

strategies, and also from the Kinesthetic score (= 0,16) of VARK questionnaire. It seems that 
instructing students to properly use metacognitive learning strategies and to be aware of their individual 
preferences to process instructional materials is a promising way to improve S&T achievement. A better 
achievement, together with a greater responsibility in managing the own learning should increase 
students’ self-efficacy beliefs. 

References 

Ausubel, D. P. (1963). The psychology of meaningful verbal learning. 

Brown, A. L., & Palincsar, A. S. (1982). Inducing strategic learning from texts by means of informed, 
self-control training. Center for the Study of Reading Technical Report; no. 262. 

Dewey, J. (2007). Essays in experimental logic. SIU Press. 

Fleming, N. D., & Mills, C. (1992). Not another inventory, rather a catalyst for reflection. To improve the 
academy, 11(1), 137-155. 

Mayer, R. E. (Ed.). (2005). The Cambridge handbook of multimedia learning. Cambridge university 
press. 

Pintrich, P. R., Smith, D. A., Garcia, T. and McKeachie, W. J. (1993). Reliability and predictive validity 
of the Motivated Strategies for Learning Questionnaire (MSLQ). Educational and psychological 
measurement, 53(3), 801-813. 

Wang, M. C., Haertel, G. D., and Walberg, H. J. (1993). Toward a knowledge base for school learning. 
Review of educational research, 63(3), 249-294. 

  



Constructionism 2018, Vilnius, Lithuania 

711 

 

Modeling Across the Subjects  

Barbara Sabitzer, barbara.sabitzer@jku.at  
Johannes Kepler Universität Linz, Austria  

Abstract 
Jeannette Wing defines computational thinking as fundamental skill for everyone. We postulate that 
modeling is a fundamental tool for everyone for constructing knowledge and, certainly, for teaching and 
learning computational thinking. This is the basis for our new project “Modeling across the Subjects” 
with two main aims: (1) integrating computational thinking as transversal theme in primary, secondary 
and teacher education and (2) supporting learning and teaching in different subjects through modeling 
techniques from the field of computer science (e.g. UML diagrams). This contribution presents the 
project, its research focus, and some preliminary results from interviews with teachers and students.  

Keywords 
modeling; computational thinking; learning strategies; brain-based learning 

Introduction  

With the implementation of the new Austrian curriculum “Basic Digital Education” in autumn 2018 com-
putational thinking becomes obligatory for all secondary schools (grades 5-8), be it as specific subject 
or integrated in different subjects. However, many schools do not have teachers with computer science 
background and will teach computational thinking as transversal theme. With our project “Modeling 
across the subjects” we want to help these schools and show them a practicable way for a useful and 
“easy” integration of computational thinking in different subjects.  

Modeling or building models, which are abstract descriptions of real or planned systems (Hubwieser, 
Mühling, & Aiglstorfer, 2013), is well-known and important in the field of computer science and 
informatics education. According to (Diethelm, 2007), models even should be taught “strictly first” 
(before programming). In the Bavarian informatics curriculum for secondary schools modeling is a 
crucial topic. From the point of view of general education we strongly agree with Hubwieser, who was 
substantially involved in its implementation and articulates “that among all themes of informatics it is 
object oriented modelling that promises the most benefit for the students” (Hubwieser, 2006).  

Certainly, not only computer science but also some other subjects like mathematics or geography have 
their own modeling techniques, or use e.g. the well-known flow charts like economy. In a wider sense, 
modeling is used and applied, often implicitly and unconsciously, also in all other subjects and daily life 
e.g. in the case of mental, verbal and physical modeling or also in form of mathematical formulas. For 
persons without computer science background modeling with diagrams can be compared to concept 
mapping, which is already used and investigated as effective teaching and learning strategy (Chang, 
Sung, & Chen, 2002; Horton et al., 1993; Novak, 1990). However, the use of computer science 
modeling, e.g. with UML (Unified Modeling Language), in non-related subjects is quite new. So far, there 
is not much relevant literature except few papers that propose some possibilities of application, e.g. the 
application of the UML for analysis of dramatic words (Tagliati & Caloro, 2008) or the use of flow charts 
(Al-Fedaghi, 2013) and other models (Kosara & Mackinlay, 2013) in storytelling.  

In our project “Modeling across the subjects” we focus on modeling techniques from the field of 
computer science (e.g. UML-diagrams) and apply them as “brain-based” and constructivist learning 
strategy and/or tool in other subjects in order to construct and elaborate subject-specific knowledge 
(e.g. learning vocabulary in a foreign language by means of class or entity-relationship diagrams). In a 
wider sense concept maps may be compared to the diagrams we want to use in this project. However, 
modeling techniques and diagrams from the field of computer science have much more potential and 
possibilities because they can visualize not only structures and relationships but also processes, 
instructions, situations, events, etc. and train competences like abstraction, problem solving, algorithmic 
thinking, text comprehension, creativity etc., in short, they train many 21st century skills. In this way we 



Constructionism 2018, Vilnius, Lithuania 

712 

 

“kill two birds with one stone” and can teach computational thinking and problem solving implicitly in 
different subjects. At the same time, students use the diagrams as so called graphic, visual or advanced 
organizers, which support the brain in the learning and memory process. Additionally, such visual 
organizers are particularly effective with students who have learning disabilities (Kim, Vaughn, Wanzek, 
& Wei, 2004). And in our opinion they are ideal for constructing knowledge in different subjects, too.   

Modeling across the subjects 

The project “Modeling across the subjects” started in March 2018 and aims at  

1) integrating computational thinking as transversal theme in primary and secondary education and  

2) introducing appropriate modeling techniques from the field of computer science in order to 
support and improve learning and teaching in different subjects. 

Based on different primary and secondary school curricula we will develop in the next three years 

- a framework for “Modeling across the subjects”,  

- guidelines and useful hints for teachers without computer science background and  

- varied cross-curricular and/or multidisciplinary teaching materials suitable for all subjects.  

During this three-year-project we hold modeling workshops for (prospective) teachers of primary and 
secondary schools, who want respectively have to teach computational thinking as transversal theme. 
In these workshops all participants are supposed to develop teaching materials based on different 
sample models for different purposes and to introduce them to their pupils as tools especially for 
structuring and elaborating subject-specific knowledge, describing activities, planning and summarizing 
texts, learning vocabulary, etc. Some of the introduced sample models and activities were developed in 
a former project of the author, where we could already gain positive experiences with flow charts, entity-
relationship and activity diagrams (Sabitzer & Pasterk, 2015). In the current project we develop and 
introduce further UML diagrams like use case or communication diagrams and study the acceptance 
and usability as well as possible effects on learning outcomes. All materials will be collected, adapted 
and finally provided in an online collection.  

We will investigate the following main research questions by using a mixed-methods design:  

(1) How and where can we introduce modeling in primary and secondary schools in order to teach 
computational thinking?  

(2) Which diagrams are useful and practicable for teachers and pupils without informatics 
background in order to construct subject-specific knowledge and to train subject-specific and 
general skills like abstraction, problem solving or text comprehension etc.?  

(3) To what extent shall modeling and computational thinking be taught to everyone and what shall 
be part of computer science education? 

Our previous experiences show that modeling is considered as very useful and effective, but concrete 
sample units and activities as well as empirical studies are still missing. Hence, this project may close 
a gap with providing teaching materials and studying their use and possible effects on learning 
outcomes in different schools.   

Conclusion  

The project “Modeling across the subjects” introduces and investigates the use of computer science 
modeling techniques as brain-based and constructivist learning tools for different subjects. It further 
shows a practicable way of teaching computational thinking as transversal theme in primary in 
secondary education. Regarding our previous positive experiences and the preliminary results we 
suppose that the frequent and varied use of modeling in different subjects may not only train general 
learning skills like problem solving or abstraction but also improve subject specific knowledge and 
competences like vocabulary acquisition or text comprehension in foreign language lessons. 



Constructionism 2018, Vilnius, Lithuania 

713 

 

References 

Al-Fedaghi, S. (2013). Schematic representation for storytelling. In IEEE Int. Conf. Computational 
Intelligence and Cybernetics. 

Chang, K.-E., Sung, Y.-T., & Chen, I.-D. (2002). The effect of concept mapping to enhance text 
comprehension and summarization. The Journal of Experimental Education, 71(1), 5–23. 

Diethelm, I. (2007). Strictly models and objects first: Unterrichtskonzept und-methodik für 
objektorientierte Modellierung im Informatikunterricht. Pro Business. 

Horton, P. B., McConney, A. A., Gallo, M., Woods, A. L., Senn, G. J., & Hamelin, D. (1993). An 
investigation of the effectiveness of concept mapping as an instructional tool. Science Education, 77(1), 
95–111. 

Hubwieser, P. (2006). Functions, objects and states: teaching informatics in secondary schools. In 
International Conference on Informatics in Secondary Schools-Evolution and Perspectives (pp. 104–
116). Springer. 

Hubwieser, P., Mühling, A., & Aiglstorfer, G. (2013). Fundamente der Informatik: Funktionale, imperative 
und objektorientierte Sicht, Algorithmen und Datenstrukturen. Walter de Gruyter GmbH & Co KG. 

Kim, A.-H., Vaughn, S., Wanzek, J., & Wei, S. (2004). Graphic organizers and their effects on the 
reading comprehension of students with LD: A synthesis of research. Journal of Learning Disabilities, 
37(2), 105–118. 

Kosara, R., & Mackinlay, J. (2013). Storytelling: The next step for visualization. Computer, 46(5), 44–
50. 

Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in 
Science Teaching, 27(10), 937–949. 

Riley, D. D., & Hunt, K. A. (2014). Computational Thinking for the Modern Problem Solver. Taylor & 
Francis. Retrieved from https://books.google.at/books?id=7AQNAwAAQBAJ 

Sabitzer, B., & Pasterk, S. (2015). Modeling: A computer science concept for general education. In 
Proceedings - Frontiers in Education Conference, FIE (Vol. 2014). 
https://doi.org/10.1109/FIE.2015.7344062 

Schwill, A. (n.d.). No Title. Retrieved March 31, 2018, from 
http://www.informatikdidaktik.de/didaktik/Forschung/VortragsfolienFundIdeenMNU.pdf 

Tagliati, L. V., & Caloro, C. (2008). UML and Object Oriented Drama. Journal of Object Technology, 
7(1), 85–101. 

Wing, J. M. (2006). Computational Thinking. COMMUNICATIONS OF THE ACM March, 49(3). 
Retrieved from http://www.cs.cmu.edu/~wing/publications/Wing06.pdf 

  



Constructionism 2018, Vilnius, Lithuania 

714 

 

Constructing What? Knowledges of the Pwerful, 
and Powerful Knowledges 

Michael Tan, michael.tan@nie.edu.sg  
National Institute of Education, Nanyang Technological University, Singapore  

Abstract  
If we consider constructionism as a pedagogical theory, it can be easy to neglect curriculum 
considerations—what is it we ought to communicate, and why. One approach to this problem is to be 
deliberate about the nature of knowledge, and the sociological implications of its differential distribution. 
The epistemologies of the knowledges of Science, Technology, Engineering, and Mathematics (STEM) 
may be distinguished by its tendencies towards generalisation (S/M), or its contextual application (T/E). 
Understanding this distinction may be a key to being clear what is being constructed, and how 
constructionism may be deployed for particular goals. In this theoretical paper, I describe the 
foundations for such a project.   

Keywords  
epistemology; nature of science; nature of engineering; curriculum 

A curriculum for making?  

While many educational jurisdictions exist with autonomy to develop and assess their own curricula, not 
all schools have that luxury. Standardised testing by state and regional boards of education can compel 
teachers to narrow outcomes on the ostensible grounds of social justice and the equity of outcomes for 
public schooling. It would not take much for teachers to sense the cultural logic of the assessment tail 
wagging the dog of schooling, and recognise that an optimal method of deploying makerspaces and 
making activity is as a means to the standard curriculum ends of ‘concept acquisition’ in Science and 
Mathematics specifically.  

Research attention on making as a learning activity has been on the conceptual gains from making 
(Davis, Schneider, & Blikstein, 2017), or as means for increasing engagement in the STEM disciplines 
(Norris, 2014), or in contexts outside of the mainstream school classroom (Sheridan et al., 2014). 
Notably, in sites such as public makerspaces and science museums, a question that has yet to have a 
convincing response remains the query by Bevan and associates (2015): “It looks like fun, but what are 
they learning?” While the pedagogical case for making as instructional activity remains convincing, it 
would appear that a similarly strong curriculum argument is not present. To be particular, looking beyond 
the ‘workforce development’ arguments for STEM (Blikstein & Worsley, 2016), what justifications do we 
in the making community have that students ought to design and make? What ought students make? 
Why? Should the Arts (and the Humanities?) be part of the STEM/design and making movement? Why? 
In what ways should these other disciplines contribute to the project of making, and what roles should 
each play? 

Investigating binaries of knowledge 

An important method to thinking about curriculum considers the nature of the knowledge and the 
sociological outcomes of a differential distribution of knowledge. A key question exists: whatknowledge 
is of most worth, or, as modified by Michael Apple (1979) with a sociological angle: 
whose knowledge is of most worth. Implicitly, it is this sociological approach that is being advocated 
when calls for the inclusion of STEM are accompanied by visions of economic futures. However, such 
sociological approaches suffer from the problem of arbitrariness—of what exactly constitutes 
phenomena of interest, what simplifying assumptions are to be made, and what are rules for acceptable 
explanations. If these high status knowledge claims was the result of social convention among those 
already in positions of high status, then there is a social justice concern in making sure that as many 
people as possible can have access to the social construction of scientific knowledge. This is especially 



Constructionism 2018, Vilnius, Lithuania 

715 

 

so if we believe in universalism of participation as a central value of the natural sciences (see, e.g., 
Collins & Evans, 2017). 

Such a perspective drives efforts to increase participation of under-represented minorities, and which 
also criticizes ‘Western Modern Science’ as a White Men’s Science. A useful shorthand to describe the 
issues at stake may be the conceptual distinction between the knowledges of the powerful, and powerful 
knowledges (Young, 2008). Here, Young points out the significance of the empirical grounding in a 
stable knowable reality for some knowledge forms. In other words, there are actually truth claims that 
are obligatory; reality is truly as we describe it to be; or even if it were a matter of social convention, an 
exceedingly high fraction of humans, with similar sense organs and cognitive apparatus sensitive to 
certain ranges of phenomena, would arrive at similar frameworks for understanding and description. 

The point of the foregoing, then, is to introduce the concept of the social construction of knowledge, and 
the arbitrary/obligatory distinction, or more informally, the distinction between knowledges of the 
powerful, and powerful knowledges. Powerful knowledges are so called because, transculturally, such 
knowledge claims can confer upon its users access to high status deliberations about the world. 
Powerful knowledges can transcend the contexts of its generation, and find applicability across space 
and time, as when ‘outdated’ mathematical theorems are used in contemporary cryptographic 
algorithms. On the other hand, in invoking a concept such as the knowledges of the powerful, the 
reference is to situations where things are so, because “the Chief, the Party, or the Pope says so” 
(Moore & Muller, 1999, p. 193). While we may at first glance consider such epistemic warranting 
strategies to be largely obsolete in our enlightened times, it may not take us long to find claims that we 
accept purely on the grounds of scientific authority. This is not to cast doubt on scientific authority, but 
to minimally point out that students should learn accepted epistemic warranting strategies as part of 
training as scientists. At this point, the outlines of a plausible justification for educative value should be 
visible: it may be ideal for students to construct understanding of powerful knowledge for themselves 
(e.g., science), and not quite so much knowledges of the powerful (e.g. wine appreciation). Tentatively, 
the distinction lies in the ability of these knowledge forms to transcend their contexts of generation, or, 
in other words, possess at least an ambition to the nomothetic, generalising tendency that is typical of 
the natural sciences. Conversely, it can be easy to reject or at least find less valuable idiographic forms 
of knowledge that concern themselves with the particular implementation details of a particular project. 
However, it would appear that such a model may be incomplete, in that, given the inherent complexity 
of many systems in the ‘real world’, there is at least a practical difficulty in obtaining general principles 
that can make predictions outside of their contexts of generation. Sociocultural interactions, for instance, 
are not amenable to law-like generalisations of the form of the natural sciences. Much closer to our 
concerns, the disciplines of design and engineering present similar challenges; I elaborate on these 
below. 

Natural and Artificial Sciences 

While the foregoing may provide suitable justification for the natural sciences and mathematics 
(considered as the language for describing patterns and variations), the nature of the knowledge of 
technology and engineering provide challenges to this framework. As the subsection header suggests, 
technology and engineering provide us knowledge of the sciences of the artificial, in that its core concern 
is with the artificing of solutions to problems. For this insight, we are all, of course, in the debt of Herbert 
Simon (1968/1996). Simon helped to define the study of design as an intellectual pursuit, as a key 
concern of engineering:  

The artificial world is centered precisely on this interface between the inner and outer 
environment; it is concerned with attaining goals by adapting the former to the latter. The 
proper study of those who are concerned with the artificial is the way in which that 
adaptation of means to environments is brought about—and central to that is the process 
of design itself. (p. 113) 

There is much contained in this passage that is worthwhile of careful study. In considering the artefact 
as occupying the interface between the inner and outer environments, it is important not to be too literal; 
software programs can be engineered into existence, and have an internal code environment and user 
facing interfaces to interact with the code in goal directed ways. The significance for our purposes here 
is in the goal directedness of the efforts to adapt the inner and outer environments. When discussing 



Constructionism 2018, Vilnius, Lithuania 

716 

 

the goal directed nature of efforts of engineering, perhaps an underappreciated perspective is the nature 
of intention, and its relationship to our knowledge of the natural sciences. While we often believe that 
(design) solutions become clear when problems are correctly identified, we often fail to understand that 
a very fundamental gap exists between an accurate apprehension of the problem, and the development 
of a design goal, an intention for the artefact (see, e.g., Nelson & Stolterman, 2003). This gap is obvious 
if we were to observe that accurate apprehension is an act of description, and goal setting is one of 
deriving a prescriptive course of action. David Hume’s device of the guillotine reminds us that, at least 
in ethical considerations, there is no necessary connection between the descriptive and normative. In 
other words, and pertinent to typical instructional sequences in STEM and makerspace projects, just 
because we can understand a problem in a particular manner, does not mean that the solution 
necessarily follows. For instance, just because we discover that a local waterway is being contaminated 
by industrial pollutants, does not mean that a device that can remove this pollutant is necessarily 
advised. 

From this perspective then, the synthetic disciplines of engineering and technology are distinct from the 
analytic disciplines of science and mathematics in their foci—while we require accurate analyses of the 
problem in order to obtain a good description of the reality that we are confronted with, we also require 
a particular ‘wisdom’ to be able to develop appropriate goals for the problem at hand. Such wisdom is 
unfortunately not reducible to law-like statements as in the natural sciences. Perhaps the closest thing 
may be design principles, which are often obscure and opaque to novices with little exposure to problem 
scenarios. Even then, exceptions abound, and correct application of these principles requires wisdom 
that can only be gained through rich experiences, or, as is typical in schools of design, a familiarity with 
case studies that explore the boundaries of our knowledge. Similarly, the disciplines of the humanities 
and the philosophical inquiries associ ted with ethics point us in general directions to our best 
accumulated wisdom on what ought to be, often statements of taste of powerful groups. 

Towards rapprochement 

It should be clear that a productive engagement with both poles of this debate is needed, if only so that 
the compromises are known. We ought to communicate the nature of knowledge in the STEM 
disciplines accurately, so that we do not misrepresent these knowledges to students—we certainly 
should not want that they eventually enter weapons engineering firms expecting the fun and games of 
typical makerspace activities (Banks, 2018). Similarly, if we desire a more ethical engineering practice, 
we need students to see more clearly the contextualised, idiographic detail that requires thoughtful 
application of generalised principles, and not merely attempts to force-fit people and nature into amoral, 
abstract systems of thought. As educators, it is timely indeed to consider the problem of what, exactly, 
we are constructing. At the very least, students ought to become familiar with the distinctions between 
knowledges of the powerful, and powerful knowledges: where is it that knowledge claims are based on 
obligatory relationships with the way the world is, and where it is that arbitrary decisions have been 
made. Significantly, students should learn the nature of the interests to which such arbitrary decisions 
have been made, in order that they be able to make these decisions for themselves in future. 

References 

Apple, M. W. (2004). Ideology and curriculum (3rd ed.). New York: RoutledgeFalmer. (Original work 
published 1979) 

Banks, D. A. (2018, January 24). Engineered for Dystopia. Retrieved February 8, 2018, from 

https://thebaffler.com/latest/engineered-for-dystopia-banks 

Bevan, B., Gutwill, J. P., Petrich, M., & Wilkinson, K. (2015). Learning Through STEM-Rich Tinkering: 
Findings From a Jointly Negotiated Research Project Taken Up in Practice. Science Education, 99(1), 
98–120. 

Blikstein, P., & Worsley, M. (2016). Children are not hackers: Building a culture of powerful ideas, deep 
learning, and equity in the maker movement. In K. Peppler, E. Halverson, & Y. Kafai (Eds.), Makeology: 
Makerspaces as Learning Environments (pp. 64–80). 

https://thebaffler.com/latest/engineered-for-dystopia-banks


Constructionism 2018, Vilnius, Lithuania 

717 

 

Collins, H., & Evans, R. (2017). Why democracies need science. Cambridge, UK: John Wiley & Sons. 
Davis, R. L., Schneider, B., & Blikstein, P. (2017). Making the invisible visible: A new method for 
capturing student development in makerspaces. In B. K. K. Smith, M. Borge, E. Mercier, & K. Y. 

Y. Lim (Eds.), Making a Difference: Prioritizing Equity and Access in CSCL, 12th International 
Conference on Computer Supported Collaborative Learning (CSCL) 2017 (Vol. 1, pp. 175–182). 
Philadelphia, PA: International Society of the Learning Sciences. 

Moore, R., & Muller, J. (1999). The discourse of “voice” and the problem of knowledge and identity in 
the sociology of education. British Journal of Sociology of Education, 20(2), 189–206. 

  



Constructionism 2018, Vilnius, Lithuania 

718 

 

Towards Girls’ Self-perception in Technology and 
Craft: Challenges and Implications 

Sawaros Thanapornsangsuth, Nathan Holbert Monica Chan 
{st2839, holbert,  mmc2265}@tc.columbia.edu 
Teachers College, Columbia University USA 

Abstract 
This poster explores findings on elementary girls’ perception, confidence, and personal experiences in 
technology and craft. We look into how they define technology and their exposure to technology as 
consumers and producers. We also asked questions about their experiences with craft materials and 
activities. Despite coming from families that encourage and financially support extracurricular activities 
in STEM field, the majority of girls did not feel confident about their knowledge and skills in technology. 
They also had a tendency to position their own expertise as inferior to their male family members. When 
asked about crafts the girls showed high interest and engagement and each identified herself as 
someone who is good with crafts. 

Keywords 
girls in technology; technology education; craft; technology confidence 

Introduction 

A large number of articles show that stereotypes and low expectations of women in math, science, and 
technology play a major role in women’s loss of interest in the field (Cohen et al, 2016; Spencer et al., 
1999; Steele, 1999). These stereotype threats also contribute to the notion that they are technologically 
inferior to their male counterparts (Hyde et. al, 1990; Margolis & Fisher, 2003).  These data may 
contribute to gender disparities in STEM professions. The most recent data from National Center for 
Women & Information Technology (2015) reveals that women make up only 15% of practicing 
engineers. When technology is described as being primarily for hackers, programmers, and engineers 
those who do not identify themselves as such are pushed out (Worsley & Blikstein, 2016). Martinez 
(2015) suggested educators should be sensitive of their classroom environment as girls can react 
negatively to surroundings that reflect stereotypical “hacker culture” in making, by rejecting their interest 
in technology and engineering. Literature has suggested creating an inclusive and supportive learning 
environment and drawing wider examples of what counts as STEM can also help nurture women’s 
interests in these domains (Hill, Corbett, & Rose, 2010; Intel Corporation, 2014; Margolis & Fisher, 
2003) 

Digital fluency is a concept that has been discussed by many scholars (Kay, 1991; Jenkins, 2006; 
Resnick, 2012). The perception of being good at technology maps onto the concept of digital fluency, 
which has been formalized by the National Research Council (NRC), where it states that “people fluent 
with information technology are able to express themselves creatively” using their chosen technologies 
(Barron, 2004). Combining the NRC’s definition about digital fluency to Resnick’s (2012) stance—that 
true mastery of technology involves being both a confident producer and consumer of technology, we 
project that if the girls see themselves as a producer of technology, this change in perception might 
improve their confidence towards their technical abilities. Specifically targeting girls, scholars such as 
Buechley have explored using computational textiles to bridge the gap between traditional perceptions 
of technology and craft (Buechley et al., 2008). Crafting techniques such as sewing has a more feminine 
orientation traditionally, but combining craft and electronics such as e-textiles to cultivate a stronger 
producer of technology mindset has indicated positive engagement in females toward electronics and 
computing (Buechley & Eisenberg, 2008). 

mailto:st2839@tc.columbia.edu


Constructionism 2018, Vilnius, Lithuania 

719 

 

There is a paucity of research examining the barriers that impede young girls to identify themselves with 
high competency in technology. Likewise, little work has been done to explore these perceptions for 
girls from various backgrounds and experiences. This study is a part of the wider Bots for Tots project 
(Holbert, 2016). We are engaging young learners from diverse communities to build toys for younger 
kids in their school. In this paper, we explore how girls from privileged backgrounds who have access 
to high-tech tools and come from well-supported families feel less confident about their technology 
competency. In examining this population our research aims to answer the following questions: (1) How 
do the girls describe their experience with and knowledge of technology? (2) What tools, toys, or 
activities do the girls consider to be “technology?” (3) How do the girls describe their experience with 
and knowledge of crafts? 

Methods 

Population and Site 
The data presented here is part of a larger Bots for Tots study on fourth grade students (aged 9-11) at 
a high-resourced all-girls private school in a suburban area in the North-Eastern United States. 
According to the school’s website, 71% of the students are white. Forty-one fourth-grade students 
participated in the study as a part of their Making and Engineering class, a bi-weekly maker education 
class which ran 45-minutes per session. Out of the 41 girls, 12 were randomly selected to be 
interviewed. In addition to the many extracurricular activities and programs available in the school, 
students in 4th grade and beyond have access to an Engineering and Design lab (EDL) which is filled 
with cutting edge equipment including a CNC machine, laser engraver, multiple 3D printers. This 
population is unique and interesting as they represent the group of girls who receive the best exposures 
and opportunities to technology. Many of the girls have parents who are engineers, have the opportunity 
to take extracurricular STEM courses such as robotics and programming, and have access to many 
high-tech toys and construction kits. Due to their upbringing, these girls are well suited for success in 
STEM fields. All names used in this paper are pseudonyms chosen by the girls interviewed. 

Data Collection and Analysis 
Twelve girls were randomly selected to participate in pre and post interview, before and after the 
Engineering and Design class.  Using a semi-structured cognitive-clinical interview format (Ginsburg, 
1997), the fourth-grade girls were asked questions about their 1) electronic toys or devices at home, 2) 
self-perception of technology, and 3) experience with making and crafts, both for themselves and for 
other people. We did not define technology or provide any specific examples as we sought to 
understand what the girls regarded as technology. Upon analyzing interview transcripts, we developed 
a profile for each girl and grouped them in categories and developed a code scheme (Bogdan & Biklen, 
2007).  This scheme focused on how the girls self-report their “technology and making confidence.” 
Examples included phrases such as “Umm not really,” and “My brother like to build [..] but I don’t build.” 
We also coded and categorized the girls based on their different craft activities and experience. Example 
codes include, “girls making crafts”, “girls talking about family members”, “girls making by or for 
themselves.” After grouping data in coding categories, we reviewed them for thematic connections 
(Seidman, 2013).  

Results 

Low confidence in technology and male family members as experts 
When the twelve girls were asked if they considered themselves as someone who is good with 
technology in the pre interview, eight girls showed lack of confidence and said they were not. Answers 
included: “no,” “I don’t know,” “not that good,” “I’m not the expert,” and “not really.” One girl expressed 
uncertainty, answering “kind of”. Only 3 students indicated that they are good with technology. Out of 
the 12 girls, 6 girls mentioned male family member such as a dad, brother, or uncle, as someone who 
is good with technology.  



Constructionism 2018, Vilnius, Lithuania 

720 

 

For instance, Betty talked about her extensive experience spending her free time working with 
electronics and technology. She did not have a phone but she enjoyed assembling and playing with 
“Meccano” (a sophisticated robotics toy that requires 168 steps to assemble) and building bird houses 
with her dad who is an engineer. She liked technology and electronics, however, when we asked about 
her technology competency, she immediately responded “No.” She later shared that she did not feel 
confident as her dad would not let her do the work, “normally he’s like doing the whole thing.” She often 
looked at her dad building from behind. Similar to Betty, when Panni was asked about her technology 
competency, she answered “I don’t know” while shrugging her shoulders. Constantly denying her 
competence with technology or construction (“I’m not a big, big builder”) she referred to her brother as 
a person who fitted the description better: “I don’t really build stuff that much. My brother likes to build. 
If he sometimes gets something to play with, and it doesn’t come all together, he can build it. But I don’t 
build much.”  

The girls also mentioned female family members but not necessarily referring to them as technology 
savvy. For instance, Aditi told us that if something goes wrong with her electronic devices, she would 
not go to her mom but will seek help from her dad or brother. Lightbulb said that she could not fix a 
computer but she often taught her my mom how to use different functions on her phone. Kate was the 
only girl who referred to a female family member as someone who “very good with technology.” She 
said that she would seek help and learn from her twin sister if she had difficulties with electronics. 
Additionally, we also learned about the girls’ experiences and usage of the technology. The most 
common use of technology was to play games (6 girls), watch videos (5 girls), learn an online lesson or 
do homework (4 girls), programming (2 girls), make videos (2 girls), build a robot (1 girl). 

Nine months later, after participating in the Bots for Tots project, we asked them again in the post-
interview about their perception of technology. Five of the students said they were good with technology 
but 2 out of the 5 expressed uncertainty when probed further about their experiences. For example, 
Kate switched between positive and negative comments about her technology competency, “I feel like 
working, trying to figure something out either on a phone or computer, I'm pretty good at, I'm not very 
good. But I think I'm still good.” Similarly, Erica showed a little hesitation and answered “Well, it kind of 
depends on what kind of technology, but when we were using the circuits during games I think it was 
great fun.” 7 out of 12 girls said that they were still not good with technology. However, 2 of the 7 girls 
thought that they were better because they had been building more projects but they still thought that 
they were not good with technology. For example, Betty said that unlike last year where she was just 
watching her dad building, he now let her do more hands-on building as she got older. “[My dad] is like 
teaching me more about [technology] so like I’m learning more from my dad.” 

In post interview the girls’ perceptions of what counts as technology shifted somewhat to include 
programming (5 girls), robots (2 girls), switches (2 girls), fixing and putting things together (2 girls) and 
sewing machines (1 girl), in addition to including the usual devices such as computers, phones, iPads, 
and iPods (5 girls) 

Confidence and experience in craft 
We asked the girls about their confidence in craft and whether they enjoy making craft or not. In both 
the pre and post interviews, all of the 12 girls said that they enjoyed making crafts.  Out of 12 girls, 11 
indicated they often shared their craft projects with family members and friends—six of these doing so 
unprompted.  Erica talked about her plan to make a handmade present for her cousin in exchange of 
the gift he gave her, “recently, my cousin made me a little bicycle for one of my dolls, and so I'm thinking 
I'm going to make him something.” Moreover, craft was perceived as a family activity for 6 of the girls. 
For instance, LillyJane talked about gathering random things at her room and make something out of 
them with her sister and baby sitter. She often made craft when her friends came over to her house. 
Lightbulb also said that her mom liked to do crafts and together they made small furniture and food out 
of clay for her dolls. In her free time, Lightbulb also enjoyed watching DIY videos on YouTube with her 
mom and sometimes by herself.  

Additionally, the girls used craft to experiment and express. Kate talked about her experience 
experimenting with homemade slime putty or Play Doh. Describing her experiment, she said, “Play 
Doh–you need like flour, salt and water. And then for slime you need like detergent. You can actually 



Constructionism 2018, Vilnius, Lithuania 

721 

 

use shaving cream.” She also added that making things out of homemade Play Doh with her female 
friends was “exciting to me, making it and trying to like discover what could make it and what can’t make 
it. It’s fun to experiment.” Erica enjoyed making things from cardboard to illustrate the stories she wrote. 
She made a fairy house, trees, and castle as props to her story. Similarly, Betty made castles and 
characters that went with it, “I made little people with swords and spears and stuff.” 

Conclusions and Implications 

The participants of this study came from privileged backgrounds with an abundance of exposure to 
technology. Their parents and schools actively sought to provide them with powerful STEM opportunities 
and experiences. However, 8 out of 12 girls still did not consider themselves competent with technology. 
The girls’ self-report on their technology confidence during interviews aligns with the literature on 
stereotype threats suggesting that women can feel less confident and significantly underestimate their 
abilities in the field of math, science, and technology. Moreover, half of the girls interviewed mentioned 
male family members as technology experts and compared their own expertise to that of the male family 
members. For example, Panni denied her identity as a builder by suggesting this designation belonged 
to her brother. Erica also instantly mentioned her uncle as a technology expert when asked about her 
own experience with technology. This reflects the literature on women feeling technologically inferior to 
their male counterparts (Hill, Corbett, & Rose, 2010; Hyde et. al, 1990). When we investigate more 
closely what the girls considered to be technology, we found that programming and mobile devices were 
mentioned the most. Those activities and tools represent a narrow definition of technology. Furthermore, 
men are more represented in the professions related to these artifacts and practices, with 
women holding only 25% of all computing occupations (NCWIT, 2015). Broadening what counts as 
technology could increase diversity in these fields (Buechley, 2016) as a male-centric articulation of 
technology likely discourage girls from joining (Buechley, 2013; Margolis and Fisher, 2003).  

In contrast to technology, all of the girls expressed confidence and interest in craft and enjoyed making 
craft as a social activity. While male family members were often associated with the girls’ experience 
with technology, female family members and friends were a big part of girls’ experiences with crafts. For 
example, Lightbulb’s mother taught her and her sister to make toy furniture and food out of clay. Margie 
spent every Tuesday drawing and painting with her female babysitter while LilyJane frequently made 
crafts when her female friends visited her house. Unlike the girls’ experiences with technology, their 
experiences with craft falls under the category of the producer rather than the consumer. Girls seem to 
have a deeper, more meaningful experience producing crafts, compared to playing games and watching 
videos which was frequently mentioned when asked about their technology usage. The girls also used 
craft to express themselves, as seen when Erica and Betty created scenes and characters of their 
stories from cardboards. Taking active roles in making crafts could positively influence girls’ confidence. 
Additionally, the social implication of making crafts and sharing them with others makes the experience 
meaningful and enjoyable. 

In an effort to improve girls’ confidence in technology, we suggest that future pedagogical methods 
should first focus on widening what counts as technology. Limiting the definition of technology to male-
centric tools and activities may discourage girls from seeing themselves as competent. We should also 
engage girls more as a producer of technology, as the true mastery of technology involves being both 
a confident producer and consumer (Resnick, 2012). Lastly, incorporating social implications to the girls’ 
technological experience makes learning more enjoyable and meaningful. 

References  

Barron, B. (2004). Learning ecologies for technological fluency: Gender and experience differences. 
Journal of Educational Computing Research, 31(1), 1-36. 

Bogdan, R. & Biklen, S. (2007). Data analysis & interpretation. In Qualitative Research for Education: 
Chapter 5 (5th ed.). Boston: Allyn and Bacon. 

Buechley, L. (2013). Thinking about making. Presented at the Fablearn 2013. Retrieved August 9, 2017 
from http://edstream.stanford.edu/ Video/Play/883b61dd951d4d3f90abeec65eead2911d 



Constructionism 2018, Vilnius, Lithuania 

722 

 

Buechley, L. (2016). Inclusive Maker Education: STEM is Everywhere. Presented at the Fablearn 2016. 
Retrieved August 9, 2017 from 
https://edstream.stanford.edu/Video/Play/a33992cc9fb2496488c1afa9b6204a571d  

Buechley, L., & Eisenberg, M. (2008). The LilyPad Arduino: Toward wearable engineering for everyone. 
IEEE Pervasive Computing, 7(2). 

Buechley, L., Eisenberg, M., Catchen, J., & Crockett, A. (2008). The LilyPad Arduino: using 
computational textiles to investigate engagement, aesthetics, and diversity in computer science 
education. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 423-
432). ACM. 

Cohen, G. L., Garcia, J., Apfel, N., & Master, A. (2006). Reducing the racial achievement gap: A  

social-psychological intervention. science, 313(5791), 1307-1310. 

Ginsburg, H.P. 1997. Entering the Child’s Mind: The Clinical Interview in Psychological Research and 
Practice. Cambridge University Press.  

Hill, C., Corbett, C., & St Rose, A. (2010). Why so few? Women in Science, Technology, Engineering, 
and Mathematics. American Association of University Women. Washington, DC  

Holbert, N. (2016). Leveraging cultural values and “ways of knowing” to increase diversity in maker 
activities. International journal of child-computer interaction, 9, 33-39. 

Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A. and Hopp, C. (1990), Gender comparisons of 
mathematics attitudes and affect. Psychology of Women Quarterly, 14: 299–324.  

Intel Corporation, MakeHers Report: Engaging Girls and Women in Technology through Making, 
Creating, and Inventing, (2014). Retrieved August 20, 2017 from 
http://www.intel.com/content/www/us/en/ technology-in-education /making-her-future-report. html  

Margolis, J., & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing. MIT Press. 

Martinez, S. (2015). Making for All: How to Build an Inclusive Makerspace. Retrieved August 26, 2017 
from EdSurge:https://www.edsurge.com/news/2015-05-10-making-for-all-how-to-build-an-inclusive-
makerspace 

National Research Council. (1999). Being fluent with information technology. National Academies 
Press. 

NCWIT. (2015). Women in IT: The Facts Infographic. Retrieved August 26, 2016, from 
https://www.ncwit.org/resources/women-it-facts-infographic-2015-update 

Resnick, M. (2012). Mother's Day, Warrior Cats, and Digital Fluency: Stories from the Scratch Online 
Community. In Proceedings of the Constructionism 2012 Conference: Theory, Practice and Impact (pp. 
52-58). 

Seidman, I. E. (2013). Analyzing, interpreting, and sharing interview material. In Interviewing as 
qualitative research: A guide for researchers in education and the social sciences (3rd ed.). New York: 
Teachers College Press.  

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. 
Journal of Experimental Social Psychology, 35(1), 4–28. 

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. 
American psychologist, 52(6), 613. 

Worsley, M., & Blikstein, P. (2016). Children are not hackers: Building a culture of powerful ideas, deep 
learning, and equity in the Maker Movement. In Makeology (pp. 78-94). Routledge.  



Constructionism 2018, Vilnius, Lithuania 

723 

 

Collaborative Creative Music Activity with ICT: 
A Case Study for Children in Grade Five 

Sayaka Tohyama, tohyama@inf.shizuoka.ac.jp  
Yugo Takeuchi, takeuchi@inf.shizuoka.ac.jp 
Shizuoka University, Japan 

Abstract 
How to support learning new knowledge without spoiling children’s creativity seems a shared question 
in both constructionism community and STEAM education. We designed a workshop for 5th graders to 
scaffold learning musical knowledge using Jigsaw and “Vocaloid for Education” as “object-to-think-with”. 
The result was that fourteen children out of twenty succeeded to make harmonies to given melodies 
using knowledge which they learned in the workshop even though they had no previous experience of 
Vocaloid, and five out of the fourteen created unique ones. 

Keywords 
keywords: Music; vocaloid for education; collaborative learning, STEAM 

Introduction 

Recently STEAM is used in the context of programming or ICT in education instead of STEM. As we 
know, children can make creative products including “art” essences using Scratch (Resnick, 2017). It 
seems that they learn about programming and art in their constructional process if we see it from the 
viewpoint of Papert’s “Mathland” (Papert, 1980). Although the effect of constructional activity for 
educational context is expected, the process of the children’s learning about programming and arts is 
still a hot topic in educational research. 

In this study we focused on music as “art” in STEAM context. Music is widely accepted as an enjoyable 
and creative activity, and it has synergistic power with ICT. One of the previous researches suggested 
that children have musical sense and they could show their senses (Bamberger, 1991).  

Our research question is to know what kind of scaffolds work for children to improve musical knowledge 
based on their creativity in a sense of Constructionism. To the question, our hypothesis is that 
collaborative learning with ICT may function for improvement of musical knowledge because 
collaborative work improves finding new viewpoints and deepening the participants’ understandings 
(Miyake, 1986). To confirm it in a real situation, we used the jigsaw method (Aronson & Patnoe, 1997) 
and “Vocaloid for Education” which may work as “object-to-think-with”.  

Methods 

We held a three-hours workshop for twenty fifth graders (12 boys and 8 girls) in an elementary school 
in December 2017. The children were chosen by lot from who hoped to participate this workshop. We 
posed the question throughout the workshop as “How to make beautiful harmony?” to enhance the 
children’s constructional activity using Vocaloid for Education (Figure.1) in collaboration. The children’s 
main activity was making harmony for a song. The target song was “It’s a small world” because it is well 
known all over the world and in a music textbook for 4th graders in Japanese elementary schools. The 
venue of the workshop was the PC room in the school, and we specially installed Vocaloid for Education 
on the PCs. The first author conducted this workshop, and two adults who had experience in supporting 
children’s learning using ICT during the workshop. The children worked in pairs when they created their 
own harmony, and in three-member groups when they collaborated in the jigsaw method. 

The set of activities for the children in the workshop was as follows:  

 Answering the questionnaire (preQ), and harmony-making test (pre-test) 



Constructionism 2018, Vilnius, Lithuania 

724 

 

 Correcting the disharmony of “Twinkle twinkle little star” using Scratch as introduction 
 Answering the harmony-making test (mid-test) 
 Planning how to create the harmony for “It’s a small world” 
 Learning musical knowledge in the jigsaw method 
 Creating harmonies using Vocaloid for Education 
 Answering the questionnaire (postQ), and harmony-making test (post-test) 

The children answered to each questionnaire and harmony-making test individually. In the 
questionnaire, we checked the children’s previous experience of music and programming, and attitude 
to musical creation. We evaluated the pre-, mid- and post-test for comparison of the harmony-making 
test, and checked the children’s pre-experience using the answered questionnaires. In the three times 
of harmony-making test, we showed the final four bars of “It’s a small world” and asked the children to 
write a harmony. We videotaped all the activities and collected the memos which were written by the 
children, and referred to them if we needed additional information for our analysis. 

Scaffolds 

Jigsaw Method 
The jigsaw method is one collaborative learning method used to enhance the children’s ability for 
contributing and discussing a given question using handouts which contain knowledge or technique for 
helping children to generate their answer for the given question. Each child has responsibility to explain 
his/her assigned handouts to the other members, so they prepare it in collaboration with classmates 
who have the same handouts. After that, children who has different handouts share the contents of their 
handouts with each other. They generate their answer to the question through discussion for integration 
of their handouts.  

The jigsaw method could be a scaffolding for constructional activity because the children can try to 
make relations between their prior knowledge or experience and new knowledge or experience.  

In this research, we made three kinds of handouts to give the children musical knowledge. Each handout 
fits in A4 size and contained some figures to help the children’s understanding. The theme of the 
handouts is as follows: 

 A: Codes and its structuring notes (C is made by C and 3rd notes and 5th notes, and so forth) 
 B: How to choose harmonized notes (octave, avoiding 2nd notes, and so forth) 
 C: How to make smooth and natural melodies (match with intonation of lyrics, and so forth) 

Vocaloid for Education 
Vocaloid for Education is a music creating application for Windows, developed by YAMAHA corporation. 
The target user is elementary to junior-high school children in Japan. Children can create mixed chorus 
in four voices by putting boxes onto a two-dimensional screen: tone length is horizontal and pitch is 
vertical. We can also enter lyrics to each melody. The artificial voice sings the set of melodies 
simultaneously when we push the “play” button, and the progress bar shows where the voice sings. 
These characteristics allow children to create music who have only little musical knowledge and ability 
to read and write musical scores. 

Results 

The harmonies made by all the pairs in the workshop differed from each other, and the harmonies made 
by individual children in post-test differed slightly from the pair results. From these results, it is suggested 
that they used given musical knowledge in their own ways, not stereotypically. 

Questionnaire 
The preQ revealed that nineteen children had no previous experience of Vocaloid for Education and 
programming. All the children liked musical activity and using ICT in preQ and postQ. Only seven 
children preferred expression using music over appreciation in preQ, hence twelve children preferred 



Constructionism 2018, Vilnius, Lithuania 

725 

 

expression in postQ. The number of children who felt good at reading musical scores was ten in preQ 
and raised by twelve in postQ. 

 

 Figure 1.  Vocaloid for Education (Main melody is purple boxes, and harmony is light blue boxes) 

Harmony-Making Test 
We coded the nineteen children’s answers about harmonies (missed collecting the question sheet from 
one child) of pre-, mid- and post-test into seven categories from the viewpoints of uniqueness, 
stereotype (rule-based), and harmonization. The categories are as follows: 

 Major 3rd: Consecutive intervals which mainly consists of major 3rd of the main melody 
 Major 3rd+Arrange: Adds a little unique harmony to Major 3rd 
 Unique: A harmony which does not depend on major 3rd of the main melody 
 Major 2nd: Dissonant intervals which mainly consists of major 2nd of the main melody 
 Major 2nd+Arrange: Adds a little unique disharmony to Major 2nd 
 Random: No rules. Randomly assigned notes, spreading notes, and so forth. 
 N/A: No answer 

Major 3rd, Major 3rd+Arrange and Unique means smoothly harmonized melodies. Major 2ndand Major 
2nd+Arrange suggests incongruent melodies. Random is partly harmonized. In these categories, Unique 
is the most qualified answers because it appears when the children succeed orchestrating the musical 
knowledge and the creativity from their own viewpoints. Random is the lowest quality because it seems 
the children did trial and error without plans. 

The results were shown in Figure 2. It suggested that the children tended to answer randomly, gave no 
answer, or made incongruent in pre-test. In mid-test, which is located after experience making 
harmonies using Scratch, the number of children who used major 3rd notes systematically increased 
from two to ten. Furthermore, the children who answered randomly disappeared. It suggested that they 
learned simple rules for harmonization and incongruency in harmony in their Scratch activity. The post-
test which is located after the jigsaw method with Vocaloid shows that two children created unique 
harmonies for the first time. It appears the combination of the jigsaw method and Vocaloid worked for 
the children’s creation of harmonies. 

Conclusion 

Our case study showed that children could discover and use simple musical knowledge such as 3rd 
notes from the main melodies’ notes only experienced correcting disharmony activity. However,  



Constructionism 2018, Vilnius, Lithuania 

726 

 

 

Figure 2. The number of the children’s answers in harmony-making test. 

to enhance the children’s production of unique and qualified outcomes, the jigsaw method with ICT may 
function. In our study we used the jigsaw method and Vocaloid for Education simultaneously to scaffold 
the children from the viewpoint of constructionism because collaboration may emphasize the 
characteristics of “object-to-think-with” in Vocaloid for Education. For the future we will try to evaluate 
the effect of each one by protocol and physical-performance analysis using video data. 

In programming education, the problem seems the same with this study because scaffolding in 
programming education is expected not to spoil children’s creativity, but to enhance learning how to 
solve problems or disciplinary knowledge in constructional activity. We think finding principles for 
implementation such kind of activity is one of important themes in this research field. In this paper, we 
only suggested the effect of designed collaborative activity. For the future, we will try to find what is 
important principles in collaboration to cause meaningful constructional activities and share the results 
with STEAM educators. 

Acknowledgments 

We would like to thank JSPS Kakenhi (No. 17K17786) and foundation of promotion for engineering in 
Shizuoka University. We wish to thank Junko Tsutsui, Nobuhiro Shirai and Tomoyuki Kuno (Yoshinkita 
elementary school, at that time) who gave us great help to implement this workshop, and Yukako Enya 
(Smart Education System group, YAMAHA Corporation) who gave us helpful advice and materials for 
Vocaloid for Education. The handouts were inspired by the YAMAHA website. 

References 

Aronson, E., and Patnoe, S. (1997). The Jigsaw Classroom (2nd Edition.). Longman. 

Bamberger, J. (1995). The Mind behind the Musical Ear. Harvard University Press. 

Miyake, N. (1986). Constructive Interaction and the Iterative Process of Understanding. Cognitive 
Science, 10(2), 151-177. 

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books. 

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects, Passion, Peers, and 
Play. The MIT Press. 



Constructionism 2018, Vilnius, Lithuania 

727 

 

Applied Constructionism: Critical Reflection and 
Learning Through Play in Adult Learning  

Nalin Tutiyaphuengprasert, nalin@stanford.alumni.edu  
Darunsikkhalai School for Innovative Learning, King Mongkut’s University of Technology, Thailand 

Abstract  
This poster discusses the combination of constructionism and critical reflection in a workshop design 
for adults in Thailand. Thailand applied constructionism in different fields including professional 
development for employees focusing on facilitating self-development and soft skills. In these situations, 
learners work together to create complex Rube Goldberg machines in less than 24 hours. Time pressure 
helped learners to reconnect with others and cope with their negative thoughts. While Papert (1999) 
stated “This acceptance of “negatives” is very characteristic of the Logo spirit”, Mezirow’s critical 
reflection (1990) can support safe expression of “negatives” and put them as an “opportunity” to 
understand and transform.  

Keywords  
applied constructionism; critical reflection, adult learning; professional development; agency; team 
building; metacognition; transformative learning; perspectives transformation 

Constructionism Intertwined with Critical Reflection and U 
Theory 

Since 1997, constructionism has been applied in Thailand both in formal education and non-formal 
education. For adult learning, constructionism has been applied in different professional development 
programs in businesses, industries and farmers’ communities in rural area. “Think-Make-Reflect” is a 
motto that has been used as a core process in these situations as well as a learning outcome of 
constructionism in Thailand to foster continuous improvement and self-directed learning.  

 

Figure 1. Rube Goldberg machine and Critical Reflection Workshop in Thailand  

Our Rube Goldberg machine workshop was designed to tackle the solo mentality problem in 
workplaces, boost a more active learning environment and improve soft skills among employees. 
Companies who participated are from different businesses such as healthcare and service, satellite 
service providers, food and dairy manufacturing and conglomerate businesses. In this workshop, 
constructionism learning tools played a main role in allowing learners to express themselves through 
physical artifact creation. We applied critical reflection (Mezirow, 1990) to help learners when they are 
facing challenging tasks by facilitating learning from reflection, including facing negative thoughts and 
emotional challenges. U theory (Scharmer, 2009) was also used as a support for learners to reassess 
thinking habits and show a path to explore and experiment with new possibilities.  



Constructionism 2018, Vilnius, Lithuania 

728 

 

 
 

Figure 2. Secret Objects, design of contraptions and brainstorming Session  

Explore Your Internal World with Critical Reflection and U Theory 
Adults can learn from changing their perspectives from their past experiences. As Mezirow stated 
“Adulthood is the time for reassessing the assumptions of our formative years that have often resulted 
in distorted views of reality” (1990). Critical reflection helps adults be aware of their own assumptions 
about work, life, ability, values, rules, and so on, which impact how they perceive the world and make 
decisions in life. We applied critical reflection in the workshop to bring participants’ thinking habits or 
emotions to the surface. Short guided meditation was also used to help learners feel calm, be able to 
recognize their emotions, and think clearly.  

 

 Figure 3. Daily reflection and examples of post-it notes 
Translation of reflection in pink notes: “Tools didn’t fit with my expectation.”  

“It’s amazing that I can do it which I didn’t want to do this at the beginning because I’m scared.”  
“I’m concerned that the task wouldn’t be finished on time.” 

In Thai culture, reflection can be useless if we do not take into account cultural sensitivity. It is normal 
for people to cover up their thinking or say things to please audiences, especially if they perceive 
hierarchy or seniority in the environment. I tried to build atmosphere of freedom of expression with some 
core principles: 1) participants choose what, when and how to express 2) critical or negative feedback 
is welcome 3) participants do not have to speak if they do not want to ,and 4) silence is acceptable and 
a legitimate way to show respect to allow everyone to think, contemplate and decide to when to speak 
and when to listen.  

 

  

Figure 4. Making contraptions (left and middle) and reflection time at the end of each day (middle right) and 
celebration of Rube Goldberg (right) 

 

U theory gives us a point of view of how people respond and decide to react, especially when it is 
something uncomfortable or related to negative experiences in the past. This model introduced two 
paths to participants: knee jerk reaction (automatic reaction without thinking) or moving down through 



Constructionism 2018, Vilnius, Lithuania 

729 

 

the U shape model to explore our mental stages. Voice of judgement, cynicism and fear were explicitly 
introduced to learners with an encouragement to observe and refrain from these types of normal 
reactions. U theory explained the stages through which we can first hold back immediate reactions and 
detect negative thoughts in our minds, then be fully present, and finally allow the mind to recreate a 
different reaction without bias or judgements from the past experiences.  

Conclusions 

Construct and Reconstruct Your Inner World in a Playful Context 
The combination of the Rube Goldberg machine challenge and critical reflection provided a playful 
environment where adult participants learned to recognize and transform their views and behaviour in 
a friendly way. As Ackermann (2014) stated, playfulness can give space to tolerate uncertainty and set 
the stage for shifting perspectives or repositioning oneself. Being playful also includes the notion of safe 
exploration. It provided the right touch of empowering learners to keep asking “what if” questions, giving 
learners opportunities to suspend their old assumptions and explore their internal thinking and emotional 
process. This enabled them to change their thinking if they wanted and at their own time.  

Thinking and emotions are dynamic and rooted in deeper levels of belief. The critical reflection process 
helps explicitly capture feeling and thinking and helps learners to develop metacognition processes. 
Some feedback, which may initially be perceived as negative by adult learners, can be very useful for 
participants in observing their pattern of reactions, leading to deeper analysis of internal assumptions 
that they might not have been aware of before.  

  

Figure 5. Process of Reconstructing Thinking Habits or Assumptions 

Figure 5, shows the process of change when a learner decides to tackle their own negative thoughts. 
Detecting negativity helps liberate learners from self-deception and be more open to alternatives. We 
have often found that many learners challenged their fears and transformed their responses by the end 
of the workshop.  

“I usually have phobia with microcontroller. I was shocked when I have to do 
this task.  “Sh**!” I talked to myself when I first looked at the Gogo board package. 
I had a bad experience in my high school. I asked my friend to do it for me. I can 
pass those tests because my classmate did it for me. But now I can’t run away. 
But when I learned about input, process and output, I can jump out from my  
fear. I can get rid of that fear now and I feel really good about it. This is what I 
want to share with you guys. Fear is in us and it is going to be one day that we 
can jump out of it!”  (Reflection transcription by participant in the workshop). 

People can learn and grow from mistakes and negativity. Creating a safe environment allowed people 
to transform their misconceptions and heal from past distortions. Constructionism can serve as a safe 
and playful situation for adult learners to nurture confidence in facing challenges in life and learn from 
them.  

“I made a lot of mistakes and when it was the 20th time, I thought that it was fun 
to fix problems. I’m ready to solve problems that arise and I learned so much from them  
and gained more confidence. In the past, I was so scared of making mistakes.  

Disorientation

Rumination
Thinking Habits

Finding OptionsExperiment

Reintegration



Constructionism 2018, Vilnius, Lithuania 

730 

 

I avoided all kinds of mistakes but now I learned to be open to mistakes.  
I promised that I will now dare to make mistakes and learn to fix them quickly.  
I promised that I will do mistakes in everything but I will learn and fix them all.” 

                                                      (Reflection Transcription by participant in the workshop) 

References  

Ackermann, E. (2014). Amusement, Delight, Whimsy, and Wit, the Place of Humor in Human Creativity. 
In Constructionism 2014 International Conference, Vienna, Austria, August. 

Mezirow, J. (1990). How critical reflection triggers transformative learning. Fostering critical reflection in 
adulthood, 1, 20. 

Papert, S. (1999). Logo philosophy and implementation. Logo Computer Systems Inc. 

Scharmer, C. O. (2009). Theory U: Learning from the future as it emerges. Berrett-Koehler Publishers. 

Senge, P. M. (2006). The fifth discipline: The art and practice of the learning organization. Broadway 
Business. 

  



Constructionism 2018, Vilnius, Lithuania 

731 

 

Different Cultures – Different Approaches to 
Reasoning and Algorithms 

Valentina Dagienė, valentina.dagiene@mii.vu.lt 
Lina Vinikienė, lina.vinikiene@mii.vu.lt 
Vilnius University, Lithuania 

Abstract 
The following five strands of mathematical actions are important in school curricula: 1) conceptual 
understanding; 2) procedural fluency; 3) strategic competence; 4) adaptive reasoning; 5) productive 
disposition. These strands have implications for mathematics teaching of both the practical and 
specialised perspectives and are more or less cultural sensitive. One of the challenges facing 
mathematics educators is to incorporate each of the mathematical strands in a multicultural classroom. 
We developed the module for teacher educators that provide theoretical background based on the role 
of reasoning and algorithmic thinking in mathematics. The module involves practical activities based on 
the understanding of etnomathematics and Seymour Papert ideas. Through this module prospective 
teacher are able to investigate the understanding different approaches of reasoning and algorithms, 
explore examples of different approaches, experiment and reflect on the use of tasks, practice different 
algorithms, develop pedagogical approaches. The module is prepared under Erasmus+ project 
“Intercultural learning in mathematics and science education, IncluSMe”. The project aims to increase 
the quality of higher education curricula for prospective teachers by linking maths and science education 
with intercultural learning (http://inclusme-project.eu). The poster describes the module content.  

Keywords 
Algorithmic thinking, etnomathematics, intercultural learning, reasoning in mathematics 

Background 

Teaching mathematics require a deep understanding about previous student’s knowledge and that they 
need to learn. The main challenge is the support them during the learning process. Due to that, teacher 
educator have to be prepared to show the same things using different approach or instruments. 
Astuti&Purwoko (2017) emphasize that learning instruments integrated with ethnomathematics involve 
the construction of mathematical knowledge by instilling positive cultural values. According to authors, 
model of learning based on culture-related mathematics is based on constructivism learning theory.  

Ethnomathematics is associated with mathematics education, social and cultural background. 
D’Ambrosio stated that in order to understand how mathematics is created, it is necessary to understand 
the problems that precipitate it. It involves the cultural context that drives them (Rosa&Orey, 2011). 
Ethnomathematics is described as a branch of mathematics acknowledging the fundamental differences 
in mathematics content, mathematics understanding, and mathematics application that links culture and 
mathematics (D’Ambrosio, 1985). According to Rowlands, Carson (2002), Rosa, Orey (2011), teachers 
should know various teaching methods in order to teach formal, abstract concepts in different cultural 
background. The ethnomathematics perspective into the mathematics curriculum “help student to 
develop skills in critical thinking and analysis that can be applied to all areas of life and provide an 
effective environment for developing skills to solve real-world problems”. (Rosa, Orey, 2011, p. 48). In 
addition, it helps students to achieve better academicals results, know more about reality, culture, 
society. Rosa&Orey (2011) stated that etnomathematics is a program that includes relevance and builds 
knowledge around the local interests, needs, and culture of students. According to Saymour Papert, as 
well as connecting with the formal knowledge of mathematics, it also connects with the "body 
knowledge". 

As a way to accommodate different learning styles and demonstrate several way to solve the same 
problem, Fisher&Davis (2008) distinguished the importance of algorithms. Algorithms engage students 



Constructionism 2018, Vilnius, Lithuania 

732 

 

to learn mathematics in an active, fun environment. According to Kantner (2008), algorithms is steps to 
solve problems which are not universal across cultural and nations. He mentioned, that learning math 
affect different types of representation systems, concepts, native language, world views, informal 
mathematical experiences, conceptual differences in logic, reasoning, cognitive styles. However, 
teacher educator should present and know not only one algorithm, he/she should be interested in more 
alternative. In this way, in the cultural diversity classroom confusion and not understanding will be 
avoided (Perkins, Flores, 2002). Identification of algorithms and description why the algorithm works let 
students to rethink mathematical ideas. By solving mathematical problems student have to get 
elementary knowledge about mathematics methods and challenge the belief that this algorithms work 
(Philipp, 1996). 

In this paper, we describe the module that is prepared under Erasmus+ project “Intercultural learning in 
mathematics and science education, IncluSMe”.  

Module for mathematics prospective teachers 

Module “Different cultures – different approaches to reasoning and algorithms in mathematics” is design 
to introduce pre-service teachers to intercultural learning in mathematics using different definitions. This 
module involve an introduction into reasoning and algorithms in mathematics, theoretical background 
based on the understanding etnomathematics and Seymour Papert ideas. During the module, we 
present the connection between theory and educational practice. The module consist for three main 
parts and one additional section. In addition, we introduce computational thinking as one of the way of 
mathematical reasoning. The main goal of the module is to engage student to try different problem 
solutions, share and explain their own ideas. Students discuss about text that present different 
reasoning methods, study specific examples, explore sources of culture-related contexts, solve 
problems using different approaches of reasoning and algorithms, compare solutions in pairs or groups, 
analyse text or identify examples and opportunities to use culture-related context, build knowledge using 
constructionist approach. 

Introduction 
This part of module involve discussion and introduction of theoretical background. 

First activity. Firstly, students find video about cultural understanding, reasoning and algorithms in 
learning and teaching mathematics. During the lesson, they present the most interesting video and 
discuss about their findings in groups, and fill table. Filling the table, they have to describe the meaning 
of cultural understanding, ethnomathematics, reasoning, and algorithms. The idea of these tasks is not 
only to engage students share ideas about particular video, but also their experiences. Together 
students compare understanding and meaning, try to get one common problem solution. At the end of 
activity, teacher educator sum up discussion and provide the basics of theoretical background: provide 
the meaning of etnomathematics, reasoning, algorithmic thinking from the literature view.  

The second activity introduce Seymour Papert’s book “Mindstorms: Children, Computers, and Powerful 
Ideas (1980). In this book Seymour Papert argues about the benefits of teaching computer literacy and 
illustrate many powerful mathematical ideas. Students have to analyze examples of text and discuss 
about reasons to use culture-related context, the most important characteristics of good approach of 
reasoning and provide approach for reasoning or algorithms in mathematics using personally. Analysing 
text student are able to compare constructionism and constructivism, concrete thinking and formal 
thinking, explain the meaning of assimilation, importance of LOGO, etc. Later, students are asked to 
analyse the following example (Figure 1a) and apply algorithms in practice. 

Difficulties experienced by children are not usually due to deficiencies in their notion of number but in 
failing to appropriate the relevant algorithms. Learning algorithms can be seen as a process of making, 
using, and fixing programs. When one adds multidigit numbers one is in fact acting as a computer in 
carrying through a procedure something like the program in Figure 18. 



Constructionism 2018, Vilnius, Lithuania 

733 

 

 

[Seymour Papert’s book “Mindstorms: Children, Computers, and Powerful Ideas, 1980, pp. 152] 

Figure 1a. Text example 

The idea of algorithms practice is that students compare the differences in culture diversity. At the end 
of lecture, teacher educator provide several example such as arithmetic operations in different countries, 
different multiplication algorithms, and different calculation methods. These examples should be in 
different type, such as text, video, practical exercise. In this way, students will be engaged to find 
differences between reasoning, understandings in different cultures.  

Culture-related context (practical reasoning examples) 
The second part of module involve practical examples of juggling, mathematical task, and programming. 
Firstly, student analyse video, than read the text from S. Papert “Mindstorms” (p. 105-112) and practice 
juggling by using pieces of light material. 

 

Figure 1b. S. Papert. MINDSTORMS. Juggling (p. 105-112) 

The goal of this activity is to compare how students understand the same things in different ways and 
compare each student’s experience. Not all student will be successful in juggling, due to that other 
students should help and explain how to reach the goal of task. This activity woke up discussion between 
students how to do the tasks step-by-step using various methods, such us juggling with one ball or 
more, juggling with a scarf. Presenting steps of juggling on the sheet of paper students describe the 
algorithm how to find the best solution.  

The second activity is the analysis of the example “A string around the circumference of the earth” from 
S. Papert. MINDSTORMS… Students discuss about text and ways of reasoning.  

The third activity could be implemented in a computer lab using programing language as Scratch. Using 
programming language students have to draw triangle, square, rectangle using Turtle graphics. After 
practice students compare solutions and read the text about Turtle from S. Papert book 
“MINDSTORMS: Children, Computers, and Powerful Ideas (pp.75-76). 

Practical methods 
The third part of module consist of attractive tasks examples and Computer Science Unplugged activity. 
Solving these tasks and participating in the unplugged activity students practice different algorithms and 
compare solutions.  

Tasks examples focus on decimal and binary numbers (Figure 2), pattern recognition, rules, cycle, 
Dijkstra’s algorithm, calculations, programming. Teacher educator have to pay attention how student try 



Constructionism 2018, Vilnius, Lithuania 

734 

 

to find the solution, how they understand the tasks, compare solutions and provide a short overview at 
the end. Students in groups compare solutions, discuss about differences and similarities, methods 
used to get the correct answer.  

A BINARY SCALE. A Beaver scale shows weight both in decimal (left) and binary (right) numbers. A 
fish weights 1100 kg in binary number system. Which weights you need to put on the scale plates that 
you can see the fish’s weight in decimal numbers? 

 

Figure 2. Task example 

Later students practice Computer Science Unplugged activity “Orange game” (Figure 3). This is a co-
operative problem solving game. The aim is for each person to end up holding the oranges labelled with 
their own letter (Bell, et al., 2015). This activity demonstrate constructivist approach.  

 

Figure 3. Orange game (Bell, et al., 2015) 

Conclusion 

The main idea of module “Different cultures – different approaches to reasoning and algorithms in 
mathematics” is to provide deeper understanding of diversity of approaches to reasoning and algorithms 
in mathematics. We focus on practical tasks using computers, technologies and various type of material. 
Practical, attractive activities and tasks engage students to reflect and share their own ideas, 
experience. All activities are covered with theoretical background on reasoning in mathematics and 
algorithms. Educator has opportunity to choose the particular activity depending n the student skills, 
practice, and related topic.  

Acknowledgment 

The presented module is based on the work within the project Intercultural learning in mathematics and 
science education (IncluSMe) of the Erasmus+ programme. The project grant no. 2016-1-DE01-KA203-
002910. The authors gratefully acknowledge the project coordinator Prof. Dr. Katja Maaß, International 
Centre for STEM Education (ICSE) at the University of Education Freiburg, Germany.  

 



Constructionism 2018, Vilnius, Lithuania 

735 

 

References 

Astuti, E. P., Purwoko, R. Y. (2017). Integrating Ethnomathematics in Mathematical Learning Design for 
Elementary Schools in Proceeding “Research and education for developing scientific attitude in 
sciences and mathematics”, 4th International Conference on Research, Implementation, and Education 
of Mathematics and Science, 2017 May 15-16.  

Bell, T., Witten, H., Fellows, M (2015). CS Unplugged. An enrichment and extension programme for 
primary-aged students.  

D’Ambrossio, U. Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. For the 
Learning of Mathematics, Vol. 5, No. 1 (Feb., 1985), 44-48.  

Fisher, J. F., Davis, J. F (2008). Algorithms: through the ages and around the world.  

Kantner, J. (2008). The only absolute truth in mathematics is the myth of mathematics as universal. 
Perspectives: The New York Journal of Adult Learning 6(2). New York: Fordam University. 

Rosa, M., Orey, D. C. (2011). Ethnomathematics: the cultural aspects of mathematics. Revista 
Latinoamericana de Etnomatemática, 4(2). 32-54. 

Rowlands, S., Carson R. (2002). Where would formal, academic mathematics stand in a curriculum 
informed by ethnomathematics? A critical review of ethnomathematics in Educational Studies in 
Mathematics.Vol.50, No.1, 79-102.  

Perkins, I., Flores, A. (2002). Mathematical notation and procedures of recent immigrant students in 
Mathematics teaching in the middle school, 7, 346-351 

Philipp, R. A. (1996). Multicultural mathematics and alternative algorithms: Using knowledge from many 
cultures. Teaching Children Mathematics, 3(3), 128-135. 

 

  



Constructionism 2018, Vilnius, Lithuania 

736 

 

The Web – A Platform for Creation 

Márton Visnovitz, visnovitz.marton@inf.elte.hu 
Győző Horváth, horvath.gyozo@inf.elte.hu 
Eötvös Loránd University, Faculty of Informatics, Dpt. of Media & Educational Informatics, Hungary 

Abstract 
The web is a platform that is becoming more and more accessible for many people. With the 
advancements in web technologies programming on the web is becoming easier to learn. The browser 
provides a programming API that can be used to express ideas quickly and easily. Using web 
technologies in learning programming has a lot of advantages, and this platform can be used to apply 
the constructionist methodology as well. With creative thinking, and basic programming knowledge 
students can use the web realise their ideas be it a simple computer game, a simulation or any other 
application. The same programming logic can be applied to many different scenarios; thus, students 
can explore the way to make their own ideas come to life, learning technology and programming in the 
process. 

Every web application can be represented by three main components. These Three Pillars of a web-
based application are: describing the underlying data structure, defining how that data can be displayed 
in a user interface and how that user interface behaves. Getting started with these steps does not 
require any technological knowledge about the platform itself, so students can aquire that during the 
process of implementation. 

Keywords 
Constructionism; web; JavaScript; game programming 

Introduction 

Nowadays the web is becoming a general, ubiquitous, rapidly developing and ever popular application 
runtime platform, that is used by billions of users every day. Its ubiquitous nature means that information 
and services are continuously available regardless of place, time and device. Web-based applications 
are becoming widespread and are present on almost every platform from the browser to smart phones, 
embedded systems and TVs. 

Teaching of programming also uses the web for its purposes. There are many good examples of 
teaching various aspects of programming using videos, tutorials and online programming environments, 
e.g. Codecademy75, CodeCombat76. The programming language used in these environments can be 
anything from C# to Python, but HTML and JavaScript, the lingua franca of the web, noticeably occur 
often in these programming platforms. Altogether, these online learning environments consider the web 
as a runtime platform. 

Web technologies are good for introducing programming to students in an exciting environment 
(Mahmoud et al., 2004). In this approach the web is not a platform, but the target of the teaching process. 
It provides all the necessary aspects for successful programming teaching: easy-to-learn and easy-to-
use languages, modern tools and development environments, spectacular applications, familiar pieces 
of software like the browser (Horváth & Menyhárt, 2014). The whole teaching material (languages, 
technologies) can be introduced step by step, telling just the next necessary information (Horváth & 
Visnovitz, 2017). 

Students can easily start programming with this platform as its main technologies are easy to get started 
with. Another benefit is that the definitive programming language of the web, JavaScript has many 
positive aspects from the educational point of view (Horváth & Menyhárt, 2014). A huge benefit of the 

                                                
75 https://www.codecademy.com/ 
76 https://codecombat.com/ 



Constructionism 2018, Vilnius, Lithuania 

737 

 

web platform that the markup language used for user interfaces (HTML) and the scripting language 
used for programming (JavaScript) both are extremely easy to get started with (Visnovitz, 2017). Both 
are just simple text files that don’t require any boilerplate code to work, thus the source file only contains 
the code that represent the desired functionality, In this article we present how the web platform can be 
used as the target of a programming teaching in a constructionist way. 

The Three Pillars of Web Applications 

Creating applications for the web consists of three steps that can be executed one after another. The 
foundation of all these “pillars” can be CS Unplugged activities that don’t require any previous 
knowledge. This way students can explore the process of implementing their ideas and learn about 
technologies that are required to build a web application. 

 

Figure 111. The Three Pillars of web applications 

Application State Representation 
To create any kind of computer program the first step is to describe the set of variables that represent 
the state of the application at any given time. This step can be entirely independent from the 
programming part and can be done even without computers. Students must answer simple questions 
like:  

 What do I have to know about this program at any given time? 
 What are the variables, what are the constants? 
 How can I structure this data? 

After answering those questions, they must translate the answers to some form of data model. This 
data model can be very basic with only names of variables and a description of what they represent, or 
they can be very complex with data type descriptions and custom data types. The complexity of this 
step can be adjusted to the previous knowledge of the students so that they can use their previously 
acquired knowledge but also can learn something new in the process. 

During this step students can explore concepts of data modelling, data abstraction, basic and composite 
data types, the concept of constants and variables. 

User Interface Generation 
All users interact with a program using a user interface. Each UI can be a combination of static and 
dynamic parts. Dynamic sections of an interface are dependent on the applications current state while 
static parts do not change depending on the state. Students should identify the static and dynamic parts 
of the UI. Some governing questions for this step are: 

 What do I want to show to the user? 
 What does the user need to use my program? 
 Which parts are static (state independent) and dynamic (state dependent)? 
 What is the relationship between the state of the application and the user interface? 

Students can design the user interface and user experience using simple tools or even pen and paper. 
This designing phase can help them to understand the various forms of user interactions Also, this step 
allows students to express their creativity when creating the looks and other visual elements of the UI. 

Data Modelling 

Data Types 

Variables and 
Constants 

Application State 

Declarative 
Programming 

User Interface Design 

Stylesheets 

Functions 

Templates 

User Experience 

Interactive UI 

Event Types 

Event Handlers 

Event Binding 

State Mutation 

A
p

p
lic

a
ti
o

n
 S

ta
te

 

R
e

p
re

s
e
n

ta
ti
o

n
 

U
s
e

r 
In

te
rf

a
c
e

 

G
e

n
e

ra
ti
o

n
 

E
v
e

n
t 

H
a
n

d
lin

g
 



Constructionism 2018, Vilnius, Lithuania 

738 

 

For coding it is recommended to first create a static mock-up for the program that shows how it is going 
to look. This allows students to explore the markup language and styling without worrying about 
behaviour. The next step is to describe how the state of the application can be translated into this UI, 
what is the connection between the two. The last step is to create functions that implement this 
translation.  

During this process students learn about declarative programming, user interface design, functions and 
templates. Alternatively, students can use 2D graphics techniques provided by the Canvas API of the 
browser to minimize the HTML knowledge requirement of the entire process. Instead of creating the UI 
with HTML elements students can use basic raster graphics, basic shapes and images to create the UI 
of a game (Horváth, Menyhárt & Zsakó, 2016). 

Event Handling 
The third thing to do with a web-based application is to make it interactive. Students can start this step 
by describing how the program behaves and what kind of interactions can users make. This step can 
be started by brainstorming and creating sketches and diagrams of the possible user actions. The three 
components of every interaction that students must identify are the following: 

 What part of the user interface the user interacts with? (e.g. a button…), 
 What is the nature of the interaction? (e.g. clicking, pressing a button…), 
 What is the effect of the interaction? (e.g. the button turns red, a counter increases…). 

Using these three components pupils can create event handlers that make the UI react to user input. 
Event handlers are basic programs with input/output handling and data processing, thus this is a very 
good exercise to learn or practice basic programming. The I/O in this case uses the JavaScript 
representation of the HTML page (DOM) to access UI elements and read or modify their content. A 
common event handler reads data from the UI and modifies (mutates) the application state. After 
modifying the state, the UI must be re-rendered in accordance with the changes. Sometimes it is overly 
complicated to store every single aspect of the UI in the state. In these cases, event handlers can also 
have side effects on the UI, such as modifying the visibility of an element or setting the focus. This 
means that the event handler directly taps into the DOM in an imperative way, modifying its contents or 
properties. 

During this process students learn about the concept of events in computing, event types, event 
handlers, event properties, event binding and state mutation. 

Practical considerations 

For all the previously introduced Three Pillars there is a shared workflow that can be applied to each of 
them. This consists of brainstorming, planning & researching, and implementing. During brainstorming 
students collect their ideas and note them down using either paper and pen or the computer. This 
collection of ideas will be the basis of their execution plan and their research for corresponding 
technologies. The research phase can be assisted by the teacher. After students have a basic 
understanding of the technology that they shall use to realize their plan they can start coding the actual 
program. For coding the teacher can again function as a guide but can take a more direct and frontal 
educational approach if necessary. 



Constructionism 2018, Vilnius, Lithuania 

739 

 

It is important to note that using the Three Pillars concept does not have 
to mean that students must plan the entire program from the start. The 
business principles of Minimum Viable Product (MVP) and incremental 
development can be applied in this case as well. This means that at first 
students can create a program with a minimal feature set and later add 
new features by extending the existing three main components of their 
application. Helping questions for extending a program in such way are: 

 What additional information do I need to know everything about the 
program with this new feature? 

 What additions/modifications do I need to make to the user 
Interface? 

 How do I translate this new state component user Interface? 
 What additional interactions do I need to add this functionality? 
 How do I have to change the current interactions to fit this new 

feature? 

Using this form of incremental development, the process of “brainstorming, planning/researching and 
implementing” becomes a cycle (Figure 2). From the start all the new features can be added using these 
steps. 

Conclusion 

The web is an easy to access platform that is available for all computer systems that have a web 
browser. Using client-side programming not even Internet connection is required to use JavaScript to 
create rich, web-based applications. Students can realize their ideas using a platform that they are most 
likely familiar with. Using the Three Pillars principle it is possible to start form CS unplugged activities 
and create a fully-fledged web application or game. The three main activities can all help students to 
learn about different aspects of programming while realizing their ideas. 

By the nature of the browser and its main programming language, JavaScript, using web technologies 
makes it possible to create applications that can be deployed to both desktop computer, smartphones 
or other smart devices. This also can be very engaging for students. 

Web technologies are widespread and are improving rapidly. HTML and CSS are well known 
technologies that are easy to get stated with. In many countries HTML and CSS are even part of the 
high school curriculum. The JavaScript programming language is easy to learn and apply to many areas 
including server-side, client-side and mobile programming. Programming skills acquired with this 
language can be applied later in many different fields. 

References 

Horváth, Gy., Menyhárt, L. (2014). Teaching introductory programming with JavaScript in higher 
education. In Proceedings: Proceedings of the 9th International Conference on Applied Informatics, 
Eger, Hungary. p. 339-350. 

Horváth, Gy., Menyhárt, L., Zsakó, L. (2016). Viewpoints of programming didactics at a web game 
implementation. In Proceedings: Proceedings of the XXIX. DidMatTech 2016 Conference, Budapest, 
Hungary. Eötvös Loránd University, Faculty of Informatics.  

Horváth, Gy., Visnovitz, M. (2017). Egy bevezető webfejlesztési kurzus módszertani megfontolásai 
[Methodological Considerations of an Introductory Web Development Course]. In Proceedings: 
Informatika a felsőoktatásban 2017 [Informatics in Higher Education 2017], Debrecen, Hungary, 
University of Debrecen, Faculty of Informatics. p. 265- 274. 

Horváth, Gy., Visnovitz, M. (2018). A böngésző mint alkalmazásfejlesztési platform [The Browser as an 
Application-development Platform]. Retrieved March 30, 2018, from 
http://webprogramozas.inf.elte.hu/tananyag/kliens/kliens.pdf 

Planning,
research

Implementing

Brain-
storming

Figure 2. The cycle of adding 
new features to a program 



Constructionism 2018, Vilnius, Lithuania 

740 

 

Mahmoud, Q. H., Dobosiewicz, W., Swayne D. (2004). Redesigning Introductory Computer 
Programming with HTML, JavaScript, and Java. In Proceedings: SIGCSE '04 Proceedings of the 35th 
SIGCSE technical symposium on Computer science education, Norfolk, Virginia, USA, ACM SIGCSE 
Bulletin. p. 120-124. 

Visnovitz, M. (2017). Szöveges programozási nyelvek a közoktatásban [Textual Programming 
Languages in Public Education]. MA thesis, Eötvös Loránd University, Budapest. 

  



Constructionism 2018, Vilnius, Lithuania 

741 

 

Programming Lessons for Kindergarten Children in 
Japan 

Takeshi Watanabe, watanabe@viscuit.com 
The University of Electro-Communications, LLC. Digital-pocket, Japan 

Yuriko Nakayama, nakayama@uec.ac.jp 
Kagawa-fujimigaoka Kindergarten, Japan 

Yasunori Harada, hakase@viscuit.com 
LLC. Digital-pocket, Japan 

Yasushi Kuno, y-kuno@uec.ac.jp 
The University of Electro-Communications, Japan 

Abstract  
Viscuit is a programming language developed by the one of the author.  Distinguishing feature of Viscuit 
is that the programs are made of pictures only, and no characters are required to understand or make 
programs. This feature makes it possible to experience programming for pre-school children.  Actual, 
LLC. Digital-pocket cooperates with Kagawa-fujimigaoka kindergarten in Japan for regular Viscuit 
classes since November 2015. In this poster, we analyzed children 's programs and videos taken during 
the lessons held for them in 2017. In addition, we took questionnaire on the difference between the 
usual state and the state of the Viscuit lessons of the children to the teacher in charge of each class, 
and examined the features of the programming lesson at the kindergarten. 

Keywords  
keyword; programming for kindergarten; visual programming language; Viscuit  

Preface 

Background 
In Japan, programming education is going to start from elementary school year 2020. As the Ministry of 
Education of Japan states, the aims for programming education in elementary school is not to acquire 
coding skills, but to acquire logical thinking abilities and problem solving skills or computational thinking 
skills (Wing, 2006). As for the programming experiences, children are expected to organize or combine 
primitive actions or symbols to construct the movement they want. As the result of a survey in 2016, the 
number of Japanese private programming classes are increasing, along with the children’s age 
decreasing. Particularly, programming workshops or classes for preschool children are getting popular, 
perhaps parents are willing for their children to be get ready for elementary schools programming 
classes. 

We observed that children who joined full-year lessons during 2016 had apparently changed in their 
programming abilities. And programs made by them became more complex and rich. In this poster, we 
show results from our analysis, along with actual programs made by children.  

What is Viscuit 
Viscuit is a programming language created by Yasunori Harada who is one of the authors, in Japan 
2003 (Harada & Richard, 2003) (Harada, 2010), which is a rule-based visual programming language 
like KIDSIM (Smith, Cypher, & Spohrer, 1994). The most distinguish character of this language is user 
can make program without using any letters or numbers, but only with drawing. On Viscuit, you can 
make programs by putting your drawing on the rules that are similar to glasses (actually we call those 
rules glasses). Right lens of the glasses means “before” situation and left means “after” situation. If you 
put a picture upper on the right lens than picture that is in left, a picture on the stage get to move up 
direction. 



Constructionism 2018, Vilnius, Lithuania 

742 

 

 

Figure 1. How to make program by Viscuit 

Viscuit has a function of sharing program in a group. This 
function is called “Viscuit Land”. Programs created on each 
student’s tablet are gathered at another tablet through the 
network. For example, if the theme of a lesson is “sea”, 
participants will draw something that moves in the sea, make 
drawings move, send network and share programs in a group. 
In kindergarten, we have lessons using group work, not 
individual production. 

Kagawa-fujimigaoka Kindergarten 
Programming lessons are held by kindergarten’ teacher. 
Nakayama, who is also one of the authors, is in charge of 
Viscuit lessons. Initially, the equipment has been brought by 
LLC. Digital-pocket, but then they bought iPad mini more 
than 30 units, also prepared Wi-Fi environment. So now, lesson has been carried out using all 
kindergarten equipment. 

Purpose 

In this research, we will clarify the growth of children that is shown in the continuing lesson of 
kindergarten. Also, clarify what preschool children are learning through programming lessons. 
Specifically, their programs that run in the computer are made as whether or not they wish. Also, we will 
clarify the features and important points of programming practice in kindergarten. 

Research Method 

Subject 
The subjects are 56 children (5 and 6 years old) (28 people, 2 classes). In addition, a teacher in charge 
of each class is conducted a questionnaire survey on the state of the child at the end of each lesson. In 
the questionnaire, we asked the teacher how different between the child 's usual state and the state of 
the programming lesson, and who shows characteristic behaviour in the programming lesson. 

Content of Lessons 
There are some challenges for children to study advance programming every lesson. One lesson is 40 
minutes. Lessons consist of three parts. Two practice tasks are carried out in the first half, and a free 
program production concerning those tasks follows. In the practice tasks, we prepare pictures for 
children to focus on their tasks. In the free production time we let children draw as they like unless it 
has relation to the task. Lastly, we have recital time that we appreciate what they make in groups on the 
screen like Figure 2. 

On the other hand, it was found that even if the level of lesson did not raise every lesson, it could be 
enjoyed enough just by changing the picture of the practice. So, some important parts of programming 
are repeated again and again by changing the picture to fix the study without progress. 

Figure 2. Recital time by watching 
“Viscuit Land” 



Constructionism 2018, Vilnius, Lithuania 

743 

 

The layout of the classroom is like Figure 3. In this layout there are clearly separate "teaching space" 
and "production space". And by only placing the tablets in "production space" and do not allow children 
to bring tablets in "teaching space", we can make children listen to what the teacher says in the "teaching 

space". When the teacher teaches 
something to children, they are 
gathered in “teaching space”, and 
after they listen what they should to 
do, then go “production space”. This 
will allow children who cannot 
concentrate when the tablet is in 
front of them make concentrate on 
what the teacher says. This way of 
going and coming is only done at the 
time of the practice. When they work 
on free program, they remain 
“production space” and focus on 
what they want to make.  

 

 

 

 

 

Analysis 

Analysis of program 
From programs saved at each time, we counted the number 
of works saved, the number of pictures drawn, the number 
of pictures on the stage, the number of glasses. And we told 
whether those glasses were valid or not, whether the 
direction of drawings and movement matched and whether 
the task and the movement of the pictures they made 
matched. 

Analysis of video 
I felt it difficult to understand what the children were learning 
with only quantitative data of programs. Therefore, we 
executed video research. We chose 4 characteristic children 
and shot and analyzed the situation of free tasks in video. 
As a result of observing the video, it turns out that each of 
the four people shows different changes and attitude. 

Inquiry of teachers 
Regarding the questionnaire of each class teacher, we got a glimpse of the difference between the 
ordinary activity of the children and the programming lesson using Viscuit. In the free description of 
questionnaire the following comments came out. ”Children's aggressiveness is high.” “I think in this 
lesson we provide a different experience from the drawing on paper.” “  I was surprised that they had 
been able to maintain their concentration for 40 minutes.” These are suggesting hints to clarify the 
features of programming lessons at kindergarten.  

Figure 4.  Lesson in kindergarten. 
Children make programs with their fingers.  

Figure 3. The layout of the classroom 



Constructionism 2018, Vilnius, Lithuania 

744 

 

Conclusion 

Now we have done analysis of the program of 9 children during May to July. As a result, 70% of children 
shows that a program that they made consistent with the tasks. In addition, we found that even if 
practicing tasks are completed in the lesson, children might start doing other challenges on the same 
stage and destroy previous program after they completed tasks. So, we could not understand whether 
they understand when they tried to practice tasks. Therefore, it necessary to take screenshots during 
lessons to check whether they manage to do tasks.  

By observing each person about the video, we felt the possibility of being able to grasp the change of 
each person that cannot be found by program observation alone. Thus, we felt the possibility to grasp 
what kind of changes caused through programming lessons by combining log of program and 
observation of each person by video research. 

References 

Harada, Y. (2010). Computer Programming Education Using the Visual Programming Language Viscuit. 
NTT Technical Reiew , 8 (11), 1-5. 

Harada, Y., & Richard, P. (2003). Fuzzy rewriting: soft program semantics for children. Proc. of the 2003 
IEEE Symposium on Human Centric Computing Languages ans Enviroments , 1 (1), 39-46. 

Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: programming agents without a programming 
language. Communications of the ACM , 37 (7), 54-67. 

Wing, J. M. (2006). Computational Thinking. Communications of the ACM , 3 ed.:, 33-35. 

 

  



Constructionism 2018, Vilnius, Lithuania 

745 

 

A Practical Report on a Programming Course with 
“Making” Using Micro:bit 

Aoi Yoshida, aoi@si.aoyama.ac.jp 
Kazunari Ito, kaz@si.aoyama.ac.jp 
Kazuhiro Abee, abee@si.aoyama.ac.jp 
Aoyama Gakuin University, Japan 

Abstract 
We design and practice hands-on course aimed at acquiring problem solving skills and thinking skills in 
programming through physical computing based on constructionism. We held 15 weeks classes, and 
there were 28 students who are third-year or fourth-year in this course. This course provided to make 
products with micro:bit using digital fabrication and physical computing. This poster describes the course 
content and students' final products. 

    

Micro:bit (Left)   Class scenery of this course (Right) 

Keywords 
physical computing; making digital fabrication; programming education 

Introduction 

We design and practice hands-on course aimed at acquiring problem solving skills and thinking skills in 
programming through physical computing based on constructionism. While previous studies have found 
that physical computing can be effectively incorporated into K-12 programming education, we believe 
that it can also contribute effectively to university education.  

At Aoyama Gakuin University in Japan, we offered a course titled “General Practice in Information 
Science”. An objective of this course is to acquire knowledge and skills listed below: 

 knowledge about sensors and actuators 

 skill of controlling sensors and actuators by programming 

 knowledge about technologies to constitute IoT 

 skill of realizing own idea using information technology 



Constructionism 2018, Vilnius, Lithuania 

746 

 

For this purpose, we employed a method of learning by “making.” Students learn by making what they 
want to make. Lectures did not give students too much instruction. 

Research question of this practice is to clarify what kind of knowledge and skill students acquire through 
this course. 

Practice Outline 

Participant 
This course was offered in the second semester. There were 28 students who are third-year or fourth-
year in this course. Most of them are studying programming (Java, Visual Basic, and Scratch). However, 
because of our multidisciplinary department, some students are not so good at programming. There 
were 2 instructors and 1 TA(teaching assistant, a graduate student). 

Hardware and software 
We used micro:bit, a an ARM-based embedded system designed by the BBC for use in computer 
education in the UK. Micro:bit equips accelerometer and magnetometer sensors, Bluetooth and USB 
connectivity, a display consisting of 25 LEDs, and two programmable buttons. There are some coding 
editor. We mainly used the JavaScript block editor on the web browser. ( https://makecode.microbit.org/ 
) On demand, students switched coding editors from block to text, and switched coding editors from 
JavaScript to Python. We rented “micro:bit box” to each student in order to use it freely outside the 
school hour. There are a micro:bit, a valuable resistor, a buzzer, a USB cable, and five cables with clips 
in the box. 

  

Figure 1. Micro:bit box that we rented (Left)  Programming editor on the web (Right) 

  

https://makecode.microbit.org/


Constructionism 2018, Vilnius, Lithuania 

747 

 

Course content 

Table 1. The course content and activities 

Phase Class Content Activities 

1 

1 
Basic of programming using micro:bit 
(except electrical work) 

- Self-study on a text websites 

- Make a program freely 

2~4 
Basic of programming using micro:bit 
(with electrical work) 

- Hands-on practice 

5~6 Making (Individual work) - Develop a product 

7 Presentation - Show-and-tell 

2 8 Digital fabrication 
- Design 3D model for micro:bit case 

- Print out it on a 3D printer 

3 

9~13 Making (Group work) 
- Think of creative ideas 

- Develop a product 

(12) Intermediate presentation 
- Show-and-tell 

- Peer review 

14 Interactive presentation 

- Show-and-tell each other 

- Invest virtual money for favorite  
products in crowd-funding style 

15 Award and review  

Students’ Final Products 

All teams could develop and present their products, and most of them used CS technology other than 
what we taught in phases 1 and 2. Students’ final products listed below: 

 Shooting monsters game 
 Music box 
 Detector people entering the room 

o BLE communication, machine learning, various sensors, server-side programming 
 Hourglass 

o BLE communication, 3D printing 
 Savings box 

o servo motors, handcraft, structure 
 Lier checker 

o electric resistance 
 Remote cat feeding machine 

o Raspberry Pi, web camera, various sensors, server-side programming, laser processing 
 Wake up device 

o a servo motor, handcraft 
 Automatic switch press machine 

o BLE communication, various sensors 
 

We introduced two examples of students’ final products. 



Constructionism 2018, Vilnius, Lithuania 

748 

 

Shooting monsters game 
This is a shooting game by Unity like an arcade game. When monsters appear, a player shoots them 
using a controller like a model gun. There is a micro:bit on the head of the gun. It is sent the value of 
inclination sensors from micro:bit to PC by serial communications. On the PC, a targeting is controlled 
using the received value. 

This group made it consists of three students. Students1 made a controller by 3D printing(Figure 2). 
Student2 made a program on the PC side by Unity. Student3 made a program on the micro:bit side by 
Javascript (block editor).  

    

Figure 2. Shooting monsters game 

Music box 
This is a box that plays music by cooperating with multiple players. All players touch the objects of heart 
made by aluminum with one hand, and touch the aluminum buttons with other hand. And then, they can 
play one sound. It uses the electric resistance value from micro:bit. 

This group made it consists of three students. They did all the work together. 

   

Figure 3. Music box 

The videos of this course and students’ final products are available at https://goo.gl/za13nY .(only in 

Japanese. English version is to be prepared.) 

Results 

Students’ final products show that each students acquired in a different knowledge and skill. We think 
that this is because the necessary knowledge is different when making what they want to make. 

After all classes, we conducted questionnaires about this course. All the students except one were 
satisfied with this course, and also wanted to continue “making” and programming.  

Moreover, we asked students to evaluate achievement for objectives of this class on five-grade. 

https://goo.gl/za13nY


Constructionism 2018, Vilnius, Lithuania 

749 

 

 Q1. Can you understand the structure of various sensors? 
 Q2. Can you acquire how to control with micro:bit? 
 Q3. Can you understand technologies to constitute IoT? 
 Q4. Can you realize your own idea? 

 

Figure 4. the result of students’ self-assessment 

Figure 4 shows that most of all students achieve an objective of this course by themselves though 
lectures did not give students too much instruction. 

According to free description in a questionnaire, a lot of students answered that they thought deeper 
and participated in classes more aggressively than usual.  

As future work, we plan to improve this course content more effectively. We also plan to expand target. 

References 

Papert, S.(1977) A Learning Environment for Children. Computers and Communication: Implications for 
Education. New York, Academic Press, p. 271-278. 

Papert, S. (1980) Mindstorms, Children, Computers, and Powerful Ideas. Basic Books, Inc.  

Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity through Projects, Passions, Peers, and 
Play. MIT Press. 

Sylvia, L.M., Stager, G. (2013) Invent to Learn: Making, Tinkering, and Engineering in the classroom. 
Constructing Modern Knowledge Press. 

  



Constructionism 2018, Vilnius, Lithuania 

750 

 

An Experimental Exploration of the Development of 
Design Thinking in University Maker Courses 

Jinbao Zhang, Zhangjb@bnu.edu.cn 
Beijing Normal University, Department of Education, China  

Abstract 
At present, Maker activity in colleges and universities rarely appears in the formal curriculum, and most 
of them exist in makerspace, training activity of entrepreneurship. In the research, we design a new 
undergraduate course named as 3D Printing and Maker Education, including two parts: (1) the 
application instruction about the technologies of 3D printing, 3D software, Arduino and APP Inventor; 
(2) design thinking based innovative and creative design practice. In the process of the curriculum, the 
author does some observation and interview. The primary findings include the design thinking 
application level in creating scenarios and formation, the bottlenecks and obstacles encountered in 
various stages of design thinking. 

Keywords 
design thinking; maker; curriculum design; instructional design 

Introduction 

The Maker Movement and Maker Space, which have risen in recent years, have won recognition and 
attention from most people as a new educational phenomenon (Li et al., 2016). In universities, there is 
little research conducted in the form of a just-in-time and formal course. Whether this kind of education 
idea is suitable for the university curriculum implementation model, what problems will exist, how to 
design to play the value of such a teaching concept for students, are the starting point of this study.  

Design is a purposeful behavior that requires creativity and innovation (Liu, 2015). The process of 
design thinking is a combination of divergence and concentration of thought (Lawson, 2005). Design 
thinking contains deep insight into the target group and efficient prototype testing, making the proposed 
solution more effective, far beyond the traditional hypothetical thinking. Besides, the emphasis on design 
thinking is to activate students' original thinking and expression methods, emphasize the cultivation of 
creativity and individuality. As it is closer to the essence of design education, it is "teaching for creativity" 
to become one of the main objectives of higher education teaching and has high educational values. 
Therefore, it is necessary to take "design thinking" in the design and creation process as the primary 
objective of the practical curriculum. 

Based on the analysis of the idea of creating customers and the characteristics of undergraduate public 
elective courses, the researcher proposes an innovative curriculum that takes design thinking as the 
primary educational goal. With a relatively flexible teaching arrangement, through the implementation 
of the concept of "genius hour" (Liu, 2016), the undergraduate course at Beijing Normal University 
named as 3D Printing and Maker Education is practiced to study whether students’ design thinking can 
be well developed. 

Research design 

Given many students and the limited learning time, curriculum designers have thought that the core 
goal of this course is to "design thinking education under the guidance of creating for customers" rather 
than merely learning kinds of tool. Then researchers developed curriculum modules, teaching 
processes, and lesson schedules. The teachers at each stage are not the researchers themselves. It is 
beneficial to avoid the influence of the subjective approach of the researcher on the research and 
guarantee the objectivity of the study. 



Constructionism 2018, Vilnius, Lithuania 

751 

 

Research hypotheses 

This study proposes the following hypotheses: 

1) Design thinking as a guiding method is more conducive to designing innovative courses than 
previous teaching methods; 

2) After the course, students can master 3D printing, open source hardware, open source software, 
and other standard maker tools and software, as well as a complete set of solutions to problems (design 
thinking); 

3) Compared to traditional curriculum, this kind of teaching arrangement based on the theme of 
maker activity can be more favoured by students. 

Research methods 
To collect enough procedural data, this study adopts an educational observation method to record the 
entire process of class (teacher’s instruction methods, teacher-student interaction process, and 
responses of most students). Students are interviewed after class. The research data collection tools 
are shown in the table 1. 

Table 1. Data Collection methods 

Data collection methods Dimensions 

Classroom Observation Teacher Performance 

Student performance 

Interaction between teachers and students 

Structured Interview Degree of satisfaction of course content 

Satisfaction degree of teaching effect 

Teaching Suggestions 

Self-capacity growth 

Data analysis and key findings 

Findings in classroom observation 
1) By observing the progress of each group's project, it was found that most of the teams had 

"disagreement of work" and "less cooperation". Team building may require teacher intervention. 

2) In the group work, there are crucial problems in their learning: single player working hard without 
cooperating with others, team leader without relying on team member, more time to catch up and less 
to follow the plan, ignoring the actual printing, less logical planning of design thinking and so on. The 
team project may require more attention and guidance during the process of advancement. 

3) But there is still a lot of good news: liberal arts students (Chinese, art, calligraphy, etc.) have a 
lot of creative ideas and some have gotten the supported by schools; students are enthusiastic and 
passionate, if they are supported and continue to be payed attention, students will come to the 3D 
Printing laboratory every day; young students have strong learning ability, they can master the 
knowledge quickly.  

Structured interview conclusions 
After the course is over, one-on-one interviews will be conducted with students in class. The following 
aspects need to be focused on: 

1) Not all modules have gotten students’ confirmation. students are deeply impressed by the 
following courses: First-course "Introduction to 3D Printing and Maker Education", the sixth-course 



Constructionism 2018, Vilnius, Lithuania 

752 

 

"Mixly Maker Education", and the seventh course "General "Application of 3D printing technology in 
technology courses" and the eighth course "APP Inventor". 

2) The great reaction is that the curriculum is too fast. There are too many contents of the seven 
courses, and the time may be insufficient to be completely digested.  

3) At the knowledge level, all students have a deeper understanding and unique understanding of 
3D printing knowledge, open source hardware categories and principles, and app mobile terminal 
development; 

4) Regarding core concepts, most of the students have a deeper understanding of the spirit of the 
Maker Movement which has promoted their practice in action. And in the final interview, we learned that 
apart from the group project, almost all students have things they want to make; 

5) In the aspect of improvement of design thinking ability, almost all students can combine and 
complement one of their core concepts (user thinking, empathy) and the feature of maker (customer-
oriented thinking makes them more targeted, continuous improvements) have a clear understanding; 

6) Most students can recognize one of the core concepts of design thinking, but only a small part 
of these tools can be used proficiently (for example, in the development of group activities, the "plan 
assessment diagram"). Most of the tools can be used to eliminate small components and obtain a unified 
opinion. Many tools cannot be applied in actual activities. 

Conclusion 

Although it is trial and experiment, it also can get some inspiration for the future research and instruction: 

1) The full range of design thinking tools is not required for every project. For example, the "user 
feedback" tool for Empathise. Since almost all student projects are modelled on real-world scenarios 
rather than actual projects in real society, the actual curriculum, and after-school activities are mostly 
substituting team members for playing customer roles in different situations to observe customer needs.  

2) The application environment of some design thinking tools is relatively complex and not easy to 
master. A set of tool theory in precision manufacturing and quality control needs to be combined with 
the “brainstorming” method in order to be mastered. There are not many environments that need to be 
used and skilfully used in student projects. 

3) Some of the design thinking tools have similar functions to each other. For example, the "priority 
chart" and "plan assessment chart" can compare and evaluate different programs. 

For this course, we did not adopt a task-driven but fully open curriculum model. Students' performance 
was smooth after initial exposure to confusion, repeated selection of project plans, and selection of 
directions. The lecture-style teaching mode that is different from the ordinary course teaching mode is 
adopted. After the interview, most students will compare with the ordinary course how much they have 
learned the specific knowledge in the classroom. For example, if there are seven groups or less 
feedback did not learn or master three-dimensional design software, open source hardware, and App 
Inventor. This is not consistent with the goal of this course, which mainly aims at cultivating students' 
design thinking ability. How to improve it still needs further study. 

References 

Li X., Gao H., Zou J., & Wan K. (2016). Changes of STEAM Education to Maker Education in the 
“Internet+” Background - from project-based learning to the development of creative abilities. Journal of 
Distance Education, (5), 28-36. 

Liu Jing-wei (2013). Design Thinking. Beijing: Chemical. Industry Press. 

Liu, L. (2016). Inquiry and innovation in the classroom: using 20% time, genius hour, and PBL to drive 
student success. Innovations in Education & Teaching International, 10(1), 472-472. 

Lawson, B. (2005). How Designers Think: the design process demystified (4th ed.). London: The 
Architectural Press. 



Constructionism 2018, Vilnius, Lithuania 

753 

 

Panels / Workshops / Demonstrations / 
Working groups 

  



Constructionism 2018, Vilnius, Lithuania 

754 

 

Panels 
Constructionism across Cultures: Commonalities 
and Differences of Constructionist Implementations 
around the World 

Paulo Blikstein, paulob@stanford.edu  
Stanford University, USA  

Abstract 
The goal of this panel is to bring together scholars from around the world to discuss commonalities and 
differences amongst implementations of constructionist projects in different countries. Seymour Papert 
himself refused to precisely define what constructionism was, which opened up the possibility of local 
contextualization and definition by scholars and practitioners. The papers in this symposium analyze 
how constructionist theory was used, defined, and implemented within rich cultural contexts, discussing 
particular characteristics that might have emerged as a result of the combination of local educational 
practices and philosophies and constructionist theory. 

Keywords 
Constructionism, cultural context, implementation  

Constructionism at Scale 

Celia Hoyles, c.hoyles@ucl.ac.uk 
Richard Noss, r.noss@ucl.ac.uk 
University College London, UK 

Yasmin B. Kafai, kafai@upenn.edu  
University of Pennsylvania, USA 

Kylie Peppler, kpeppler@indiana.edu 
University of Indiana, USA 

Deborah A. Fields, Deborah.Fields@usu.edu  
Utah State University, USA 

Nathan Holbert, holbert@tc.columbia.edu 
Teachers College, Columbia University , USA 

Abstract 
Constructionist designers have used new technologies to engage leaners in rich opportunities to build 
personally meaningful artifacts for decades. In recent years, new technologies have brought these 
experiences to large numbers of learners in distributed places. In this symposium we bring together 
expert designers and scholars that have successful developed constructionist innovations using 
emerging technologies in a range of domains and have brought these innovations to scale. In a panel 
discussion format, participant highlight key challenges for scaling constructionist design and discuss 
how these tools and environments evolve as the community of learners increases by orders of 
magnitude. 

Keywords 
programming; construction; making; mathematics; scale  



Constructionism 2018, Vilnius, Lithuania 

755 

 

Inside the Trojan Horse – A Discussion Among the 
Next Generation of Constructionists  

Sylvia Martinez  
Constructing Modern Knowledge, USA 

Abstract 
“I think the technology serves as a Trojan horse all right, but in the real story of the 
Trojan horse, it wasn't the horse that was effective, it was the soldiers inside the 
horse. And the technology is only gong to be effective in changing education if you 
put an army inside it which is determined to make that change once it gets through 
the barrier...  

Just 100 years ago, John Dewey was saying things about educational change, not 
very different from what I believe in. He couldn't get very far. And the reason why he 
couldn't get very far is that he had only philosophical arguments. He didn't have an 
army. You must have an army, and it's an army primarily of children and the adults 
also are a political force in this.” (Papert 1999) 

This discussion, comprised of practicing educators from around the world, will address personal 
challenges and triumphs bringing constructionism to life on a daily basis. Examples of classroom 
practice, student projects, professional development, and strategies for sustaining constructionism will 
be shared.  

The panelists:  

 Sylvia Martinez – President, Constructing Modern Knowledge (moderator)  

 Amy Dugré – Director of Technology, Innovation, and Curriculum: Dusseldorf International 
School, Germany 

 Angela Lombardo – MalpighiLaB & CoderDojo Bologna, Bologna, Italy  

 Susana Tesconi - Lecturer and researcher at Department of Information Technology /UOC/ 
Universitat Oberta de Catalunya DARTS/Interdisciplinary research group in arts, technoscience 
and society, Barcelona, Spain  

 Tracy Rudzitis – Faculty, Constructing Modern Knowledge, USA 

 Brian C. Smith – Computing & Learning Technology Teacher: Hong Kong International School, 

Hong Kong 

 Jaymes Dec – Fab Lab Integrator: Marymount School, New York City, USA 

Papert, S. (1999). "Ghost in the Machine: Seymour Papert on How Computers Fundamentally Change 
the Way Kids Learn." Interview of Seymour Papert by Dan Schwartz. 

Keywords 
constructionism, Logo, Seymour Papert, Scratch, physical computing, coding, teacher education, 
fabrication  



Constructionism 2018, Vilnius, Lithuania 

756 

 

Workshops 

WS1: The Essence of Programming at School – 
Learning for Life 

Jacqueline Staub, Jacqueline.staub@inf.ethz.ch 
ETH Zurich, Switzerland 
Pädagogische Hochschule Graubünden, Chur, Switzerland 

Abstract 

School is responsible for priming and preparing pupils such that they develop a deep understanding of 
technology. Computer science education serves a vital role in fostering algorithmic thinking and problem 
solving skills, as exemplified by programming. This form of learning is constructive, enriches creativity 
and teaches precision. We have been introducing primary school pupils and their teachers to 
programming in Logo for more than a decade and thousands of children across Switzerland have 
learned to program using our curriculum and purpose-built programming environment. In this workshop, 
we give insights into how our curriculum guides pupils to progress individually and how we make pupils 
building up competence by recovering from their programming errors autonomously. This workshop 
caters towards educators and people interested in how to introduce computer science to novices. 
Participants gain practical insights into our curriculum and discuss its didactic structure. 

Keywords 
algorithmic thinking; constructionism in novice programming; Logo; spiral curricula; modular design; 
debugging; syntactic errors 

Materials Provided 

In this workshop, participants will be given the opportunity to learn about our approach of teaching 
algorithmic thinking to novices by actively programming in Logo. Workshop attendees will solve selected 
exercises from our curriculum at a computer and later discuss the thought processes children go 
through. One major theme of discussion is the role of errors; we claim that children who learn to recover 
from errors autonomously gain higher confidence and a deeper understanding for core computer 
science concepts.    

Participants will be enlightened with the core design ideas behind our curriculum involving the concepts 
of repetition, modular design and parametrization as a preparation for variables – all neatly woven in a 
spiral curriculum. 

 

Figure 1.  Example of an introductory exercise from the chapter on regular polygons and circles 

Exercises will address: 



Constructionism 2018, Vilnius, Lithuania 

757 

 

 A basic instruction set used for drawing lines, rotation and moving a turtle 
 A simplified looping construct which does not make use of variables 
 A mechanism to extend the language by introducing new commands and nesting them to 

solve more complicated exercises 
 Generalizing solutions to existing problems by parameterizing custom commands 

 

 Figure 2. Drawing polygons with custom side lengths and number of sides 

Resources: 

Both programming environment and curriculum are freely available online in various languages. They 
can be downloaded from http://www.abz.inf.ethz.ch/logo 

Agenda 

1. Introduction: A decade of introducing a programming curriculum at Swiss schools 
2. An Example: Algorithmic thinking as a problem solving strategy – a linguistic view 
3. Our approach: Problem decomposition and an iterative refinement of solutions 

i. Theory: Why use modular design in the first place? Implications on the cognitive development 
of novice programmers 

ii. A practical example: From squares to circles 
4. Hands-on: Our curriculum illustrated 
5. Conclusion: Our approach introduces children to algorithmic thinking, a skill for a lifetime 
6. Plenary Discussion: Participants ask questions on the matter of experiences, setup in schools, 

limiting factors, typical errors and debugging strategies 

Biography 

Jacqueline Staub is a second-year PhD student in didactics of computer science at ETH Zurich and a 
researcher at the STEM-Research-and-Services division at Pädagogische Hochschule Graubünden - a 
university of education based in Chur, Switzerland. She works on the topic of how to introduce pupils to 
algorithmic thinking and enabling them to progress autonomously. Seven years ago, she joined the 
group as a student and henceforth acted as a Logo teacher in many primary and lower secondary school 
programming courses. She completed her studies in Computer Science at ETH Zurich and, furthermore, 
graduated the teachers’ education program. In her Masters’ thesis she developed XLogoOnline, a 
programming environment for novices which is tailored around the curriculum we present and use in 
this workshop. Lately, her main focus lies within finding a model to identify the struggles pupils go 
through while programming and how to counteract these struggles by providing additional help through 
the programming environment. 



Constructionism 2018, Vilnius, Lithuania 

758 

 

References 

Heidi Gebauer, Juraj Hromkovic, Lucia Keller, Ivana Kosírová, Giovanni Serafini, and Björn Steffen. 
Programming in LOGO (Status as of March 18, 2018). http://abz.inf.ethz.ch/wp-
content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_en.pdf. 

Hromkovič, J., Kohn, T., Komm, D., & Serafini, G. (2016). Examples of algorithmic thinking in 
programming education. Olympiads in Informatics, 10(1-2), 111-124.  

Hromkovic, J., Kohn, T., Komm, D., & Serafini, G. (2017). Algorithmic thinking from the start. Bulletin of 
EATCS, 1(121). 

Hromkovic, J. (2014). Einführung in die Programmierung mit LOGO. Springer Vieweg. 

Serafini, G. (2011, October). Teaching programming at primary schools: visions, experiences, and long-
term research prospects. In International Conference on Informatics in Schools: Situation, Evolution, 
and Perspectives (pp. 143-154). Springer, Berlin, Heidelberg. 

Hromkovič, J., Serafini, G., & Staub, J. (2017, November). XLogoOnline: a single-page, browser-based 
programming environment for schools aiming at reducing cognitive load on pupils. In International 
Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp. 219-231). Springer, 
Cham. 

  



Constructionism 2018, Vilnius, Lithuania 

759 

 

WS2: Developing Body Tracking Software with 
Scratch and Kinect 

Stephen Howell, stephen.howell@ucdconnect.ie  
SMARTlab, University College Dublin, Ireland 

Lizbeth Goodman, lizbeth.goodman@ucd.ie 
SMARTlab, University College Dublin, Ireland 

Abstract 
In this workshop participants will design, develop and test programs that can be controlled with the 
user’s body. The code is developed with a visual programming language (Scratch) and an infrared body 
tracking camera (Kinect).  

Starting with simple, familiar retro games, and a creative art and music performance application 
controlled by keyboard and mouse, participants will learn how to add tracking blocks so prescribed 
movements including individual joint positions, gestures, and stances can be continuously tracked and 
responded to. 

 

Scratch sample code with a spaceship sprite tracking the user’s left hand on the y axis, and tracking the user's 
right hand on the open/closed gesture 

This workshop is appropriate for educators and researchers interested in teaching Computational 
Thinking by having students develop proprioceptive programs. 

Keywords 
visual programming languages; body tracking; proprioception; body syntonicity 

Workshop 
This workshop explores Kinect2Scratch, a hardware extension for Scratch that enables body tracking 
games and applications to be developed simply and rapidly (Howell, 2016). This extension was originally 
developed to enable children learning Computational Thinking code more complex Scratch projects 
using novel input controls. This includes moving their heads, limbs, and making gestures such as 
clapping, jumping, and pointing. This is made possible by adding additional event and reporter blocks 
to Scratch that receive data from an infrared sensor with body tracking capabilities. The body tracking 
data is normalised for the Scratch stage and streamed to the Scratch project continuously. Each new 
block allows the developer to detect, track, and respond to bodily movements of either the closest 
participant to the sensor or up to 6 different users at once. 



Constructionism 2018, Vilnius, Lithuania 

760 

 

 

The Kinect2Scratch extension blocks 

Format 
The workshop format will be interactive and include an initial demonstration of how the body tracking 
Scratch programs are developed, including a simple retro game and creative art and music performance 
program. No prior knowledge of Scratch is required but familiarity with a visual programming language 
would be useful. The samples will be ‘live coded’ to explain the reasoning for their inclusion and not 
presented as previously completed samples. 

Following this, participants will learn how to respond to gestures including Boolean gestures (e.g. is a 
user’s hand open or closed) and complex gestures (e.g. is a user clapping, kicking, or jumping). Based 
on participant suggestions, we will then build a new Scratch program incorporating the gestures and 
movements the audience wants to track. Participants will then be able to test and refine the gestures 
using the workshop sensor. 

Participants 
A typical participant may be interested in teaching Computational Thinking principles or exploring 
syntonic learning. However, several researchers without software development backgrounds have 
published work using Kinect2Scratch to conduct research that required body tracking. For that reason, 
participants who are interested in writing body tracking software themselves but not necessarily teaching 
it to students may find this workshop useful. Participants do not need any special equipment, as the 
Scratch programs will be developed using a sensor and the workshop presenter’s laptop.  

References 

Howell, S. (2016). Kinect2Scratch v3 [Computer software]. Retrieved from 
https://stephenhowell.github.io/kinect2scratch/ 

  



Constructionism 2018, Vilnius, Lithuania 

761 

 

WS3: Group-based Simulation and Modelling: 
Technology Supports for Social Constructionism  

Corey Brady, corey.brady@vanderbilt.edu 
Vanderbilt University, Nashville TN, USA 

Walter Stroup, wstroup@umassd.edu 
University of Massachusetts Dartmouth, North Dartmouth MA, USA 

Tony Petrosino, ajpetrosino@austin.utexas.edu 
University of Texas at Austin, Austin TX, USA 

Uri Wilensky, uri@northwestern.edu 
Northwestern University, Evanston IL, USA 

Abstract  
Through a US National Science Foundation-funded project called Group-based Cloud Computing 
(GbCC), we have created a web-based system for designing and implementing group-centred modelling 
activities on top of the NetLogo Web platform. For the past two years we have been iteratively building 
and testing this system in our own classrooms and in the University of Texas’s UTeach and UTeach 
Computer Science programs. In this workshop, we introduce GbCC to the Constructionism community, 
bringing participants to a point where they can create and publish their own activities. Removing barriers 
to designing one’s own group-based activities, we open up the discussion to engage the research and 
teaching challenges and opportunities for a deeply social form of constructionism. 

Keywords 
collaborative learning; collective learning; generative design; social constructionism; agent-based 
modelling; participatory simulations 

Introduction 

Perhaps the most salient feature of learning in schools is the group-based nature of classroom life; 
however, typical classroom instruction focuses primarily on individual learners, emphasizing 
approaches such as assignment sets of procedural exercises and questioning that follows an initiation-
response-evaluation (IRE) sequence (Mehan, 1980). In contrast, with a generative approach, instructors 
design situations for groups of students to construct relations between stored knowledge, experience, 
and new information (Wittrock, 1991). Using the taxonomy of generative design provided by Stroup, 
Ares, and Hurford (2004), our project uses the “resonant” technological infrastructure of collaborative 
classroom networks to engage learners in generative learning around the core practice of modelling. 
We build upon the broad cross-disciplinary reach of agent-based modelling and the NetLogo language 
and platform (Wilensky, 1999), to support activities in the Social Sciences and STEM disciplines, 
including Computer Science. 

Attempts to “scale up” individual learning approaches fail to capitalize in essential ways on the diversity 
of thinking that can be found in the group. In contrast, our GbCC project aims to use the technological 
infrastructure of collaborative classroom networks to engage learners in generative learning around the 
core practice of scientific modelling. In particular, we aim to support activities in which the in-process 
learning of one’s peers can act as a learning environment to cultivate not conformity and convergence 
toward a single, “right answer” but rather diversity and a collective exploration of the space of possible 
ideas. 

In the GbCC project, we connect innovative approaches to computational and participatory modelling 
to theoretical roots in Constructionist thought. In addition, the project is creating detailed analyses of 
activity designs and implementations fostering authentic STEM practices in group-centred learning 
environments, as well as nuanced studies of high-leverage teacher “moves” and strategies within such 



Constructionism 2018, Vilnius, Lithuania 

762 

 

environments. This workshop offers a hands-on introduction to the ideas of generative and group-
centred design that have inspired GbCC, and our plan for the session is driven by the goal of inviting 
attendees into the group-centred discussion and enabling them use the technology to express their own 
ideas for activity designs. 

Workshop objectives 

The workshop will be of interest to participants who engage with learners at middle-school, high-school 
and university levels. A projector for the facilitator is required, and all participants need internet-
connected computers. Thus, having a few extra computers available would be highly desirable. By the 
end of the workshop, our intention is for every participant to have created their own GbCC activity and 
either made it “live” on their personal (new or existing) Heroku account, or sent the activity to the 
workshop facilitators to publish it on the GbCC project’s Heroku account. We choose this objective in 
part to ensure that participants take away something concrete and useful, and in part to demonstrate 
that we have achieved the goal of making social constructionist learning as simple to support 
technologically as activities that do not offer group-centred collaborative supports. Of course, success 
here then allows us to turn attention to the challenges of adopting group-centred pedagogies and 
designing activities that make effective use of the group. But this is a challenge we welcome and where 
we have also made headway, as we will illustrate through brief experiences of several “genres” of group-
centred activities that we have identified. (This is not an exhaustive list of genres the project has 
explored.) 

Genre 1: Exploring Together. A common pattern in classroom agent-based modelling instruction is to 
explore the “parameter space” in an existing model by changing the values of key inputs to the 
simulation. Key goals of such activities are to investigate the range of behaviours the model can exhibit 
and to determine how sensitive these behaviours are to changes in the model’s parameters. However, 
with NetLogo and NetLogo Web alone, it is difficult to bring different students’ discoveries together in 
an aggregate display of the class’s exploration, to facilitate group discussion. With GbCC, any NetLogo 
model can be converted easily and deployed as a group exploration activity. Each student can publish 
her findings to a shared “Gallery,” which can permit others to see and also repeat (to examine and/or 
verify) the findings that she has published. “Going public” in this way with in-process findings has been 
shown to enhance classroom learning in agent-based modelling and to help identify emerging themes 
in group exploration (Brady et al, 2015). 

Genre 2: Constructing Together. Whether as an introduction to the NetLogo language as an 
expressive medium, or as a means of identifying and exploring the impact of design choices in modelling 
a particular phenomenon, GbCC can be used to open a space for a classroom group to rapidly create 
and share “snippets” of NetLogo code that can define agent or model behaviors in a way that supports 
radical remixing and collective construction. For instance, in an activity we have called “IntroButtons,” 
learners are given an array of buttons that allow beginners to NetLogo code to explore Turtle Geometry 
collectively. By producing “something beautiful” on the screen, they begin to explore what turtles and 
patches can do. On publishing to the Gallery, learners share the graphic results of their explorations as 
well as text-based code representations of the command sequences that produce these results. Sharing 
these personally meaningful objects helps the classroom group to make the move to text-based coding, 
together. For more advanced groups, similar activities to IntroButtons can invite learners to create 
varying implementations of a particular agent behaviour and help the classroom to “think together” about 
modelling and code representations of phenomena they are studying. 

Genre 3: Participatory Simulations. Since its earliest releases, the NetLogo platform has incorporated 
the HubNet architecture (Wilensky & Stroup 1999a) as a technological support for a genre of group-
centred modelling activities called Participatory Simulations, or PartSims (Brady et al, 2017; Colella, 
2000; Colella, Borovoy, & Resnick, 1998; Wilensky & Stroup, 1999b; Klopfer, Yoon & Perry, 2005). The 
GbCC system also provides support for PartSims, and it removes many of the implementation barriers 
that past research has encountered with these activities, by being fully web-based. Any browser-capable 
device (including cell phones, netbooks, and single-board computers, as well as tablets and laptops) 
can participate in GbCC activities over the standard HTTP network connection permitted by almost all 
school networks. Moreover, the GbCC’s constructs of activity “Rooms” and the role of “Room Creator” 



Constructionism 2018, Vilnius, Lithuania 

763 

 

(which can be filled by the teacher or even by a student small-group leader) makes setting up and 
running a PartSim as easy as following a link and giving the new Room a name. These technical 
innovations have come out of a decade of design research on making HubNet activities more feasible 
for real classroom implementations, and they have also radically broadened the design space for 
PartSims allowing us to engage, for instance, with in-and-out of classroom activities and activities 
involving data collection and the Internet of Things (IoT). 

Genre 4: “Fish Tank” and “Program to Participate” Simulations. A common thread between agent-
based modelling in general and PartSims in particular is that they offer opportunities for social structures 
and interaction patterns of the classroom to be mapped onto structures and agent-interactions in the 
phenomena being modelled (Stroup, Ares, Hurford, & Lesh, 2007; White, Brady, Huang, & Stevens, in 
press; Wilensky & Stroup, 1999b). This enables groups to identify a social syntonicity (Brady, Weintrop, 
Anton, & Wilensky, 2017) in their shared modelling work. One approach we have explored to use social 
syntonicity to drive collective modelling has been to identify key behaviours of agents (whether of one 
breed or several breeds), and to create a model similar to a PartSim, but where students’ participation 
consists of contributing the code that their agent  ‘avatars’ will use to execute these behaviours. In this 
way, the traditional PartSim genre can move beyond an activity structure in which learners are immersed 
in a simulation, role-playing agents, to creating behaviours for those agents, which then run collectively. 
We do not see these “program to participate” activities as replacing traditional PartSims; rather they 
foster a different perspective on the emergent phenomena studied in the simulation and they offer 
opportunities for new ways to distribute the expression of model behaviours over the room. Moreover, 
as behaviours can be expressed in multiple agents and multiple agent breeds, the students’ connection 
to the simulation can be varied to exploit resonances with social and group structures. 

Integrating other Representational Infrastructures. While NetLogo Web itself has enabled us to 
support a wide range of activity designs, we have also identified additional representational capabilities 
that are attractive for new GbCC activities. These include a Mapping and Geotagging Interface (using 
Leaflet); a Cartesian and Euclidean environment (using GeoGebra); a Data Modelling interface (using 
CODAP); and a Physics Engine, with force and collision simulation (using Box2d). Extensibility of 
NetLogo Web and the GbCC system allows us to integrate these other open-source, browser-based 
tools. If time permits, we will show how these environments are integrated with GbCC to permit smooth 
interoperation between NetLogo Web and the representations and interactions they support. 

Conclusion 

Cooperative and collaborative learning approaches have long been heralded as a powerful resource for 
educators to use in supporting student achievement (Johnson & Johnson, 2009), fostering dialogic 
interaction and shared meaning-making (Stahl, 2006), and encouraging equitable participation (Cohen, 
1994). Constructionist approaches offer learners environments for engaging authentically with the 
powerful ideas of a discipline, creating personally meaningful artefacts that express their perspectives, 
and their understanding, and their interests (Papert, 1980; Papert & Harel, 1991). Generative design 
bridges the traditions of cooperative and constructionist learning, carefully formulating activity 
environments to achieve 100% participation and to enable the classroom group to accomplish 
explorations and produce insights that the individual members of the group could not accomplish alone. 
Group-based, generative activities can take many shapes, and the GbCC project and system aims to 
provide technological support for a wide range of these. In this workshop participants will learn to create 
their own GbCC activities, and in the process, will engage with some of the important theoretical and 
practical questions of group-based teaching and learning. 

References  

Brady, C., Holbert, N. R., Novak, M., Soylu, F., & Wilensky, U. (2015). Sandboxes for model-based 
inquiry. Journal of Science Education and Technology, 24(2-3): 265-286. 

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez, S., & Wilensky, U. (2017). All Roads Lead to 
Computing: Making, Participatory Simulations, and Social Computing as Pathways to Computer 
Science. IEEE Transactions on Education, 60(1), 59-66. 



Constructionism 2018, Vilnius, Lithuania 

764 

 

Brady, C., Weintrop, D., Anton, G., & Wilensky, U. (2016). Constructionist Learning at the Group Level 
with Programmable Badges. Proceedings of the Constructionism 2016 Conference. 

Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of 
educational research, 64(1), 1-35. 

Colella, V. (2000). Participatory simulations: Building collaborative understanding through immersive 
dynamic modeling. Journal of the Learning Sciences, 9(4), 471-500. 

Colella, V., Borovoy, R., & Resnick, M. (1998, April, 1998). Participatory simulations: Using 
computational objects to learn about dynamic systems. Paper presented at the Computer Human 
Interface (CHI) 1998 Conference, Los Angeles, CA. 

Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social 
interdependence theory and cooperative learning. Educational researcher, 38(5), 365-379. 

Mehan, H. (1980). The competent student. Anthropology & Education Quarterly, 11(3), 131-152. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books. 

Papert, S. & Harel, I. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism 
(pp. 1-12). Norwood, NJ: Ablex Publishing Corp. 

Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge (pp. 451-473). 
Cambridge, MA: MIT press. 

Stroup, W., Ares, N., & Hurford, A. (2005). A dialectic analysis of generativity: Issues of network-
supported design in mathematics and science. Mathematical Thinking and Learning, 7(3), 181-206. 

Stroup, W. M., Ares, N., Hurford, A., & Lesh, R. A. (2007). Diversity by design: The what, why and how 
of generativity in next-generation classroom networks. In R. A. Lesh & J. J. Kaput (Eds.), Foundations 
of the future: Twenty-first century models and modeling. New York, NY: Lawrence Erlbaum. 

White, T., Brady, C., Huang, J., & Stevens, M. (in review). A Distributed-by-Design Approach to 
Supporting Collaborative Learning with Dynamic Mathematics Software. Educational Designer. 

Wilensky, U. (1999). NetLogo (Version 6.0.3) [Software]. Evanston, IL: Center for Connected Learning 
and Computer-Based Modeling, Northwestern University. 

Wilensky, U., & Stroup, W. (1999a). NetLogo HubNet [Software]. Evanston, IL: Center for Connected 
Learning and Computer-Based Modeling, Northwestern University. 

Wilensky, U., & Stroup, W. (1999b). Learning through participatory simulations: Network-based design 
for systems learning in classrooms. Paper presented at the International Conference of the Learning 
Sciences (ICLS), Atlanta, GA. 

Wittrock, M. C. (1991). Generative teaching of comprehension. The Elementary School Journal, 92(2), 
(169-184). 

  



Constructionism 2018, Vilnius, Lithuania 

765 

 

WS4: AI Programming in Snap! 

Ken Kahn, toontalk@gmail.com 
Department of Education, University of Oxford, UK  

Abstract 
We have added new blocks to Snap! for speech synthesis, speech recognition, image recognition, and 
machine learning. These run in a Chrome browser without any extensions or installation. An interactive 
guide has been developed. Twelve sample programs are available. During the workshop participants 
will explore these new blocks. They will have the opportunity to modify the sample programs. Familiarity 
with Snap! or Scratch will be very helpful but not absolutely necessary. While this software can run on 
tablets and smartphones we recommend you bring a laptop. 

More details can be found in the full research paper with the same title in these proceedings. 

Keywords 

Visual programming; machine learning; block languages; Snap!, AI services; cloud services; speech 
synthesis; speech recognition; image recognition;  

 

Speech Synthesis and Recognition 

New Snap! blocks will be explored that build upon the browser’s Web Speech API (Mozilla 2018). The 
most complex of these blocks enables control over the rate, pitch, volume, voice and language of the 
generated speech. 

The Web Speech API also supports speech recognition. New Snap! blocks enable programs to respond 
to speech after it has been recognised. The most complex version enables one to receive partial results 
as speaking is still ongoing. It also supports the specification of the language being recognised. One 
can ask for several alternative interpretations of what was spoken and the confidence the system has 
that they are correct. 



Constructionism 2018, Vilnius, Lithuania 

766 

 

Image Recognition 

There is no web API standard for image recognition. However, many companies provide web-based 
vision cloud services. The new Snap! blocks can send image recognition queries to Google, IBM, or 
Microsoft. While these are commercial services all the providers have free quotas for limited use. In 
addition to being able to obtain image labels and their confidence scores the most advanced Snap! 
blocks provide access to other information these services provide such as locations of faces, image 
properties, and more. 

Machine Learning 

Snap! blocks could be created to use machine learning web services. We, instead, use the tensorflow.js 
library (tensorflow.js 2018) to perform machine learning locally in the browser. This library is able to use 
the GPU (graphics processing unit) to run very fast. Currently the new Snap! blocks are limited to training 
to classify images. Programs using these blocks can interleave training (either from the camera or from 
sprite costumes) and classification of new images. A sample program using these blocks implements a 
Rock Paper Scissors game where players make moves by configuring their hand in front of the camera. 

Conclusion 

Creating AI programs in Snap! can be fun. One can learn about perception and machine learning. And 
one can be creative in making programs that do very impressive and interesting things. 

References 

tensorflow.js (2018) https://togetherjs.com/. 

Mozilla (2018) Speech Synthesis API. https://developer.mozilla.org/en-
US/docs/Web/API/Web_Speech_API.  

  

https://togetherjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API


Constructionism 2018, Vilnius, Lithuania 

767 

 

WS5: Developing Affordable STEM Maker Projects 
with BBC Micro:bits and Microsoft MakeCode 

Stephen Howell, 
Stephen.Howell@microsoft.com  
Microsoft Ireland 

Neeltje Berger, 
Neeltje.Berger@microsoft.com 
Microsoft Research 
 

Peter Heldens, 
Peter.Heldens@microsoft.com 

Microsoft Netherlands Kevin Marshall, 
kevmar@microsoft.com  
Microsoft Ireland 

Clare Riley, Clare.Riley@microsoft.com 
Microsoft UK 

Abstract  
In this hands-on workshop, we will challenge the participants to build 3 projects including wearables and 
other physical artefacts using affordable microprocessors (BBC Micro:bits) and common arts and crafts 
materials.  

 

A typical bill of materials including BBC Micro:bits, batteries, paper plates and cups, crocodile leads, Velcro and 
cardboard coffee cup holders 

Each project was devised by a multi-disciplinary team of teachers and industry educational technologists 
in an initiative to develop free, high-quality resources with a depth of content that could be taught in a 
classroom but breadth of accessibility so that students working at home (without a mentor or educator 
to guide them) could complete the projects.  

Keywords 
constructionism; STEM; computational thinking; inclusive design; teacher training 

Workshop 

Sophisticated tools have become a common purchase for educators wishing to teach Computational 
Thinking, and popular microprocessor and robotics kits are expensive when purchasing for a class. This 
workshop presents 3 constructionist projects that each require just one or two microprocessors (BBC 
Micro:bit) and some cheap maker/electronic components such as LEDs and crocodile leads. A range 



Constructionism 2018, Vilnius, Lithuania 

768 

 

of arts and crafts, including markers, paper plates, cardboard cup holders, and Velcro make up the 
remainder. The development environment used to code the BBC: Micro:bits is Microsoft MakeCode 
(Ball, 2017). These projects were developed by teachers, researchers, and technologists from England, 
Scotland, Netherlands, and Ireland as part of a Maker Champions STEM initiative from Microsoft (Riley, 
2017).  

  

Become a Maker Champion Website and MakeCode snippet showing radio communication 

Format & Participants 
Participants will build a wearable to act as doorbell for a deaf user (and build the doorbell), make a mask 
or holiday decoration, and build a traffic light. This will be a hands-on workshop with minimal coding 
(MakeCode is a visual programming language) but some arts and crafts skills would be useful. The 
expected participants for this workshop are interested in learning about BBC Micro:bits and Microsoft 
MakeCode. 

  

Teachers workshop with arts and crafts enhanced with LEDS to make masks and Christmas decorations 
powered and controlled by BBC Micro:bits and Microsoft MakeCode  

References 

Ball, T. (2017). Physical computing for everyone. 2017 IEEE/ACM 39Th International Conference on 
Software Engineering: Software Engineering Education and Training Track (ICSE-SEET), 3. 
http://dx.doi.org/10.1109/icse-seet.2017.31 

Riley, C. (2017). Digital Skills: Become a Maker Champion [Website]. Retrieved from 
https://www.microsoft.com/en-gb/athome/digitalskills/discover/#maker 

  



Constructionism 2018, Vilnius, Lithuania 

769 

 

WS6: NetsBlox: A Constructionist Environment for 
Creating Distributed Applications 

Brian Broll, brian.broll@vanderbilt.edu 
Vanderbilt University, Nashville TN, USA 

Corey Brady, corey.brady@vanderbilt.edu 
Ákos Lédeczi, akos.ledeczi@vanderbilt.edu 
Vanderbilt University, Nashville TN, USA 

Abstract  
NetsBlox is a collaborative learning environment extending Snap! with carefully-selected abstractions 
that enable students to create distributed applications. It makes distributed programming accessible to 
young learners using simple yet powerful visual programming primitives, an intuitive user interface and 
a sophisticated cloud-based architecture. This workshop introduces the environment and gives 
participants hands-on experience with activities that demonstrate NetsBlox’s utility for creating multi-
player games and client-server applications that access public-domain scientific data sources. Our early 
work using NetsBlox with students suggests that integrating these connected features into learners’ 
early experiences of programming widens their perspective on the role of computation in both inquiry 
and broader social life.  

Keywords 
Block-based programming; visual programming; distributed computing; network programming 

Introduction 

The majority of computer applications we interact with daily are distributed, that is, they involve more 
than one computer to function. The web, texting, Twitter, Facebook, online games, Pandora, Netflix, 
Amazon Echo, Siri, Google Maps and YouTube are just a few of the most popular examples. Self-driving 
cars, home automation and the Internet of Things (IoT) are other prime examples of distributed systems. 
Teaching distributed programming then constitutes both a necessity and a great opportunity. It is a 
necessity because distributed computing is becoming part of basic computer literacy. And it is also an 
opportunity because children already use the technology every day and their natural curiosity will 
provide excellent motivation for them to learn more about it. 

NetsBlox (https://netsblox.org) is an open-source, web- and cloud-based visual programming 
environment that enables users to create distributed applications (Broll et al, 2018). NetsBlox extends 
the widely used Snap! environment building on its JavaScript codebase. NetsBlox supplies simple 
abstractions for synchronization and communication across computers to enable students to create truly 
engaging distributed programs. 

Peer to peer communication in NetsBlox is supported by Messages. Messages are very similar to 
Events already present in Snap! and in Scratch. In NetsBlox, a Message is an Event that contains a 
structured data payload and can be sent to other NetsBlox programs across the Internet. Messages are 
typed and the message type is defined just like custom blocks are. The sent data shows up as 
appropriately named variables on the receiving end. Addressing is simple yet powerful. An example 
message sending and receiving block is shown in Figure 1. 



Constructionism 2018, Vilnius, Lithuania 

770 

 

 

 Figure 1. Sending and receiving messages in NetsBlox 

Remote Procedure Calls (RPC) allow for invoking code that will be executed at a remote location, and 
then (optionally) getting back the results of the computation. From the user’s point of view, RPCs are 
also similar to custom blocks. The main use for RPCs in NetsBlox is making some of the large number 
of publicly available interesting data sets and data-centric web services on the web available to NetsBlox 
programmers. Examples include maps, weather, air pollution, seismic data, astronomic image sets, a 
movie database, stock quotes and many others. Essentially, the NetsBlox server provides a mapping 
between RPCs and the corresponding public web API. Related RPCs, that is, RPCs interfacing with the 
same web API, are grouped into Services. For example, NetsBlox wraps Google Maps into a Service 
providing RPCs for getting maps, satellite images and coordinate transformations. Relying on this 
mapping service, it only takes a few blocks of NetsBlox code to provide a fully navigable map of the 
world as an interactive background.  

 

 Figure 2. Earthquake project using data from Google Maps and USGS with the help of RPCs 

In another example, the project shown in Figure 2 displays historical earthquake events for the 
anywhere on Earth. The code shown is that of the stage: the +/- keys zoom in and out, while the arrow 
keys pan the map. When the map is clicked, the sprite code (not shown, but it is of similar complexity 
to the stage scripts) requests USGS data and displays red dots whose radius is proportional to the 
magnitude of the given seismic event. In this case, the minimum magnitude is set to 6, so only severe 
quakes are shown. Notice that the project only assumes students know variables, if-statements and 
custom blocks from the traditional curriculum. Conceptually, the only challenging aspect is the 
coordinate transformation from x and y stage coordinates to latitude and longitude. But the map service 
provides RPCs for the actual computation. 

NetsBlox also supports collaboration: students can work on a shared project from their own computers 
just like they would collaborating on a Google Docs document. This enables team projects and online 
mentoring. Collaboration support requires keeping a log of all editing events. This log also enables 
unlimited undo/redo as well as providing learners with the means to “replay” the entire history of the 



Constructionism 2018, Vilnius, Lithuania 

771 

 

project creation via a YouTube-like media player interface.  This supports them in reflecting on the 
construction process and enables teachers and researchers to study the process as well. 

Workshop objectives 

The workshop will introduce the environment and give participants hands-on experience with a 
sequence of activities that demonstrate NetsBlox’s utility in supporting middle and high school students 
in creating engaging distributed applications. A projector and Internet access, as well as several spare 
computers would be desirable for running the workshop. Participants may form two-person groups if 
desired and work on the problems together using the collaboration features of the tool. Based on the 
interests of the participants, a subset of the following applications will be included. Though building 
these applications efficiently illustrates important features of the platform in an engaging context, 
workshop participants will be encouraged to consider other constructionist activities that can be uniquely 
supported with NetsBlox.  

Weather app: the program will display current conditions anywhere on Earth. The background will be a 
fully interactive map just like the one in Figure 2. When the user clicks on the map, the sprite costume 
will change to the appropriate weather icon and the current temperature and the name of the closest 
city will be displayed as well.  

Movie app: the program will ask the user for the title of a movie and it will display photos of the three 
leading cast members. This project, just like the weather app, will introduce how to use RPCs in 
NetsBlox. 

 

 Figure 3. The Movie app 

Chatroom: the presenter will create a chatroom server app, while the attendees will create a client that 
sends text messages to the server which it broadcasts to other members of the chatroom. This program 
will illustrate message passing and addressing in NetsBlox. 

Shared Whiteboard: participants will implement a simple two-user drawing program. As one user draws 
by dragging the mouse on the stage, it also sends a list of the mouse coordinates to the other client that 
display the trace and vice versa. To make it more challenging, erasing the board will require a consensus 
of the two users.  



Constructionism 2018, Vilnius, Lithuania 

772 

 

 

 Figure 4. The Shared Whiteboard project 

Mesh Network: participants will form a mesh network where everybody is only allowed to send 
messages to one other person (e.g., right-hand neighbour around a circular table). The goal of the 
project is to be able to send messages to anybody in the room by forwarding messages not meant to 
the given person. This will be a good opportunity to use the built-in visual network debugger of NetsBlox. 

Multi-player game: attendees will select a simple, turn-based multi-player game such as Tic Tac Toe, 
21 Pebbles or Ghost. Participants will have the option to utilize the N-player Game service that provides 
a set of RPCs and messages that facilitate the creation of turn-based games or implement the game 
with custom messages only. 

The last part of the workshop will be a discussion in which the presenters will solicit feedback on the 
design of the environment and what directions its development should take. 

Conclusion 

The distributed programming abstractions in NetsBlox provide access to vast arrays of data on the 
Internet directly in the visual programming environment empowering students to create innovative 
science projects and simultaneously bring STEM concepts into CS education. The ability to create multi-
player games and other engaging networked programs provides increased motivation and encourage 
young learners to be creators and not just consumers of digital entertainment. The workshop will expose 
attendees to the large number of possibilities created by opening the Internet to a block-based 
programming environment via a small set of simple but powerful abstractions. 

References  

Broll, B., Lédeczi, A., Zare, H., Nguyen Do, D., Sallai, J., Völgyesi, P., Maróti, M., Brown, L., Vanags, 
C. (2018) A visual programming environment for introducing distributed computing to secondary 
education, Journal of Parallel and Distributed Computing, ISSN 0743-7315, 
https://doi.org/10.1016/j.jpdc.2018.02.021.  



Constructionism 2018, Vilnius, Lithuania 

773 

 

WS7: The ER4STEM Repository for Educational 
Robotics 

Annalise Duca, annalise@acrosslimits.com  
Angele Giuliano, angele@acrosslimits.com 
AcrossLimits Ltd, Hilltop Gardens, Triq L-Inwkina, Naxxar, Malta  

Sofia Nikitopoulou, sophieniki@ppp.uoa.gr  
Nikoleta Yiannoutsou, nyiannoutsou@ppp.uoa.gr  
Chronis Kynigos, kynigos@ppp.uoa.gr 
University of Athens, Athens, Greece 

Abstract 
Type: Workshop 

Using robotics in education is an engaging method for student motivation towards STEM subjects and 
more. Teachers, educators and researchers who are newly experimenting with the use of robots in the 
classroom are all asking a very similar question. “Where can I find inspiration to introduce 
constructionism in my teaching?”, “What can I do to teach my subject using robotics?” The answer to 
this is “The ER4STEM Repository” which will be full of educational resources, activity plans and 
suggestions for educators. “The ER4STEM Repository” has been underpinned by the basic pedagogical 
theory underlying its’ design in constructionism. This happens through an Activity Plan Template. This 
template is aligned with the Repository and provides a generic design instrument that identifies critical 
elements of teaching and learning with robotics based on theory and practice and is expected to 
contribute to the description of effective learning and teaching with robotics.  

Keywords 
repository; educational robotics; STEM; robots; sharing ideas; collaboration; educational robotics for 
STEM; educational activities; constructionism; OER 

Introduction 

Top EdTech stories are constantly reporting how and why educators need to start educating and 
preparing our kids to be able to tackle future jobs that are already changing in nature. This includes 
understanding how one will have to work with robots and technology in different industries, may it be 
medicine or in manufacturing companies. 

The Educational robotics for STEM (ER4STEM) Project 

The ER4STEM project is an European Funded project, and some of its’ activities are workshops on 
robotics for approximately 4000 students in four countries, evaluation and the development of an 
educational robotics repository to address the needs of the market. 

The Repository 

Different educational repositories already exist, however none of them are focused on providing specific 
educational robotics lesson plans. Further to this, many robotics kits suppliers, promote their robotic kit 
for the use of STEM education, however most of the time, one can only find few examples on their 
website. These are normally not enough for educators for many reasons. One needs to consider that in 
most cases, the educator need to master how to use the robotic kit first before teaching it or using it to 
reach a particular educational goal. Creating activity plans take a considerable amount of time. 
Additional to this, more resources and effort is needed to ensure usability. 

mailto:sophieniki@ppp.uoa.gr


Constructionism 2018, Vilnius, Lithuania 

774 

 

The ER4STEM repository is a user-centred repository and it is based on a pedagogical activity plan 
template which was developed by the University of Athens. The offline version of the activity plan has 
been already used by universities, robotic centers and training centers for the creation of various 
robotics workshops and the refined version is now available as an interactive online repository. 

Accessing the Repository 
The repository is a user-friendly and guided portal that will encourage users to both search for existing 
resources while also sharing their own. The portal can be accessed from repository.er4stem.com. 
Figure 1 shows the landing page for the repository. Users can sign up for a free account using either 
Facebook Single sign-on or using their email address. The portal is available in 7 languages (English, 
Bulgarian, Czech, German, Greek, Turkish and Italian). 

 

 Figure 1.  Landing page for the ER4STEM repository 

The Activity Plans in the Repository 
Logged in and guest users can easily search for different open resources. This can be done with any 
keywords, or else using an advanced search which gives the additional opportunity to the user to search 
by: subject, age and language. All users can share any activity plan via social media, and also download 
an offline version in PDF format. When logged in, users also have the option to mark any activity as a 
favourite, so they can easily find it again later on. 

The activity plans are split structurally in different sections, to ensure ease of use. Each activity plan is 
split in; Outline Information; Objectives and Skills; Artifacts; Who? Where? How long?; Interactions; 
Technology; Learning and Teaching; How To; Assessments; Supporting Materials and Feedback (from 
other users). Simple terminology was used to ensure that even those whose English is not their native 
language, find it easy to navigate and use the repository. 

http://repository.er4stem.com/


Constructionism 2018, Vilnius, Lithuania 

775 

 

 

Figure 2.  ER4STEM Framework on the ER4STEM Repository 

Figure 2 also illustrates how with the use of an interactive diagram, one can visually see where the 
activity plan fits in relation to the ER4STEM framework. 

Submitting an Activity Plan 
Once logged in, users will have the option to create and submit their own activity plans. This process is 
split into 9 different steps. In each step, detailed information is given to the user to ensure that the 
activity plan is written in line with the ER4STEM framework. Our aim for the creation of an activity plan 
into the repository is to find balance between a) a level of abstraction that will make the template 
adaptable to different settings and b) a level of detail that will demonstrate the influence of a specific 
pedagogical approach, it will address the particularities of Robotics and it will augment the affordances 
of the specific robotic kit used in each activity plan. Therefore, when the users create their own activity 
plan they are tacitly and implicitly guided to think as pedagogical expert. This method ensures that the 
pedagogy aspect of the activity plan is not lost, yet at the same time users do not need to be familiar 
with the framework per se to use it as it will guide their input step by step. Some of the fields required 
to create the activity plan include: Learning Outcomes: Subject Related, Skills Learning Outcomes, 
Actions, Relationships, Roles in the group, Support by the tutor/s, Digital Artifacts, Robotic artifact, 
Gender, Age Group, Class Size, Group Size, Grouping Suggestions, Prior Knowledge, Special needs 
and abilities, Environment, Style of Room, Duration, Technology Used, Price per Kit, Programming 
Languages, Technology Needed, Activity Blocks and any Supporting Material.  

When a user fills these fields we ensure that once available, anyone reading the activity plan, can follow 
it and implement the activity plan accordingly in their own classroom environment. All activities 
submitted are reviewed by our team of experts to ensure that the quality is maintained. 

The Blocks 
Activity blocks are a new construct focusing mainly on the practical aspect of the activity plan. Thus, the 
role of Blocks is to help users create activities in the classroom by giving them concrete ideas on the 
section of activity plan “how to”. In several cases, activity blocks are accompanied by relevant 
worksheets that are designed to facilitate the implementation of the activity. Consequently, the activity 
blocks were designed as a result of the first and second year evaluation of the project, aiming to support 



Constructionism 2018, Vilnius, Lithuania 

776 

 

the fostering of creativity, collaboration and reflection and to offer multiple entry points for the activity 
plans.  

 

Figure 3.  Activity Blocks that can be added to the activity plan 

As in figure 3 below, previously used and tried “blocks” are presented to the user, to either arouse 
curiosity or implement as is. These blocks are filtered according to their type. Types found are 
Introductory, Reflection, Assessment, Evaluation, Exploration, Experimentation and Construction.  

The Workshop 

During this 90-minute workshop, we will be doing an introductory session to show how the repository 
functions, following by an interactive session where participants will be brainstorming on activity plans 
that they can create. Participants should ideally have a laptop or tablet during this session. 

Conclusion 

The ER4STEM repository answers a need in the educational market for a simple one stop online shop 
to find teaching materials and inspiration for teachers that want to use robotics in their subjects. All 
materials are open and free of charge, and with constant inputs from the teaching community they will 
continue to increase in number and variety spanning all subjects and ages. 

Acknowledgements 

This work is funded by the European Commission through the Horizon 2020 Program (H2020, 
Grant agreement no: 665972). Project Educational Robotics for STEM: ER4STEM. 

References  

https://www.inc.com/greg-satell/we-need-to-educate-kids-for-the-future-not-the-past-heres-how.html 

http://www.edtechupdate.com/2017/robotics/trends/?open-article-id=7667685&article-title=-robots-are-
coming-for-your-children-&blog-domain=hackeducation.com&blog-title=hack-education 

Papert, S. Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc. (1980). 

Nikoleta Yiannoutsou, Sofia Nikitopoulou, Chronis Kynigos, Ivaylo Gueorguiev & Julian Angel-
Fernandez. "Activity Plan Template: a mediating tool for supporting learning design with robotics". 7th 
International Conference on Robotics in Education, 14-16 April 2016, Austria. 

  

https://www.inc.com/greg-satell/we-need-to-educate-kids-for-the-future-not-the-past-heres-how.html
http://www.edtechupdate.com/2017/robotics/trends/?open-article-id=7667685&article-title=-robots-are-coming-for-your-children-&blog-domain=hackeducation.com&blog-title=hack-education
http://www.edtechupdate.com/2017/robotics/trends/?open-article-id=7667685&article-title=-robots-are-coming-for-your-children-&blog-domain=hackeducation.com&blog-title=hack-education


Constructionism 2018, Vilnius, Lithuania 

777 

 

Demonstrations 
The Relationship between Computer Programming 
and English Language Skills 

Nevin Akcay, nevin.akcay@yahoo.com 
Gumuspala Vocational and Technical High School, Istanbul, Turkey 

Hulya Avci, hulyaavci@beykent.edu.tr 
Beykent University, School of Foreign Languages, Istanbul, Turkey 

Ali Gungor, ali.gungor@bau.edu.tr 
Bahcesehir University, Vice President, Istanbul, Turkey 

Tufan Adiguzel, tufan.adiguzel@es.bahcesehir.edu.tr 
Bahcesehir University, Faculty of Educational Sciences, Istanbul, Turkey 

Abstract 
Computational thinking is a problem-solving method applying computer science techniques and 
encourages programming or coding skills among children. A programming or coding language is a 
special language for describing computation and expressing a set of instructions on what tasks a 
computer needs to execute. There has been an ongoing discussion in the literature whether 
programming languages with a vocabulary of keywords are based on English. However, there is not 
much literature on how computer programming affects other aspects of life beyond the skills acquired. 
In this study, we demonstrated the current literature on the relationship between programming and 
English language skills and the methods of teaching both languages. 

Keywords 
Computer programming, coding, English language skills, learning 

Introduction 

Information technology has gained value and recognition widely in the fields of education, economics, 
health, agriculture, social life and entertainment (Uzunboylu, 2005). In the last few years, with the rapid 
development of information technology in almost all areas, having coding and programming skills is 
expected to become more fundamental than ever for individuals of all sectors in the 21st century 
(Uzunboylu, 2005; Sayin & Seferoglu, 2016). “Today, computer programs are genetic code of our world 
and many educators are starting to think that students need more than a passing knowledge of computer 
coding” (Gow, 2015, p. 20). While the internet continues to expand, computer programming and coding 
continue to play an important role in education (Uzunboylu, 2005; Balanskat & Engelhardt, 2015). 

According to the Grand Coalition for Digital Jobs, there might be a shortage of 900.000 ICT 
professionals in Europe and in the ICT related sectors in the next ten years (Burke, 2013). However, 
over the past year, a number of non-profit organizations have attempted to investigate coding with 
innovative training approaches and looked for people who can write code to meet their urgent needs in 
many workplaces (Sayin & Seferoglu, 2016). In recent years, many governments around the world have 
begun to modify the curriculum in schools to foster the improvement of computational thinking of primary 
and secondary students through computer programming or coding (Moreno & Robles, 2015). The 
purpose of integrating coding into curriculum is to equip students with skills such as problem-solving 
and logical thinking skills that are increasingly crucial within the current digital community (Balanskat & 
Engelhardt, 2015). Additionally, these skills are beneficial not only for computer scientists but for 
anyone, regardless of personal features, interests or profession (Resnick, 2013). The use of computer 
programming in schools as an educational tool to improve learning in other disciplines is becoming 
highly prevalent at all levels of education in many countries (Moreno & Robles, 2015). 



Constructionism 2018, Vilnius, Lithuania 

778 

 

The language used in programming is not understood by an untrained person (Computer Programming) 
In the process of learning coding, people not just learning the coding, but they are also coded to learn. 
In addition to that, they have the opportunity to learn many other abilities, for example, problem solving 
strategies, programming, logical thinking, algorithmic and analytical thinking, and the ability to transmit 
ideas regardless of the programming language selected (Ersoy et al., 2011; Resnick, 2013). “Teaching 
of programming logic is the first and most important phase of programming teaching” (Arabacioglu et 
al., 2007, p. 193). The primary goal is to promote coding rather than teaching and using it as a tool to 
improve other skills (Sayin & Seferoglu, 2016). Factors such as student attitudes and perceptions, 
consistency of selected programming language and aims of foreign language education programs might 
influence students’ success in programming and transfer of skills to other domains (Sayin & Seferoglu, 
2016; Arabacioglu et al., 2007; Ersoy et al., 2011). 

As English is the dominant language, but isn’t a prerequisite, in the IT world, the majority of programming 
languages are based on keywords in English (King, 2015; Basak, 2016), some of which are declarative 
and mark-up languages like HTML and XSLT, and query languages like SQL. Java and C++ are also 
English-based computer programming languages which are provided in introductory programming 
courses in many colleges (Krpan & Bilobrk, 2011). Therefore, many programmers can learn little English 
while studying programming (Basak, 2016). Students who are competent in many subjects are 
sometimes incapable of succeeding at programming. On the other hand, some students who perform 
well in computer programming classes can also become good at English courses (Moreno & Robles, 
2015). 

Most programming languages look like Romaic to an untrained person at first glance (Malan & Leitner, 
2007). Although they have been generated in a rigorous and artificial way instead of naturally evolving, 
they precisely embody linguistic knowledge as well as other features shared with human languages 
(King, 2015). Unless prospective programmers have adequate knowledge about these linguistic 
varieties including the study of meaning (semantics) and sentence structure (syntax) as well as 
terminology in their native language, the complexity of programming increases promptly. As for 
experienced programmers who are quite competent in the first language, their second language 
acquisition must have been easier (Riker, 2010). To illustrate, considering the use of prepositions 
including "from," "through," "to," and so on, COBOL language could be notably similar to English 
language. However, the most legible and English-like language is Smalltalk (Kenneth, 2016). The 
syntax of Smalltalk consists of <object> <message>, where <message> which is a command or 
operator the user sends to an object, which can be anything from numbers and strings to classes and 
code blocks. The <message> can be unary, binary, or keyword, the latter taking on a parameter as 
following:  

renderer: = three WebGLRenderer new. 

renderer setSize: (window innerWidth) height: (window innerHeight) (Kenneth, 2016). 

Scratch, another simple object-oriented programming language generated by MIT Media Lab’s Lifelong 
Kindergarten Group (2013), has aroused interest among many teachers aspiring to promote coding in 
their English language classes as it might facilitate the second language acquisition (Quan, 2015). In a 
research project, students participated in a story writing activity using Scratch in a writing workshop. 
The findings suggested that students were motivated to progress in learning English and developed 
positive perception towards English, besides enhancing their digital literacy and language content areas 
(Quinn & Kafai, 2012). According to a study on coding, most students consider that coding has a positive 
effect on not only learning English but also improving other essential skills such as teamwork (Moreno 
& Robles, 2015). Furthermore, computer programming may have a positive impact on students' learning 
outcomes in English language skills. 

Conclusion and Discussion 

As a result of literature review, as the programming languages are mostly English, and especially share 
certain similarities in terms of English syntax, one (Scott, 2015) says that English learning skills of 
students improve while there are also studies and interpretations (Moreno & Robles, 2015; Kenneth, 

https://medium.com/smalltalk-talk


Constructionism 2018, Vilnius, Lithuania 

779 

 

2016) that indicate otherwise. In the literature review, several results of the studies were found as 
following: 

As students who know the programming language learn programming, they can easily comprehend 
English sentences (Moreno & Robles, 2015). 

Learning other languages besides English gets more practical for learners of programming (Galvin, 
2016). 

Computer programming promotes the abilities such as logical thinking and algorithm to solve problems 
in many areas, regardless of the language used, and even the ability of analytical thinking (Basak, 2016; 
Malan & Leitner, 2007). 

Even if programming languages have a specific semantics and syntax, which is written in English, the 
words used in programming languages will be almost equal to those who speak English and who do not 
speak English (Resnick, 2013). 

It should be noted that some students who take a programming course might encounter certain 
challenges due to the programming language. Further research needs to be conducted to reinforce the 
learning process and to determine the underlying causes of the problems about programming languages 
confronted by students (White & Sivitanides, 2002). Future studies should reveal the relationship 
between programming and English language skills through qualitative and quantitative studies. In 
addition, the interrelation between programming and other fields (e.g. science and mathematics) should 
be examined. Thus, we can conclude there is a need for studies which determine whether the study of 
English and other skills is affected by the development of calculation thinking and whether the students 
should be able to generalize and transmit this problem-solving process to other areas.  

In conclusion, the first phase of interdisciplinary study between programming and English language 
skills was revealed in this study. Regarding current technological innovations, information-age in 21st 
century, and digital traces that produce massive data in online environments which are constantly and 
exponentially increasing, it is thought that more work will be done in programming and coding education.  

References  

Arabacioglu, T., Bulbul, H.I., & Filiz, A. (2007). A new approach to computer programming teaching. 
Proceedings of the 9th Academic Informatics Congress (pp. 193-197). Dumlupinar University, Kutahya, 
Turkey. 

Balanskat, A., & Engelhardt, K. (2015). Computer programming and coding priorities, school curricula 
and initiatives across Europe. European Schoolnet (EUN Partnership AIBSL), Brussels, Belgium. 

Basak, S. (2016, April 28). Re: Do people in non-English-speaking countries code in English? [Online 
forum comment]. Retrieved from https://namasteui.quora.com/Do-people-in-non-English-speaking-
countries-code-in-English  

Burke, A. (2013). Grand coalition for digital jobs aims to fill 900,000 predicted European ICT vacancies. 
Retrieved from https://www.siliconrepublic.com/jobs/grand-coalition-for-digital-jobs-aims-to-fill-900000-
predicted-european-ict-vacancies.  

Computer Programming. (n.d.). In online business dictionary. Retrieved from 
http://www.businessdictionary.com/definition/computer-programming.html  

Ersoy, H., Madran, R.O., & Gulbahar, Y. (2011). A model proposed for teaching programming 
languages: Robotic programming. Proceedings of the 13th Academics Informatics Congress (pp. 731-
736). Inonu University, Malatya, Turkey. 

Galvin, G. (2016, October 13). Some say computer coding is a foreign language [Online news article]. 
Retrieved from https://www.usnews.com/news/stem-solutions/articles/2016-10-13/spanish-french-
python-some-say-computer-coding-is-a-foreign-language?context=amp 



Constructionism 2018, Vilnius, Lithuania 

780 

 

Gow, P. (2015). Teaching computer programming is back. Why now? A new culture of coding. Retrieved 
from https://propertibazar.com/article/2015-computing-our-future-future-classroom-lab-
european_5a31a244d64ab24ed47f3677.html 

Kenneth, R. (2016, March 7). Re: What computer language is most similar to human spoken language? 
[Online forum comment]. Retrieved from https://www.quora.com/What-computer-language-is-most-
similar-to-human-spoken-language  

King, E. (2015). Java as a second language: Thoughts on a linguistically informed transition to typing 
languages IB Design. Proceedings of the 2015 IEEE Blocks and Beyond Workshop (pp.11-12). IEEE 
Computer Society, Washington, D.C., USA. 

Krpan, D., & Bilobrk, I. (2011). Introductory programming languages in higher education. Proceedings 
of the 34th International Convention. MIPRO, Opatija, Croatia. 

Lifelong Kindergarten Group, MIT Media Lab (2013). SCRATCH 2.0 (programming language). 

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. SIGCSE Bulletin, 39, 1, 
223-227. 

Moreno, J., & Robles, G. (2015). Computer programming as an educational tool in the English 
classroom. Proceedings of the Global Engineering Education Conference (EDUCON) IEEE (pp. 961-
966). Tallinn University of Technology, Tallinn, Estonia. 

Quan, G.C. (2015). Student teachers evaluating and assessing SCRATCH in the applied linguistics 
classroom. Social and Behavioral Sciences, 174, 1450-1456. doi:10.1016/j.sbspro.2015.01.774 

Quinn, B., & Kafai, Y. B. (2012). The writers' workshop for youth programmers: digital storytelling with 
scratch in middle school classrooms. Proceedings of the 43rd ACM technical symposium on computer 
science education (pp. 433-438). ACM, New York, NY, USA. 

Resnick, M. (2013). Learn to code, code to learn. How programming prepares kids for more than math. 
Retrieved from https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn  

Riker, A. (2010). Natural language in programming an English Syntax-based approach for reducing the 
difficulty of first programming language acquisition (Doctoral dissertation). Retrieved from 
http://hdl.handle.net/10192/23861 

Sayin, Z., & Seferoglu, S.S. (2016). Coding education as a new 21st century skill and effect of coding 
on educational policies. Academic Informatics. Adnan Menderes University, Aydin, Turkey. 

Scott, B. (2015, April 9). Is the English language too important to learn a programming language? 
[Online forum comment]. Retrieved from https://www.quora.com/Is-the-English-language-too-
important-to-learn-a-programming-language 

Uzunboylu, H. (2005). The effectiveness of web-assisted English language instruction on the 
achievement and attitude of the students (Unpublished doctoral dissertation). Ankara University, the 
Institute of Educational Sciences, Ankara.  

White, G. L., & Sivitanides, M. P. (2002). A theory of the relationship between cognitive requirements 
of computer programming languages and programmers' cognitive characteristics. Journal of Information 
Systems Education, 13, 1, 59-66.   

http://www.sciencedirect.com/science/article/pii/S1877042815008265
http://www.sciencedirect.com/science/journal/18770428
http://www.sciencedirect.com/science/journal/18770428/174/supp/C


Constructionism 2018, Vilnius, Lithuania 

781 

 

Synthesizing the Mesh: Using Constructible 
Authentic Representations to Gain Intuitive 
Understanding of Bayesian Reasoning 

Monica Chan, monica.chan@tc.columbia.edu 
Teachers College, Columbia University, USA 

Gary C. F. Lee, garyleecf@mit.edu 
Massachusetts Institute of Technology, USA 

Abstract 
In recent years, there has been a massive push towards building basic computer science knowledge 
and skills at K-12 levels. However, less has been done towards introducing more complex and 
application-based fields of computer science, such as machine learning, and connecting these fields 
with mathematics and statistics education. This game Synthesizing the Mesh has been developed to 
provide a constructionist learning platform that helps upper middle to high school students gain intuition 
and understanding for Bayesian reasoning, an inherent algorithm of machine learning that is traditionally 
perceived as an advanced topic. The design principle Constructible Authentic Representations (CAR) 
has been used to guide the game design process. 

Keywords 
game design; middle school; high school; constructionism; problem-solving; strategy; bayesian 
reasoning; technology 

Introduction 

Bayesian reasoning is one of the most fundamental algorithms of machine learning methods, and has 
been a powerful approach for describing uncertainty and conditional probability. However, the topic of 
Bayesian reasoning is typically avoided in introductory undergraduate mathematics (statistics) and 
computer science education (Satake & Murray, 2014), and hardly taught at all in high school 
mathematics or computer science classes, due to the perception that Bayesian reasoning is an 
advanced topic. However, the applications of Bayesian methods are widespread in everyday life, found 
in fields such as healthcare, law, manufacturing, etc. 

 
Although there has been a larger push for K-12 computer science education in the recent years (K-12 
Computer Science Framework; Next Generation Science Standards, 2018), there is still a lack in the 
use of mathematics and statistics at K-12 levels to teach and learn essential concepts related to 
fundamental applications of computer science. This proposed educational game named Synthesizing 
the Mesh uses constructible authentic representations as a design principle. The game aims to provide 
a constructionist learning platform, where upper middle to high school students can gain an intuition 
about the overarching concept of how Bayesian reasoning works. This is an effort to spur students’ 
interests not only in learning about basic programming methodology, but also in delving more deeply 
into the logic behind computer science algorithm development. 

Literature Review 

Prior Work 
In the past years, researchers have begun developing constructionist approaches to teach STEM 
concepts that are traditionally perceived as higher-level or advanced. For example, MaterialSim was 
developed as a computational constructionist learning environment that aided undergraduate students 
in learning materials sciences concepts (Blikstein & Wilensky, 2009).  



Constructionism 2018, Vilnius, Lithuania 

782 

 

In the field of mathematics, and more specifically statistics, Equidistant Probability was a NetLogo 
microworld with a series of computer-based probability experiments targeted at helping middle school 
students gain intuition in probability and statistics (Abrahamson & Wilensky, 2003). Weintrop and 
colleagues (2016) had also conducted a study on the development of computational thinking through 
constructionist online/video games. Such games combine features of traditional video games with 
constructionist learning and design theories to create a core playing experience around building artifacts 
in the game environment (Weintrop et al., 2016). We have used the discoveries about player/learner 
experiences from these previous studies to create Synthesizing the Mesh, with a focus on Bayesian 
reasoning as the choice of the advanced level topic that this educational game concentrates on. 

Constructible Authentic Representations 
Constructible Authentic Representations (CAR) is a design principle that may be incorporated into 
educational game design to engage players in constructing artifacts that are epistemologically aligned 
to representations used in the target domain (Holbert & Wilensky, 2014, p. 53). A main objective of this 
design principle is to encourage the player to connect seemingly disparate knowledge resources to gain 
a higher probability that in-game experiences would be co-activated with formal representations in non-
game contexts (Holbert & Wilensky, 2014, p. 57). Building upon the principle of concept integration 
(Cheng, 2011; Kafai, 2012), games designed and guided with CAR emphasize on the player’s 
interaction with the game in creating meaning out of the concepts that the game accentuates.  

CAR is also a build-on from the concept of computation-based restructurations (Wilensky & Papert, 
2010), whereby computational objects (agents) replace traditional mathematical or scientific 
representations to extend the learner’s understanding of a certain topic or idea. These computational 
objects that are restructured typically have “power properties” that attract domain-experts, but also have 
“cognitive, affective, social and diversity properties” that make it accessible to the wider public (Wilensky 
& Papert, 2010, p. 4). 

Synthesizing the Mesh Game Design 

Currently, Synthesizing the Mesh has been built using a HTML/CSS/JavaScript platform, guided by the 
CAR design principle. Specific game design features and mechanics include the use of different types 
of sensors with varying costs and coverage range, different types of bugs that multiply at various rates 
or probabilities, and different player choices on whether or not to perform predictive maintenance that 
significantly reduces chances of bugs resurfacing. These decisions to implement certain choices are 
governed by the amount of cash units each player has. 

The premise of Bayesian reasoning hinges upon a concept in probability, Bayes’ theorem, where one’s 
belief about a hypothesis (or probability that the hypothesis is true) is updated as more evidence is 
observed (D'Agostini, 2003). The game mechanic models this form of reasoning, where players attempt 
to identify locations of the bugs based on the observations of the sensors in the neighborhood. Further, 
strategizing the locations and types of sensors may also help provide evidence about the guesses to 
differing degree. The game is collaborative yet also competitive – players work together to unearth all 
the bugs in the game, but also aim to accurately find the most bugs while optimizing their sensor 
placements and minimizing cost. 

Learning Goals 
Listed below are the learning goals of Synthesizing the Mesh: 

1. To cultivate a more holistic intuitive understanding of the method of Bayesian Reasoning: based 
on observations (sensors in the game), figure out the probability of outcomes/guesses (bugs in 
the game) 

2. To gain more confidence about approaching thought processes that may be unfamiliar 

3. To learn to collect data strategically and collaboratively to achieve a communal goal 



Constructionism 2018, Vilnius, Lithuania 

783 

 

Game Play 
Each players starts with $100, and begins by setting sensors of his/her choice on the blue spots on the 
game board. Player 1 begins from the left, Player 2 from the top, Player 3 from the right, and Player 
from the bottom of the 21x21 square grid. The sensor placed on the board will turn green if there is no 
bug (machine bug) in its scope, and will turn red if there is a bug present in the vicinity. Each player is 
able to end his/her turn anytime and then the next player goes. 

Various game mechanics are listed below: 

 Players need to spend money implementing sensors to find where bugs are, but they have a 
limited amount of money 

 Sensors come in 3 different levels of functionality and scope (Sensor 1 has the smallest scope 
and is the cheapest, while Sensor 3 has the widest scope and is the most expensive) 

 Find and Fix Bug option fixes the bug temporarily - the bug could reappear 
 Perform Predictive Maintenance option reduces chances of the bug reappearing  
 Goal: Reach “bug-less” state (~less than 5% chance of bug reappearing) 

While designing the mechanics, Squire and Barab’s study of urban underserved students learning 
history via Civilization III (2004) informed our game design. Squire and Barab stated that “Learning 
occurred through recursive cycles of failure and revising strategies, which led to frustration, engagement 
and learning” (2004, p. 1). This connection between the cycles of strategies (which we considered as 
game mechanics in this case) and the frustration and engagement (which we considered as game 
dynamics) is a great way of anticipating strategies and implementations that other players might do 
during the game. Just as how Squire and Barab had guided the students in their study through historical 
simulation and discussion about hypothetical history via the game Civilization III, we intended to add 
mechanics that allow Synthesizing the Mesh to not only be a tool for understanding the underlying the 
concept of Bayesian reasoning, but also to contain mechanics that affect interactions and anticipation 
amongst players’ thoughts, players’ moves, and any further relationships players might think of while 
identifying and fixing the “bugs” in the game to extend their fundamental conceptual understanding. This 
is not an emulation of mechanics between Civilization III and Synthesizing the Mesh because they have 
gaming natures and methods that are inherently different from each other, but we tried to follow the 
expansion of educational scope beyond the game simulation, which Squire and Barab had 
demonstrated in their research study (2004, p. 5). 

Below is how the current game board prototype looks, with an example of how a bug is found: 

 

This figure shows red sensors, meaning a bug is in the vicinity of the red sensors. These clues that the player 
has to generate will point the player closer to identifying the bug. The blue squares on the grid indicate where 

Player 3 can put a sensor next. 

 



Constructionism 2018, Vilnius, Lithuania 

784 

 

 

This figure shows that the player (Player 3) has successfully identified this bug (in light green). The dashboard 
also changes to read “Bug found!” 

Future Work 

Future work includes completing building out the game aesthetics of Synthesizing the Mesh, to include 
possible real-world settings in the game, in order to connect the player’s in-game experience to 
representations that would also be personally meaningful outside the game. Upon completion of 
Synthesizing the Mesh, we have plans to implement this in an after-school supplementary program to 
examine how students interact with the content and representations in the game. We are interested in 
studying how students gain intuition and understanding for traditionally complex and advanced topics 
in machine learning concepts, specifically Bayesian reasoning in this case, thus we will perform a pre- 
and post-test outside the game, and collect in-game observational data from this research project. 

References 

Abrahamson, D., & Wilensky, U. (2003, February). The quest of the bell curve: A constructionist 
approach to learning statistics through designing computer-based probability experiments. In 
Proceedings of the Third Conference of the European Society for Research in Mathematics Education. 

Blikstein, P., & Wilensky, U. (2009). An atom is known by the company it keeps: A constructionist 
learning environment for materials science using agent-based modeling. International Journal of 
Computers for Mathematical Learning, 14(2), 81-119. 

Cheng, P. C. H. (2011). Probably good diagrams for learning: representational epistemic recodification 
of probability theory. Topics in Cognitive Science, 3(3), 475-498. 

D'Agostini, G. (2003). Bayesian reasoning in data analysis: A critical introduction. World Scientific. 

Holbert, N. R., & Wilensky, U. (2014). Constructible authentic representations: Designing video games 
that enable players to utilize knowledge developed in-game to reason about science. Technology, 
Knowledge and Learning, 19(1-2), 53-79. 

K–12 Computer Science Framework. (n.d.). Retrieved March 29, 2018, from https://k12cs.org/ 

Kafai, Y. B. (2012). Learning design by making games: Children's development of design strategies in 
the creation of a complex computational artifact. In Constructionism in practice (pp. 87-112). Routledge. 

Next Generation Science Standards. (2018, March 08). Retrieved March 29, 2018, from 
https://www.nextgenscience.org/  

https://k12cs.org/
https://www.nextgenscience.org/


Constructionism 2018, Vilnius, Lithuania 

785 

 

Satake, E., & Murray, A. V. (2014). Teaching an Application of Bayes' Rule for Legal Decision-Making: 
Measuring the Strength of Evidence. Journal of Statistics Education, 22(1). 

Squire, K., & Barab, S. (2004, June). Replaying history: Engaging urban underserved students in 
learning world history through computer simulation games. In Proceedings of the 6th international 
conference on Learning sciences (pp. 505-512). International Society of the Learning Sciences. 

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational thinking in constructionist 
video games. International Journal of Game-Based Learning (IJGBL), 6(1), 1-17. 

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulations of knowledge disciplines through 
new representational forms. Constructionism. 

  



Constructionism 2018, Vilnius, Lithuania 

786 

 

Teaching Computational Thinking with Minecraft & 
Microsoft MakeCode 

Stephen Howell, stephen.howell@microsoft.com 
Microsoft Ireland 

Abstract  
In this demonstration, we present Microsoft MakeCode, an open-source visual programming language 
that can be used to teach Computational Thinking concepts with Minecraft. With MakeCode, we will 
show how Minecraft can be used as the microworld for exploring constructionist ideas. Students can 
design shapes and structures to be built algorithmically. Programmable agents can be instructed to 
navigate, act and explore, and it all takes place in a virtual world that many students find comfortable 
and familiar because of the success of Minecraft as a game. 

 

 A house created in Minecraft with a snippet of code that builds the walls using a nested for-loop 

Keywords 
computational thinking; microworlds; visual programming languages 

Demonstration 

In Minecraft, players must survive by collecting resources and carefully utilising them to ensure safety 
when the monsters, or ‘mobs’, come (they mostly come at night). Luckily for educators, Minecraft also 
has a ‘creative mode’, where there are no monsters and teachers can bring students to play together 
without the ability to injure each other. This version of Minecraft is called the ‘Education Edition’, and 
this edition was the first to add the ability to use a visual programming language to build and program 
agents. In this demonstration, we will show the agent and builder. 

Agents 
When MakeCode is enabled by the student or educator in Minecraft (by issuing the command ‘code’ in 
game), the agent appears. Designed to be cute and friendly to younger players, the agent can be 
programmed to protect the player, or find and return resources, or even to fight on behalf of the player. 



Constructionism 2018, Vilnius, Lithuania 

787 

 

  

The agent and a code that make the agent ‘jump’ up and forward in an arc  

Builder 
Perhaps of more interest to educators wishing to explore constructionist concepts is the builder. The 
builder is invisible but can be instructed to quickly build complex structures, such as castles with moats, 
battlements, floors and drawbridges (O’Sullivan et al., 2017). 

   

 A castle from the inside with the code that generated the floor and the door 

References 

O’Sullivan, M., Robb, N., Howell, S., Marshall, K., Goodman, L. (2017). Designing inclusive learning for 
twice exceptional students in Minecraft. International Journal of E-Learning & Distance Education, 32, 
(2). 

  



Constructionism 2018, Vilnius, Lithuania 

788 

 

Interpolating (and Extrapolating) 3D turtle Programs 
in Beetle Blocks 

Ken Kahn, toontalk@gmail.com 
Department of Education, University of Oxford, UK  

Abstract  
Turtle programs can be treated as objects to manipulate. In this demo a program takes two turtle 
programs as input and creates a new program that is the interpolation between the input programs. An 
input of .25, for example, will behave like one-fourth of the first program and three-fourths of the second. 
An input greater than 1 will extrapolate beyond the second program in the direction from the first 
program. This idea was explored in (Kahn 2007) for two-dimensional turtle programs. Here we 
generalise it for Beetle Blocks (Romagosa et al 2016), a 3D version of Snap! (Harvey & Mönig 2010). 

Keywords 
Program interpolation; Snap!; turtle programming; 3D turtles; Beetle Blocks; codification; 

Interpolating 2D Logo turtle programs 

(Kahn 2007) describes a program interpolator that can create a new program from two Logo programs 
that are defined using FORWARD, RIGHT, REPEAT, SETPENCOLOR, PENUP, and PENDOWN. As 
the simplest example consider two programs that draw different length lines: 

 

to short 

forward 40 

end 

to long 

forward 100 

end 

 
The interpolated program is: 

to short_to_long :x 

forward interpolate :x 40 100 

end 

to interpolate :x :a :b 

output :a + :x * (:b - :a) 

end 

 

SHORT_TO_LONG 0 behaves just as SHORT, SHORT_TO_LONG 1 behaves as LONG, 

SHORT_TO_LONG .5 averages them, and SHORT_TO_LONG 2 extrapolates beyond LONG starting 

from SHORT. 

 
The difficult step is canonicalising input programs that repeat a sequence of turtle commands a different 
number of times. (Kahn 2007) explains this in detail. 

Moving to 3D 

Beetle Blocks (Romagosa et al 2016) is a well-designed 3D version of Snap! (Harvey & Mönig 2010). 
Before one can begin to create interpolations of Snap! or Beetle Blocks programs we need a way to 
treat a block program as a data structure that can be manipulated programmatically. Fortunately, Snap! 
has a “codification” feature (Ball et all 2015; Harvey & Mönig 2018). Codification has been used to define 
how Snap! blocks can be translated to Python, C, Smalltalk, JavaScript, or other languages. We used 
this feature to translate Snap! blocks into JSON strings that are then converted into Snap! lists. 

The problem of programming a Snap! program that constructs another program (the interpolation 
program) was resolved by defining the constructed program as a list of closures that can be run to 



Constructionism 2018, Vilnius, Lithuania 

789 

 

execute a sequence of commands. The values or expressions in corresponding commands in the two 
input programs are handled as variables closed over by functions. 

FORWARD (or MOVE as it is called in Beetle Blocks) is treated in a similar manner to how the 2D turtle 
interpolator worked. RIGHT (or ROTATE as it is called in Beetle Blocks) has an additional argument 
that specifies whether the rotation is around the x, y, or z axes. As long as both programs rotate in the 
same dimension in the corresponding program locations it is straight-forward to generalise to 3D. To 
make a more generic interpolator other Beetle Block commands are also supported including “go to x: 
y: z:” and a list of “set” commands that change coordinates, hue, saturation, lightness, and opacity. 
Beetle Block command for extruding curves and lines are also handled. Furthermore, arithmetic 
expressions involving addition, subtraction, multiplication, and division are supported. Support for user 
reporters can be easily added.  

 

Figure 1. A simple example of interpolating a yellow triangle to green hexagon 

 

Figure 2. A program to run the triangle to hexagon interpolation program with 21 values from 0 to 1 

 



Constructionism 2018, Vilnius, Lithuania 

790 

 

 

Figure 123. The result of running 21 interpolations between the triangle and hexagon 

 

Figure 4. Interpolating and extrapolating between circles, stars, and pentagons 

A very nice feature of Beetle Blocks is that the output of 3D turtle programs can be created on 3D 
printers. Figure 4, for example, is an attempt to make a vase. This program (and the interpolation 
program generator) can be found at https://tinyurl.com/circle-star-pentagon. 

Conclusion 

A turtle program is more than a shape. A circle, for example, can be drawn clockwise, counter-clockwise, 
or multiple times. The consequences of how a shape is drawn can result in dramatically different 
interpolations and extrapolations. Students tinkering with program interpolation and extrapolation are 
entering a mathematically and computationally rich area. And the creative and aesthetic possibilities of 
interpolating and extrapolating between turtle programs are many.  

References 

Ball, M., Mock, L., McKinsey, J. Machardy, Z., Garcia, D., Titterton, N., Harvey, B. (2015) Oh, Snap! 
Enabling and Encouraging Success in CS1. In: SIGCSE '15 Proceedings of the 46th ACM Technical 
Symposium on Computer Science Education. pp 691-691. 

Harvey, B., Mönig, J., (2010) Bringing “No Ceiling” to Scratch: Can One Language Serve Kids and 
Computer Scientists? In Proceedings: Constructionism, Paris, France. 

Harvey, B., Mönig, J., (2018) Snap! 4.1. Reference Manual. https://snap.berkeley.edu/SnapManual.pdf. 

Kahn, K (2007) A Program to Interpolate (And Extrapolate) Between Turtle Programs. International 
Journal of Computers for Mathematical Learning. December. Volume 12. Issue 3. pp 255–262. 

Romagosa, B., Rosenbaum, E., Koschitz , D. (2016) From the Turtle to the Beetle - The Beetle Blocks 
programming environment. http://hdl.handle.net/10609/52807. Universitat Oberta de Catalunya.  

http://hdl.handle.net/10609/52807


Constructionism 2018, Vilnius, Lithuania 

791 

 

Hedgehog: A Versatile Controller for Educational 
Robotics 

Markus Klein, klein@pria.at  
Practical Robotics Institute, Austria  

Clemens Koza, koza@pria.at 
Practical Robotics Institute, Austria  

Wilfried Lepuschitz, lepuschitz@pria.at 
Practical Robotics Institute Austria  

Gottfried Koppensteiner, koppensteiner@pria.at 
Practical Robotics Institute Austria  

Abstract 
We describe Hedgehog, an educational robotics controller designed to foster interest in STEM subjects. 
Hedgehog allows building robots out of common actuators and sensors, and can be combined with 
Lego for a beginner-friendly experience. Through building robots, students can learn and apply 
engineering, electronics, planning and teamwork skills. The controller facilitates learning programming 
at different age levels through both textual and visual programming support. For advanced students, 
Hedgehog's open source ecosystem allows delving into subjects such as microcontroller programming 
or cooperative robots as well. Hedgehog has been used in numerous workshops and also in robotics 
competitions with great success. 

Keywords 
Robotics; programming; visual programming; STEM 

Hedgehog Controller 

Hedgehog is a robotics controller: a computer aimed at controlling robotic components to allow building 
and programming robots. It is general-purpose, meaning that it was designed not only for a single task 
but to support whatever robotic project one might envision, and designed with educational use cases in 
mind. For example, Hedgehog controllers connect to a central WiFi, meaning that network congestion 
is less of a problem even in classrooms with multiple robots. 

The Hedgehog Educational Robotics Controller was designed to offer learning capabilities for people of 
different ages and skill levels. As Hedgehog itself is only the controller, a lot of its features relate to 
software development, but also the hardware was designed with this in mind. The Raspberry Pi utilized 
by Hedgehog allows for experimentation, and connectors of the Pi and microcontroller not directly used 
for Hedgehog’s core functionality are accessible as well. The case exposes the Pi's USB, HDMI, SD 
card slot, etc., and has holing compatible to Lego to allow children to build robots out of familiar 
components. Although mechanically compatible with Lego, Lego's motors and sensors are not 
supported due to their proprietary plugs. Instead, Hedgehog uses standard 0.1" pin headers and is 
compatible to easily available and relatively cheap RC-Servos. 

Software Platform 

Hedgehog supports out-of-the-box text-based programming with Python as well as a visual 
programming environment based on Google’s open source library Blockly. Especially the latter  



Constructionism 2018, Vilnius, Lithuania 

792 

 

Figure 1.  Screenshot of the visual programming environment with the visual program on the left and the 
generated Python code on the right.  

 

  

Figure 2.  Hedgehog robotics controller in use at a robotics competition.  

option allows beginners without any prior experience to dive into the world of robotics as it introduces 
an easier entry and less error potential in comparison with a text-based language. The design concept 
of the controller puts much emphasis on extendibility and versatility. Thus, adding new programming 
languages or integrating third-party libraries is well supported. 

In order to allow children to quickly and easily get started with programming the Hedgehog controller, a 
web-based development environment called the Hedgehog IDE was implemented.  



Constructionism 2018, Vilnius, Lithuania 

793 

 

Programs are stored on the controller and users simply use their computers or tablets to connect to the 
controller via a browser and do not need to install any software on their machines which is a big 
advantage in workshop situations where time is always precious. 

Real-World Usage 

The Hedgehog controller has been used in a number of contexts, including workshops for middle school 
aged students, extracurricular activities with minimal supervision, and robotics tournaments. The 
controller was also used in the construction of an underwater robot, described in Grabler et al. (2018), 
which was in turn used in multiple educational robotics activities. Anecdotal evidence from these 
activities hints towards good acceptance of the Hedgehog system with regard to hardware compatibility 
(electronics connectors and mechanical connection points), usability of the development environment 
described in the previous section, and programming means - the libraries and the Python and Blockly 
languages. 

For a subset of activities, in particular four workshops with 70 students aged 11 to 16, Koza et al. (2017) 
analyzed quantitatively and compared them with four earlier workshops using different controllers. All 
eight workshops were part of the same project and used a comparable style and setting. The reference 
workshops’ controllers used the C programming language instead of Python. 

 The statements "working with robots was interesting/difficult/fun," and "overall, I would rank this course 
with ... stars," were looked at. Regarding difficulty, the results showed no significant difference. In the 
other categories (interesting, fun, overall stars), low ratings (1 or 2 stars) were almost absent from the 
Hedgehog workshops' results, while they did show up more frequently in the reference workshops. 
Although factors such as different instructors and students were not taken into account, it can be 
interpreted that students were more engaged in the workshops using Hedgehog.  

Conclusion 

Hedgehog shows a lot of promise for the education domain and has already been used successfully in 
different settings. We are confident that Hedgehog's ease of use and versatility makes it a good choice 
for various educational use cases. Through this, the Hedgehog controller helps reaching diverse 
audiences to foster their STEM interests. 

Acknowledgements 

The authors acknowledge the financial support from the European Union’s Horizon 2020 research and 
innovation program under grant agreement no. 665972. 

Demonstration 

During this 30-minute demonstration, we will present the Hedgehog educational robotics controller, 
including its hardware capabilities and the software platform. The demonstration will also introduce 
means to facilitate constructionist learning by building and programming robots using the controller. 

References  

Koza, C., Wolff, M., Frank, D., Lepuschitz, W. and Koppensteiner, G. (2017) Architectural Overview and 
Hedgehog in Use. In Proceedings: International Conference on Robotics and Education RiE 2017. p. 
238-249. 

Reinhard Grabler, Markus Klein, Thomas Fellner, and Gottfried Koppensteiner. (2018) Development of 
a Low-Cost Maritime Educational Robotics Platform. International Journal of Materials, Mechanics and 
Manufacturing, Vol. 6, no. 3, pp. 208-214.  

  



Constructionism 2018, Vilnius, Lithuania 

794 

 

Working groups 

WG1: Constructionist Approaches to Computational 
Thinking 

Bernhard Standl, bernhard.standl@ifs.tuwien.ac.at  
Gerald Futschek, gerald.futschek@tuwien.ac.at  
Vienna University of Technology, Austria 

Jane Waite, jane.waite@computingatschool.org.uk  
Queen Mary, University of London, UK 

Andrew Paul Csizmadia, A.P.Csizmadia@staff.newman.ac.uk  
Newman University Birmingham, UK 

Lina Vinikienė, lina.vinikiene@mii.vu.lt 
Vilnius University, Lithuania 

Abstract 
This working group elaborated an approach to evaluate computational thinking activities with learning 
in a constructionist way. As widely known, Wing stated in her refined definition of Computational 
Thinking (CT) (Wing 2008), that CT is an approach for solving problems that draws on concepts 
fundamental to computing. Later, Aho (2012) described the term CT as including algorithm-design and 
problem-solving techniques that can be used to solve common problems arising in computing. As Yadav 
et. al. (2011, 2016) reminded Wing’s initial paper (2006) points out that CT involves three key elements 
Algorithms, Abstraction, and Automation. The term CT has been grown since then to a variety of 
interpretations. Ackerman (2001) compared Piaget’s constructivism and Papert’s development of this 
in a constructionist way and drew the two views together as learning in a constructionism way ‘as Piaget 
and Papert do, that knowledge is actively constructed by a child in interaction with its world, then we 
are tempted to offer opportunities for kids to engage in hands-on explorations that fuel the constructive 
process.’. Papert’s core message that the learner is ‘projecting out our inner feelings and ideas is a key 
to learning. Expressing ideas makes them tangible and shareable which, in turn, informs, i.e., shapes 
and sharpens these ideas, and helps us communicate with others through our expressions.’ This 
means, that new insights are the sum of single experiences made by applying existing knowledge for 
enhancing it. Considering both parts discussed above, constructionism and computational thinking, this 
working group’s intentions are based on the combination of both for selecting and evaluating classroom 
activities. Therefore, we designed a matrix, where aspects from both, computational thinking and a 
constructionist learning approach, can be analysed. The matrix is designed to identify, categorize and 
evaluate such classroom activities and encompasses three parts: Computer Science Concepts, 
Problem-Solving Concepts, Levels of Abstraction. 

mailto:bernhard.standl@ifs.tuwien.ac.at
mailto:futschek@ifs.tuwien.ac.at
mailto:jane.waite@computingatschool.org.uk
mailto:A.P.Csizmadia@staff.newman.ac.uk


Constructionism 2018, Vilnius, Lithuania 

795 

 

 

This working group’s paper presents our approach of a systematic evaluation of classroom activities in 
terms of constructionist learning and discusses first results of our evaluation process, where we coded 
such activities corresponding to the matrix. 

Keywords 
computational thinking; constructionist learning; classroom activities 

1. Introduction 

This working group elaborated an approach to evaluate computational thinking activities with learning 
in a constructionist way. As widely known, Wing stated in her refined definition of Computational 
Thinking (CT) (Wing, 2008), that CT is an approach for solving problems that draws on concepts 
fundamental to computing. Later, Aho (Aho, 2012) described the term CT as including algorithm-design 
and problem-solving techniques that can be used to solve common problems arising in computing. As 
Yadav et. al. (Yadav, Gretter, Hambrusch, & Sands, 2017; Yadav, Zhou, Mayfield, Hambrusch, & Korb, 
2011) reminded Wing’s initial paper (Wing, 2006) points out that CT involves three key elements 
Algorithms, Abstraction, and Automation. The term CT has been grown since then to a variety of 
interpretations. Ackerman (Ackermann, 2001) compared Piaget’s constructivism (Piaget & Duckworth, 
1970) and Papert’s development of this in a constructionist way and drew the two views together as 
learning in a constructionism way ‘as Piaget and Papert do, that knowledge is actively constructed by a 
child in interaction with its world, then we are tempted to offer opportunities for kids to engage in hands-
on explorations that fuel the constructive process.’. Papert’s core message that the learner is ‘projecting 
out our inner feelings and ideas is a key to learning. Expressing ideas makes them tangible and 
shareable which, in turn, informs, i.e., shapes and sharpens these ideas, and helps us communicate 
with others through our expressions.’ This means, that new insights are the sum of single experiences 
made by applying existing knowledge for enhancing it. Considering both parts discussed above, 
constructionism and computational thinking, this working group’s intentions are based on the 
combination of both for selecting and evaluating classroom activities. Therefore, we designed a matrix, 
where aspects from both, computational thinking and a constructionist learning approach, can be 
analysed. The matrix is designed to identify, categorize and evaluate such classroom activities and 
encompasses three parts: Computer Science Concepts, Problem-Solving Concepts, Levels of 
Abstraction. This working group’s paper presents our approach of a systematic evaluation of classroom 
activities in terms of constructionist learning and discusses first results of our evaluation process, where 
we coded such activities corresponding to the matrix. 



Constructionism 2018, Vilnius, Lithuania 

796 

 

In our approach, first, we tried to identify a suitable research question to our paper’s topic. One of the 
earlier ones was: How could be CT learned in constructionist way in different academic disciplines / 
different tasks? Following further discussion, the group agreed on investigating existing classroom 
activities as a starting point to start to formulate and evaluate a toolset which might prove useful in 
investigating constructionism and computational thinking in K-12 classrooms.  

Leading by the research questions: In what way do K-12 classroom activities teach computational 
thinking in a constructionist way? How useful is our model in evaluating CT in K-12 classroom activities? 
How useful is our model in evaluating constructionism in K-12 classroom activities? we continued with 
a discussion about our ideas and how we could create a system for a classification of Constructionist-
Computational-thinking Classroom Activities. 

The idea was agreed to design a mapping tool, which we could use to record and code classroom 
activities to start to investigate and compare activities for their computational thinking and constructionist 
attributes.  

This working group paper is structured as follows. First, we are describing the background of our work 
in literature and further describe an overview on computational thinking, constructionism and its 
concepts respectively combination of both parts. In a further section, we will describe the methods we 
used to gather and evaluate the classroom activities. This includes a detailed description of the mapping 
tool we have developed. This is followed by a presentation of the results and a final discussion of this 
working group paper. 

2. Background 

Computational Thinking (CT) has been widely discussed since Jeannette Wing published her article 
“Computational Thinking” in 2006 (Wing, 2006). There have been several attempts to define this concept 
more precisely since then with the discussion converging to a handful of skills which characterize the 
thinking concepts associated with CT. These concepts include abstraction, decomposition, algorithmic 
thinking, generalization and evaluation. Algorithmic thinking education has a long tradition in 
constructionist education. Logo, Scratch and other programming tools invite creative learning of 
programming and algorithmic thinking. But CT is considered very broad, it covers not only programming 
and algorithmic skills, but also activities like problem formulation, system modelling and solution 
evaluation. 

An international group collaborated on this working group paper to consider computational thinking and 
constructionism. In identifying an underpinning theory to our working group’s topic, we first investigate 
the two parts of the title of our paper: Constructionism and Computational Thinking. Despite both topics 
have their own deep background, of which a description would go far beyond this paper’s scope and 
word length, the next two subsections will give a short overview and in particular connections to our 
work. 

2.1 Constructionism 
Ackerman (Ackermann, 2001) in her comparison of Piaget’s constructivism and Papert’s development 
of constructivism in a constructionist way, drew the two views together describing learning in a 
constructionism way as ‘that knowledge is actively constructed by the child in interaction with her world, 
then we are tempted to offer opportunities for kids to engage in hands-on explorations that fuel the 
constructive process.’ She further asserted Papert’s core message that the learner ‘projecting out our 
inner feelings and ideas. is a key to learning. Expressing ideas makes them tangible and shareable 
which, in turn, informs, i.e., shapes and sharpens these ideas, and helps us communicate with others 
through our expressions.’. Similar to Piaget, Papert identifies learning by constructing and 
reconstructing knowledge through experience. In particular, Papert’s constructionism sets a focus from 
learning in situations ‘rather than looking at them from a distance, that connectedness rather than 
separation are powerful means of gaining understanding’ (page 8). This means, that new insights are 
the sum of single experiences made by applying existing knowledge for enhancing it. Therefore, ‘hands-
on activities are the best for the classroom applications of constructivism, critical thinking and learning. 
(http://www.teach-nology.com/currenttrends/constructivism/classroom_applications/) 

http://www.teach-nology.com/currenttrends/constructivism/classroom_applications/


Constructionism 2018, Vilnius, Lithuania 

797 

 

We summarise the significant feature of constructionism for our study as being that learners make 
something in order to learn. However, what that something is, and what degree of autonomy is 
associated with the process of making is a focus of our study along with the relationship of 
constructionism and computational thinking.  

2.2 Computational Thinking 
Computational thinking has become a popular  term in computer science education with, definitions  
varying  depending on perspective (Tedre & Denning, 2016). Previous works present at least three 
types of approaches to defining CT: it is a set of skills to help solve problems e.g. (Wing, 2006), it is a 
thought process e.g. (Aho, 2012), or it is a problem-solving process e.g., (Voogt, Fisser, Good, Mishra, 
& Yadav, 2015). As widely known, Wing (Wing, 2008) stated in her refined definition of CT that it is an 
approach for solving problems that draws on concepts fundamental to computing.  Later, Aho (2012, p. 
832) described the term CT as including “algorithm-design and problem-solving techniques that can be 
used to solve common problems arising in computing”. As Yadav (Yadav et al., 2017, 2011) reminded 
Wing's initial paper (Wing, 2006) points out that CT involves three key elements Algorithms, Abstraction, 
and Automation. The term CT has been grown since then to a variety of interpretations. Settle and 
Perkovic (Perković, Settle, Hwang, & Jones, 2010), who proposed seven principles for CT across the 
curriculum, added that CT also involves computation, communication, coordination, recollection, 
evaluation, and design. For Lee (Lee et al., 2011) CT involves defining, understanding, and abstraction. 
Barr et al. (2011) suggested that CT involves the design of solutions, implementation of designs, testing, 
running analysing, reflecting, abstraction, creativity, and group problem solving. Grover et al. 
(Grover2013; Grover & Pea2018) stated that CT should include among others abstraction, information 
processing, structured problem-solving decomposition as modularization, iterative recursive thinking, 
and efficiency. Again, for Lee et al. (Lee, 2011) CT involves defining, understanding, and solving 
problems, reasoning at multiple levels of abstraction, understanding and applying automation, and 
analysing the appropriateness of the abstractions made. 

According Brennan & Resnick (2012), CT involves three dimensions such as computational concepts 
(the concepts designers employ as they program), computational practices (the processes of 
construction), and computational perspectives (the perspectives designers form about the world around 
them and about themselves).  

2.3 Constructionism in Computational Thinking 
Considering both parts discussed above, constructionism and computational thinking, this working 
group’s intentions are based on the combination of both for selecting and evaluating classroom 
activities. Therefore, we designed a matrix, where aspects from both, computational thinking and a 
constructionist learning approach, can be analysed. The matrix is designed to identify, categorize and 
evaluate such classroom activities and encompasses three parts: 

1. Computer Science Concepts 

2. Problem-Solving Concepts 

3. Levels of Abstraction matrix 

Below we are discussing these three dimensions in detail: 

a) Computer Science Concepts 

From the viewpoint of computer science education, teaching and learning of computer science (CS) 
concepts is more important than learning how to use computer systems. Dagienė, Sentance and 
Stupurienė (2017) categorized in their paper “Developing a Two-Dimensional Categorization System 
for Educational Tasks in Informatics” the CS concepts in following 5 categories: 

● ALP: Algorithms and Programming 

● DDS: Data, Data Structures and Representation 

● CPH: Computer, Processes and Hardware 

● C&N: Communications and Networks 

● ISS: Interactions, systems and society 



Constructionism 2018, Vilnius, Lithuania 

798 

 

These categories are so designed that each concept fits in one of the categories. Since CS tasks often 
involve more than one concept, a task may be assigned to more than one category. 

b) Computational Thinking Concepts (CT) 

Computational Thinking Skills are independent from CS concepts. Computational thinking originates 
from solving CS tasks but the essence of these thinking skills can be applied also in all other disciplines. 
Based on the work of Selby and Woollard (2013), Dagiene et al. (2017) categorized also the 
Computational Thinking Skills into 5 categories: 

● ABS: Abstraction 

● ALT: Algorithmic Thinking 

● DEC: Decomposition 

● EVA: Evaluation 

● GEN: Generalisation 

Simple definitions of each of these concepts are (Selby 2013, Standl 2017) 

● Abstraction: Ignoring unnecessary detail. When abstracting a problem in a way that helps to 

solve it. If we had to keep all the details in our heads, we could never get anything done. As we 

have described above, abstraction is mentioned as a key-stone of CT and Grover and Pea 

(2018) identified it as a core element, which differs CT from other types of thinking. 

● Algorithmic thinking: Considering the sequence of steps. This includes a design of an algorithm 

to develop the step-by-step instructions for solving the problem. Starting from what already is 

known and working outward from there by making a plan how to approach to solve the problem.  

● Decomposition: breaking a problem down into parts. Decomposition involves finding structure in 

the problem and determining how the various components will fit together in the final solution.  

Doing decomposition well makes it easier to modify  the solution later by changing individual 

components, and also enables the reuse of components in solutions to other problems.   

● Evaluation: comparing alternatives and how does the solution work in practice and are there 

alternatives? Trying to give the problem different inputs to look how the solution works. 

● Generalisation: Creating things that can be reused in more than one scenario. Is the solution to 

similar problems also applicable and what is needed to do so? How can the solution be 

generalized? Which parts turned at the evaluation out to be not necessary? 

c) Levels of abstraction (LOA) matrix  

The degree of autonomy of learners to make choices about their constructed artefacts was viewed as 
an important aspect to capture in order to evaluate the opportunity for learners to engage in 
constructionist learning (reference needed) in computational thinking activities. Three frameworks have 
been combined and further developed to create a levels of abstraction matrix which provide an 
opportunity to evaluate autonomy for the different ‘levels’ or ‘stages’ for a programming project. The 
work that we build upon is the Levels Of Abstraction (LOA) framework (Perrenet et al. 2005; Perrenet 
& Kaasenbrood 2006), the Abstraction Transition (AT) Taxonomy (Cutts et al. 2012) and the Use -
Modify- Create approach (Lee et al. 2011).  

A levels of abstraction (LOA) model (Perrenet et al. 2005; Perrenet & Kaasenbrood 2006) has been 
suggested to support novice university students in thinking about algorithms in programming of: 
problem, object, program and execution. This model has been situated for high school learners by 
renaming the object level as algorithm (Armoni 2013) and with younger K-5 learners by renaming levels 
as: task for problem; design for object; code for program and running the code for execution (Waite et 
al 2016, Waite et al 2017).  

Cutt’s et al. (2012) investigated novice undergraduate ‘talk’ of programming activities in response to 
peer instruction questions and proposed the three leveled Abstraction Transition Taxonomy of English, 
CS speak and Code, where English is used to define the goal, ‘CS Speak’ for the technical description 
and code to accomplishes the goal. 



Constructionism 2018, Vilnius, Lithuania 

799 

 

The Use, Modify, Create approach has been suggested as a learning framework, where learners first 
use products created by other which are not ‘theirs’, move on to modify products and finally create their 
‘own’ products (Lee et al. 2011). 

3. Method 

3.1 The Mapping Tool 
A mapping tool was required to provide a means to classify and evaluate CT and constructionism. A 
simple google doc spreadsheet was used to facilitate sharing of the mapping tool. Following email 
discussion of a range of opportunities for classifying computational thinking a modification of the 2-
dimensional model of computational thinking skills and computer science concepts for individual tasks 
(Dagiene et al 2017) was agreed to be used to evaluate the intended teaching and learning objectives 
related to computer science concepts and computational thinking(CT).  

3.2 Computer Science (CS) Concepts 
The working group adopted the computer science concept categorization of school computing as 
proposed by Dagiene et al (2017) as that of:  

1. Algorithms and Programming 

2. Data, Data Structures and Representation 

3. Computer Processes and Hardware 

4. Communications and Networking 

5. Interactions, Systems and Society 

In addition, the working group adhered to the guidance from Dagiene and el (2017) that for practical 
purposes, a precise definition of each category is required and this can be achieved by the usage of 
keywords as shown in Table 1.  

Table 1 Computer Science (CS) Concept Categories and Keywords (Adapted from Dagiene et al (2017)) 

CS Concept 
Categories 

Code Keywords 

Algorithms and 
Programming 

APL Algorithm; Binary search; Boolean algebra; Breadth-first search; 
Brute-force search; Bubble sort; Code; Coding; Computational 
complexity; Constants; Constraints; Debugging; Depth-first 
search; Dijkstra’s algorithm; Dynamic programming; Divide and 
conquer; Encapsulation; Function; Greedy algorithm; Heuristic; IF 
conditions; Inheritance; Iteration; Kruskal’s algorithm; Logic 
gates; Loops; Maximum flow problem; Objects; Operations AND, 
OR, NOT; Optimization; Parameters; Prim’s algorithm; 
Procedure; Program; Programming Language; Program 
execution; Quick sort; Recursion; RSA algorithm; Shortest path; 
Selection; Sequence; Sorting; Steps; Traveling salesman 
problem; Variables 

Steps, sequence, algorithm, code, program  

Data, Data 
Structures and 
Representation 

DDS Array; Attributes; Biconnected graph; Binary and hexadecimal 
representations; Binary tree; Character encoding; Databases; 
Data; Data mining; Eulerian path; Finite-state machine; 
Flowcharts; Fractals; Graph; Hash table; Integer; Information; 
LInked list; List; Queue; Record; Stack; String 



Constructionism 2018, Vilnius, Lithuania 

800 

 

 

Computer Processes 
and Hardware 

CPH Cloud computing; Deadlock; Fetch-execute cycle; Grid 
computing; Image processing; Interpreter; Memory; 
Multithreading; Operating system; Parallel processing; 
Peripherals; Priorities; RAID array; Registers; Scheduling; Sound 
processing; Translator; Turing machine 

Communications 
 and Networking 

C&N Client/server; Computer network; Cryptography; Cryptology; E-
commerce; Encryption; Parity; Protocols; Security; Topologies 

Interactions, Systems 
and Society 

ISS Classification; Computer use; Design; Ethics; Graphical User 
Interface; Human Computer Interaction (HCI); Legal issues; 
Robotics; Social issues; 

Apart from assisting in the categorization of tasks, keywords are helpful to teachers who wish to find 
tasks that assist in introducing, teaching or formative assessing a specific computing topic (Dagiene 
and Sentance 2016; Yang and Park 2014). 

3.3 Computational Thinking (CT): Skills Level 
The working group adopted as its categorization of computational thinking which followed the work of 
Selby and Woolard (2013) and has been adopted by Computing At School in the UK in developing 
guidance for teachers on computational thinking (Csizmadia et al 2015). This approach was adopted by 
both Giordano et al (2015) and Dagiene et al (2017) in design a framework for classifying computational 
thinking skills and computing concepts. The following table summarizes the five categories of 
computational thinking: Abstraction, Algorithmic Thinking, Decomposition, Evaluation and 
Generalization, and describes aspects of computational thinking as exhibited by learners as they work 
their way through a task: 

Table 2 CT Skills and ways to identify them (adapted from Dagiene et al.(2017)) 

CT kills Code How to identify the use of this skill 

Abstraction ABS Removing any unnecessary detail 

Identifying key elements in the problem 

Choosing an appropriate representation of a 
system 

Algorithmic Thinking ALT Thinking in terms of sequences 

Thinking in terms of rules 

Creating an algorithm 

Executing an algorithm 

Decomposition DEC Breaking down tasks into sub-tasks 

Thinking about problems in terms of their 
component parts 

Making decisions about dividing into sub-tasks 
with integration in mind 



Constructionism 2018, Vilnius, Lithuania 

801 

 

Evaluation EVA Find an appropriate solution 

Finding the best solution 

Deciding whether the solution is fit for purpose 

Deciding whether the solution is the most 
efficient one 

Generalization GEN Identify patterns, similarities and connections 

Solving new problems based on solutions to 
similar problems 

Utilizing the general solution, i.e. induction 

Classifiers need to be able to know how to identify how a particular skill might be used to solve a given 
task (Table 2). One of the difficulties encountered by the members of the working group was that they 
could only presume to know how an individual learner solves a specific task which may differ from the 
way that either the task setter or the classifier would solve the task. In practical terms, there may be 
more than one computational thinking skill associated with each task. Therefore, the working group 
followed the guidance suggested by Dagiene et al (2017) of recording a maximum of three 
computational thinking skills. 

3.4 Developing the Constructionism Matrix  
A similar discussion was undertaken to find a framework to evaluate classroom activities for their 
‘degree’ of constructionism features. A new framework was devised, which will be evaluated as part of 
the working group activity. 

Waite et al. (2016) suggested that the LOA model might be mapped to the AT taxonomy, with Problem 
being matched to English, and object to CS speak and Program and Execution to Code. Similarly, we 
have combined the Program and Execution level, as our focus is on the autonomy of learners at each 
level, and they can have no influence on how the code runs to suggest a modified LOA suitable for K-
12 of:  

● Problem or task (English) 

● Object, algorithm or design (CS Speak) 

● Program or code and Execution or running the code (Code) 

This provides the first dimension of our constructionism matrix to which we added the dimension of  
Use, Modify, Create (UMC) (Lee et al. 2011) to provide an indication of learner ownership and autonomy 
for each level. Descriptions were added for each intersection of modified LOA and UMC matrix.  An 
iterative process was undertaken to develop these descriptions. As classroom activities were coded, 
the scale was reviewed and adapted to enable differences between the activities to be highlighted and 
then further subdivided to a 1 to 5 scale to describe a gradation of learner autonomy in the construction 
process. Our final constructionism matrix is shown in Table 3. 

Table 3: Constructionism Matrix 

Adapted 
LOA 

Problem or Task 
(English) 

Design/Object/Algorithm 
(CS Speak) 

Code/Program/Running 
the code (Code) 

Use/Modify/ 
Create 

Scale 

 

1 

No independence e.g. 
the teacher or activity 
states the problem, a 

copy task activity 

No independance using a 
pre-existing design, or no 

design 

No independence, 
copying pre-defined 

code 
Use 



Constructionism 2018, Vilnius, Lithuania 

802 

 

2 

Limited independence, 
can only change 

superficial aspects of 
the problem e.g. adding 

extra questions to a 
quiz, changing the 
characters of an 

animation (broadly a 
minimal remix) 

Limited independence, 
can only change some 
aspects of the design, 
objects, algorithm, for 
example reordering 
sequence of events, 

changing the data used 

Limited independance, 
can only change some 

elements of the modelled 
or pre-defined or 

example code 

Modify 

3 

Moderate 
independence, can 

change a broader range 
of characteristics of the 
problem but limited to 

the genre and context of 
the 

Moderate independence, 
can change a broader 

range of characteristics of 
the design but changes 
are within the genre and 

context of the original 
exemplified design. 

Moderate independence, 
can change a broader 

range of characteristics 
of the code but limited to 
the genre and context of 
the task and also to the 
hardware and software 
defined by the task or 

teacher. 

Modify 

4 

Increasing 
independence, cannot 
change the 'Genre' but 
has full control of the 

context e.g. must be a 
quiz, or a physical 

computing problem but 
can be any context. 

Increasing independence, 
cannot change the design 
approach to be used, but 

can adapt the objects, 
algorithm etc to meet 
needs of the problem 

Increasing 
independence,limited by 

type of hardware and 
software to be used, but 
could choose a different 

input type or type of 
microcontroller or 

different block based 
programming language. 

Modify 

5 

Full pupil independance 
the pupil has full control 
over the problem to be 

considered e.g can be a 
quiz, game, physical 

product, unplugged etc 

Full pupil independance 
the pupil has full control 

over the design to be 
considered can choose 

format and approach to be 
taken 

Full pupil independance 
the pupil has full control 

over the hardware, 
software and 

implementation choices 

Create 

6 
Levels 1 and 2 seen in a 

unit of work 
Levels 1 and 2 seen in a 

unit of work 
Levels 1 and 2 seen in a 

unit of work 
Use/Modify 

7 
Levels 1, 2 and 3 seen 

in a unit of work 
Levels 1, 2 and 3 seen in 

a unit of work 
Levels 1, 2 and 3 seen in 

a unit of work 
Use/Modify 

9 Not Applicable Not Applicable Not Applicable  

As the mapping tool was used further attributes were added, these included: 

● Type of artefact made (Physical computing, onscreen, unplugged, concept)  



Constructionism 2018, Vilnius, Lithuania 

803 

 

● Type of resource (Lesson plan, game etc) 

● Cost (Paid for,  free) 

● Activity/Approach URL and description 

● Target age range (see Table 4) 

Table 4: Target Age Range 

Years old US grades English year groups 

5-6 K-1 Key Stage 1 Years 1-2 

7-11 2-5 Key Stage 2 Years 3-6 

12-14 6-8 Key Stage 3 Year 7-9 

15-16 9-10 Key Stage 4 Years 10-11 

17-18 11-12 Key Stage 5 Years 12-13 

Finally, each activity was double blind coded by two members of the group. 

3.5 Selection of activities. 

Where information was available related to the popularity of classroom activities this data was used to 
select these activities. In the UK, a review of computer science education (Royal Society, 2017) was 
used to select the top 5 resource providers and a selection of their materials was included. To select 
material provided by one supplier of resources, we contacted them and asked which were the most 
popular and used these. For some providers material is only available with payment, here the materials 
were not included as there would be no means to then share and compare the approach taken with 
readers of the research. Our study is not rigorous in sampling, but our intention was to trial the approach 
for review of materials to suggest next steps for a more complete review. 

For Lithuania, a number of anecdotally popular resources were selected, one from Italy and the rest 
from the US. One activity (CodeMonkey) was chosen because this game-based environment was 
awarded as the Best Coding and Computational Thinking Solution77 in 2018. This classroom activity is 
recommended in informatics educational content in primary education in Lithuania as a tool  that 
engages student to learn informatics concepts by practice not only during informatics lessons, but also 
during other subjects such as math, etc. (firstly, students solve problem  without computer (eg. measure 
the distance) and then repeat the same task using CodeMonkey tool). Other activities are applied or 
recommended as classroom activities in primary or middle school in Lithuania as tools to teach 
computer science concepts or programming. Several activities were the most popular during the Hour 
of code78 (Code Event) in 2015. In addition, some resources (Scratch, Khan Academy, Code.org) are 
mentioned as the best free resources for teaching youngsters to code.79 

                                                
77https://www.playcodemonkey.com/blog/2018/06/20/codemonkey-awarded-best-coding-computational-thinking-solution/ 
78 https://blogs.sas.com/content/sascp/2015/12/07/our-favorite-hour-of-code-resources-for-csedweek15/ 
79 https://codakid.com/top-5-free-kids-coding-websites-of-all-time/ 



Constructionism 2018, Vilnius, Lithuania 

804 

 

 

Figure 1. Students solve problem without computers and then solve it with computers, discusses about coding 
with CodeMonkey (Taurage „Saltinis“ Progymnasium, Lithuania) 

3.6 Inter-reliability of codings & quantitative analysis 
As a resource was added by a researcher to our main spreadsheet, a second sheet had been set up 
that automatically inherited the link to the resource. No other data was copied across. A second coder 
could then pick up the activity and code it without having seen the prior codings of their peer. Therefor 
we had two authors independently coding each resource. The results were copied into SPSS for 
interrelidability evaluation using Cohen’s kappa (Cohen, 2011) where each activity was a ‘case’. In using 
SPSS there is a known limitation, that if one coder only uses one value for a variable, then SPSS 
evaluates this as a constant and will not report a reliability statistic. An documented acceptable 
workaround is to add a distinct pseudo case with a very small weighting (0.0001) as opposed to all other 
cases which are allocated a weighting of 1 (UCLA, 2018). This technique was required to be used as 
we were using dichotomous variables (yes/no), such as for the computer science concepts which had 
not coded for any activity. 

As we were working as a distant group SPSS syntax was used and a shared excel spreadsheet so that 
authors could validate the quantitative data analysis techniques used. The syntax and input data is 
available on request from the first author.   

Our results are predominantly non-parametric data; therefore, we have used the Mann-Whitney U test 
to compare two independent groups such as concepts being selected as taught or not (Cohen, 2011). 
To grade effect sizes, we used Cohen's classification: if r is 0.1 to 0.3 there is small effect, if r is 0.3 to 
0.5 there is moderate effect and 0.5 and above is large effect. For variables with more than 2 possible 
values, such as the activity type or the artefact type created, the independent Kruskal-Wallis test was 
used to investigate any significant differences (Cohen, 2011). We report the χ2 statistic for this statistic 
and include post-hoc analysis through the Bonferroni-correction for pairwise comparison of categories 
For paired dependent testing, such as comparing trends of coders ratings of the constructionism matrix 
across the problem, design and code dimensions we have used the Wilcoxon Signed-Rank test (Cohen, 
2011). For this statistic we report the number of cases tied and the increases or decreases of ranked 
responses to report on the underlying data.  

4. Results  

We first report on descriptive statistics for the coding of activities, followed by intercoder-reliability 
reporting and finally with inferential statistics as we look for relationships between the variables coded. 
Twenty-one activities were coded as shown in Appendix 1.  57% (n=12) of the activities were for 7 to 
11 year olds, 23% (n=5)  for 5 to 6 year olds, 2 were for any age from 5 years, 1 was for any age 
between 5 and 11 and 1 activity for students from 10 years onwards. Therefore, all activities were judged 
to be suitable for some set of pupils pupils in the K-5 (primary age range in England).  

Over 75% of the activities selected were lesson plans (n=16), the remainder were online activities (n=4) 
except for one board game. Two thirds of the activities originated from England (n=14), 29% from the 
US (n=6) and one from Italy. Nearly 30% of the activities employed Scratch (n=6), 15% ScratchJr (n=3), 
there were 2 route based programming languages where the student moved an onscreen character or 
programmable toy with direction keys and there was one activity for each of the programming languages 



Constructionism 2018, Vilnius, Lithuania 

805 

 

of blockly, CoffeeScript, Python, Java and a physical computing software called Crumble. There was 
also one activity that used Google Forms and 6 activities which used no programming language or 
specific software to make something.  

In order to give a % for each concept type we have taken the average number of coded activities for 
each concept across the two coders and present this as a percentage out of the 21 activities as shown 
in  Table 5. On average across the coders, the most popular CS concept taught in the sample of 
activities codes was ALP (Algorithms and Programming) with 90% of the activities coded to this concept. 
No activities were coded to Data, Data Structure and Representation concept.  For CT concepts, the 
most popular coded concept was ALT (Algorithms) with, 83% of the activities coded as teaching this 
concept, the second most popular CT is DEC (decomposition) with 45% of activities coded for this. The 
most frequent artefact type coded was concept at 79%, followed by 64% for OnScreen artefact types. 

Table 5. CS concept, CT concept and artefact type counts by coder and % out of 21 activities 

 CS concepts CT concepts Artefact type 

 ALP DDS CPH C&N ISS ABS ALT DEC EVA GEN Physi
cal 

OnS
cree

n 

UnPl
ugge

d 

Conce
pt 

Coder 1 19 2 0 2 3 4 19 9 9 1 2 13 10 16 

Coder 2 19 1 0 2 4 5 16 10 7 3 2 14 7 17 

Averag
e 

19 1.5 0 2 3.5 4.5 17.5 9.5 8 2 2 13.5 8.5 16.5 

%  90% 7% 0% 10% 17% 21% 83% 45% 10% 10% 10% 64% 40% 79% 

Cohen’s κ was run to determine if there was agreement between the authors coding of n activities as 
shown in Table 6. There was a substantial agreement (κ = .778 , p<0.005) across all the groups of 
variables. 

Table 6 Cohen’s κ for coding of activities. 

Group of 
variables 

Variable 
Cohen’s 

κ 
p Notes 

Computer 
science 
(CS) 
concepts 

ALP: Algorithm and 
Programming 

1 p<0.000 
All coder agreed on every 
case 

DDS: Data, Data 
Structures and 
Representation 

.644 p=0.002  

CPH: Computer, 
Processes and Hardware 

not 
reported 

 
No cases were recorded for 
this 

C&N: Communications 
and Networks 

1 p<0.000 
All coders agreed on every 
case 

ISS: Interactions, systems 
and society 

.829 p<0.000  



Constructionism 2018, Vilnius, Lithuania 

806 

 

Average κ for all CS 
concepts 

.868  Almost perfect agreement 

CT concepts 

ABS: Abstraction .696 p=0.001  

ALT: Algorithmic Thinking .877 p<0.000  

DEC: Decomposition .704 p=0.001  

EVA: Evaluation .690 p=0.001  

GEN: Generalisation 
not 

reported 
 

17 agreements 2 
disagreements but 1 coder 
only recorded one value 

Average κ for all CT 
concepts 

.74175  Substantial agreement 

Constructio
nism scale 

Problem or Task .535 p<0.000  

Design/Object/Algorithm .563 p<0.000  

Code/Running the code .432 p=0.001  

Average κ for all 
Constructionism Scale 

.51  Moderate agreement 

Artefact type 

Physical Artefact Created 1 p<0.000  

On-screen Artefact 
Created 

0.901 p<0.000  

Unplugged Artefact 
Created 

0.807 p<0.000  

Concept Artefact Created 0.604 p=0.002  

Average κ for all Activity 
Type 

0.82  Almost perfect agreement 

Overall Average κ .7784  Substantial agreement 

As shown in Table 7, the majority of activities were coded at level 1 scale for Problem or Task level at 
52% and 61% for coders, followed by 24% to 29% at level 2 and 9% to 10% for level 3 with only 1 
activity assigned a 4 or 5 level. The majority of designs where at scale 2 at 53% to 71%, with 14% to 
24% at level 1 and only 5% at level 3. As with the design level,  the majority of activities were rated at 
a level 2 scale for the code dimension at 57% and 61% with between 5% and 9% at level 1, and one 
activity assigned a level 5. For the coding dimension a quarter, 24% to 29% were not assigned a level 
(for example as they were unplugged activities). 

 



Constructionism 2018, Vilnius, Lithuania 

807 

 

Table7. Percentage and count (n) of coded activities by constructionism scale. 

Adapted 
LOA Scale 

Problem or Task 
(English) 

Design/Object/Algorithm 
(CS Speak) 

Code/Program/Running the 
code (Code) 

 Coder 1 Coder 2 Coder 1 Coder 2 Coder 1 Coder 2 

1 61% (13) 52% (11) 24%(5) 14% (3) 9%(2) 5% (1) 

2 5% (1) 0 28%(6) 33% (7) 52%(11) 48%(10) 

1 to 2 19% (4) 29% (6) 24% (5) 38%(8) 5% (1) 13%(3) 

2 or 1 to 2 24% (5) 29% (6) 53% (11) 71%(15) 57% (12) 61%(13) 

3 5% (1) 0 5% (1) 5% (1) 5% (1) 0 

1 to 3 5% (1) 9%(2) 0 5 (22%) 0 5% (1) 

3 or 1 to 3 10% (2) 9%(2) 5% (1) 5%(1) 5%(1) 5% (1) 

4 0 0 0 0 0 0 

5 0 5% (1)JS 0 0 0 5% (1)JS 

4 or 5 0 5% (1) 0 0 0 5%(1) 

coded as 
not 

applicable 
5% (1) 5% (1) 19% (4) 10%(2) 29%(6) 24%(5) 

n 21 21 21 21 21 21 

Our data is predominantly nonparametric. We have dichotomous (yes/no) variables for the CS concept 
and CT concepts and ordinal variables for the constructionism scales for each of the dimensions of 
problem, design and code.  

Summary Dimensions: To simplify reporting of the constructionism scale we have combined the ‘1 to 
2’ response with the 2 response and the ‘1 to 3 response’ with the 3 response for each of the dimensions. 
We have also removed the 4 and 5 scale responses as there was only 1 activity coded at the 5 scale 
by one coder, and the second coder placed this same activity as 3, so we have classified this as an 
outlier and will further consider this case in discussion. In doing this we have created Summary 
Dimensions with scales of 1, 2 and 3. 

We have used the Mann-Whitney U statistic to investigate whether there was any statistically significant 
relationships between the constructionism scale and its CS concept or CT concept. Here the cases, 
rather than being an activity, were the codings of each activity by each researcher therefore the 
maximum population was 42 (n=42) for these tests.  

The null hypothesis was that for each CT and CS concept there was no statistically significant difference 
between whether an activity was coded with that concept and the constructionism scale. 

The null hypothesis for all CS and CT concepts could not be rejected as all tests showed no statistically 
significant difference. The test statistics are shown in Appendix 2. A cross tabulation of the data is shown 
in Table 8.  

 

 



Constructionism 2018, Vilnius, Lithuania 

808 

 

Table 8 Cross Tabulation of CS & CT concepts  by constructionism matrix dimensions for both coders showing 
% of type and (n) using Summary Dimensions, with most popular per concept & dimension highlighted. 

 Problem  Design Code 

1 2 3 1 2 3 1 2 3 

CS 
co
nc
ept
s 

ALP  55%(1
8) 

33%(1
1) 

12%(
4) 

23%(
8) 

71%(2
4) 

6%(2
) 

23%
(8) 

71%(
24) 

6%(34
) 

DDS 100%(
2) 

0 0 33%(
1) 

67%(2
) 

0 0 0 0 

CPH:  0 0 0 0 0 0 0 0 0 

C&N:  100%(
4) 

0 0 0 0 0 0 0 0 

ISS:  57%(4
) 

43%(3
) 

0 29%(
2) 

71%(5
) 

0 0 100%
(5) 

0 

CT 
co
nc
ept
s 

ABS:  86%(6
) 

0 14%(
1) 

0 67%(2
) 

33%(
1) 

0 0 100%(
1) 

ALT:  61% 
(17) 

25%(7
) 

14%(
4) 

24%(
7) 

69%(2
0) 

7%(2
) 

12%
(3) 

80%(
20) 

8%(2) 

DEC:  43%(6
) 

43%(6
) 

14%(
2) 

25%(
4) 

63%(1
0) 

12%(
2) 

8%(
1) 

75%(
10) 

17%(2
) 

EVA:  54%(7
) 

15%(2
) 

31%(
4) 

14%(
2) 

72%(1
0) 

14%(
2) 

0 82%(
9) 

18%(2
) 

GEN: 100%(
2) 

0 0 50%(
1) 

50%(1
) 

0 50%
(1) 

50%(
1) 

0 

Similarly, we performed the same statistic on the artefact types reported by the coders, as there was 
only one board game we removed this from the test and used a Mann-Whitney U to compare those 
activities which were lesson plans and those which were online student activities for each of the 
dimensions of the constructionism matrix, namely problem, design and code, for the assigned 
constructionism scale of pupil autonomy. The null hypothesis for these tests was that there would be no 
statistically significant differences in the gradings of the constructionism scale for lesson plan based 
resources or online student resources. There were two statistically significant differences, as shown in 
Appendix 2, for the Design level (p=0.018, n=25, U-54.5, r=3.98) and the Code level (p=.048, n=29, 
U=37. r=.398) both of medium effect size, meaning we do not accept the null hypothesis. A cross 
tabulation of the data is shown in Table 9  and shows that the scale of autonomy was recorded at a 
higher level for lesson plans than for online resources. This may be significant in that it is may not the 
CS or CT concept that is having a bearing on the constructionism aspect of a task, more what type of 
activity it was.  



Constructionism 2018, Vilnius, Lithuania 

809 

 

Table 9 Cross Tabulation of activity types by constructionism matrix dimensions for both coders showing % of 
type and (n) using Summary Dimensions. 

 Problem  Design Code 

1 2 3 1 2 3 1 2 3 

Ac
tivi
ty 
Ty
pe 

Lesso
n Plan 

61%(
19) 

29%(
9) 

10% 
(3) 

14%(
4) 

 

82%(
23) 

4%(1) 4% 
(1) 

92%(
21) 

4%(1) 

Online 
Stude

nt 
Activit

y 

71%(
5) 

29%(
2) 

0 57%(
4) 

43%(
3) 

0 33%(
2) 

67%(
4) 

0 

Board 
Game 

0 0 100%(
1) 

0 0 100%
(1) 

0 0 100%(
1) 

We also compared the constructionism matrix scales to different types of artefacts created by activities, 
the results are shown in Appendix 2. The null hypothesis was that there would be no difference in the 
reported autonomy of students for whether the artefact was of a particular type or not. A Kruskal Wallis 
with bonferroni correction pairwise test showed ‘unplugged compared to physical’ (p=0.013, n=17. 
U=5.678, r=.694) and ‘on screen compared to physical’ (p=0.016, U=5.328,n=29,r=.517) had a 
statistically significant differences at the problem level both with large effect size, but no statistically 
significant difference for the others. However, caution is urged as there were only 2 activities creating 
this artefact type, each coded by a different coder. A cross tabulation (Table 10) showed that physical 
activities had a higher autonomy scale than non-physical for the problem dimension. This indicates that 
the type of artefact may be having a bearing on the degree of constructionism of a task, rather than the 
CT or CS concepts. 

Table 10 Cross Tabulation of artefact types by constructionism matrix dimensions for both coders.showing % of 
type and (n) using Summary Dimensions 

 Problem  Design Code 

1 2 3 1 2 3 1 2 3 

Artefact 
type 

Unplugged 75% 
(9) 

17% 
(2) 

8% 
(1) 

12.5
%(1) 

75% 
(6) 

12.5%
(1) 

25% 
(1) 

50% 
(2) 

25% 
(1) 

Onscreen 65% 
(15) 

31% 
(7) 

4% 
(1) 

29% 
(7) 

67% 
(16) 

4% 
(1) 

9% 
(2) 

86% 
(19)  

5% 
(1) 

Physical 0 50% 
(2) 

50% 
(2) 

0 4 
(100%) 

0 0 100% 
(4) 

0 

Concept 65% 
(19) 

21% 
(6) 

14% 
(4) 

19% 
(5) 

73% 
(19) 

8%(2) 10%
(2) 

80% 
(16) 

10% 
(2) 



Constructionism 2018, Vilnius, Lithuania 

810 

 

To investigate if there was any statistically significant difference in coders assignment of scales for each 
of the constructionism dimensions we performed the pair statistic of the Wilcoxon Signed Rank test with 
results shown in Table 11. The null hypothesis was that there would be no statistically significant 
difference in scales across the problem and design, design and code and problem and code dimensions. 
There wa statistically significant evidence to reject the null hypothesis, indicating that there was a 
relationship between coders allocation of scales across the dimensions.  In our population coders rated 
the design scale as higher than the problem scale with moderate effect size, and the code scale higher 
than the design and the code scale higher than the problem (see Table 11 for test results). This indicates 
that our coders rated activities as being more ‘constructionist in the dimensions’ of coding, then design 
and then lowest in problem. 

Table 11: Comparing the changes in coders rating of scale across the construnctionism matrix dimensions using 
the Wilcoxon Signed Rank test. 

Test statistics Comparing 
constructionism 

scales 

Problem to Design 

Comparing 
constructionism 

scales 

Design to Code 

Comparing 
constructionism 

scales 

Problem to Code  

Increase in 
scale 

12 (sum of ranks 90) 4 (sum of ranks 10) 14 (119) 

Decrease in 
scale 

2 (sum of ranks 15) 0 (sum of ranks 0) 2 (17) 

Tied 20 26 14 

n 34 30 30 

p p=0.008 p=0.046 p=.003 

Z -2.673 -2.00 -3.00 

r -.46 -.37 -.55 

During review of activities, coders added notes to the mapping tool of their justification for their allocation 
of concepts and constructionism scale, these are shown in Appendix 1. We have not undertaken a 
qualitative analysis of this data, but draw upon theses notes in discussion. In future studies these notes 
could be analysed more rigorously to inform & improve the suggested tool. 

5. Discussion 

An initial point to note was the difficulty in creating a method for evaluating the degree to which 
constructionism is incorporated in activities, a matrix has been suggested, but this requires further 
validation as a useful approach. When creating the matrix there was discussion of what were the most 
important features of a constructionist activity. According Papert (1980), important is learning 
experience that engage students in constructive activities that are meaningful to them. Furthermore, 
activities should be accessible to students with different styles of thinking and learning. Harel stressed 
that “students become deeply involved and gain deeper understanding… through the process of 
constructing, programming, and explaining their own representations” (Kafai, 1994, p. 24).  Our focus 
led to the attribute of learner autonomy in creating artefacts at each of the main stages of a product 
development. Here an adapted levels of abstraction framework was suggested with dimensions of 



Constructionism 2018, Vilnius, Lithuania 

811 

 

problem, design and code. A scale of autonomy from levels 1 to 5 was suggested with 1 representing 
the least amount of learner control of the artefact being created to 5 representing the learners having 
complete choice over what to make and how.  

During the process of review of activities, it appeared that the scale criteria description was not sufficient 
to distinguish between the sample of activities. Some coders rated activities at ‘1 to 2’ or ‘1 to 3’, this 
was because the activities, rather than being a single small activity were a unit of work across several 
lessons, or within a single lesson there was a ‘graduation’ of pupil autonomy. This ‘graduation’ may 
have been over the course of the lesson as different ‘tasks’ occurred, such as an initial closely controlled 
task, followed by a task where there was more student control or it could be that over several lessons 
pupils were moved from use to modify (Lee et al. 2011a). 

In order to deal with this added requirement, two extra levels were added to the scale of ranges of ‘1 to 
2’ or ‘1 to 3’ as coding value options. However, a % or degree of each level may have been more useful. 
Within the qualitative data of ‘Justification of codings’ variable’ one coder said “ I was loathe to allocate 
a level 2, as this only occured in the final 20th challenge and up to this point there had been absolutely 
no student autonomy at all “ (Coder 2) 

However, during reporting on the data, these two extra ‘range’ scales were merged back in with their 
respective highest level, this was because of the small number of activities which were surveyed and 
the need for broader groups for statistical analysis. In further work, a larger sample of activities is needed 
and the more granular levels can then be used to draw out clearer distinctions between activities. 

Turning our attention to the quantitative data reported, the coding of computer science concepts was 
reliable. There was a high level of inter-reliability agreement reported as being almost perfect (κ= .868, 
p< 0.005) in Table 5. 

For CT concepts the agreement was less but was still a substantial agreement (κ= .74175, p< 0.005). 
However, for the Constructionism matrix agreement was only moderate (.51, p<0.005). Agreement was 
almost perfect on artefact type (κ=0.82, p<0.005). 

Selection of activities to sample was problematical. In the UK there are a large number of resources 
available for educators to select from and recent surveys which have reported on the most popular 
(Royal Society, 2017). However, in other countries the task of finding resources to evaluate was not so 
easy. In other countries teachers can use resources that are internationally available, such as the 
code.org materials but working group members reported that in some countries teachers are more likely 
to create their own activities and that these are not then shared. For these countries, a generic set of 
activities were created to represent these countries resources. Whether or not these are representative 
of what is being actually used in class in difficult to assess. Similarly, in the UK, it is not clear as to 
whether teachers are using resources in their published form or if they are adapting them, in a recent 
survey of 207 teachers (data not yet published) 40% of teachers reported they created their own 
resources, including adapting resources from over 70 specifically named resource sets. The most 
popular three resource mentioned in this survey was the Barefoot materials (Berry et al. 2015) with 34% 
of the teachers mentioning using this resources followed by and 16% mentioning CodeIt and 13% 
Switched on, of which we have reviewed sample material in our survey here. Although, teachers choose 
the most popular computer science or computational thinking activities in the world, but sometimes the 
diversity of activities depends on policies, curriculum, grades, etc. For example, robotics has become 
very popular in secondary schools in Finland; computer science equipment is provided by the States 
and the local communities in Germany, programming with Scratch is involved as activity in primary 
school in Ireland; learning objectives include programming skills and knowledge of computer hardware 
in secondary schools in Lithuania; a course that includes programming with Scratch or Kodu is available 
in Portugal computer science education (7th-8th grade) (in Passey, 2017). Teaching of computer 
science integrated to other educational subjects is started in primary school in Lithuania in 2017.  

In some cases, teachers use computer science activities as a way to demonstrate how the same 
problem or task of real life could be solved by using computers. For example, students have to solve 
problem/task during mathematics lesson, they try to solve its own or in pairs and at the end of the lesson 
solve the same problem using the particular tool, like Scratch, code.org, Codemonkey, etc. It gives 



Constructionism 2018, Vilnius, Lithuania 

812 

 

opportunity for students to understand the problem or task deeper or practice in different ways, engage 
discussion between students.  

Similarly, there was debate as to whether to include activities in which no physical ‘artefact’ was 
constructed rather than learners ‘constructed conceptual understanding. For one activity, a board game, 
the learners constructed their learning, as the ‘used’ others games, but then went on to create their own 
version, very much transitioning through a use, modify, create approach (Lee et al. 2011). This transition 
from using to making seemed to be the salient point in which constructivism (Piaget 1970) switches to 
constructionism (Papert 1970) and as long as activities included this transition then they could be 
included. Therefore, activities such as a Bebras task (Dagienė &. Sentance 2016) would not be included, 
as they support development of a CT concept but do not include an element of then making or 
constructing of an adapted or brand new version of a task. This is a problematical issue as a teacher 
could use a Bebras task as a starting point and then adapt this context into a constructionist activity. 
How teachers are using activities in practice was not captured by our survey of materials. But our 
approach could be used as a starting point to further investigate teachers transition of resources from 
constrivist to constructionist activities.  

In the case of creating Bebras tasks, Dagienė at al. (2016) mentioned a constructionist and 
deconstructionist learning ways. Constructive way of learning is the creation of computer science task 
and deconstructionist way of learning is that an computer science concept is analyzed and 
deconstructed in its main aspects (discovering why it is computer science). 

Our review was of single activities rather than of sets of activities sitting with a progression of 
development of knowledge, skills and understanding. This is a limitation of our study. Similarly, some 
coders had considered the use of a construct such as a procedure or function was sufficient to warrant 
generalisation could be assigned, whereas for other coders, only if learners had themselves generalised 
rather than copied or used someone else's generalisation could that attribute be assigned to an activity. 
There are opportunities to review the progression of the constructionism matrix and CT concepts 
through time. For example, the Solo taxonomy (Biggs, 1982) starts with the learner having no 
experience of a concept and moves to them being able to apply the concept in new and novel scenarios. 
There is opportunity to map this taxonomy, or other similar to the constructionism matrix. 

Looking at each of the dimensions for our activities, the fact that 52% to 62% of the problems were 
assigned a scale of 1 

The majority of activities were coded at scale 1 for Problem or Task level at 52% and 61% for coders. 
The majority of designs where at scale 2 at 53% to 71%. Similarly, the majority of activities were rated 
at scale 2 for the code level at 57% and 61% as shown in Table 7. 

Looking at the overall statistics for the constructionism matrix and its dimensions and autonomy scales, 
as shown in Table 7, there is as an overall pattern whereby autonomy for learners is most restricted at 
the problem stage with around half of activities coded at scale 1. Autonomy for learners is slightly better 
during design and code where scale 2 was assigned for around half to three quarters of the time. What 
this indicates, for our sample, is that learners have little control over the context of the activities they are 
undertaking, they have some opportunity to start to modify the design and the code, but very few 
opportunities to be involved in a more free form create where they have control over what they might 
make it and how. Therefore, the level of constructionism might be considered to be LOW if we measure 
it based on student autonomy, learners are not moving to the point where they might feel ownership 
(Lee et al. 2011) as they are not yet making their own new artefacts.  

Considering each of the computational thinking concepts and their relationship with constructionism and 
relating this to our findings. 

ALT- Algorithmic Thinking 

Despite having no statistically significant statistics related to our data for the algorithmic thinking CT 
concept, there are interesting features of the descriptive data. ALT was our most popular CT concept 
coded for the 21 activities, 16 to 19 activities (Table 5 ) were coded as teaching this concept by by our 
2 coders. When analysing the activities that were matched by the coders to this concept, the majority 



Constructionism 2018, Vilnius, Lithuania 

813 

 

of these were related to level 1  problem activities,  level 2 design and level 2 coding activities (Table 
8). The inter-reliability for ALT was almost perfect agreement  (κ=.877 p<0.05) (Table 6).   

Considering whether there might be specific reasons why algorithmic thinking might be particularly 
suited to constructionism then we turn our attention ideas on progression for this concept and the work 
by Rich, Strickland, Binkowski, Moran, & Franklin  (2017) who suggested a learning trajectory for 
developing sequence. Rich et al. grouped initial learning about sequence into everyday activities related 
to ordering and precision, suggesting that learners transitioned from understanding the world around 
them for a particular concept to then applying this in a programming context with an intermediate phase 
of computational thinking. An example of a goal on this trajectory is “During this trajectory they need to 
learn that programs are made by assembling instructions from a limited set’’(page 187). Whether this 
objective is more effectively met through CodeMonkey activities with no choice of the problem, the 
design or the code (as there is only one possible solution to a puzzle), or with Lightbot, with similar 
restrictions or through a more open exploration of a ScratchJr activity to draw a square, which still is a 
level 1 problem, but which allows learners to select the character that draws the square and the learner 
can choose where exactly to start, how big the square might be and can embellish this activity in next 
steps, so this becomes a level 2 design and code activity has not been evidenced by our study. 

DEC - Decomposition 

Just less than half of our activities were assigned to the decomposition concept (dependent on coder 
per table 5 ).These were relatively evenly split between level 1 and level 2 on the problem dimension  
with a couple of activities at level 3. For design most were at level 1 and most level 2 for the coding 
activities (table 8). The inter-reliability was at a substantial agreement (κ=.704 p<0.05) (Table 6). Why 
decomposition might have lower pupil autonomy at the design level is interesting, whether this is 
because design is lacking as a clear and identified step may be a contributing factor.  A recent review 
of resources for teaching computing, concluded that there was a lack of resources with design (Falkner 
& Vivian, 2015) and a study  matching learning goals against research cited design as the most 
unmatched goal (Rich, Strickland & Franklin, 2017). We did not specifically ask coders to reflect on this, 
however one coder noted that  ‘Design element was STRONG’(coder 2) in activity  19 but nonexistent 
in the puzzle based activities which have a predetermined problem and solution algorithm. In 
undertaking design students are required to break their problem down into parts (decompose it), they 
need to consider the level of detail that is appropriate (and so are also abstracting) and order these 
items (and so are practising algorithmic thinking). Considering how students are experiencing design 
they may be copy an existing design, or working in a more constructionism way by creating their own, 
perhaps activities could be improved by increasing the element of independent design by learners in 
the same way that they are required to do when they are undertaking other subjects such as when 
learning to write (Waite, Curzon, Marsh, Sentance, Hawden- Bennett, 2018). 

ABS - Abstraction 

Only 4 to 5 activities were identified as teaching abstraction and the inter reliability was moderate 
(κ=.696, p=0.001), yet abstraction is seen by many as the cornerstone of computational thinking.  Wing 
wrote “The abstraction process, deciding what details we need to highlight and what details we can 
ignore, underlies computational thinking” (Wing 2008, p.3718). The activities which have abstraction 
coded for them are predominantly at level 1 for problem and level 2 for design and code (see table 8). 

In our study we have developed upon a particular use of abstraction through our constructionism matrix 
and the levels of abstraction, where the dimensions of our matrix represent levels of detail for different 
purposes of an activity, the problem, design and code, however that does not relate to how activities 
engaged with the teaching and learning of abstraction.  

In looking at our coded activities, as with decomposition, learners are using abstractions as they are 
given a problem by their teacher or an online system, this is coded at scale 1 and what we saw for most 
of our small sample. If learners then follow a predefined design (as with the puzzle activities) they are 
using an abstraction and if they are copying or figuring out a pre-defined code solution, again they are 
using an abstraction at scale 1.  



Constructionism 2018, Vilnius, Lithuania 

814 

 

Despite learners using abstractions, few of our activities were coded with this concept. Perhaps this is 
because the concept is hidden from both the teacher and the learner, and only when a specific process 
of abstraction is mentioned would it be coded?  We have 2 activities coded level 2 for design and 1 for 
level 3 at code and design. This is for activity 19, a ScratchJr which the coder justifies her allocation for 
by saying  

‘The design element is STRONG. I wish I could have given this a much higher score - maybe 
this needs to be reflected - but the genre was fixed and the language used. I allocated more CT 
aspects as kids were deciding on their own designs so abstracting and decomposing as they 
were designing. I am not sure they did generalisations - maybe because they were doing repeats 
... need to discuss more about how we allocated each of the CT concepts - need a clearer 
definition.’ (Coder 2)  

However, for this same activity coder 1 disagreed and only gave the activity a level 2 for design and 
coding and did not allocate decomposition or abstraction as concepts taught.  

The comments made by coder 2 implies a constructionism approach was being taken, as learners were 
‘deciding on their own designs’ however, whether this means that learners will make more progress 
rather than using someone else's is yet to be robustly evidenced for this age group of learners. 

GEN - Generalisation 

This concept was assigned the fewest times from all of the CT concepts, only 1 to 3 activities were 
coded as GEN and the inter-reliability was not reported by SPSS as there were no agreements and 
numbers were small. Even where it was assigned there was a lack of certainty of the allocation, one 
coder remarked in the justification notes (Appendix 1) about Activity 21 (Lightbot) ‘‘Although this 
teachers procedures - is this generalisation or is it decomposition??? As the purpose is not to reuse for 
a logical reason but to reduce code blocks used.’’ (Coder 2) The same coder raised the same question 
about Activity 19’ I am not sure they did generalisations - maybe because they were doing repeats  ... 
need to discuss more about how we allocated each of the CT concepts - need a clearer definition.’’ 
Coder 2) 

Again this was raised for Activity 24:  

‘If we are considering repeats as decomposition then this is used, I am assuming then as it 
moves to functions then we can say that generalisation is used HOWEVER the level of use of 
these is very low. On solo it's really just first level as using what is provided - maybe unistructural, 
whether we think this use of a procedure that someone else made is generalisation I am really 
not sure it will be interesting to see what the other coders thought and whether the learning of 
generalisation here has been done in a constructionist manner at all.’’ (Coder 2) 

Two issues are raised by these comments, firstly, is a function or procedure which is used solely to 
reduce the number of lines of code for something that can be repeated a generalisation or a 
decomposition used within a repeat? Does generalisation need to be where we are “transferring a 
problem solving process to a wide variety of problems” CSTA & ISTE , 2011))? Has this confusion arisen 
as the term pattern has been associated with generalisation? This term may have been introduced to 
simplify language and as an instructional approach in a progression of learning for generalisation to 
encourage the spotting of patterns that might then become generalisations. However, during this 
progression reusing code to simplify code within a single solution, such as in the activity 19,21 and 24 
is this generalisation?  

Secondly, does using elements created by someone mean we are learning about the process involved 
in creating those elements? 

EVA - Evaluation  

Evaluation according to Bloom is the highest order thinking skill (Bloom, 1957) which learners encounter 
as they gradually spiral through a succeeding progression of more complex material. In our review of 
the 21 activities, 7 to 9 activities were identified as teaching evaluation with substantial inter-rater 
reliability (κ=0.69 p=0.001). Of those activities assigned this concept  by the two coders, over half were 



Constructionism 2018, Vilnius, Lithuania 

815 

 

rated as level 1 (54%) and a third (31%) level 3 for the problem,  nearly three quarters (72%) were rated 
level 2 for design and 82% at level 2 for coding. This is quite a wide spread, with some tendency to the 
higher levels for code and design. Perhaps implying that evaluation of the code was more prevalent 
than evaluation of a design. But this is a broad assumption which needs more careful analysis 
particularly around what we might mean by an activity having evaluation being assigned as teaching 
that CT concept. In our definition of evaluation the following phrases were provided to help coders 
decide if evaluation was a skill USED in the activity ‘Find an appropriate solution’ Finding the best 
solution’ ‘Deciding whether the solution is fit for purpose’ ‘Deciding whether the solution is the most 
efficient one’. This list implies an order of progression. Surely the first of which must have been seen in 
any activity that had some kind of solution. Therefor all activities, if they solved any kind of task or activity 
should have had an element of evaluation. It may be that coders discounted this first example and only 
assigned where there was a ‘best solution’ considered, or if there was a design to which the solution to 
could be compared to decide if it was fit for purpose. There appears to be more work to be done in 
defining the rationale for assigning a concept as being associated with an activity, perhaps as a grading 
of association. 

Our quantitative data should be viewed with much caution as our sample size was small at only 21 
activities, and only 3 authors coded, each doing a mixture of 1st and 2nd coding. However, this small 
number of activities became 42 cases to review researchers views of the attributes of activities. Our 
approach for classification appears to have some reliability, as there was substantial agreement across 
the variables and coders. However, for some activities there was very different allocation of the 
constructionism scale, such as for the activity 25 the JavaScript onscreen activity which was the only 
activity to be awarded more than a scale of 3. It was allocated a 1-2 by one coder for all three dimensions 
but a 5 for just the problem and coding and a 1 for design by the other coder. The rationale for this may 
be that the activity sat within an overall complete unit of work, which eventually might lead students to 
be given a chance to create a new artefact using any product, in any context, but within the activity 
reviewed this was not the case. This indicates an issue with how an instrument to measure the 
constructionist aspect of activity might scope the boundaries of an activity.  

Despite the limitations of our quantitative work, a number of interesting data results have been revealed, 
such as there being no statistically significant differences between activities with each of the CT and CS 
concepts across the scales of each of our problem, design and code dimensions of our constructionism 
matrix and yet there were differences for other aspects, including the activity type, such as lesson plan 
compared to onscreen student activity and also the artefact created such as a physical artefact 
compared to an onscreen activity or an unplugged activity. A resulting suggestion might be that CT & 
CS concepts are merely the content that is being delivered by a constructionism approach, the success 
of this approach is less impacted by the underlying material being delivered but more by the techniques 
applied to deliver it, such as through human (teacher)  mediated activity as opposed to a symbolic 
(system) mediated (Kozulin, 2003) event, or through the creation of a physical artefact compared to a 
onscreen or unplugged artefact.  

Our contribution to this field is to have suggested and trial a new mapping tool incorporating a new 
framework, called the constructionism matrix, for reviewing activities which are used in the teaching and 
learning of computing in terms of constructionism and computational thinking. We have identified 
limitations with our framework and with our trial, but from its development and using it with a small 
sample of lesson plan and online student activities (n=21) targeted at K-5 learners, we have been able 
to report the trial results of its first use, discuss problems encountered and suggest opportunities for 
improvement of both the mapping tool and the matrix.   

We suggest next steps should be to further refine the constructionism matrix, by adding % of use of 
each scale and more closely defining the scope of the activities reviewed, it should then be used to 
survey a larger population of resources.  Similarly, more work is needed to reflect on the depth of 
learning of CT & CS concepts perhaps in a similar scale as the student autonomy but perhaps using 
Solo taxonomy or other more finely grained frameworks of a degree of learning. Our mapping tool will 
then have a combined framework, which might provide more insight into the potential relationship 
between constructionism and computational thinking.  



Constructionism 2018, Vilnius, Lithuania 

816 

 

Acknowledgements 

We would like thank you Janne Fagerlund, University of Jyväskylä for contributing to this working group 
paper. 

References 

Aho, A., 2011. Computation and Computational Thinking. Ubiquity, 2011 (January), Article No. 1. 

Armoni, M., 2013. On Teaching Abstraction in Computer Science to Novices. Journal of Computers in 
Mathematics and Science Teaching, 32(3), pp.265–284. 

CSTA & ISTE (2011). Operational Definition of Computational Thinking for K–12 Education. Retrieved 
from http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf  

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals, 
handbook 1 cognitive domain. New York: David McKay Co. Inc. 

Bloom, B., Anderson, L., & Sosniak, L. (1994). Bloom ’ s taxonomy, a forty year retrospec-tive. Chicago, 
IL: University of Chicago. 

Berry, M., Woollard, J., Hughes, P., Chippendal, J., Ross, Z., & Waite, J. (2015). Barefoot computing 
resources. Retrieved from http://barefootcas.org.uk/ Last accessed 8th August 2018 

Biggs, J. & Collis, K., 1982. Origin and description of the SOLO taxonomy. Evaluating the quality of 
learning: The SOLO Taxonomy. New York: Academic Press Inc, pp.17–30. Available at: 
https://doi.org/10.1016/B978-0-12-097552-5.50007-7. 

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals, 
handbook 1 cognitive domain. New York: David McKay Co. Inc. 

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of 
computational thinking in interactive media design. Paper presented at annual American Educational 
Research Association meeting, Vancouver, BC, Canada. 

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C. and Woollard, J., 2015. 
Computational thinking: A guide for teachers. Computing at Schools. 

Dagienė, V., Futschek, G., Stupurienė, G. (2016). Teachers’ Constructionist and Deconstructionist 
Learning by Creating Bebras tasks. Constructionism in Action. Conference Proceedings. http://e-
school.kmutt.ac.th/constructionism2016/Constructionism%202016%20Proceedings.pdf 

Dagienė, V., Sentance, S., & Stupurienė, G. (2017). Developing a two-dimensional categorization 
system for educational tasks in informatics. Informatica, 28(1), 23-44. 

Louis Cohen, Lawrence Manion, and Keith Morrison. 2011. Research methods in education. Vol. 7th 
Edition. Routledge. 

Cutts et al., 2012. The abstraction transition taxonomy: developing desired learning outcomes through 
the lens of situated cognition. In Proceedings of the ninth annual international conference on 
International computing education research. ACM, pp. 63–70. Available at: 
https://doi.org/10.1145/2361276.2361290. 

Dagienė, V. and Sentance, S., 2016, October. It’s computational thinking! Bebras tasks in the 
curriculum. In International Conference on Informatics in Schools: Situation, Evolution, and 
Perspectives (pp. 28-39). Springer, Cham 

Katrina Falkner and Rebecca Vivian. 2015. A review of computer science resources for learning and 
teaching with K-12 computing curricula: An Australian case study. Computer Science Education 25, 4 
(2015), 390–429. 

http://barefootcas.org.uk/
https://doi.org/10.1016/B978-0-12-097552-5.50007-7
https://doi.org/10.1145/2361276.2361290


Constructionism 2018, Vilnius, Lithuania 

817 

 

Giordano, D., Maiorana, F., Csizmadia, A.P., Marsden, S., Riedesel, C., Mishra, S. and Vinikienė, L., 
2015, July. New horizons in the assessment of computer science at school and beyond: Leveraging on 
the viva platform. In Proceedings of the 2015 ITiCSE on Working Group Reports (pp. 117-147). ACM. 

Grover, S., Pea, R.: Computational Thinking in K12 A Review of the State of the Field. Educational 
Researcher 42(1), 38–43 (2013) 

Lee, I. et al., 2011. Computational thinking for youth in practice. ACM Inroads, 2(1), pp.32–37. Available 
at: https://doi.org/10.1145/1929887.1929902. 

Grover, S., & Pea, R., 2018. Computational Thinking: A Competency Whose Time Has Come. In S. 
Sentence, E. Barendsen, & C. Schulte (Eds.) Computer Science Education: Perspectives on teaching 
and learning in school (pp. 19–37). London: Bloomsbury Academic. 

Kafai, Y. B., 1994. Minds In Play: Computer Game Design as a Context for Children’s Learning.  

Kozulin, A., 2003. Psychological tools and mediated learning, in: A. Kozulin, B. Gindis, S. Ageyev, 
Vladimir, and M. Miller, Suzanne, eds., Vygotsky’s educational theory in cultural context, Cambridge 
University Press, 15–38. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc. 

Passey, D. (2017). Computer Science (CS) in compulsory education curriculum: Implications for future 
research. Education and Information Technologies, March 2017, Volume 22, Issue 2, pp 421–443. 

Piaget, J. (1970). Genetic epistemology. New York: Columbia University Press 

Royal Society, 2017. After the reboot:computing education in UK schools. The Royal Society, 6-9 
Carlton Terrace, London, SW1Y 5AG. Available at https://royalsociety.org/topics-
policy/projects/computing-education/ 

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017). K-8 Learning Trajectories 
Derived from Research Literature: Sequence, Repetition, Conditionals. Proceedings of the 2017 ACM 
Conference on International Computing Education Research (pp. 182–190). ACM. 

Kathryn Rich, Carla Strickland, and Diana Franklin. 2017. A Literature Review through the Lens of 
Computer Science Learning Goals Theorized and Explored in Research. In Proceedings of the 2017 
ACM SIGCSE Technical Symposium on Computer Science Education. ACM, 495–500. 

Teague, D. and Lister, R., 2014. Programming: Reading, writing and reversing, in: Proceedings of the 
2014 Conference on Innovation and Technology in Computer Science Education, 285-290. 

Selby, C.C., Woollard, J.: Computational thinking: the developing definition, pp. 5–8 (2013) 

Settle, A., & Perkovic, L., 2010. Computational Thinking across the Curriculum: A Conceptual 
Framework. Technical Reports, Paper 13. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.910.8295&rep=rep1&type=pdf 

Standl, Bernhard, 2017. Solving Everyday Challenges in a Computational Way of Thinking. In: 
International Conference on Informatics in Schools: Situation, Evolution, and Perspectives. Springer, 
Cham, 180-191. 

Tedre, M., & Denning, P., 2016. The Long Quest for Computational Thinking. In Proceedings of the 16th 
Koli Calling International Conference on Computing Education Research (pp. 120–129). New York, NY: 
ACM. 

UCLA: Statistical Consulting Group. How can I calculate a Kappa Statistic for variables with unequal 
score Ranges? SPSS FAQ  Avalable at https://stats.idre.ucla.edu/spss/faq/how-can-i-calculate-a-
kappa-statistic-for-variables-with-unequal-score-ranges/ Last accessed 8th Augusty 2018 

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A., 2015. Computational thinking in compulsory 
education: Towards an agenda for research and practice. Education and Information Technologies, 
20(4), 715-728. 

https://doi.org/10.1145/1929887.1929902
https://royalsociety.org/topics-policy/projects/computing-education/
https://royalsociety.org/topics-policy/projects/computing-education/
https://stats.idre.ucla.edu/spss/faq/how-can-i-calculate-a-kappa-statistic-for-variables-with-unequal-score-ranges/
https://stats.idre.ucla.edu/spss/faq/how-can-i-calculate-a-kappa-statistic-for-variables-with-unequal-score-ranges/


Constructionism 2018, Vilnius, Lithuania 

818 

 

Jane Waite, Paul Curzon, D Marsh, Sue Sentance, and A Hawden-Bennett. 2018. Abstraction in action: 
K-5 teachers’ uses of levels of abstraction, particularly the design level, in teaching programming. 
International Journal Of Computer Science Education In Schools (2018). 

Waite, J. et al., 2016. Abstraction and common classroom activities. In Proceedings of the 11th 
Workshop in Primary and Secondary Computing Education. ACM, pp. 112–113. Available at: 
https://doi.org/10.1145/2978249.2978272. 

Waite, J et al. 2018.Abstraction in action: K-5 teachers' uses of levels of abstraction, particularly the 
design level, in teaching programming. In International Journal of Computer Science Education in 
Schools, Jan 2018, Vol. 2, No. 1 ISSN 2513-8359 pp. 14-40 Available at:DOI: 10.21585/ijcses.v2i1.23 

Yang, S. and Park, S., 2014. Teaching Some Informatics Concepts Using Formal System. Informatics 
in Education, 13(2), 323-332. 

  

https://doi.org/10.1145/2978249.2978272


Constructionism 2018, Vilnius, Lithuania 

819 

 

Appendix 1 Coded activities & Qualitative notes 
 

Acti
vity 
Id 

Activity/ 
Approach 
to Map 

Rationale for 
choice 

Activity 
Type 

Description/Justification 
/Additional Comment(s) coder 
1 

Description/Just
ification 
/Additional 
Comment(s) 
coder 2 

1 Activity:Co
dy Roby 

URL:http://
codeweek.i
t/codyroby/ 

Developed as an 
unplugged 
resource for 
teaching 
programming 
concepts, initially 
for Code Week 
Italy and has been 
adopted by 
CodeEU for Code 
Week 

Game This activity allows learners to 
either play a predetermined 
unplugged coding game or 
design/construct their own 
unplugged coding games. 

When learners play the game 
they have to think and abstract 
their strategy (conceptual 
artefact) and breaking down 
moves into potential smaller 
moves. Once a move is made, 
they a player will need to 
evaluate when has occurred 
and think about their next move. 
This becomes an iterative 
process as the game is play to 
an outcome. 

When a learner designs a game 
they create rules for playing that 
games and may create new 
cards (physical artefact). 

Academic Reference(s): 2in 
English 

Ferrari, F., Rabbone, A. and 
Ruggiero, S., 2015, September. 
Experiences of the T4T group in 
primary schools. In The 
Proceedings of International 
Conference on Informatics in 
Schools: Situation, Evolution 
and Perspectives-ISSEP. 

Klopfenstein, L., Fedosyeyev, A. 
and Bogliolo, A., 2017. Bringing 
an Unplugged Coding Card 
Game to Augmented Reality. 
INTED PROCEEDINGS, 
pp.9800-9805. 

Many of the 
example games 
are algo rather 
than 
decomposition. 
But you could 
create games that 
also supported 
decomp. There is 
this issue of the 
'surface' level 
understanding 
and depth that 
could be brought 
about by 
discussion, and 
also by creating 
games. I am 
finding it hard to 
say anything is 
NOT concept... as 
it is taking you to 
1st Solo stage of 
just introducing a 
concept by 
experience. Also 
there is this whole 
problem of 
whether this is 
coding or an 
algorithm. The 
information 
processing agent 
is the person who 
executes it... This 
could be taken to 
the next level by 
actually 
implementing 
these in scratch... 
or other block 
based 
programming 
languages... it 
would be 
probably be 

http://codeweek.it/codyroby/
http://codeweek.it/codyroby/
http://codeweek.it/codyroby/
http://codeweek.it/codyroby/
http://codeweek.it/codyroby/


Constructionism 2018, Vilnius, Lithuania 

820 

 

harder than I 
think. 

2 Activity: 
Barefoot 
crazy 
characters - 
unplugged 
activity 
teaching 
about 
algorithms. 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by DfE for 
resources for 
primary teachers to 
teacher new 
computing 
curriculum. 
Selected as 
specifically about 
teaching 
algorithms using 
an unplugged 
approach 

Lesson 
plan 

This activity introduces 
algorithms by teachers 
modelling the creation of a 
simple set of instructions 
(algorithm) to draw a character. 
Pupils follow the teacher's 
algorithm and then create their 
own. The teacher models how 
to evaluate the precision and 
completeness of the algorithm 
to introduce the idea of 
debugging. Children then 
construct their own algorithm for 
their own crazy character. They 
test out their friends algorithms 
to help them debug them. One 
could say that there is 
abstraction, as pupils have to 
consider what is most important 
to their character, and that they 
think of terms which are an 
'abstraction' of how how to draw 
that part of the object e.g. draw 
a triangle. However, abstraction 
is not the focus of the activity. 
The focus is on introducing the 
vocabulary and concepts of 
algorithm and debugging and 
making a link between these 
terms and familiar instruction 
writing in English and Art 
lessons. Pupils are 
decomposing the task as they 
think of the individual steps and 
what to do next. They are 
sequencing their instructions, 
therefore one could link to this 
programming construct. But 
again this explicit link is not 
made. One could argue that the 
introduction of the term 
algorithm and debugging is 
constructing an abstract 
concept. However we need to 
consider whether this is going 
too far with the idea of 
constructionism (which we may 
need to further explore in our 
paper). The process of 
evaluation is explicitly built into 
the lesson through a box on the 

 

https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/
https://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-crazy-character-algorithms-activity/


Constructionism 2018, Vilnius, Lithuania 

821 

 

worksheet requiring another 
pupil to test the algorithm out - 
so they are becoming the 
computational agent (could link 
to Wing and Denning 
argument). A physical artefact is 
created by the learner when 
they construct their algorithm. 

3 Activity: 
Barefoot 
beebot 
basics 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by DfE for 
resources for 
primary teachers to 
teacher new 
computing 
curriculum. 
Selected as 
specifically about 
teaching 
programming using 
programmable toys 

Lesson 
plan 

In this activity pupils construct 
and solve programming 
challenges for a simple 
programmable toys. One could 
say that learners are 
constructing concepts 
(conceptual artefacts) in that 
they are constructing the 
concept of an algorithm and 
then constructing the concept of 
a program as they implement 
the algorithm as code. But as 
stated about I am not sure about 
whether this is all learning. 
There is a question here as to 
whether the algorithm is in fact 
code. As there is often a 1:1 
mapping between the written 
commands and the buttons 
pressed (commands) which 
make up the code. This is 
suggested to be a group activity, 
with children taking on different 
roles of the algorithm creator 
and the implementer of the 
algorithm (the programmer), this 
is an early introduction of pair 
programming. The requirement 
of the pupil's to talk about their 
algorithm and whether it will or 
will not work through the use of 
a fake bot is significant. As they 
are using a tangible 
manipulative that represents the 
programmable device. Only 
when they have tested and 
debugged their algorithm do 
they then implement it as code. 
The use of the fakebot is 
important perhaps in interrupting 
a trial and error (random) 
debugging approach and could 
be argued to support the 
development of the 'conceptual 
artefact' of an algorithm (but I 
am not sure). The important 

 

https://barefootcas.org.uk/programme-of-study/create-simple-programs/ks1-bee-bots-basics/
https://barefootcas.org.uk/programme-of-study/create-simple-programs/ks1-bee-bots-basics/
https://barefootcas.org.uk/programme-of-study/create-simple-programs/ks1-bee-bots-basics/
https://barefootcas.org.uk/programme-of-study/create-simple-programs/ks1-bee-bots-basics/


Constructionism 2018, Vilnius, Lithuania 

822 

 

thing for constructionism is that 
they are creating their own 
challenges - get the bot from the 
light green square to the yellow 
diamond avoiding all the circles. 
The use of challenge cards is 
start to develop further 
algorithmic thinking concepts, 
such as longest route, shortest 
route. The pause on, avoid 
encourage development of the 
skill of decomposition. 
Evaluation is encouraged 
through explicit use of the 
fakebot and reference to 
debugging of the implemented 
code. However, the amount of 
'freedom' that pupils have in the 
context of the task will depend 
on the choices made by the 
teacher. If they use pre-made 
mats and no challenge cards, 
there is very limited pupil 
'choice', if they ask learners to 
create their own mats (as 
suggested in the extension) 
then learners can have 
personally meaningful contexts. 
In terms of the design the 
choice is limited as is the 
implementation. 

4 Activity 
Barefoot 
Viking Raid 
Animation 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by DfE for 
resources for 
primary teachers to 
teacher new 
computing 
curriculum. 
Selected as 
specifically about 
teaching 
programming using 
online 
programming 
language focused 
on teaching 
sequence and 
repetition 

Lesson 
plan 

In this introductory programming 
activity pupils create a simple 
animation using sequence. The 
algorithm is developed by 
learners taking a predefined 
background and set of sprite 
and deciding on their movement 
(action) and what they say 
(display) on a paper based 
design. Therefor there is very 
limited learner involvement in 
the definition of the task, or the 
design as they are constrained 
by the context and the 
commands being used. The 
code is developed by the 
learners being shown a 
command at a time by the 
teacher modelling its use. The 
learners then tinker with the 
commands that have been 
modelled. This is guided 
exploration and then implement 

 

https://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
https://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
https://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
https://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/


Constructionism 2018, Vilnius, Lithuania 

823 

 

their design. Again the learners 
have limited choice on what 
they implement beyond the 
bounds of the commands 
introduced. For extension 
further commands (repeats) are 
introduced for learners to extend 
their design and implementation 
within the context. 

5 Barefoot 
maths quiz 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by DfE for 
resources for 
primary teachers to 
teacher new 
computing 
curriculum. 
Selected as 
specifically about 
teaching 
programming using 
online 
programming 
language focused 
on teaching 
selection and 
variables 

Lesson 
plan 

In the introduction to selection 
and variables activity learners 
create the algorithm with a 
partner, using their knowledge 
of how simple quizzes work. 
The task is preset as a maths 
quiz with the requirement 
broadly to ask questions, check 
the answer and keep a score. 
The context is pre-set. To 
explore the commands that 
might be used to implement the 
algorithm learners are provided 
with a scratch file that has 
useful commands in the 
scripting area. BUT they are not 
snapped together. Learners 
then explore these commands 
to discover how they might 
work. Learners are 'constructing' 
their understanding as they 
explore. However, this is guided 
as they are given the 
commands to start with. Again 
one could say they are 
constructing knowledge of the 
selection construct as a 
conceptual artefact. Learners 
decided on the questions they 
want to include in their quiz, but 
the context and genre is 
constrained. For extension a 
buggy program is provided with 
a repeat and use of random 
variable block. 

 

6 Barefoot 
one of 
network 
ones 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by DfE for 
resources for 
primary teachers to 
teacher new 
computing 

Lesson 
plan 

In this activity pupils create the 
internet by physically enacting 
the role of clients, routers and 
servers passing packets of data 
around. The concept of what is 
the internet, packets of data and 
the role of the components in a 
network are being learned. So 
here the pupils are constructing 

 

https://barefootcas.org.uk/programme-of-study/use-selection-programs/ks2-maths-quiz-selection-activity/
https://barefootcas.org.uk/programme-of-study/use-selection-programs/ks2-maths-quiz-selection-activity/
https://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
https://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
https://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
https://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/


Constructionism 2018, Vilnius, Lithuania 

824 

 

curriculum. 
Selected as 
specifically about 
teaching networks 

an unplugged representation of 
a network, but the objective is 
constructing conceptual 
understanding. The data that is 
passed around is supplied by 
the teacher as are the 
components within the network. 
Therefor the pupils have no 
choice on what the context or 
genre or data is. The planning 
states that the lesson supports 
the development of abstraction 
as the learners are creating an 
abstraction of the real internet. 
However, they are broadly 
acting out someone else's view 
of an abstraction. 

7 Code-IT I 
am special 
ScratchJr 

Top 20 of 
resources 
according to Royal 
Society report.Very 
popular resource 
created by a CAS 
master teacher, 
teacher trainer. 
This item selected 
as it is for 
programming with 
youngest age 
groups with scratch 
jnr 

Lesson 
plan 

In this introduction to 
programming activity learners 
create a simple animation about 
what makes them special. The 
idea of an algorithm being the 
sequence of statements that 
they have written, or had 
scribed for them on a simple 
planner, with the order shown 
by numbering. The context for 
the activity is set, as is the 
genre, the planning approach 
and what hardware and 
software is being used. This 
similar to other introductory 
activity. However, because the 
context is about the children's 
personal lives and something 
that is relevant to them this 
activity may be seen as being 
more constructivist? Is this true? 
Therefore even though there is 
no more/ or less freedom in 
terms of choices available, the 
relevance may be the thing that 
influences what is 
constructivist? 

 

8 Code-IT 
Jam 
Sandwich 
Bot 

Top 20 of 
resources 
according to Royal 
Society report.Very 
popular resource 
created by a CAS 
master teacher, 
teacher trainer. 
This item selected 

Lesson 
plan 

In this activity the teacher 
pretends to be a robot and is 
instructed how to make a jam 
sandwich by the pupils. The 
teacher shows how instruction 
must be precise for the 
enactment to be successful. The 
task, genre, etc. are all 
predetermined. The learners are 

 

http://code-it.co.uk/wp-content/uploads/2018/04/scratch_jr_iamspecialplan.pdf
http://code-it.co.uk/wp-content/uploads/2018/04/scratch_jr_iamspecialplan.pdf
http://code-it.co.uk/wp-content/uploads/2018/04/scratch_jr_iamspecialplan.pdf
http://code-it.co.uk/unplugged/jamsandwich
http://code-it.co.uk/unplugged/jamsandwich
http://code-it.co.uk/unplugged/jamsandwich
http://code-it.co.uk/unplugged/jamsandwich


Constructionism 2018, Vilnius, Lithuania 

825 

 

as it is for teaching 
algorithms - very 
popular. 

constructing their understanding 
of an abstract concept - a 
program for a computer to 
follow. 

9 Code-IT 
Crumble 
activity 

Top 20 of 
resources 
according to Royal 
Society report.Very 
popular resource 
created by a CAS 
master teacher, 
teacher trainer. 
This item selected 
as it is for teaching 
physical computing 
with a 
programmable 
microcontroller 

Lesson 
plan 

In this activity learners make a 
simple display for any scene 
they are interested in and 
program the lights using a 
simple programmable controller 
called the crumble. This is a 
very simple design and 
technology, science and 
computing cross curricular 
lesson (plus art). The design is 
recorded as series of sentence 
which a says what the program 
will do in terms of controlling the 
lights. The teacher models the 
sentence - such as 'My program 
will 'make lights flash by 
replacing the stars in my picture 
with programmable lights. The 
user will see the stars twinkling 
in the sky and the moon lit up 
with a bright white light'. The 
teacher models each step of the 
addition of the components to 
create the circuit, and help 
cards are provided for pupils to 
follow. An example script is 
provided for pupils to predict 
what the code will do, and then 
to run and then to investigate 
before writing their own code. 
The physical wiring, and 
programming is limited but the 
context is not. 

 

10 Code-IT 
How an 
internet 
search 
works 

Top 20 of 
resources 
according to Royal 
Society report.Very 
popular resource 
created by a CAS 
master teacher, 
teacher trainer. 
This item selected 
as it is for teaching 
using search in an 
unplugged way 

Lesson 
plan 

In this activity pupils complete a 
worksheet that requires them to 
find common classroom items 
e.g. scissors and write down 
where they find them. They then 
rank the locations. This 
unplugged activity introduces 
the idea that search engines 
present information in an order, 
a rank, that is theoretically 
useful for the person wanting to 
find things. It is constructing an 
abstract concept, through a 
familiar activity. The ranking is 
tested by a pupil from another 
class who is not familiar to the 

 

http://code-it.co.uk/wp-content/uploads/2017/09/lightsplanning.pdf
http://code-it.co.uk/wp-content/uploads/2017/09/lightsplanning.pdf
http://code-it.co.uk/wp-content/uploads/2017/09/lightsplanning.pdf
http://code-it.co.uk/wp-content/uploads/2015/05/howsearchworks_planning.pdf
http://code-it.co.uk/wp-content/uploads/2015/05/howsearchworks_planning.pdf
http://code-it.co.uk/wp-content/uploads/2015/05/howsearchworks_planning.pdf
http://code-it.co.uk/wp-content/uploads/2015/05/howsearchworks_planning.pdf
http://code-it.co.uk/wp-content/uploads/2015/05/howsearchworks_planning.pdf


Constructionism 2018, Vilnius, Lithuania 

826 

 

class environment. The pupils 
have no control over the 
context, genre or objects they 
are finding and the locations 
they are ranking, but they do 
decide on what the criteria for 
ranking is. As with the network 
activity you could argue that an 
abstraction is being learned 
about. 

11 Code-IT 
Magic 
Carpet 

Top 20 of 
resources 
according to Royal 
Society report.Very 
popular resource 
created by a CAS 
master teacher, 
teacher trainer. 
This item selected 
as it is for teaching 
programming. 

Lesson 
plan 

In this introductory scratch 
activity an example game is 
provided for a specific context, 
but teachers could choose - or 
possibly pupils too - to create 
their game in different context 
(examples are provided). This 
simple offering of a range of 
other contexts may be 
significant in terms of choice 
given to pupils for their design 
and then build. 'Cross Curricular 
Focus this can be adapted to fit 
in with many topics or projects. 
It could be a lost cave dweller 
trying to find their way home 
without falling from the rock 
walkway, a bee that has to 
pollinate each flower or a 
spaceship that has to visit every 
planet. (See Travel Europe for 
Geography version)' http://code-
it.co.uk/wpontent/uploads/2017/
01/MagicCarpetPlanning.pdf 
Had the other products given 
this simple option then the 
constructivist opportunities 
would have been increased.The 
general approach for the 
planning is to ask learners to 
USE the example program and 
spot the main features which 
they then list, this is a 
decomposition or abstraction 
perhaps of the main features. 
The teacher then models 
creating each feature and pupils 
then explore the commands 
associated with each feature 
and implement this part and tick 
off their list. The actual choice 
for implementation is low, as is 
the design. However, the 
context may be varied (if elected 

 

http://code-it.co.uk/wp-content/uploads/2017/01/MagicCarpetPlanning.pdf
http://code-it.co.uk/wp-content/uploads/2017/01/MagicCarpetPlanning.pdf
http://code-it.co.uk/wp-content/uploads/2017/01/MagicCarpetPlanning.pdf


Constructionism 2018, Vilnius, Lithuania 

827 

 

by the teacher) 

14 Switched on 
Computing 
We are 
Detectives 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by a 
private education 
publisher. A 
popular and free 
sample. 

Lesson 
Plan 

In this activity pupils read 
emails, create emails and 
record information in a 
spreadsheet to solve a mystery. 
The emails are all pre-prepared 
by the resource creators, pupils 
construct reply emails and 
summarise data in a 
spreadsheet. Teachers can 
adapt the context for the activity 
but pupils are constrained by 
the flow of the events of the 
activity. They are constructing 
an understanding of email 
address formats and other ideas 
on emails. No specific reference 
is made to computational 
thinking, but in extracting key 
information one could say that 
abstraction is being practised 
(tenuous), and also the order in 
which things are happening 
could be sequence and CT 
(tenuous). This brings in play 
the whole discussion about what 
is CT and if it is thinking skills if 
you are not then moving on to 
use those skills in order to 
produce a program. And if the 
skills are not revealed to 
learners - are they CT. Else all 
learning where you have some 
dependency of task could be 
ALT. 

 

15 Switched on 
Computing 
Learn to 
code 
sample 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by a 
private education 
publisher. A 
popular and free 
sample. 

Lesson 
Plan 

In this introduction to Scratch 
activity pupils follow step by 
step instructions to create a 
simple animation. At the end 
pupils are asked to change 
specific simple aspects and add 
extra suggested commands. A 
set of questions at the end ask a 
series of yes/no questions to 
encourage thinking about the 
task. 

 

https://www.risingstars-uk.com/risingstars/freestuff/Unit%202.5_Teacher's%20Notes.pdf
https://www.risingstars-uk.com/risingstars/freestuff/Unit%202.5_Teacher's%20Notes.pdf
https://www.risingstars-uk.com/risingstars/freestuff/Unit%202.5_Teacher's%20Notes.pdf
https://www.risingstars-uk.com/risingstars/freestuff/Unit%202.5_Teacher's%20Notes.pdf
https://www.risingstars-uk.com/risingstars/freestuff/26517%20Learn%20to%20Code%20Sampler%20V3_updated%20prices.pdf
https://www.risingstars-uk.com/risingstars/freestuff/26517%20Learn%20to%20Code%20Sampler%20V3_updated%20prices.pdf
https://www.risingstars-uk.com/risingstars/freestuff/26517%20Learn%20to%20Code%20Sampler%20V3_updated%20prices.pdf
https://www.risingstars-uk.com/risingstars/freestuff/26517%20Learn%20to%20Code%20Sampler%20V3_updated%20prices.pdf
https://www.risingstars-uk.com/risingstars/freestuff/26517%20Learn%20to%20Code%20Sampler%20V3_updated%20prices.pdf


Constructionism 2018, Vilnius, Lithuania 

828 

 

16 Switched on 
Computing 
We are 
adventure 
gamers 

Top 10 of 
resources 
according to Royal 
Society report. 
Funded by a 
private education 
publisher. A 
popular and free 
sample. 

Lesson 
Plan 

In this introduction to Python 
pupils create an a simple 
interactive story which prints 
statements then the user 
answers a yes/no answer to 
move onto the next statement. 
The context for the story is open 
to the teachers and pupils to 
decide upon but the structure of 
the code that will be written is 
provided. The pupils replace 
displayed text in the example 
code given, which is modelled 
by the teacher with their text 
from their design. The concept 
of text based programming in 
introduced here by pupils being 
given and then typing in python 
commands. It is not quite copy 
code, but it is close. Having their 
own story context increases the 
degree of personal choice. 

 

18 https://www.
playcodemo
nkey.com 

This game is 
recommended for 
primary school in 
Lithuania 
according the 
project “Informatics 
in primary 
education“ 
https://informatika.
ugdome.lt/en/about
-project/ 

CodeMonkey 
Awarded Best 
Coding & 
Computational 
Thinking Solution 
(https://www.playc
odemonkey.com/bl
og/2018/06/20/cod
emonkey-awarded-
best-coding-
computational-
thinking-solution/) 

Online 
activity 

In this game students learn to 
write code in programming 
language called CoffeeScript. 
The goal for student is to help 
monkey to catch bananas by 
writing lines of code. The game 
cover this computer science 
concepts: loops, objects, 
funcion calls, boolean 
conditions, function, conditions 
(if, if else). 

In the paid version teacher 
could get the curriculum 
explanation (teaching progress 
step-by-step explanation), track 
student progress. In the free 
version only 30 challenges, 
curriculum explanation are 
available. Curriculum has lesson 
plans, workshops 

This actually 
teaches a 
misconception in 
terms of CT as it 
encourages 
learners NOT to 
decompose a 
problem, as if you 
want to try out 1 
or 2 steps it says 
that is wrong. The 
task is set there is 
NO mention of 
design and the 
code has to be 
more or less 
identical to what 
was required by 
the developer. 
You may be out 
by 2 or 3 steps, 
but this is not 
particularly about 
choice. At 
challenge 14 we 
have the first 
code reading with 
code that is in the 
wrong order. 
Again this is 
teaching 
sequence (flow of 

https://www.risingstars-uk.com/media/Rising-Stars/Free%20Stuff/Computing/Switched%20on%20Computing/SOC-Y6-second-edition-sample-unit.pdf?ext=.pdf
https://www.risingstars-uk.com/media/Rising-Stars/Free%20Stuff/Computing/Switched%20on%20Computing/SOC-Y6-second-edition-sample-unit.pdf?ext=.pdf
https://www.risingstars-uk.com/media/Rising-Stars/Free%20Stuff/Computing/Switched%20on%20Computing/SOC-Y6-second-edition-sample-unit.pdf?ext=.pdf
https://www.risingstars-uk.com/media/Rising-Stars/Free%20Stuff/Computing/Switched%20on%20Computing/SOC-Y6-second-edition-sample-unit.pdf?ext=.pdf
https://www.risingstars-uk.com/media/Rising-Stars/Free%20Stuff/Computing/Switched%20on%20Computing/SOC-Y6-second-edition-sample-unit.pdf?ext=.pdf
https://www.playcodemonkey.com/
https://www.playcodemonkey.com/
https://www.playcodemonkey.com/


Constructionism 2018, Vilnius, Lithuania 

829 

 

control) but not 
much else. At 
challenge 16 it 
suddenly 
introduces the 
term argument - it 
does not explain 
this AT all. At 
challenge 21 they 
introduce repeat 
loops I don't know 
if there is a 
sandbox at any 
point or when this 
activity stops 

19 Animated 
Genres: 
https://www.
scratchjr.or
g/curricula/a
nimatedgen
res/full.pdf 

This tool is 
reccomended for 
primary school in 
Lithuania 
accroding the 
project “Informatics 
in primary 
education“ 
https://informatika.
ugdome.lt/en/about
-project/ In addition 
I looked to this 
article: 
https://ase.tufts.ed
u/devtech/publicati
ons/Portelance-
2015-Constructing-
ScratchJr.pdf 

Lesson 
plan 

During the curriculum, students 
created projects within three 
‘‘animated genres:’’ collages, 
stories, and games During 
lessons students get to know 
about the main ScratchJr 
features and programming by 
blocks. Students are able to 
create their own projects by 
applying concepts learned in 
module lessons. In the first 
module during teacher and 
students discussion, teacher 
explain the meaning of 
instructions and sequences. 
After discussion students learn 
to move or use blocks in the 
scripting area, select blocks 
category. In the second module 
students learn to create 
sequences using variety of 
different motion blocks. Teacher 
demonstrate several example 
with different sequences. 
Students learn to use the start 
on green flag and end block, 
choose new characters. 
Teacher demonstrate the 
situation as unplugged activity 
and later ask student to write a 
program. 

Lessons 1 is 1,1,1 
but lesson 2 
already becomes 
2,2,2 but with 
very very close 
confines. As 
moves to 3 then 
pupils can choose 
their characters - 
but still tightly 
controlled on 
programming 
blocks. The 
design is through 
physical 
enactment. 
Lovely use of 
getting kids to 
predict what code 
might be used to 
implement the 
running of the 
code. Then there 
is a lovely open 
challenge where 
they make a 
collage... an 
animation. Then 
next few lessons 
introduce further 
concepts - guided 
exploration and 
again an open 
project where 
learners have 
more control to 
create a story 
type animation. 
The activities are 



Constructionism 2018, Vilnius, Lithuania 

830 

 

creative - even 
with the jungle 
speed where 
learners have 
opportunity to 
choose an animal 
and then make 
them fast or slow 
and then race 
them. This 
planning is so 
different to 
codemonkey, or 
the khan java 
script activity. The 
design element is 
STRONG. I wish I 
could have given 
this a much 
higher score - 
maybe this needs 
to be reflected - 
but the genre was 
fixed and the 
language used. I 
allocated more 
CT aspects as 
kids were 
deciding on their 
own designs so 
abstracting and 
decomposing as 
they were 
designing. I am 
not sure they did 
generalisations - 
maybe because 
they were doing 
repeats ...  

20 Learning 
ScratchJr 
via 
Playground 
Games 

https://ieeexplore.i
eee.org/stamp/sta
mp.jsp?tp=&arnum
ber=8363498 

 

https://dl.acm.org/c
itation.cfm?id=253
2751 

Lesson 
plan 

In this curriculum (lesson plans) 
teacher shows features of 
ScratchJr and students create a 
specific playground game using 
presented features. Lessons 
plans is based on the discussion 
and practical programming 
ScratchJr environment. Teacher 
can adapt prepared curriculum 
or extend lessons. 

Starts with very 
simple activities 
1,1,1 draw a 
square, then 
make the cat walk 
diagonally and do 
a cartwheel 
1,1,1/2 By lesson 
for it is slightly 
less 'copy my 
design' - which is 
verging on copy 
code to become 
sing the Hokey 
Pokey and a 

https://www.scratchjr.org/teach/curricula/playground/full
https://www.scratchjr.org/teach/curricula/playground/full
https://www.scratchjr.org/teach/curricula/playground/full
https://www.scratchjr.org/teach/curricula/playground/full
https://www.scratchjr.org/teach/curricula/playground/full


Constructionism 2018, Vilnius, Lithuania 

831 

 

dancing cat - this 
is harder than it 
looks - they could 
have made it 
have far more 
choice by saying 
any song. The 
amount that is 
covered in these 
8 sessions is 
quite ridiculous. It 
forces copy code 
by having far too 
much covered - 
particularly as this 
is for such very 
young learners. I 
feel as though the 
lack of creativity 
until the later 
lessons is not 
being reflected in 
the coding of the 
activity for the 
research. Those 
less able pupils 
are very much 
being restricted 
here - and 
actually I don't 
believe that 
young learners 
would not go of 
and do their own 
thing much earlier 
on. 

21 LightBot is 
a puzzle 
game 
based on 
coding. 
URL: 
http://lightbo
t.com/index.
html 

According 
https://venturebeat.
com/2014/06/03/12
-games-that-teach-
kids-to-code/ 

and 
https://dl.acm.org/c
itation.cfm?id=301
7728 

Online 
activity 

Lightbot is an educational game 
for kids that introduces several 
principles of programming. 
Children will practice concepts 
like sequence, conditions, and 
loops without typing or coding. 
Use problem solving skills to 
complete the puzzles 
(http://www.abcya.com/lightbot.
htm) 

There is NO 
choice or 
creativity here the 
problem, design 
and code are all 
predetermined. It 
will be interesting 
to see what the 
other coder has 
coded. Although 
this teachers 
procedures - is 
this generalisation 
or is it 
decomposition??
? As the purpose 
is not to reuse for 
a logical reason 



Constructionism 2018, Vilnius, Lithuania 

832 

 

but to reduce 
code blocks 
used... it is 
dependent on you 
knowing your 
right and left and 
having good 
spatial awareness 
- but I like the 
music - the sprite 
box is not in 
lightbot now - this 
had will loops be 
associated with 
decomposition 
and procedures 
with 
generalisation - 
again just 
because I used 
one for someone 
else's problem 
does that mean I 
can generalise 
the concept of 
decomposition 
etc... we should 
have used solo 
with CT. 

23 Choose 
Your Own 
Adventure 

It focuses on 
excellent 
instruction with 
group and 
independent 
practice activities 
that build creativity, 
communication, 
and collaboration. 

Their goal is to 
reach all students 
and see computer 
science become 
part of a complete 
elementary 
education (URL: 
https://repositorio.g
rial.eu/bitstream/gri
al/1068/1/TEEM_2
017_paper_03_pre
print.pdf) 

https://ieeexplore.i
eee.org/stamp/sta
mp.jsp?tp=&arnum

Lesson 
plan 

Students tell a story by following 
a sequence, using statement. 
Brainstorm is used to find out 
the meaning of computer 
science and technology 
connecting daily life. Students 
create an anchor chart with CS 
words. Teacher introduce 
concept "conditions" by 
code.org video example and 
using decision tree on a an 
anchor chart or board. 
Discussion about story, teacher 
introduce Kodable world 
storyline and decision tree 
template, present how to fill in 
the decision tree graphic 
organizer to guide their writing 
process. Teacher present 
google forms. 

This is interesting 
as the 
implementation is 
onscreen but via 
google forms. The 
focus is on 
learning flow of 
control and 
selection. design 
is strong - it's a 
shame that the 
google form video 
does not 
exemplify using 
the design. I think 
evaluation is used 
- but this is 
probably true now 
I come to think of 
it for any 

https://dashboard.kodable.com/#/curriculum/lesson/31/104/
https://dashboard.kodable.com/#/curriculum/lesson/31/104/
https://dashboard.kodable.com/#/curriculum/lesson/31/104/


Constructionism 2018, Vilnius, Lithuania 

833 

 

ber=7860198 

 

According 
https://www.scienc
edirect.com/scienc
e/article/pii/S22128
68917300338 

24 Frozen Code.org provides 
sequences of 
videos and puzzles 
where users 

control characters 
from popular 
games like Rovio’s 
Angry Birds 

or movies like 
Disney’s Frozen 
with drag-and-drop 
programming. 

Using 
programming by 
demonstration to 
seamlessly 
integrate gameplay 

and educational 
content (citation 
from 
https://dl.acm.org/c
itation.cfm?id=310
2106) 

Online 
activity 

In this activity teacher introduce 
these concepts: code, 
debugging, program. "Using 
programming by demonstration 
to seamlessly integrate 
gameplay 

and educational content" 
(https://dl.acm.org/citation.cfm?i
d=3102106) 

A pure copy code 
activity, what is 
interesting is the 
age groups of 
Frozen and 
required reading 
vocabulary and 
maths. If we are 
considering 
repeats as 
decomposition 
then this is used, I 
am assuming 
then as it moves 
to functions then 
we can say that 
generalisation is 
used HOWEVER 
the level of use of 
these is very low. 
On solo it's really 
just first level as 
using what is 
provided - maybe 
unistructural, 
whether we think 
this use of a 
procedure that 
someone else 
made is 
generalisation I 
am really not sure 
it will be 
interesting to see 
what the other 
coders thought 
and whether the 
learning of 
generalisation 
here has been 
done in a 
constructionist 
manner at all. I 
am not sure ... 
this learning is so 

https://code.org/hourofcode/frozen


Constructionism 2018, Vilnius, Lithuania 

834 

 

'hidden' as an 
experience rather 
than anything that 
is noted or over. 
The amount of 
reading skill is 
high. It's such a 
shame there is 
not more code 
reading. YOU 
HAVE TO DO 19 
activities before 
you are finally 
given a sandbox - 
I was loathe to 
allocate a level 2, 
as this only 
occured in the 
final 20th 
challenge and up 
to this point there 
had been 
absolutely no 
student autonomy 
at all , The design 
really is none 
existent and is not 
at all exemplified 
during the 
activities 1 to 19 
except from 
defining what you 
have to 
reproduce. You 
can't create your 
own procedures... 
missed 
opportunity 

25 Intro to JS: 
Drawing & 
Animation 

According Khan 
Academy answer 
about the most 
popular course 

Online 
activity 

This is JavaScript course. 
During this course students 
have to work through the 
tutorials, solve challenges, try 
some projects (start with an 
existing project or modify it). 
Writing code canvas is updated 
according written code. This 
course runs through the 
following sections: Intro to 
Programming (which contains a 
video explaining their 
approach), Drawing Basics, 
Coloring, Variables, Animation 
Basics, Interactive 
Programs,Text and Strings, 

There are very 
tightly controlled 
initial tasks where 
you have to 
reproduce what 
they want you to 
code. It's not 
precisely copy 
code. But it is 
very close. It does 
suggest to create 
your design of the 
drawn image on 
graph paper first. 
You have no 
choice on the 

https://www.khanacademy.org/computing/computer-programming/programming
https://www.khanacademy.org/computing/computer-programming/programming
https://www.khanacademy.org/computing/computer-programming/programming


Constructionism 2018, Vilnius, Lithuania 

835 

 

Functions, Logic and If 
Statements, Debugging 
Programs, Looping, Writing 
Clean Code, Arrays, Objects, 
Object-Oriented Design, 
Becoming a Better Programmer. 

problem and very 
little choice in 
terms of the 
design or the 
code. Algorithms 
are not discussed 
explicitly but 
sequence is 
brought to 
attention of the 
learner. At the 
end of the 
sequence you 
then have a 
completely free 
option. It is very 
boring watching 
someone code. At 
the end of the 
copy code 
activities it then 
gives you a set of 
predefined tasks 
to choose from 
and a starter 
design and code 
to then amend. I 
chose 10 
onwards for age 
as the maths and 
reading 
requirement is 
quite high as it is 
text based.I was 
loathe to allocate 
a level 2, as this 
only occured in 
the final 
challenge. 

 

Please note that not all coders completed the justification part.  



Constructionism 2018, Vilnius, Lithuania 

836 

 

Appendix 2 Mann Whitney U statistics comparing concepts, artefact and activity 
types to constructionism scale for each of the constructionism matrix 
dimensions.   
Note scales where a coder had rated as 1 to 2 this has been added to scale 2 and where a coder rated 
1 to 3 this has been coded as 3. Scales 4 and 5 have been removed as only 1 activity was coded to this 
scale by one coder, and the second coder rated this same activity as 3. 

 

  Problem  Design Code 

Computer 
science (CS) 
concepts 

ALP  
p=.083 n=39 U= 144 p-.714 n=36 U=28 p was not 

computed 

DDS 
p=.389 n=39 U=22 p-.665 n=36 U=41.5 p was not 

computed 

CPH:  Not computed not computed not computed 

C&N:  p=.179 n=39 U=40 not computed not computed 

ISS:  p=1. n=39 U=112 p=.611 n=36 U= 88.5 p=.914n=30 U= 65 

CT concepts 

ABS:  
p=.322 n=39 U=84.5 p=.199 n=36 U=72.5 p=.067 n=30 

U=28.5 

ALT:  p= .701 n=39 U=166.5 p=.876 n=36 U=97.5 p=.914 n=30 U=60 

DEC:  
p=.149 n=39 U=225  p=.814 n=36 U=168 p=.439 n=30 

U=127 

EVA:  
p=.268 n=39 U=206.5 p=.253 n=36 U= 190 p=.171 n=30 

U=137 

GEN: p=.389 n=39 U=22 p=.495 n=36 U=23 p=.331 n=30 U=15 

Artefact type 

(Mann 
Whitney U) 

Physical 
p=0.007 n=39 U=125 Z = 
-2.952 r=.04 (medium 
effect size 

p=.576 n=36 U=76 0=.930 n=30 U=54 

Onscreen 
p=.489 n=39 U=159 p=.280 n=36 U=111 p=.872 n=30 

U=84.5 

Unplugged p=.329 n=39 U=149 p=.327 n=36 U=174 p=.441 n=30 U=97 

Concept 
p=.692 n=39 U=132 p=.475 n=36 U=151 p=.713 n=30 

U=109 



Constructionism 2018, Vilnius, Lithuania 

837 

 

Artefact type 

(Kruskal 
Wallis with 
Bonferroni 
Correction 
comparing 
Physical 
onscreen 
and 
unplugged) 

Overall p=.012  n=39 χ 2=8.876 
d.f=2 

p=.367  n=36 χ 2.007 
d.f=2 

p=.968  n=30 χ 
2=0.065 d.f=2 

Pairwise unplugged to physical 
p=0.013 Z=2.862, n=17 
U=5.678 r=.694 (large) 

onscreen to physical 
p=0.016  Z=2.785 U= 
5.328 n=29 r=.517 
(large) 

 

 unplugged- on screen  

p=1 Z=3.502 n=39 
U=.402 

Activity Type 
(only 
comparing 
Lesson plans 
and Online 
as there was 
only one 
board game 
activity) 

Mann 
Whitney U 

Lesson 
Plan / 
Online 
Student 
Activity  

p=.535=38 U=94.5 p=.018, n=35 U=54.5, 
Z=-2.358  
r=.398(medium) 

p=.048, n= 29 
U=37, Z=-1.978  
r=.367(medium) 

Activity Type 
with Kruskal 
Wallis with 
Bonferroni 
correction 
Overall 
Comparing 
Lesson Plan, 
Online and 
Board 
Game) 

Overall p=0.164 (χ 2=3.619, 
n=39, d.f =2 

p=0.009 (χ 2=9.363, 
n=36, d.f =2 

 

 

p=0.009 (χ 
2=9.373, n=30, d.f 
=2 

Pairwise  Student Onscreen - 
Board game  

p=0.021 Z=8.816 
U=2.690 n=36 

Student Onscreen - 
Board game  

p=0.010 Z=6.166 
U=2.946 n=30 

lesson plan board game 
p=.173 Z=3.485 
U=2.234  

Student Onscreen- 
lesson plan 

p=.076 Z=3.485 
U=2.234 

lesson plan board 
game p=.061 
Z=35.831 U=2..946 

Student Onscreen- 
lesson plan 

p=.228 Z=2.617 
U=1.775 

  



Constructionism 2018, Vilnius, Lithuania 

838 

 

WG2: Developing Constructionism, or a New 
Learning Concept, across the Ages 

Don Passey, d.passey@lancaster.ac.uk 

Lancaster University, Lancaster, UK 

Loice Victorine Atieno, atienomunira04@gmail.com 
Eötvös Loránd University, Budapest, Hungary 

Wilfried Baumann, baumann@ocg.at 
Austrian Computer Society, Vienna, Austria 

Valentina Dagienė, valentina.dagiene@mii.vu.lt 
Vilnius University, Vilnius, Lithuania 

Abstract  
Curricula in many countries are adopting computing (or informatics) as a subject or discipline. 
Computing learning practices in these ‘new’ curricula can involve pupils from 5 years of age, either 
within a discrete subject, or integrated into other subject topics across the curriculum. However, the 
learning concept, framework or theory that such curricula are based on, is not clear in curriculum 
documentation.  

Our curriculum concepts of learning progression are largely based on Piaget’s research, who described 
learning as a form of cognitive constructivism, developing over the age span of young people, and 
progressing through a series of stages: sensorimotor; preoperational; concrete operational; and formal 
operational. The new computing curriculum and teaching and learning practices could well be placed 
within this conceptual framework. However, Vygotsky’s research added a more social dimension of 
learning, a concept of social constructivism.  

Our contribution will review the constructionism approach by Papert that is based on uses of digital and 
computing-based resources within a constructivist approach to learning, and will investigate what 
learning concept, framework or theory should underpin computing curricula to ensure that practices and 
outcomes are as effective as possible.  

Keywords  
Constructivism, Activity theory (Lev Vygotsky), Learning Theories 

Background 

Curricula in many countries are adopting, or have recently adopted, computing as a subject or discipline 
(such as the national curriculum for computing in England, 2013), although the subject may be given 
alternative names and have somewhat different concerns in different countries (computer science in the 
United States, Canada, or New Zealand, or informatics in Germany, Poland, or Lithuania, for example). 
Computing learning practices in these ‘new’ curricula can involve pupils from 5 years of age, perhaps 
within a discrete subject, or perhaps integrated into other subject topics across the curriculum. The 
learning concept, framework or theory that such curricula are based on, and therefore which can 
underpin practices and outcomes across the age span of learners, is not clear in curriculum 
documentation, however. 

Western curriculum concepts of learning progression are largely based on Piaget’s research (1936), 
who described learning as a form of cognitive constructivism, developing over the age span of young 
people, and progressing through a series of stages or phases: sensorimotor; preoperational; concrete 
operational; and formal operational. The new computing curriculum and teaching and learning practices 
could well be considered and placed within this broad conceptual framework. However, Vygotsky’s 
research (1978) added a more social dimension of learning, a concept of social constructivism. The 
social constructivist approach to learning may be important to consider also when implementing a 



Constructionism 2018, Vilnius, Lithuania 

839 

 

computing curriculum. With the advent of digital and computing-based resources, further concepts of 
learning have been developed. From the perspective of computing, the most significant of these is 
perhaps the concept of constructionism developed from Papert’s research (1991). In summary, over the 
previous 80 years, as digital resources have continued to be developed and used in education, so our 
concepts of learning have been reconsidered - from a cognitive individual perspective, to a social 
perspective with others (including teachers and peers), and then with digital resources (Passey, 2013). 
Our current contexts, however, are different from those previous times when researchers developed 
their learning concepts or theories. 

This paper will consider this issue: what learning concept, framework or theory should underpin 
computing curricula to ensure that practices and outcomes are as effective as possible across the age 
span of that curriculum. 

Research questions 

 Can a concept such as constructionism still be reliably adopted and developed across the age 
range from 5 to 18 years?  

 Do we need a new conception of learning that accommodates our current context?  

 Is this concept or theory something that we can create from a research perspective, or can we 
do it from practical know-how and experience?  

 What should we do in the future to underpin learning development in computing? 

Approach 

In this paper, we start to explore the research problem by taking a systematic analytic approach: 

 Initially, we describe and detail the skills and competencies that are required of a contemporary 
computer programmer or software developer. 

 We then take a number of relevant learning theories, describing and detailing their sources, and 
their main features. 

 Using the features of each learning theory, we identify whether and to what extent there is a 
match to the approaches of skills and competencies required of a contemporary software 
developer, and whether certain skills or competencies would not be easily developed. 

 We critically map the findings from across all the learning theories we have explored, to indicate 
where there are matches and where there are gaps, and consider whether a new learning theory 
is required, and how this relates to previous learning theories. 

 From the outcomes of the mapping, we identify the rationale for, a possible name for, and detail 
the nature of any new learning theory proposed. 

This is clearly an ambitious project. Hence, we do not foresee that we will provide in this paper a picture 
that cannot be further developed and questioned. It is more our intention to open up the research 
questions, which we see as being important strategically for the future of computing (informatics) 
development in education. Learning theories continue to evolve in parallel with social constructs; we 
see this paper as a contribution within that evolution. 

Skills and competencies required of a contemporary software 
developer or computer programmer 

According to the United Kingdom (UK) National Careers Service (2018), a software developer 
(programmer) could: 

“work in a wide range of businesses and industries, public services, utilities, defence and 
research. …work closely with project managers, business analysts and graphic designers, to find 



Constructionism 2018, Vilnius, Lithuania 

840 

 

out what the client wants and the best way to achieve it. Usually …work in a team. …could work 
on a wide variety of projects, from financial databases to robotics to apps for phones and tablets. 
...may use a number of programming languages or project management tools. …day-to-day tasks 
may include: talking through requirements with the client and the development team; taking part 
in technical design and progress meetings; writing or amending computer code; testing software 
and fixing problems; keeping accurate records of the development process, changes and results; 
carrying out trials and quality checks before release; maintaining and supporting systems once 
they're up and running. As an experienced developer …supervise a programming team and 
provide feedback on coding work.” (National Careers Service, 2018, p.n.p.) 

There are clear links for an individual involved in this work to a computing (informatics) curriculum. The 
skills and competencies of a contemporary software developer can be considered as an end product of 
computing or computer science education. But, in terms of developing those skills and competencies, 
they should adequately match or be enabled through learning activities that are consistent with any 
appropriate learning theory or theories that traverse the age span of learner and learning development. 
So, we need to detail these skills and competencies, within a contemporary rather than historic context. 

The skills needed by a software developer can be analysed through nine different elements or 
processes: 

 Conceiving – taking user, market, technical and end-product requirements into consideration, 
producing ideas or drafts of a software process or product; 

 Planning – exploring scope and defining specific user requirement, outlining and detailing the 
overall process and time plan leading to a final outcome; 

 Designing – generating an overview or high-level design of the outcome, identifying specific 
elements or modules of a program, how they integrate, and what language, operating system 
and hardware components might be involved; 

 Developing – prototyping to consider proof-of-concept or trials of possible alternatives, leading 
to implementation that involves programming the code; 

 Documenting – detailing the internal design, so that the software and process can be reviewed, 
revised and maintained in the future; 

 Debugging/testing – finding and resolving problems that stop efficient and effective use of the 
software, and judging the quality of the outcome compared to initial requirements; 

 Deploying – releasing the software for use, with additional concern for customisation;  

 Evaluating/improving – beyond the initial deployment period, taking ongoing feedback into 
account, and exploring how to improve, perhaps integrating further or new software facility; and 

 Maintaining software – picking up on problems or issues over longer periods of time, and 
exploring ways to resolve these within contemporary situations. 

Skills are developed through experience, and experiences can be divided according to the form of 
interaction taking place – whether from the individual’s interest or concerns, whether through formal 
education routes, or whether through work and employment. Skills might arise, therefore, through 
(although specific skills are not necessarily associated with each of the following dimensions): 

 Talent; such skills are difficult to ‘teach’ or ‘acquire’, but it is important that they are recognised 
and discovered. Some people appear to naturally engage with certain processes of software 
development, exhibiting specific talents, while others do not naturally engage in the same way. 
How such skills arise, whether from other experiences, or from role models, for example, is not 
easy to identify, but it is important for educators to be able to identify these. But persistence and 
experience can in many, but possibly not all, cases make up for differences in skills arising from 
talent. 

 Education; those skills are abilities associated with a formal education. 

 Practical experience; these skills are acquired on-the-job when working in the field. They not 
only encompass technical skills, but also organisational skills, such as planning, structuring and 
emotional organisational intelligence. 



Constructionism 2018, Vilnius, Lithuania 

841 

 

Skills can be categorised in a number of different ways. Lamb, Maire and Doecke (2017) categorised 
21st century skills as: critical thinking; creativity; metacognition; problem solving; collaboration;  
motivation; self-efficacy; conscientiousness; and grit or perseverance. Clearly, this categorisation 
focuses on what might be regarded as ‘soft skills’, without emphasising skills that might be regarded as 
operational or technical (manipulative and mechanical, for example). SkillScan (2012) takes an 
alternative approach, categorising skills as: relationship; communication; management/leadership; 
analytical; creative; and physical/technical. For this paper, the skills are broadly categorised into three 
different groups that are formed from a coalescence of these sources: 

 Technical skills; these involve having a good understanding of the theoretical background of the 
field as well as of the common practices used and discussed by the community. As SkillScan 
(2012) state, these skills include those that enable effective interactions between the individual 
with physical objects including machines and technological systems. 

 Analytical skills; these include the abilities to collect and analyse information, problem-solve, and 
make decisions. Such skills are concerned with logical thinking, mathematical reasoning, and 
structural reasoning (planning). Critical thinking is an important basis for this category. People 
with this skill see trouble-shooting as a challenge rather than a nuisance. The skill to have great 
attention to detail and to consider overall context at the same time is important, but often found 
difficult to master. People with good analytical skills need to quickly switch between abstract and 
practical viewpoints. They must be able to master complexity. In particular, they should be able 
to estimate project cost and understand the scope of projects. 

 Social and emotional skills; software developers should have very good communication skills 
when communicating with team members, customers, their team leader, etc. Writing and 
understanding documentation like user manuals, training materials, tutorials, and trouble-
shooting guides are also part of the overall and necessary communication effort. It has been 
found that effective developers are willing and able to share knowledge and expertise with fellow 
team members. Depending on their work situation (whether a lone warrior, team player, etc.) 
they need to be able to work either independently or within groups. They should be able to 
analyse user needs and have a solid understanding of a company’s needs. They should be able 
to scrutinise all the information they are given, anticipate events that are hard to predict, and 
handle both pressure and failure. 

Some of the skills listed above are more clearly obvious as critical requirements, and they are often 
easier to assess. Some of these are more related to short-term success, and those would be expected 
to be in high demand in job advertisements. Some skills are more subtle, and are more related to long-
term success. 

In summary, and taking the range of required skills that will be used in the next section of the paper, our 
framework for analysis is shown in Table 1. Using this framework, we consider whether each learning 
theory we have selected can underpin the development of learning activities required to develop each 
of these skills. We answer the question: is it possible to understand how this learning theory relates to 
or explains or underpins the development of learning activities to support each of these skills? 

Table 1.  Framework of skills required by contemporary software developers 

Elements or processes Technical skills Analytical skills Social and emotional skills 

Conceiving    

Planning    

Designing    

Developing    

Documenting    

Debugging/testing    

Deploying    

Evaluating/improving    

Maintaining     



Constructionism 2018, Vilnius, Lithuania 

842 

 

Matching learning theories to skills and competencies of 
contemporary software developers 

In this section, we take a number of learning theories, chosen because they either often underpin 
educational curricula and practices, or are associated in certain ways with computing (informatics) 
education and practices. For each learning theory, we consider their source(s), their main features, the 
match to the development of learning activities that can support the skills and competencies of a 
contemporary software developer (taking the skills of a software developer identified in the previous 
section), and highlight those skills and competencies not clearly supported through this learning theory 
approach.  

Cognitive constructivism 
Source: Cognitive constructivism is a theory that emerges from Piaget’s studies on cognitive 
development (Piaget, 1936; Piaget & Cook, 1952). Piaget did not examine the development of learning 
per se, and his theory focused only on early learners (up to 11 years, and from beyond 11 years of age, 
the development identified was considered to go across the lifespan). His evidence was gathered from 
a small, discrete sample (3 of his own children, and some of his colleague’s children in his later work).  

Main features: His theory identifies three important components of development: schemata (building 
blocks in memory that can develop arenas of knowledge or understanding); adaptation (how an 
individual moves from one stage of development to another); and stages of cognitive development. He 
described schemata as sequences of actions that can be held in memory, providing blocks for the 
retention of and building of knowledge, ideas and understanding. He described adaptation in three 
stages: assimilation (using an existing schema to explain or work with a new idea or piece of 
knowledge); accommodation (realisation that an existing schema does not apply and needs to be 
adapted); equilibration (when a schema needs to be replaced, and the challenges associated with doing 
this). He described the stages of development as: sensorimotor (up to 2 years, when mental 
representations can be held in memory or mind); preoperational (2 to 7 years, when an object or word 
can be symbolically associated with something else); concrete operational (7 to 11 years, when internal 
thinking can occur without having to do this physically); and formal operation (from 11 years, when 
thinking can be logical and about abstract concepts). His later work (Piaget, 1958) indicated that 
adaptation required an active learning involvement, and that problem-solving needed to be experienced 
rather than learnt. Whether stages do exist, and what the influences of social and cultural factors might 
be, were not explored within his research. The role of language, and the concept of schemata, have 
both been questioned by other researchers. 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 
the development of the skills in the framework are shown in Table 2 (at this stage, interpreted by 
members of the working group only). 

Table 2.  Framework of skills related to cognitive constructivism 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

Conceiving √ from 2 years of age √ from 11 years of age ? 

Planning √ from 11 years of age √ from 11 years of age ? 

Designing √ from 7 years of age √ from 11 years of age ? 

Developing √ from 7 years of age √ from 11 years of age ? 

Documenting √ from 7 years of age √ from 11 years of age ? 

Debugging/testing √ from 11 years of age √ from 11 years of age ? 

Deploying √ from 7 years of age √ from 11 years of age ? 



Constructionism 2018, Vilnius, Lithuania 

843 

 

Evaluating/improving √ from 11 years of age √ from 11 years of age ? 

Maintaining  √ from 11 years of age √ from 11 years of age ? 

Skills and competencies not covered: Taking Piaget’s stages of development as a guide, it is possible 
to see how some technical skills could be developed from 2 years of age, while others could be 
developed from 7 years of age. If all of the skills could not be developed until 11 years of age, then this 
places a wide of learning activities out of the central context of contemporary practice. Additionally, the 
stages of development do not allow a clear understanding of how necessary social and emotional skills 
might be developed. 

Social constructivism 
Source: Social constructivism is a theory of knowledge in sociology and communication theory that 
examines the development of jointly constructed understandings of the world that form the basis for 
shared assumptions about reality. Social constructivism has been studied by many educational 
psychologists, who are concerned with its implications for teaching and learning. The social theory of 
knowledge concerns human growth that is socially organised and knowledge created through 
cooperation (McKinley, 2015). The approach has been influenced by Vygotsky’s work and is centred on 
the social context of learning, in which he believes that knowledge is collectively created and assembled 
(Bodrova & Leong, 2012; Gaurain, 2008). Through interaction, learners get the chance to express their 
thoughts, hence creating a common understanding associated with the idea (Kalpana, 2014). Gredler 
(2008) believes that as we move from the theory developed by Piaget towards that of Vygotsky, there 
is a shift of ideas from individualism to collaboration, aided performance, social communication and 
sociocultural activity. According to this theory, learning is often socially constructed, perhaps as a model. 
Constructing a model can constitute making a sequence of ideas that are public, for discussion and 
change; this is similar to programming activity, where Papert indicated parallels between professional 
programmer work and children’s programming actions. 

Main features: Conversation is the most important means of maintaining, modifying and reconstructing 
subjective reality (according to Berger & Luckmann, 1991). Vygotsky's theory is based on 3 major 
themes namely: social interaction, the More Knowledgeable Other (MKO) and the Zone ofl Proximal 
Development (ZDP). Social interaction enables the process of cognitive development where learners 
exhibit both social and individualistic functions; learning through The More Knowledgeable Other (MKO) 
concerns learning through someone more familiar with the subject under study. They may be a teacher 
or coach or an older person, a peer, younger person or even a computer; and the Zone of Proximal 
Development (ZPD) is the cognitive gap or difference between the learner's ability to perform a task 
with the help of another or through collaboration and the time the learner performs the task 
independently.  

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 
the development of the skills in the framework are shown in Table 3 (at this stage, interpreted by 
members of the working group only). 

Table 3.  Framework of skills related to social constructivism 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All √ √  √  

Skills and competencies not covered: Whilst it is possible that all skills could be developed by 
considering this learning theory as a background, the roles of different social actors will clearly be 
important here. How teachers and significant others are involved, including the extent and their forms 
of interactions, could easily determine the feasibility of any of these forms of skill development. 

https://en.wikipedia.org/wiki/Epistemology
https://en.wikipedia.org/wiki/Sociology
https://en.wikipedia.org/wiki/Communication_theory


Constructionism 2018, Vilnius, Lithuania 

844 

 

Social learning 
Source: This theory was introduced by Albert Bandura with the intention of clarifying how youngsters 
learn in social conditions by watching and afterwards mimicking the conduct of others. The theory 
postulates that individuals learn from each other, though observation, simulation, and demonstration. 
The theory has frequently been termed as a link between behaviourist and cognitive learning theories 
since it incorporates attention, memory, and motivation. Bandura believed that learning could not be 
exhaustively clarified through reinforcement, but the existence of others played a big role. The outcome 
of a learner’s conduct was seen more as a result of watched behaviour than one they had adopted 
themselves. The results were gathered from a series of experiments where the youngsters watched as 
the grown-ups attacked Bobo Dolls. As the doll was hit, it fell down and bounced up again. When the 
youngsters were set free they imitated the forceful conduct of the grown-ups. He also observed that the 
youngsters were less ready to mimic the grown-ups when they saw them being rebuffed after the act. 

Main features: Social learning has four elements: observational learning, reciprocal determinism, self-
regulation, and self-efficacy. Observational learning involves observing a model doing something and 
then imitating the same. This can be achieved by observing someone, a description in a book or even 
a movie. For observation to take place successfully, it must be given attention, retention of what is 
observed and motivation of learners to apply what has been learnt. Reciprocal determinism describes 
the influence of the environment on the learners. It advocates for a positive learning environment if 
learning is to take place. It is more concerned with social interaction between the learner and others in 
the environment. The third element is self-regulation which involves setting of goals, discipline for 
actions and follow-through for learning to occur and performance to improve. Lastly, self-efficacy 
involves the belief the learner has in their capability to learn and perform. Hence, creation of an 
environment that foster confidence in the learner should be encouraged and cultivated. 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 
the development of the skills in the framework are shown in Table 4 (at this stage, interpreted by 
members of the working group only). 

Table 4.  Framework of skills related to social learning 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All √ √ √ 

Skills and competencies not covered: Concerns with using this background learning theory are similar 
to those posed in discussing social constructivism. Although all of these skills could be developed, it is 
the order of these, and the importance of developing and subsequent reliance upon metacognitive skills 
such as self-regulation, that could affect the relationship of the development of these skills. 

Constructionism 
Source: This is an educational development theory developed by Seymour Papert of the Massachusetts 
Institute of Technology (MIT) and is based on Piaget’s theory of knowledge. Piaget believed that 
knowledge is actively created, based on world experience, hence constructionism. He came up with 
several tasks and questions that revealed the different kinds of knowledge structure built by children at 
different ages. Evidence was gathered, based on how children of different ages constructed their 
knowledge, given the same task. Based on what Piaget had learnt from the children, Papert used it to 
rethink educational practice. Constructivism is a well-known theory of learning indicating that learners 
actively construct new knowledge by combining their experiences with what they already know. A similar 
sounding concept “constructionism”, developed by Seymour Papert, takes constructivist theory a step 
further towards the points of action. Although the learning happens inside the learner’s mind, this 
happens when the person is engaged in a personally meaningful activity outside of their mind. This can 
then make the learning interesting, real and shareable. Papert defined constructionism as: “From 
constructivist theories of psychology we take a view of learning as reconstruction rather than as a 
transmission of knowledge. Then we extend the idea of manipulative materials to the idea that learning 



Constructionism 2018, Vilnius, Lithuania 

845 

 

is most effective when part of an activity the learner experiences as constructing a meaningful product” 
(Papert, 1986; Bruckman, 2006). Four aspects are essential to the design of constructionist learning 
environments. These are: learning through designing, personalising, sharing, and reflecting. 
Constructionism is grounded in the belief that the most effective learning experiences grow out of the 
active construction of all types of things (Papert, 1980). Constructionism strongly resonates with the 
current maker movement (Martinez & Stager, 2013). Constructionism as a theory symbolised a way of 
thinking about learning, the most general and effective being: building a model, reflecting on it, testing 
it, and sharing with others. DiSessa and Cobb (2004) argued that constructionism is “learning by 
designing” and falls into a category they called “frameworks for action”; however, they do not provide 
scientific ideas and structure for the design of learning environments. From that perspective, Noss and 
Clayson (2015) suggested a constructionist agenda and defined six characteristic: (1) modelling, (2) 
accessibility to the modelling process, (3) layering of principles and abstraction, (4) tapping into youth 
culture, (5) being represented in learner’s language, and (6) collaboration. Many educators and 
cognitive psychologists have applied constructivism to the development of learning environments. 

Main features: Constructionism is built on the main idea that knowledge is not passively received either 
through the senses or by way of communication – it is actively built up by the person during the learning 
process. Another strong feature stressed by Glasersfeld (1988) and cited in various papers, is that the 
function of cognition is adaptive and serves the subject’s organisation of the experiential world, not the 
discovery of an objective ontological reality. 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 
the development of the skills in the framework are shown in Table 5 (at this stage, interpreted by 
members of the working group only). 

Table 5.  Framework of skills related to constructionism 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All √ √ ? 

Skills and competencies not covered: Whilst it is feasible to consider that all skills could be developed 
using this background learning theory, the importance of development of social and emotional skills, 
and the need for these to be introduced at a young age, is stated more clearly in later definitions and 
discussions of constructionism. If there is a focus on interaction in learning activities with material 
resources, at the expense of interactions with peers and others when doing this, then this could hinder 
the important development of relevant and related social and emotional skills. 

Situated learning 
Source: This is an instructional approach developed by Jean Lave and Etienne Wenger in the early 
1990s. The approach is based on the works of Dewey, Vygotsky and others who believed that learning 
takes place more if learners are actively involved in the learning process (Clancey, 1995).  It is believed, 
however, that the idea of situated learning was first used by Brown, Collins and Duguid (1989) to develop 
a proposal for an instructional model that has inferences to classroom practice. This was as a result of 
the researchers observing successful learning situations. Examples of effective learning in any context 
or culture were identified and key features of the models analysed (Herrington & Oliver, 1995). Situated 
learning is a theory about the nature of human knowledge, claiming that knowledge is dynamically 
constructed as we conceive of what is happening to us, talk and move, but is concerned also with how 
individuals acquire professional skills. Our action can be situated in our role as a member of a 
community. Situated learning focuses on the relationship between learning and the social situation in 
which it occurs. The theory of situated learning claims that knowledge is not a thing or set of descriptions 
or collection of facts and rules. 

Main features: According to Herrington and Oliver (1995), the principal theorists and critics of situated 
learning believe that learning environments that possess the following features elicit effective attainment 
of usable knowledge: authentic context, authentic activities, expert performances and the modelling of 



Constructionism 2018, Vilnius, Lithuania 

846 

 

processes,  multiple roles and perspectives, collaborative construction of knowledge, coaching and 
scaffolding at critical times, reflection to enable abstractions to be formed, articulation to enable tacit 
knowledge to be made explicit, and lastly, integrated assessment of learning within the tasks. Situated 
learning declares that learning: (1) should be always integrated with the individual's identity and 
participation; (2) is constituting an evolving membership and capability to participate in different forms; 
and (3) is the means of reproduction and development of communities of practice. 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 
the development of the skills in the framework are shown in Table 6 (at this stage, interpreted by 
members of the working group only). 

Table 6.  Framework of skills related to situated learning 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All √ √ √ 

Skills and competencies not covered: While situated learning would appear to be an ideal background 
learning theory to frame learning activities to develop all of these skills, it is difficult to see how this might 
be applied in practice for young people starting their involvement from, say, 5 years of age. Success 
would be likely to depend on having access to teachers and resources that would be competent and 
confident in terms of creating a situated learning environment. 

Discovery learning 
Source: Discovery learning established its base from theories developed by John Dewey (Dewey, 
1997), Jean Piaget (Piaget, 1973), and Lev Vygotsky (Rice & Wilson, 1999) that described learning as 
active, process-based, and collaborative. It involves an instructional model and strategies that presents 
learners with more active and practical learning opportunities (Dewey, 1997; Piaget, 1973). According 
to Berding (2000), Dewey believed that children were naturally motivated to actively learn, and that 
education only served to make more learning possible. He believed that mental development was 
achieved through social interaction. Dewey saw children as participants in their learning rather than 
receivers of their learning. He established a Laboratory School at the University of Chicago where 
learners were encouraged to actively participate in collaborative learning activities such as students’ 
building a playhouse to learn geometry and measurement principles. He believed that children should 
be active, participatory learners who collaborate with others to better understand meaningful situations. 
Piaget (1973), on the other hand, believed that understanding emanates from unearthing and that 
without it invention and creativity are eliminated and one is caught in only duplication. He also observed 
that children do not think with the same logic as grown-ups (Papert, 2001). He recognised that children 
were not “empty vessels” to be filled with knowledge, but active developers of it. Piaget saw children as 
active, participatory learners as they frequently generated and tested their understanding of the world. 
Lev Vygotsky stressed the influence of cultural and social interactions on mental development, mainly 
the interaction of children with other people (Rice & Wilson, 1999). Through the theoretical concept of 
the Zone of Proximal Development (ZPD), he emphasised that there is a difference in what a child can 
accomplish in isolation and what he or she can accomplish with assistance. Discovery learning is an 
inquiry-based, constructivist learning theory that takes place in problem-solving situations where the 
learner draws on his or her own past experience and existing knowledge to discover facts and 
relationships and new truths to be learned (Bruner, 1961). Models that are based upon discovery 
learning model include: guided discovery, problem-based learning, simulation-based learning, case-
based learning, and incidental learning. 

Main features: Bicknell-Holmes and Hoffman (2000) describe the three main features of discovery 
learning as exploring and problem solving (exploring and problem solving to create, integrate, and 
generalise knowledge); taking responsibility for learning (student driven, interest-based activities in 
which the student determines the sequence and frequency); and building new knowledge on existing 
knowledge (activities to encourage integration of new knowledge into the learner’s existing knowledge 



Constructionism 2018, Vilnius, Lithuania 

847 

 

base). There are several features: (1) encourages active engagement; (2) promotes motivation; (3) 
promotes autonomy, responsibility, independence; (4) develops creativity and problem solving skills; 
and (5) tailors learning experiences. From Wikipedia discovery learning is described as:  

“There are multiple essential components that are required for successful discovery-based 
learning which include the following: Teacher guidance where the emphasis is on building upon 
students’ reasoning and connecting to their experiences; Classroom culture where there is a 
shared sense of purpose between teacher and students, where open-mindedness and dialogue 
are encouraged; Students are encouraged to ask questions, inquire through exploration and 
collaborate with teacher and peers.” 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 
the development of the skills in the framework are shown in Table 7 (at this stage, interpreted by 
members of the working group only). 

Table 7.  Framework of skills related to discovery learning 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All ? ? ? 

Skills and competencies not covered: While this background learning theory could be used to frame the 
development of all skills, the approach to discovery learning would need to be carefully considered. 
Expecting discovery to result without appropriate and adequate support would be unlikely to enable an 
effective development of these skills; misunderstandings and misinterpretations could too easily 
develop and persist without sufficient monitoring and discussion. 

Experiential learning 
Source: The model of experiential learning was developed by Kolb (1984) and Rodgers (1969) and it 
was based on John Dewey’s concept of ‘Learning by Doing’. Rodgers emphasised the importance of 
experiential learning as knowledge application and not mental learning. He believed that experiential 
learning looked at the needs and wants of individuals and was connected to their change and growth. 
Kolb, on the other hand, came up with a four-stage cyclical process, namely: concrete experience, 
reflection, abstract conceptualisation and active experimentation.  

Main features: Kolb (1984) described learning as a process of knowledge creation based on the 
alteration of experience and the understanding of experience together with its transformation He further 
proposed six key features of experiential learning: being perceived best as a process, rather than 
outcomes; an unceasing process based on experience; need for conflict resolution between dialectically 
contrasting ways of adaptation to the world; an all-inclusive process of adaptation to the world; 
encompassing connections between the individual and the environment; and lastly involving creation of 
knowledge as a result of the relationship between social and personal knowledge. Experiential learning 
is the process of learning through experience, and is more specifically defined as “learning through 
reflection on doing” (Patrick, 2011, p.1003). A four-stage cyclical theory of learning, Kolb’s experiential 
learning theory is a holistic perspective that combines experience, perception, cognition, and behaviour. 
The four styles proposed are: (1) assimilators, who learn better when presented with sound logical 
theories to consider; (2) convergers, who learn better when provided with practical applications of 
concepts and theories; (3) accommodators, who learn better when provided with “hands-on” 
experiences; and (4) divergers, who learn better when allowed to observe and collect a wide range of 
information. Building upon earlier work by John Dewey and Kurt Levin, American educational theorist 
David A. Kolb believed “learning is the process whereby knowledge is created through the 
transformation of experience” (1984, p.38). 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 

https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Experience


Constructionism 2018, Vilnius, Lithuania 

848 

 

the development of the skills in the framework are shown in Table 8 (at this stage, interpreted by 
members of the working group only). 

Table 8.  Framework of skills related to experiential learning 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All √ ? ? 

Skills and competencies not covered: While all skills could be developed using this background learning 
theory to frame learning activities, the basis of the learning theory and its focal elements were developed 
from adult investigations and approaches, rather than from exploration of developmental approaches at 
younger ages.  

Problem-based learning 
Source: Tse and Chan (2003) describe problem-based learning (PBL) as a learning approach where 
“the problem drives the learning”. The problem is given first and then the learners are presented with 
the opportunities to discover solutions to it (Salas, Segundo, Álvarez, Arellano & Pérez, 2014).  The 
“learning is student-centered” (Tse & Chan, 2003) and the teacher acts as a facilitator whose role is to 
guide the “self-directed learners” (Forcael, Gonzalez, Orozco, Opazo, Suazo & Aranguiz, 2015; 
Stanford University Center for Teaching and Learning, 2001). Savery and Duffy (1995) assert that PBL 
first emerged in the field of medical education in the 1950s. This was as a result of increasing 
displeasure with the traditional medical education practice at McMaster University in Canada (Barrows, 
1996). The PBL inventors critiqued traditional health science education due to its lecture approach, with 
more prominence put on memorisation of fragmented biomedical information, overlooking the 
importance of assisting learners cultivate the clinical problem-solving skills required for a lifetime of 
practice and learning (Barrows, 1996). Learners worked in small groups where they interacted with 
simulated patients with complex and meaningful medical problems. Using patient interviews, records, 
and selected laboratory results, they were able to identify learning issues and develop a diagnosis and 
treatment plan (Torp & Sage, 1998). The learning process was reinforced by teachers whose role was 
to facilitate discussion-based learning through questions, asking about and monitoring the problem-
solving process (Hmelo, 1998). PBL is a constructionist method which allows students to learn about a 
subject by exposing them to multiple problems and asking them to construct their understanding of the 
subject through these problems. This kind of learning can be very effective; for example, in mathematics 
or computing classes, because students try to solve the problems in many different ways, stimulating 
their minds (Hmelo-Silver & Barrows, 2006). Many studies have reported the utilisation of PBL in teaching 

software engineering courses, especially in teaching Agile software development methods. 

Main features: Popper (1994) believes that “Alles leben ist Problemlösen” (all life is problem solving); 
hence, life is full of learning opportunities. For PBL to take place, the following key features should be 
present: problem-focused (learning begins by addressing simulations of an authentic, ill-structured 
problem - what is to be learnt is built round a problem rather than creating a list of topics); student-
centred (the teacher does not command the learning activities, but rather acts as a facilitator in the 
whole process); self-directed (students individually and collaboratively assume responsibility for 
generating learning issues and processes through self-assessment and peer assessment and access 
their own experiential knowledge and learning materials); self-reflective (learners monitor their 
understanding and learn to adjust strategies for learning); and facilitative (instructors are facilitators  and 
not teachers). The following are some of the defining characteristics of PBL: (1) learning is driven by 
challenging, open-ended problems or tasks; (2) problems are context specific; (3) group work is 
common: learners work as self-directed, active investigators and problem-solvers in small collaborative 
groups; (4) a key problem is identified and a solution is agreed upon and implemented; (5) teachers 
adopt the role as facilitators of learning, guiding the learning process and promoting an environment of 
inquiry. 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 



Constructionism 2018, Vilnius, Lithuania 

849 

 

the development of the skills in the framework are shown in Table 9 (at this stage, interpreted by 
members of the working group only). 

Table 9:  Framework of skills related to problem-based learning 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All √ √ √ 

Skills and competencies not covered: This approach could enable the framing of development of all 
skills. Appropriateness to age would need to be considered, but, having said this, problem-based 
approaches are used in effective ways across the age span of compulsory and higher education. 

Connectivism 
Source: Connectivism is a digital age theory developed by George Siemens and Stephen Downes which 
came about as a result of the two criticising restrictions of behaviourism, cognitivism, and constructivism 
theories (Siemens & Downes, 2009). According to Siemens (2005), “Connectivism presents learning as 
a connection or network-forming process”. Siemens believes that learning today is too complex and we 
need to rely on a network of people and technology to store, access, and retrieve knowledge and 
motivate its use (Siemens, 2006). Learning is viewed as multi-faceted and particular tasks define which 
approach to learning is most appropriate to the learner (Siemens, 2003). Connectivism is a learning 
theory that explains how Internet technologies have created new opportunities for people to learn and 
share information across the World Wide Web and among themselves (Siemens, 2005). 

Main features: According to Siemens (2004), key features of connectivism include: correct and current 
knowledge (the main purpose of all connectivism learning); decision-making (important to learning and 
is also a learning process); ability to establish associations among multiple fields, ideas, and concepts 
is essential; learning can exist in devices other than human beings (this includes networks, databases, 
communities); knowledge acquisition is a process of linking varied devices, knowledge bases, or 
accessing prevailing networks; knowledge acquisition relies on the varied thoughts and perspectives 
within a network; and  being able to acquire more knowledge more vital than the already acquired 
knowledge. In addition to these, Siemens (n.d.) also affirms the following as key features of 
connectivism: the integration of thought and sentiments are vital to the creation of meaning; 
maintenance and nurturing network linkages in order to sustain continual learning; development and 
utilisation of knowledge is essential in knowledge acquisition; and lastly learning takes place in more 
than one way. A key feature of connectivism is that much learning can happen across peer networks 
that take place online. In connectivist learning, a teacher will guide students to information and answer 
key questions as needed, in order to support students’ learning and sharing on their own. Students are 
also encouraged to seek out information on their own online and express what they find. A connected 
community around this shared information often results. A lack of comparative literature reviews in 
connectivism papers complicates evaluating how connectivism relates to prior theories. 

Match to the skills and competencies of a contemporary software developer: If a teacher used this 
learning theory as an underpinning base, learning activities that could be devised that would support 
the development of the skills in the framework are shown in Table 10 (at this stage, interpreted by 
members of the working group only). 

Table 10:  Framework of skills related to connectivism 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

All ? ? ? 

Skills and competencies not covered: It is not clear that this learning theory would enable a framing of 
learning activities for use across the age range. Activities that would depend on uses and understanding 
of distributed resources and distributed knowledge might not easily support younger age groups. 



Constructionism 2018, Vilnius, Lithuania 

850 

 

Mapping of learning theory features for the framing of skills and 
competencies of a contemporary software developer 

The mapping exercise shows that a number of background learning theories could be used to frame the 
development of learning activities in computing, computer science or informatics education. However, 
there are a number of critical concerns that are raised by this mapping exercise: 

 If stages of cognitive development are used a frame for learning activity development, then 
computing, computer science or informatics learning will become decontextualised from a 
contemporary perspective. Certain skills will be emphasised earlier than others, and how these 
are then contextualised later will need to be a key concern. 

 If social constructivist approaches are used as a background frame, then extents and forms of 
social intervention and social interaction need to be carefully considered, as they will influence 
outcomes and longer-term approaches to skills development and use. 

 If social learning is used as a background frame, then the importance of developing and 
subsequently using metacognitive skills will need to be a focus for development from early ages. 

 If constructionism is used as a background frame, then the presence and roles of social 
interaction will need to be as much a focus as material resource interaction, across ages, and in 
all forms of activity (with those concerned with technical skills just as much as those focusing on 
social and emotional skills). 

 Situated learning could provide an ideal background frame, but then teachers and other 
supporters will need to be highly competent and confident, in creating and using a situated 
context for their learners. 

 Discovery learning could form a background frame, but independent and unsupported discovery 
will not be likely to result in effective outcomes, considering the nature of the subject, and the 
misconceptions and misunderstandings that could result. 

 Experiential learning could form a background frame, but its focus from investigating adult 
interactions means that it will need to be trialled and tested extensively enough across age 
ranges. 

 Problem-based learning will appear to provide a useful background frame, and has been used 
across educational practice widely. 

 Connectivism as a background frame is likely to be difficult to apply for younger age ranges if 
distributed resources and knowledge are involved in learning activities for those age groups. 

Skills and competencies not covered by any learning theory 

It is not possible to say that any of the skills could not be developed through learning activities framed 
by one or another learning theory. However, it is clear that background learning theories used to frame 
the development of learning activities can have a major effect, and could easily influence (positively or 
negatively) the forms of interaction and, hence, either enhance or limit developments of certain skills to 
lesser or greater extents. Table 11 shows, from the interpretations shown in previous tables, those skills 
that are highlighted as being most uncertain to be developed, considering how appropriate forms of 
learning activity might be created, taking cognitive constructivism, social constructivism, social learning, 
constructionism, situated learning, experiential learning, and problem-based learning theories as 
background frames into account. 

 

 

 



Constructionism 2018, Vilnius, Lithuania 

851 

 

Table 11:  Framework of skills related to interpreted limitations of background learning theories 

Elements or processes Technical skills Analytical skills Social and emotional 
skills 

Conceiving  ?? ??? 

Planning ? ?? ??? 

Designing  ?? ??? 

Developing  ?? ??? 

Documenting  ?? ??? 

Debugging/testing ? ?? ??? 

Deploying  ?? ??? 

Evaluating/improving ? ?? ??? 

Maintaining  ? ?? ??? 

Rationale, proposed name and features of a new learning theory 

Based on this analysis, whilst a completely new learning theory might not be shown as an absolute 
necessity at this time, it is highlighted at the same time that any background learning theory used as a 
frame needs to be considered adequately and appropriately in terms of how analytical and social and 
emotional skills particularly will be developed through appropriate learning activities. Similarly, how skills 
that might not be easy to develop at young ages are appropriately contextualised as early as possible, 
also will need careful consideration. Investigating stages of development for an updated learning theory 
approach, perhaps a learning theory that might be termed social creative constructivism, should be 
a focus of concern and action for future research. 

References 

Barrows, H. S. (1996). Problem‐based learning in medicine and beyond: A brief overview. New 
Directions for Teaching and Learning, 68, 3-12. 

Berding, J. W. A. (2000). John Dewey’s participatory philosophy of education: Education, experience 
and curriculum [Online]. Accessed from: http://www.socsci.kun.nl/ped/whp/histeduc/misc/dewey01.html. 

Berger, P. and Luckmann, T. (1991). The social construction of reality. London: Penguin Books. 

Bicknell-Holmes, T. and Hoffman, P. S. (2000). Elicit, engage, experience, explore: Discovery learning 
in library instruction. Reference Services Review, 28(4), 313-322. 

Bodrova, E. and Leong, D.J. (2012). Tools of the mind: Vygotskian approach to early childhood 
education. In: Rooparine, J. L. and Jones, J. (Eds.), Approaches to Early Childhood Education (6th ed.), 
241-260. 

Brown J. S., Collins, J. and Duguid, P. (1989). Situated Cognition and the Culture of Learning. 
Educational Researcher, 18(1), 32-42. 

Bruckman, A. (2006). Learning in online communities. In: Saywer, K. (Ed.), Cambridge handbook of the 
learning sciences. New York, NY: Cambridge University Press, 461-472. 

Bruner, J. S. (1961). The act of discovery. Harvard Educational Review. 

Chatti, M. A. (2010). The LaaN Theory. In: Personalization in Technology Enhanced Learning: A Social 
Software Perspective. Aachen, Germany: Shaker Verlag, 19-42. Accessible from: 
http://mohamedaminechatti.blogspot.de/2013/01/the-laan-theory.html 

Clancey,W.J. (1995). A tutorial on situated learning. In Self, J. (Ed.), Proceedings of the International 
Conference on Computers and Education. Charlottesville, VA: AACE, 49-70. 

David L. (2014). Problem-Based Learning (PBL). Learning Theories, July 23, 2014. Accessible from: 
https://www.learning-theories.com/problem-based-learning-pbl.html. 

http://www.socsci.kun.nl/ped/whp/histeduc/misc/dewey01.html
http://mohamedaminechatti.blogspot.de/2013/01/the-laan-theory.html
https://www.learning-theories.com/problem-based-learning-pbl.html


Constructionism 2018, Vilnius, Lithuania 

852 

 

Department for Education (2013). National curriculum in England: computing programmes of study. 
Accessible from: https://www.gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study 

Dewey, J. (1997). Democracy and education. New York, NY: Simon and Schuster. (Original work 
published 1916). 

diSessa, A. A. and Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. 
Journal of the Learning Sciences, 13(1), 77-103. 

Duffy, T.M. et al. (Eds.) (1993). Designing Environments for Constructive Learning. Heidelberg, 
Germany: Springer-Verlag. 

Edelman, G.M. (1992). Bright Air, Brilliant Fire: On the Matter of the Mind. New York, NY: Basic Books. 

Forcael, E., González, V., Orozco, F., Opazo, A., Suazo, Á. and Aránguiz, P. (2015). Application of 
Problem-Based Learning to Teaching the Critical Path Method. Engineering Education and Practice, 
141(3), 04014016. http://dx.doi.org/10.1061/(asce)ei.1943- 5541.0000236 

Gauvain, M. (2008). Vygotsky's sociocultural theory. Encyclopedia of Infant and Early Childhood 
Development, 3, 404-413 

Glasersfeld, E. von (1988). The reluctance to change a way of thinking. Irish Journal of Psychology, 
9(1), 83-90. Accessible from: http://www.vonglasersfeld.com/111 

Gredler, M. (2008). Vygotsky’s Cultural-Historical Theory of Development, In Sialkind, N.J. (Ed.), 
Encyclopaedia of Educational Psychology, 1, 1011-1014. 

Herrington, J. and Oliver, R. (1995). Critical characteristics of situated learning: Implications for the instructional 
design of multimedia. In: ASCILITE 1995 Conference, University of Melbourne, Australia. 

Hmelo, C. E. (1998). Problem-based learning: Effects on the early acquisition of cognitive skill in 
medicine. Journal of the Learning Sciences, 7, 173-208. 

Hmelo-Silver, C. E. and Barrows, H. S. (2006). Goals and strategies of a problem-based learning 
facilitator. Interdisciplinary Journal of Problem-based Learning, 1, 21-39. 

Kalpana, T. (2014). A Constructivist Perspective on Teaching and Learning: A Conceptual Framework. 
International Research Journal of Social Sciences, 3(1), 27-29. 

Kirschner, P. A., Sweller, J. and Clark, R. E. (2006). Why minimal guidance during instruction does not 
work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75–86. doi:10.1207/s15326985ep4102_1 

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. 
Englewood Cliffs, NJ: Prentice-Hall, Inc.  

Kop, R. and Hill, A. (2008). Connectivism: Learning theory of the future or vestige of the past? The 
International Review of Research in Open and Distance Learning, 9(3). 

Lamb, S., Maire, Q. and Doecke, E. (2017). Key Skills for the 21st Century: an evidence-based review. Melbourne, VIC: 

Victoria University, Australia. Accessible from: https://education.nsw.gov.au/our-priorities/innovate-for-the-
future/education-for-a-changing-world/research-findings/future-frontiers-analytical-report-key-skills-for-the-
21st-century/Key-Skills-for-the-21st-Century-Analytical-Report.pdf 

Lave, J. (1988). Cognition in Practice. Cambridge: Cambridge University Press.  

Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: 
Cambridge University Press.  

Martinez, S.L. and Stager, G. (2013). Invent to learn: Making, tinkering, and engineering in the 
classroom. Constructing Modern Knowledge Press. 

McKinley, J. (2015). Critical Argument and Writer Identity: Social Constructivism as a Theoretical 
Framework for EFL Academic Writing. Critical Inquiry in Language Studies, 12(3), 184-207. 

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://www.vonglasersfeld.com/111
http://researchrepository.murdoch.edu.au/view/author/Herrington,%20Jan.html
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1207%2Fs15326985ep4102_1
http://www.irrodl.org/index.php/irrodl/article/viewArticle/523/1103
https://education.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/research-findings/future-frontiers-analytical-report-key-skills-for-the-21st-century/Key-Skills-for-the-21st-Century-Analytical-Report.pdf
https://education.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/research-findings/future-frontiers-analytical-report-key-skills-for-the-21st-century/Key-Skills-for-the-21st-Century-Analytical-Report.pdf
https://education.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/research-findings/future-frontiers-analytical-report-key-skills-for-the-21st-century/Key-Skills-for-the-21st-Century-Analytical-Report.pdf


Constructionism 2018, Vilnius, Lithuania 

853 

 

Minflash (n.d.). 4 essential elements of social learning. Accessible from: 
https://www.mindflash.com/blog/4-essential-elements-of-social-learning  

National Careers Service (2018). Software developer: Programmer. Accessible from: 
https://nationalcareersservice.direct.gov.uk/job-profiles/software-developer#what-youll-do 

Noss, R. and Clayson, J. (2015). Reconstructing Constructionism. Constructivist Foundations, 10(3), 
285-288. 

Papert, S. (1986). Constructionism: A new opportunity for elementary science education. 
Massachusetts Institute of Technology, Media Laboratory, Epistemology and learning group: National 
Science Foundation. 

Papert, S. (2001). Jean Piaget. Time [Online]. Accessible from: 
http://www.time.com/time/time100/scientist/profile/piaget.html 

Papert, S. and Harel, I. (1991). Constructionism. New York, NY: Ablex Publishing Corporation. 

Passey, D. (2013). Inclusive technology enhanced learning: Overcoming Cognitive, Physical, Emotional 
and Geographic Challenges. New York, NY: Routledge. 

Patrick, F. (2011). Handbook of Research on Improving Learning and Motivation.  

Piaget, J. (1936). Origins of intelligence in the child. London: Routledge & Kegan Paul. 

Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. AMC, 10, 12. 

Piaget, J. (1973). To understand is to invent. New York, NY: Grossman. 

Piaget, J. and Cook, M. T. (1952). The origins of intelligence in children. New York, NY: International 
University Press. 

Popper, K. (1994). Alles leben ist problemlösen. Munich, Germany: Piper Verlag. 

Rice, M. L. and Wilson, E. K. (1999). How technology aids constructivism in the social studies 
classroom. Social Studies, 90(1), 28-33. 

Rogers, C.R. (1969). Freedom to Learn: a View of What Education Might Become. Columbus, OH: 
Charles E. Merrill.  

Salas, J., Segundo, J., Álvarez, C., Arellano, J. and Pérez, A. (2014). Evaluation of the Use of Two 
Teaching Techniques in Engineering. International Journal of Engineering Pedagogy, 4(3), 4. 
http://dx.doi.org/10.3991/ijep.v4i3.3287 

Savery, J. R. and Duffy, T. M. (1995). Problem based learning: An instructional model and its 
constructivist framework. Educational Technology, 35(5), 31-38. 

Siemens, G. (2003). Learning Ecology, Communities, and Networks: Extending the Classroom. 
Accessible from: http://www.elearnspace.org/Articles/learning_communities.htm 

Siemens, G. (2004). Connectivism: A Learning Theory for the Digital Age. Accessible 
from: http://www.elearnspace.org/Articles/connectivism.htm 

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of 
Instructional Technology and Distance Learning, 2(1), 3-10. 

Siemens, G. (2005). Connectivism: Learning as Network Creation. e-Learning Space.org website. 
Accessible from: http://www.elearnspace.org/Articles/networks.htm 

Siemens, G. (2006). Connectivism: Learning theory or pastime of the selfamused? Elearnspace blog. 
Accessible from: http://www.elearnspace.org/Articles/connectivism_selfamused.htm  

Siemens, G. (n.d.).  About: description of connectivism. Accessible 
from:  http://www.connectivism.ca/about.html 

Siemens, G. and Downs, S. (2009). elearnspace. Accessible from: http://www.elearnspace.org/blog/ 

https://www.mindflash.com/blog/4-essential-elements-of-social-learning
https://nationalcareersservice.direct.gov.uk/job-profiles/software-developer#what-youll-do
http://www.time.com/time/time100/scientist/profile/piaget.html
https://books.google.com/books?isbn=1609604962
http://dx.doi.org/10.3991/ijep.v4i3.3287
http://www.elearnspace.org/Articles/learning_communities.htm
http://www.elearnspace.org/Articles/connectivism.htm
http://202.116.45.236/mediawiki/resources/2/2005_siemens_Connectivism_A_LearningTheoryForTheDigitalAge.pdf
http://www.elearnspace.org/Articles/networks.htm
http://www.connectivism.ca/about.html
http://www.elearnspace.org/blog/


Constructionism 2018, Vilnius, Lithuania 

854 

 

SkillScan (2012). Chart of Skill Categories, Skill Sets and Sample Career Options. Accessible from: 
https://www.skillscan.com/sites/default/files/chart-of-skill-sets.pdf 

Stanford University Center for Teaching and Learning. (2001). Problem-Based Learning. Speaking Of 
Teaching, 11(1), 1-8. Accessible from: http://web.stanford.edu/dept/CTL/ Newsletter/ 

Torp, L. and Sage, S. (1998). Problems as possibilities: Problem-based learning for K-12 education. 
Alexandria, VA: ASCD. 

Tse, W. and Chan, W. (2003). Application of Problem-Based Learning in an Engineering Course. 
International Journal of Engineering Education, 19(5), 747-753. Accessible from: 
https://www.ijee.ie/articles/Vol19-5/IJEE1440.pdf 

Vincini, P. (2003). The nature of situated learning. Innovations in Learning , 1-4. 

Vossoughi, S., Escudé, M., Kong, F. and Hooper P. (2016). Tinkering, Learning and Equity in the After-
School Setting. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: 
Harvard University Press. 

Wynn, E. (1991). Taking Practice Seriously. In J. Greenbaum and M. Kyng (Eds.), Design at Work: 
Cooperative design of computer systems. 45-64. 

  

https://www.ijee.ie/articles/Vol19-5/IJEE1440.pdf


Constructionism 2018, Vilnius, Lithuania 

855 

 

WG3: Creating and Looking at Art with Logo Eyes  

Evgenia Sendova, jenny.sendova@gmail.com 
Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences, Bulgaria 

Christos Chytas, christos.chytas@uni-oldenburg.de   
Computing Education Research Group, University of Oldenburg, Germany 

Katarzyna Olędzka, katarzyna.oledzka@oeiizk.waw.pl   

Computer Assisted Education and Information Technology Centre in Warsaw, Poland 

Ralf Romeike, ralf.romeike@fau.de 
University of Erlangen-Nuremberg, Germany 

Wolfgang Slany, wolfgang.slany@tugraz.at 
Catrobat Team, Graz University of Technology, Austria 

Abstract 
Computation is an integral component in nearly every dimension of our lives and provides new tools for 
self-expression even in areas that one would not dare to enter without the access to computers. In 1967, 
Seymour Papert, Wally Feurzeig and Cynthia Solomon designed Logo to allow children and youth to 
explore programming and mathematics concepts, while providing exciting opportunities for creativity 
and experimentation. Computation provides an appropriate framework for dealing with notions of how 
to and what if rather than with notions of what is, which already has an impact on the way we teach fine 
arts, music, or literature. For Papert and his fellow constructionists the programming was not only a 
technical skill for industry but also a mode of creative and personal expression. Today, the absence of 
computation in mainstream art and science education is still apparent but the appearance of Logo and 
new modern tools that inherit the ideas of the Logo educational philosophy (known as constructionism 
today) promises to change that. Drawing on examples from experiences with IT teachers and children 
in participatory design courses, we discuss how to harness the Logo culture of making things happen, 
making things work, so as to open the eyes of young people to the beauty around them.  

Keywords   
art; creativity; coding; logo; visual programming; maths; stitching; embroidery 

Prologue (in which the Turtle makes a point of the computer art) 

Achilles and the Turtle (Fig. 1), characters we know not only from the famous Zenon paradox but also 
from the essay of Luis Carol What the Tortoise said to Achilles [1] and the book Gödel, Escher, Bach 
by Douglas Hofstadter [2], in which the author promotes the idea that in the history of human civilization 
the division between science and art is in fact superficial.  

 

Figure 1.  Achilles and the Turtle discussing the modern and the artificial art (cartoonist Yovko Kolarov) 

Turtle: About 60 years ago I attended an exhibition where there were only black paintings looking 
practically identical. The artist would address all the questions with a mysterious smile: Looking at art is 

mailto:katarzyna.oledzka@oeiizk.waw.pl
mailto:ralf.romeike@fau.de


Constructionism 2018, Vilnius, Lithuania 

856 

 

not as simple as it looks… But then would continue with a serious tone: Art is too serious to be taken 
seriously [3].  

Achilles: I know what you are talking about – in a recent exhibition I attended (Fig. 2) the largest 
paintings in the modern art wing appeared to be solid black; but with sustained looking, shapes started 
to emerge. I wonder what art critics would say if such paintings were generated by a computer. 

 

Figure 2.  An exhibition of Mark Rothko in MFA, Boston (2018).  

Turtle: True! But the attempts to model abstract art do not intend to challenge the art critics. Maybe it 
is for the first time today that the computer provides people with environments where they could 
experimentally verify ideas, formulated by eminent representatives of the abstract art such as Kandinsky 
and Mondrian. You might have heard that Mozart has composed music by combining randomly ready-
made 2-bar musical fragments. Randomness can also be seen in art, e.g. Hans Arp has thrown color 
pieces of paper by leaving to the destiny to combine them. It is known that the only rule the 
representatives of Dadaism followed was randomness. 

Achilles: You mean that the abstractionists do not accept any rules? Turtle: On the contrary. In his 
book On the Spiritual in Art the founder of the abstract art, Kandinsky, writes: We are approaching the 
time when a conscious, reasoned system of composition will be possible, when the painter will be proud 
to be able to explain his works in constructional terms. 

Achilles: Sounds like someone who would have found like-minded people among the 
constructionists… 

Turtle: In the field of the so called Artificial Art there are programs which can generate paintings on a 
specific topic. An interesting example is Aaron, developed by Harold Cohen, (Fig. 3), which generates 
figures resembling people dancing or playing with a ball in an environment looking like a forest, rocky 
hills or beach. Due to the random choice of specific variables Aaron always generates different 
paintings, obeying a specific style. 

  

Figure 3.  Detail from an untitled AARON drawing, 1980 (left); AARON image created at the Computer Museum, 
Boston, MA, 1995 (right) [4].  

 



Constructionism 2018, Vilnius, Lithuania 

857 

 

Achilles: I would rather think that it is more natural for an intelligent computer to draw a self-portrait, 
i.e. a computer which draws a portrait of itself, which draws a portrait of itself, etc.  

Turtle: I know your passion about recursion. But you will see in the works of our authors and their 
students that the computer could be used not only to play the role of an amateur-abstractionist, but also 
as an environment for artistic experiments. In such an environment (Logo or Logo-like) one could 
comment on what makes the abstract art in fact art and not just random collections of figures spread on 
a canvas. Besides, using a language-based computer environment it is easier to give working definitions 
of abstract notions, such as harmony of colors, balance, tension, calmness, and verify experimentally 
the validity of these definitions. Besides, computation provides new tools for self-expression even in 
areas that one would not dare to enter without the access to computers.  

Achilles: They say that a picture is worth more than 1000 words. (Even if it is a computer work). Thus 
– FORWARD to the paintings!  

Turtle:  Although I am just a little ahead of you, I don’t think you have chances of reaching me (and my 
relatives for that matter) before infinity. My recently born cousin, the Logo turtle, is already a well-known 
artist. Let us see what the authors of this article have to say about how they and their students look at 
art with Logo eyes… 

The Logo turtle as an eye-opener and as а tool for enriching the 
artists’ palette  

Art or a Logo exercise? 
The first two pictures in Fig. 4 are the simplest version of abstract art which could be modeled by means 
of the basic primitives of the Logo turtle graphics. Thus, they could be included as an exercise not only 
to implement students’ skills in controlling the turtle but also to open their eyes for the art of Max Bill 
and his love of geometry [5].  

 

 Figure 4. Max Bill (lithographs from 1938) and their Logo variations. 

An episode from a PD course for IT teachers  
During a PD course for teachers in informatics at Sofia University a shy young woman handed to the 
lecturer a piece of an old calendar with a painting by Vasarely (Fig. 1, leftmost) and ask her if it could 
be modeled by means of the Logo turtle [6]. 

 

Figure 5. Vasarely’s Los Angeles and Logo variations on it. 

 



Constructionism 2018, Vilnius, Lithuania 

858 

 

Of course, there are different ways to create computer models of Los Angeles. After a short discussion 
they figured out that the Four-bug problem could be used (modified for 6 turtles in this case) by 
connecting the positions of the turtles at regular intervals of time alternating the color of the trace. From 
there on variants by modifying the parameters in the initial setting of the problem (e.g. the strength of 
the attraction, the number and the positions of the turtles) were created. A sufficient number of 
experiments produced realistic images (Fig. 5, rightmost). And variations on a theme are in fact the crux 
of creativity. Furthermore, one can come to an understanding of such fundamental cognitive processes 
as pattern perception, extrapolation and generalization only by modeling them in the most carefully 
designed and restricted microdomain [7].  

Episodes from pre-service course for math and CS teachers  

Ideas of identifying what is essential in a specific painting, in the author’s style, or even – of a period in 
art, could be found in the wonderful book of James Clayson [8]. Good practices in the context of visual 
modeling with students of different age and cultural background demonstrate the applicability of 
Clayson’s ideas. An inspirational synergy among mathematics, informatics and art has been achieved 
within the pre-service and in-service teachers in mathematics and informatics at Sofia University. The 
first stage of the modeling process was to identify fundamental elements in paintings characterized by 
their vibrant colors and sharply patterned geometric forms (e.g. de Still group, Kandinsky, Sonia 
Delaunay, Escher) and then to create stylized versions of those by Logo procedures. The next stage 
was to understand the balance (Mondrian) and the forces-tensions living in the painting (Kandinsky). 
The students created working definitions of balance according to different criteria (e.g. determining the 
weight of an element by its size, complexity, color) and tested them in a number of iterations, 
concentrating on the phenomenon to be modeled. The students realized that the abstract paintings 
contain a harmony whose laws could be revealed and their hypotheses about those laws could be 
materialised in computational form to be verified experimentally. Here are some examples. 

Modeling circles a la Kandinsky 

  

Figure 6. Deepened Impulse (left); Circles in a Circle (right). 

Various ideas of modeling the circles include using sequences of nuances to create the illusion of 3D 
objects, to create a balance among their locations, to animate them (make them pulsate or move 
according to different rules). 

 

Figure 7. Creating visual effects by means of Comenius Logo.  

 

http://mathworld.wolfram.com/Four-BugProblem.html


Constructionism 2018, Vilnius, Lithuania 

859 

 

As seen from these pictures the work on specific elements of a painting being modeled requires 
experiments of various ideas and techniques both from informatics and artistic point of view.  

Variations on Vega by Vasarely 

For modeling Vega (Fig. 8, leftmost) we used Lissajous curves describing a complex harmonic motion. 
The graphs are the traces of a turtle whose Cartesian coordinates are obtained by the positions of two 
other turtles moving along specific intervals on the coordinate axes of rectangular coordinate system. 

 

Figure 8. Vasarely Vega (1957) and Comenius Logo variations. 

Such curves could be described also by a single turtle by means of trigonometric functions. The reason 
of using three turtles (apart from using a more modest mathematical apparatus) is to generalize the 
motion of two of the turtles by driving them along polygon lines while the position of the third is always 
in the middle between the first two (Fig. 9). 

 

Figure 9. Exploring further the effect of modifying the Logo models of Vega. 

In our sessions we encourage students and teachers to not reduce their visual models to imitations 
only. Instead, they are encouraged to use their own creativity and experiment with their own design 
ideas. 

This process contains (to use the phrase of Hofstadter) unpredictable predictability. In other works we 
can expect the appearance of new stylistic attributes depending on the rank in which we vary the random 
variables. After leaving the frames of the strict imitation we could be inspired by new combination of 
forms and colors and get new insight leading to a new formalization – a process supported by the 
enormous potential of the computer to make various combinations in short time and by our human 
potential to interpret new abstract structures [9].  

Recent programs in artificial art that can tweak photos to mimic the style of famous painters are already 
widely available. There are even apps that do this, such as DeepArt [10]. But even more ambitious is a 
new system producing images in unconventional styles from scratch [11].   

 

 

https://deepart.io/


Constructionism 2018, Vilnius, Lithuania 

860 

 

Episodes from our work with children 
Looking with Logo eyes around us  

Geometric shapes and regular patterns can be found practically everywhere, although they are often 
unnoticed by an untrained eye. For example concepts like the golden ratio, Fibonacci sequence, 
symmetry can be found in nature (from the number and configuration of petals in flowers to the spiral 
patterns of shells). Such concepts have intrigued the interest of artists and scientists for centuries and 
computation provides the means to express such concepts faster and more efficient than ever. Logo is 
a language suitable for dealing with phenomena which we could better understand by modeling them 
… What is valuable in programs in a microworld tuned to a particular domain (art in this case) is that 
they could be used as glass-boxes. During online courses for primary school children [12] we start from 
simple drawings to move to more complicated ones. By solving several tasks students build their own 
knowledge.  They combine finding recurrent elements with the ability to describe pictures by Logo 
procedures. Moreover, children improve their understating of geometric shapes.  

 

Figure 10. Tasks for finding repetition from miniLogia competition.  

They need to integrate art, mathematics and computational thinking. Students learn how to efficiently 
use the most important procedures of turtle graphics, apply iteration and recurrence and break down a 
problem into sub-problems. Motives are made by simple and complicated structures, there are rhythms 
in different dimensions, sometimes balance or even the tension. Mathematical knowledge is needed to 
solve the problems: square and its diagonal, proportions, regular polygons like triangle, square, 
hexagon, angles: right angle, straight angle, angle of 360⁰, partition into equal parts. 

 

Figure 11. The more complicated tasks from miniLogia competition. 

The older the students are, the more advanced pictures they can draw. During the miniLogia competition 
for primary school children [13] or the Logia competition for gymnasium students, [14] participants solve 
different problems inspired by everyday life (Fig. 10-11).  

Logo eyes help us understand better the world 



Constructionism 2018, Vilnius, Lithuania 

861 

 

Using different geometric shapes, we can build some pictures that are tricky. Sometimes our perception 
of objects is inadequate to their physical properties. Optical illusion can be explained from physiological 
point of view, but also can be examined by drawing.  

The line segment forming the shaft of the arrow with two tails is perceived to be longer than that forming 
the shaft of the arrow with two heads. When one compares the code for a turtle, we can realize that 
these two segments are equal length (line 3 and 13). 

 

1. def arrow1(a):   
2.     for i in range(2):   
3.         fd(2*a)   
4.         rt(135)   
5.         fd(a);bk(a)   
6.         rt(90)   
7.         fd(a);bk(a)   
8.         rt(135)   
9.         bk(2*a)   
10.         rt(180)   

11. def arrow2(a):   
12.     for i in range(2):   
13.         fd(2*a)   
14.         rt(45)   
15.         fd(a);bk(a)   
16.         lt(90)   
17.         fd(a);bk(a)   
18.         rt(45)   
19.         bk(2*a)   
20.         rt(180)   

 

Figure 12. Two arrows and the code in Python with module turtle. 

In another example two circles of identical size are placed near to each other and one is surrounded by 
small circles while the other- by a big one. The first central circle appears to be bigger than the second 
one. While comparing the code in Python: the central circles are identical (line 4 and 11), but the 
difference effect is due to the difference in the external circles (lines 6-8 and 13-15).  

1. def jump(a):   
2.     pu();fd(a);pd()       
3. def big_circles(d):   
4.     dot(d)  
5.     for i in range(6):   
6.         jump(d)   
7.         dot(d/2)   
8.         jump(-d)   
9.         rt(60)    
10. def small_circles(d):   
11.     dot(d) 
12.     for i in range(6):   
13.         jump(4/2*d)   
14.         dot(3/2*d)   
15.         jump(-4/2*d)   

16.         rt(60)   

 

Figure 13. The Ebbinghaus illusion. 

In the third example, there is a grid built by squares. On both pictures the squares are identical. While 
on the left they are forming straight columns, on the right – they are shifted. This creates the illusion 
that the horizontal lines are not parallel. 



Constructionism 2018, Vilnius, Lithuania 

862 

 

 
 

Figure 14. Grid built by squares 

Playing with optical illusions made by a turtle, can lead to important discoveries. It helps the students to 
understand how human brain can be deceived and how to cope with situations when the perception is 
different from the reality. There are artists (e.g. Maurits Cornelis Escher) who use it for entertainment 
and fascination. For children, it is a field to meet challenges and be stimulated to develop their own 
creativity. 

Beyond Logo  

In the early 80s, when personal computers started infiltrating mainstream education, Papert published 
Mindstorms [15], a book on the potential of computers in children’s and youth’s education. In his 
inspiring book, Papert introduces the idea of a Mathland as a place where learning mathematics would 
be the equivalent of people learning their native language as when they were children. Logo (with its 
educational philosophy known as constructionism today) consists of both an environment and a tool to 
promote such types of learning. It allows children and youth to participate actively in creating and 
understanding more complex concepts of mathematics and computation in more creative ways than the 
ones provided in mainstream education in the past. Furthermore, innovations in educational technology 
which inherit the ideas behind Logo provide accessible tools that can support the creation of 
sophisticated projects through algorithmic or generative design and digital fabrication. With turtle 
graphics or block-based commands children and youth can use powerful computational tools to create 
projects ranging from small programs to physical artefacts (e.g. 3D printed models). The creation of 
physical artefacts with computational means can open new ways for creating and looking at art through 
tangible interactions, where the artistic creations become ‘’objects-to-think-with’’ [15]. The term ‘’be-
greifbarkeit’’ as coined by Katterfeldt et al. in [16] describes an element in a situation where the learners 
can grasp something physically (grab something tangible) but also grasp something as understanding 
it (in our case computational models for art). A good example of ‘’graspable’’ art in the service of 
mathematics and computing education is given in the work of [17]. In a school setting, the students 
explored computational and mathematics concepts under the lens of 3D printing as a medium for 
creativity. They used turtle graphics in Beetle blocks [18] to create artistic artefacts that worked as 
‘’objects-to-think-with’’. However, even though the results of the course were promising, the combination 
of mathematics and programming concepts was a great challenge for the learners. Mathematics and 
computing science as subjects are considered difficult and not creative by many students. Therefore, 
we need to provide the right conditions and challenges of computational design considering the diverse 
experience, knowledge and interests of students. The intersection of mathematics, computational 
design and art might be an efficient way to highlight the beauty of science through the creation of 
personally meaningful artefacts.  

Catrobat and TurtleStich 
Catrobat is a free open source non-profit project that allows users to create and publish their own games 
and interactive animations directly from their smartphones, without the need for any PC, laptop, 
Chromebook, or tablet. Initiated in 2010, Catrobat as of July 2018 has more than 700,000 users from 
180 countries, is available in 50+ languages, and has been developed so far by almost 1,000 volunteers 
from around the world. Catrobat’s apps and services have been immensely influenced by MIT’s Scratch 
project, and Catrobat is considered to be Scratch’s little sister project for smartphones. Indeed, 



Constructionism 2018, Vilnius, Lithuania 

863 

 

Catrobat’s apps allow to import Scratch projects, thus giving access to more than 37 million projects on 
phones as of July 2018. Catrobat’s goal is to provide computational thinking skills for all worldwide 
teens, especially teens from less developed areas where other computational devices such as PCs are 
almost non-existent. Catrobat is a visual programming language like Scratch or Snap! and, like them, 
includes powerful Turtle graphics pioneered by Logo. Catrobat also allows to take advantage of the 
many sensors and high-resolution multi-touch screens of modern smartphones, allow to project one’s 
smartphone’s screen to arbitrarily large screens, some of which being multi-touch enabled with a back-
channel to the phone’s screen, thus allowing to serve as large interactive boards for games or large-
scale art installations. Catrobat’s apps also allow to seamlessly interact wirelessly with a plethora of 
external devices such as Arduino and Raspberry Pi boards that are frequently used by artists in 
interactive installations. Using Catrobat, creating the software for these interactive art installations is so 
straightforward that regular visitors to an art exhibition can be empowered to not only control these 
installations but also change or even create completely new objects of art in a few minutes without any 
previous knowledge of coding, on their own smartphones.  

Below find a few examples from the many interactive animations that have been created using Catrobat. 
From left the right, “Psychedelic”80 allows to tap the screen anywhere to place arbitrary colored and 
sized off-centered turning discs; “Japanese Rock Garden” allows to use a virtual rake with one’s finger 
to create patterns in the pebbles as known from traditional Japanese rock gardens such as in the world-
famous Ryōan-ji Zen Temple in Kyoto, where the creation of these patterns is used in traditional 
meditation by Buddhist monks; “Ten Fingers Painting” which allows to draw with all ten fingers at the 
same time with discs that constantly change their colors while one paints – all these interactive 
animations have an almost hypnotic impact on the users and in particular are endlessly fascinating for 
small children. 

 

Figure 15. Interactive animations with Catrobat. 

In a newly funded multi-year project, the Catrobat team has started to implement a TurtleStitch 
extension inspired by the TurtleStitch.org project based on Snap!. Catrobat’s TurtleStitch extension 
allows to transfer the patterns users create on their phones to a programmable embroidery machine. 
Using the concepts of Logo’s turtle graphics, users can create arbitrary patterns, including interactively 
generated ones using live user input. These patterns can then be stitched on clothes, bags, etc. 
Programmable stitching machines are increasingly becoming available in Fablabs, and recently have 
also become available in selected shops from Ikea and Muji. The prices of these machines range from 
600 Euro for the smallest devices for private uses, up to hundreds of thousands of Euro for very large 
industrial machines. A pattern created with a Catrobat program called Dream Catcher together with 
parts of the corresponding Catrobat code on the left is shown in Fig. 16.  

                                                
80 All mentioned Catrobat projects can be found by searching for their names in the “Explore” section of Catrobat’s coding apps, which can be 
downloaded from, e.g., Google Play via https://catrob.at/gp for Android smartphones (as of July 2018, the Catrobat app for iPhones is still a 
closed beta on iTunes). 

https://catrob.at/gp


Constructionism 2018, Vilnius, Lithuania 

864 

 

 

Figure 16. The ‘’Dream Catcher’’ pattern. 

On the right there is a photo of a stitching machine in the process of applying the pattern to a T-shirt 
(the photo is used with kind permission from Andrea Mayr-Stalder from the TurtleStitch.org project, 
since Catrobat’s stitching extension is still under development). 

Logo-like constructions from everyday life objects 

 

Figure 17. Adam Hillman (Witenry) is truly one of the most talented artists on Instagram 
(https://www.instagram.com/witenry/) 

 

 

 

Figure 18. Kasey Lund – physics professor, using a ruler (left);  
A 3D bugs variation by George Karageorgiev, software developer 

 

https://www.instagram.com/witenry/


Constructionism 2018, Vilnius, Lithuania 

865 

 

Conclusion 

Thus, the study of the structure of knowledge and creative processes from procedural point of view has 
emerged as opposed to a more declarative point of view typical for the traditional education. 
Computation provides an appropriate framework for dealing with notions of how to and what if rather 
than with notions of what is, which already has an impact on the way we teach art, fine arts, music or 
literature. Both fine art and informatics have a specialised vocabulary of notions and use a specific 
syntax. The abstract art speaks rather of things to be seen. Similarly, Logo is a language suitable for 
dealing with phenomena which we could better understand by modeling them … 

What is valuable in programs in a microworld tuned to a particular domain (art in this case) is that they 
could be used as glass-boxes. In addition to provide an accessible enough formalised description of the 
process of generation, one can play with them long enough to check their flexibility. It is in this sense 
that we talk about Logo as editor of ideas (the editing process including corrections, modifications, 
refinement and enrichment of the program).  

And now, it is time to give the floor again to Achilles and the Turtle: 

Epilogue (in which Achilles and the Turtle reflect: what is the 
point?) 

Achilles: So, we are not arguing anymore if the computer can think but rather 
if what it creates with our help is in fact art… 

Turtle: What the computer generates could not be called art in the usual 
meaning of it, but when we say this, we should be clear why not… What has 
been formalised in terms of Logo procedures is in fact a materialised 
conjecture about patterns noticed and reflected in a model of specific art 
works. When experimenting with such a model we could add or reject some 
rules based on the results and thus achieve a certain balance between the 
expected and unexpected. 

Achilles: Would you please remind me what is a model in the context of creativity?  

Turtle: The notion of model used here is in harmony with the definition of Marvin Minsky: To an observer 
B, an object A* is a model of an object A to the extent that B can use A* to answer questions that interest 
him about A.  

Achilles: Entering the shoes of B, I can accept that programs generating works of fine art are models 
(A*) – while playing with them I started noticing things that I had not seen before, while looking at the 
original paintings (A). Not to mention that while at school I hated the grammar, the music theory and the 
critical analysis of poetry or fine art. I thought that I could enjoy the art without being an artist… 

Turtle: The works presented by the authors of this article illustrate the goal behind the computer 
generated art. Starting with relatively simple models, one can tackle much more complex ones based 
on what one has learned. Thus we do not only learn to model but model to learn (to paraphrase my 
spiritual father, Seymour Papert)… 

Achilles: Can we look at the computer microworlds in a Logo sense as a means for exploring and 
editing ideas?   

Turtle: Not only – the abstract sciences and the art alike work with imagination. Thus all the computer 
environments providing means for exchanging and sharing ideas are enriching these fields. 

Achilles: Interesting. Some poets think that the computers are drying the imagination of children. And 
you are saying that computers help us seeing and even sharing our imagination.  

Turtle: If we paraphrase Bernard Shaw: some look at abstract paintings and ask ‘’why?’’.  Others 
generate abstract art by computer and ask ‘’why not?’’. 



Constructionism 2018, Vilnius, Lithuania 

866 

 

Achilles: Another interesting thing in the context of visual modelling is that the shortcomings in a model 
are not fatal. On the one hand, we could easily figure them out provided that we sufficiently carry out 
many experiments. On the other hand they could provide us some interesting artistic ideas. By the way, 
I remember somebody saying that the debugging is the most powerful educational idea of 20th century! 
But going back to the point of programming in the field of art, I believe that the goal is not to replace the 
artists but rather to give more people the chance of understanding what could be formalised... 

Turtle: And to enter in spheres which they otherwise would touch only as passive consumers. The 
enigma of the creativity will be left to the professional artists; they would start from a higher level, the 
one requiring an insight… It is in fact the creativity which is the common characteristics of the science 
and art. 

Achilles:  But do the computer works have the chance of being taken seriously? 

Turtle: The main reason for computer-generated art to be treated as normal is that the culture of 20th 
century broadened the spectrum of what is considered real art.  

Achilles: So, you mean that a robot could not pretend to be a man, but if it is present at a Masquerade 
ball it would be taken for a man who pretends to be a robot… 

Turtle: Yes, similarly some computer-generated works could pass for real art, especially if we don’t 
know that their author is computer. This is the well-known Elisa effect. 

Achilles: Does the opposite also hold – to look for shortcomings of art works just because we think they 
are generated by a computer? I believe that people are prejudiced in both directions.  

Turtle: The real challenge from the point of view of AI is to create a model, which not only does 
things but also knows that it does, i.e. it is aware of having its own style which could be developed. This, 
by the way, holds true for creativity in general – why do we consider an art work to be great is not trivial. 
But even if we would model art works by means of computer just to distinguish between the great art 
and the imitation, we would make a point… 

References  

[1] Carroll, L. (2018). What the tortoise said to Achilles. In Thinking about Logic (pp. 3-7). Routledge. 

[2] Hofstadter, D. R. (1980). Gödel, Escher, Bach (pp. 137-138). New York: Vintage Books.  

[3] Barcio, P. (2018, July 26).How AD Reinhardt taught us to look at art, from 
http://www.ideelart.com/module/csblog/post/269-1-ad-reinhardt.html.  

[4] Cohen H. and AARON (2018, July 26). A 40-Year Collaboration, from 
http://www.computerhistory.org/atchm/harold-cohen-and-aaron-a-40-year-collaboration/  

[5] Fleischmann G. (2018, July 26). Max Bill and his love for geometry, from 
https://www.mitpressjournals.org/doi/pdf/10.1162/07479360152383787.  

[6] Sendova, E. (2001). Modelling creative processes in abstract art and music. In G. Futschek (Ed.) 
EUROLOGO 2001 A Turtle Odyssey, Proceedings of the 8th European Logo Conference 21-25 August, 
Linz , Austria 

[7] Hofstadter, D. R. (1981). Metamagical themas. Scientific American, 244(1), 22-is16. 

[8] Clayson, J. (1988). Visual modeling with Logo. MIT press.  

[9] Sendova*, E., & Grkovska, S. (2005). Visual modeling as a motivation for studying mathematics and 
art. Educational Media International, 42(2), 173-180. 

[10] DeepArt , a novel artistic painting tool. (2018, July 26). From https://deepart.io/.  

[11] Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). CAN: Creative adversarial networks, 
generating" art" by learning about styles and deviating from style norms. arXiv preprint 
arXiv:1706.07068. 

http://www.ideelart.com/module/csblog/post/269-1-ad-reinhardt.html
http://www.computerhistory.org/atchm/harold-cohen-and-aaron-a-40-year-collaboration/
https://www.mitpressjournals.org/doi/pdf/10.1162/07479360152383787
https://deepart.io/


Constructionism 2018, Vilnius, Lithuania 

867 

 

[12] Konkursy - OEIiZK. (2018, July 26). From http://konkursy.oeiizk.edu.pl. 

[13] Minilogia competition. (2018, July 26). From http://minilogia.oeiizk.waw.pl. 

[14] Logia competition for gymnasium students. (2018, July 26). From http://logia.oeiizk.waw.pl. 

[15] Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.. 

[16] Katterfeldt, E. S., Dittert, N., & Schelhowe, H. (2015). Designing digital fabrication learning 
environments for Bildung: Implications from ten years of physical computing workshops. International 
Journal of Child-Computer Interaction, 5, 3-10. 

[17] Kastl, P., Krisch, O., & Romeike, R. (2017, November). 3D Printing as Medium for Motivation and 
Creativity in Computer Science Lessons. In International Conference on Informatics in Schools: 
Situation, Evolution, and Perspectives (pp. 27-36). Springer, Cham. 

[18] Beetle Blocks - Visual code for 3D design. (2018, July 26). From http://beetleblocks.com/. 

  

https://konkursy.oeiizk.edu.pl/
http://konkursy.oeiizk.edu.pl/
http://beetleblocks.com/


Constructionism 2018, Vilnius, Lithuania 

868 

 

WG4: The Constructive Strategies in Teaching 
Humanities with Films81 

Jūratė Baranova, jurabara@gmail.com  
Vilnius University Institute of Educational Sciences, Lithuania 

Lilija Duoblienė, lilija.duobliene@gmail.com 
Vilnius University Institute of Educational Sciences, Lithuania 

Luc Anckaert, luc.anckaert@kuleuven.be  
KULeuven and Vives, Department of Paramedical Sciences and Biotechnology,, Belgium 

Wilfried Baumann, baumann@ocg.at  
Austrian Computer Society, Wien, Austria 

Abstract 
Our contribution investigates the question whether is it possible to apply constructionist methods of 
education in teaching humanities with fictional films. From a more sceptical viewpoint one could argue, 
that this is not possible for several reasons. The article starts the discussion, suggests some arguments 
for justification of positive answer and reveals several different possible experiences of including 
constructionism in teaching humanities with fictional films. The theoretical basis for these approaches 
are the pragmatic pedagogy of John Dewey, the Deleuzean theory of cinema and Paul Ricouer’s theory 
of personal identity. The article deals with the several different possible experiences of including 
constructive strategies teaching humanities with films. 

Keywords 
Constructionism; humanities; teaching films; Deleuze; film theory; personal identity 

1. Introduction: The Challenge of the Sceptic 

Let’s start to analyse the problem from the sceptical challenge. One can say that teaching social issues 
with fictional movies is not in line with constructionism for several reasons. First of all, the sceptic says: 
An educational process implies there is a consensus on what has to be taught and especially in this 
case what are the commonly agreed on moral values. While this seems straightforward for many 
questions this will surely be controversial for others. Who decides those cases? The sceptic does not 
trust in teacher’s or professor’s moral sense. Secondly, the film industry is just another industry, trying 
to make money and under the control of people that follow their own personal interests and not the 
interest of society as a whole. For any educational process we should ask if it is beneficial for society 
as a whole. There is a thin line between education (which should benefit society as a whole) and 
manipulation (which usually only benefits the manipulator). 

Thirdly, Constructionist learning is when learners construct mental models to understand the world 
around them and learning can happen most effectively when people are active in making tangible 
objects in the real world. But there is hardly anything more passive, according to the sceptic, than 
watching a fictional movie. It tries to involve us emotionally, to incite feelings like anger, guilt, pity, pride, 
love, fear, empathy, curiosity, etc. The fictional movies merely give the audience the feeling to be 
involved at best, which is not in the sense of the active involvement required by constructionism.   

Fourthly, the sceptic supposes the best what one can expect from the fictional movie is some sort of the 
information. Information that is presented visually is often easier to understand and more convincing 
than textual information. The effect of visually acquired information is in some cases longer lasting than 
other information because visual information can sometimes be recalled easier than other information. 

                                                
81 The half of the article is based on the investigation included into the project “Philosophical Sources and Problems of Multimodal 
Education” financed by the Research Council of Lithuania (No.S- MIP-17-37) 



Constructionism 2018, Vilnius, Lithuania 

869 

 

Written text, like a novel, can just as well try to evoke powerful images but with a movie a much larger 
group of people can be addressed. Many people lack the reading competence, the imagination or the 
patience to read a novel. In a movie it is easily possible to add subtle, implicit, additional information 
that is registered and processed subconsciously at least partly. This somewhat subliminal content 
passes the critical barrier every person is equipped with, much more easily because it is difficult to 
scrutinize information whose acquisition someone is not aware of. This additions could be specific visual 
clues, for example like subtle properties of the clothes the hero or the villain is wearing, it could be the 
sound track or it could be generic visual effects like a fish eye view, a tint, a soft focus or a blurred view.  
As a consequence from above, some people cannot question what is presented to them visually they 
believe everything they see in a film is real. And this visual access to the information has nothing to do 
with the student-centred, discovery learning.  

Firstly, despite of these doubts the sceptic supposes that some movies, albeit usually not the ones 
dealing with social issues, have large followings (Start Trek, Rocky Horror Picture Show) that attend fan 
screenings where members from the audience dress up in costumes and re-enact scenes from the 
movie. Although this is an act of imitation rather than a learning process, it hints that active involvement 
is possible and even desired by parts of the audience. How could such an active involvement look like? 
There could be physical symbols for representing characters, important objects or locations from the 
movie, satisfying the haptic element of Constructionism. Participants could discuss and re-enact 
alternative endings, additional scenes, sequels, turns of the stories that they didn't like, ethical 
implications etc. There could be a prepared list of tasks to perform or questions the group has to work 
on. Members of the group could change the story add new characters or change their role. The results 
could be added to a database and the group could be able to compare their results to results from other 
groups. 

Also, participants could be encouraged to create a work of art inspired by the movie they watched. This 
could be a drawing, a painting, a poem… This work of art can but not necessarily has to reference any 
elements from the movie. This work of art could express different feelings that the viewer experienced. 
But this work could also contradict, challenge or ridicule the movie. 

2. Theoretical Basis: Addressing the Scepticism  

The response to the challenge from the followers of using fictional movies in constructionist learning 
would be following. First of all: to the challenge that educational process implies there is a consensus 
on what has to be taught and especially in this case what are the commonly agreed on moral values we 
reply: Distrust for the teachers ability to discern by herself/himself what the moral values are is the 
feature of totalitarian education, where all the rich variety of ethical life is reduced to several simplified 
concepts. We consider that the educator’s diploma suppose the required ability in the incommensurable 
alternatives of real life take the courage for the moral decisions, also in addition to it we are following 
Immanuel Kant’s insight that rational agent is able to understand the essence of categorical imperative 
for the reason of his rationality (even in the case she/he is Moon dweller). 

Secondly, we do agree with the sceptic that film industry is something different from the process of 
education. It has its own pitfalls, which were reflected by the film philosopher Gilles Deleuze, when he 
wrote: “Cinema is dying, then, from its quantitative mediocrity. But there is a still more important reason: 
the mass-art, the treatment of masses, which should not have been separable from the accession of 
the masses to the status of true subject, has degenerated into state propaganda and manipulation, into 
a kind of fascism which brought together Hitler and Hollywood, Hollywood and Hitler” (Deleuze 1989: 
159). But on the other side cinema is not the only one of the spheres of culture with the sin of 
collaboration with fascism. Yes, Leni Riefenstahl, the talented film director can be blamed for her 
sympathy with National Socialism But the fact that such famous writers as Ezra Pound or T.S.Elliot or 
Louis-Ferdinand Celine also expressed antisemitic views does not stop from using literature in the 
process of education. The same case is with the fictional films or the other branches of art. The kitsch 
in the painting or unsuccessful piece of the music do not exclude the power of talented works. The fact 
that some sort of film production is mediocratic, manipulative or express doubtful values does make the 
films as the real pieces of art less valuable for the purposes of education. How to find the distinction? 
The suggestion of Deleuze would be very simple: just concentrate an attention to the good films. In his 



Constructionism 2018, Vilnius, Lithuania 

870 

 

philosophy of cinema he had found and discussed on about four hundred ‘good movies’. Of course, in 
this case the educator should have some sort not only moral rationality, but also the developed aesthetic 
taste to discern between mediocratic and good movies. In difference from the sceptic we treat fictional 
movies first of all as the works of art. So we see deep need for using arts in the teacher’s education. 

Thirdly, we oppose the sceptics’ opinion, that the films influence only the emotions of their spectators. 
It would be very limited aesthetic theory. As we treat them as the pieces of art, we consider their 
influence in regards to Kant understands of the nature of aesthetic taste, it means as the disinterested 
game of imagination and intellectual abilities. Fourthly, so in contrast to the sceptic’s view, we do not 
make emphasis on the process of the gaining information when using fictions films in humanitarian 
education, but consider them as the challenge for creative mental learning and provoking critical abilities 
of the students. We are following Deleuze’s insight, that watching the good movies first of all is 
encounter, which inspires a thought. But not the thought stemming from the sources of everyday 
experience, but the special type of the thought, in Del;euze words “the identity of thought with choice as 
determination of the indeterminable” (Deleuze 1989: 171). The spectator of serious movies faces the 
problem: how to withstand something which is unbearable and unthinkable in reality. So firstly, we do 
agree that it is possible and useful to use methods of creating the different endings of films stories, the 
same as it would be possible to play with the written texts. It can create much fun and amusement for 
the students as well as for the educator.  But the question remains about the value and purpose of such 
recreated endings. Do they have the value in itself as the source for the entertainment? We do not trust 
the young people to take the life seriously and construct by the use of their imagination and mental skill 
their own reading of serious cinema as a valuable piece of art?    Modern cinema is only indirect 
representation of reality. But in evoking the special kind of thinking, it has the power to restore our belief 
in the world, says Deleuze (see.Deleuze 1989: 166). 

3. Methodology 

The research is provided using and combining theoretical analysis and three case studies. The thought 
experiment is used in justifying the possibility of applying the constructivist methods in teaching 
humanities with films. The analytical review of critical literature is used to clarify the theoretical premises 
of research. The qualitative experiment is used investigating the possible involvement of students. The 
phenomenological method is used reflecting the analysis of the data. The comparative method is used 
to investigate the distinction between associational and differentiational type of thinking. The 

hermeneutical method is used link the Biblical texts with possible interpretations of the film. 

4. Teaching with films: associated and differentiated access to 
thought’s construction 

Looking on the experience of teaching with films in different countries, we can find more than few strong 
traditions. We would like to analyze at least two of them. One, which is oriented toward teaching social 
problems, is elaborated by William B. Russell in his book Teaching social issues with films (2009). The 
other one, which is elaborated by Jasson Walin in A Deleuzean approach to curriculum. Essay on a 
pedagogical life (2010) and Jan Jagodzinski Visual Art and Education in an Era of Designer Capitalism 
(2010), also their publications in the book Deleuze and Guattari, Politics and Education. For a People-
yet-to-Come (2014), suggests new way of teaching with films for critical and in the same time creative 
purposes. Both traditions are quite new, both are oriented toward teaching and learning to think in a 
special constructional way and the second one, following Deleuze, operates not with association, but 
with differentiation.  

The two schools mentioned above demonstrate that different approaches to apply films for teaching and 
learning can follow distinctively different methods. They also show what understanding of the world any 
method constructs and what results we can expect. The first tradition of teaching with films, represented 
by Russell teaches to understand, to recognize and to use associations, whereas the second one, 
represented by Wallin and Jagodzinski, teaches to criticize, to experiment, to invent and to create. 
Construction of concepts, thoughts and meanings - in other words - ways of thinking are very important 



Constructionism 2018, Vilnius, Lithuania 

871 

 

for both of them. Learning by construction of knowledge forms the basis of constructivism (Phillips, 
1995, von Glaserfeld, 1995, Piaget, 1955, Vygotsky, 1997), and constructionism (Papert, 1980; Berger, 
Luckmann, 1967). Both traditions mentioned above are sometimes refered to with either of those terms 
by scholars, depending on approach and arguments. We suggest the way which allows going beyond 
constructionism.  

Some of scholars, investigating constructionism and constructivism, and separating cognitive 
constructivism from the metaphysical constructivism think, that “metaphysical issues are irrelevant to 
the pedagogical enterprise except when explicit philosophical issues arise”. (Grandy, 1998, 415). This 
is the state which is applied by Grandy to science teaching. We are thinking about social and humanities 
having in mind studies on pedagogical or teacher’s training courses, teaching as well as learning at 
school. We think that metaphysics plays an important role for pedagogy and when teaching critical 
thinking and agree with the idea of Rosi Braidotti about the purpose of humanities, expressed with these 
words: “We know by now that the field is richly endowed with an archive of multiple possibilities which 
equip it with the methodological and theoretical resources to set up original and necessary debates with 
the sciences and technologies and to meet other grand challenges of today” (Braidotti, 2013, 15). So in 
which sense humanities and teaching to think constructively is important during the classes for film 
analysis and why it is beyond constructionism? 

In the books Teaching social issues with films Russell suggests methods, schemes, templates of survey, 
describing and exemplifying the tools very precisely. His main focus is on teaching social problems, 
such as poverty, drugs, asocial/risk families, bullying, addiction, depression, aids marginalization of 
cultures, care about animals and others sensitive topics (30 social issues). These problems are 
suggested by Russell to analyze because of related to American social life, culture and pedagogy, but 
not only; it is common for many countries. The theoretician formulates concrete questions to work with 
film material: questions for gathering information, analysis, interpretation and creation. Students can 
recreate the end of film or even synopsis, to present their fabula (how they understand film with their 
personal narration). They are inspired to discuss hot problems, to evaluate the actions of heroes and 
position of film director. The teachers are instructed with the list of films, proper according to student’s 
age and must to avoid the scenes of violence and sex.  

What does Russell use for theoretical standpoint and methodology? It is mostly Driscoll and Engle 
teaching of critical thinking, decision making and reflective thinking (Russell, 2009). That is also close 
to the Deweyan tradition of problem solving, trying to find answer for the question one has. Dewey it 
calls interest. Interest is the main vehicle. So films give great possibility to compare what is already in 
students experience and to think following moving image. Dewey in Democracy and Education says: 
“Any activity with an aim implies a distinction between an earlier incomplete phase and later completing 
phase; it implies also intermediate steps. To have an interest is to take things as entering into such a 
continuously developing situation, instead of taking them in isolation”. (Dewey, 1997, 137) and adds 
quite pragmatic note, that thinking “is the intentional endeavour to discover specific connections 
between something which we do and the consequences which result, so that the two become 
continuous” (ibid, 145). Theory of teaching with films, based on this standpoint, suggests construction 
of world view and especially understanding of social field through critical and reflective thinking and 
decision making. It deals with connection of various elements and involvement of new elements, which 
appears in the process of learning, also reconstruction of presented ideas based on students own 
understanding, values and experience. Russell states, that such tool for film analysis “increase students 
interest in the material being studied, thus allowing it to become more meaningful and relevant to the 
student. Furthermore, authentic classroom activities help teachers achieve instructional goals such as 
retention, understanding, reasoning, and critical thinking”. (Russell, 2009, 2).  

Russell presents a list of films, mostly well-known and popular (Schindler’s list, 1993, Trainspotting, 
1996, The Terminal, 2004, Scarface, 1983, American Girl, 2002, The Virgin Suicides, 1999), which are 
awarded in international films’ festivals. They are very good and undoubtedly fit for analysis of social 
issues, giving a lot of material for the interpretations. On the other hand, some films, when teaching to 
perceive situations associatively and to make decisions in accordance, give cliché instead of creativity. 



Constructionism 2018, Vilnius, Lithuania 

872 

 

Wallin and Jagodzinski suggest bit different kind of films, probably not always good for teaching 
teenagers, much more fitting for curriculum studies at the university level. Anyway, they expect to bring 
to the schools the new way of thinking. Wallin suggests film of Jim Jarmush Ghost Dog: the way of 
Samurai (1999), also Quentino Tarantino Kill Bill (2003) and Todd Haynes I’m not there (2007). He 
demonstrates how to work with the problem of time and atemporal person, how to link different 
heterogeneous lines of actions, how newly to treat the absent of arguments for the agreement, and the 
problem of multiply identity. In that way he expects to protect students’ thinking from cliché, stereotypes, 
and to escape technics of repression during pedagogical activities. Teaching with films according to him 
is step forward from banking education, criticized by Paul Freire. Wallin explores Deleuzean and 
Guattarian concepts and cinema theory about time-image, which interrupt into movement-image and in 
that way brakes dialectical understanding of film actions, instead - open space for imagination and 
unexpected combinations of elements which fulfill the cracks, gaps, ruptures in films, which appear by 
specific montage. Montage of such films is differing from classical montage, because is oriented toward 
presentation of intervals rather than connections of shots.(Milerius, 2013). It can be called as 
montrage82. Here is a lot of space for linkage of different heterogenous elements and planes, because 
the main vehicle in film teaching is not the interest, but desire and affect. How they differ? If the interest 
is oriented toward concrete results, desire much more works for involvement into the process of creation 
through the affect (Deleuze, 1995). That means active participation in creational process, which is not 
personal, it means being a part of assemblage. So the construction is not personal and even not social, 
much more mechanical , depended on combination of organic and artificial, real and imaginary, social 
and natural. It is construction not of forms, but of forces. It is not about identity and individual, but about 
individuation and becoming. As Deleuze states: “Cinema always narrates what the image's movements 
and times make it narrate. If the motion’s governed by a sensory-motor scheme, if it shows a character 
reacting to a situation, then you get a story. If, on the other hand, the sensory-motor scheme breaks 
down to leave disoriented and discordant movements, then you get other patterns, becomings rather 
than stories”.(Deleuze, 1995, 59). Breaking, crossing and displacing appear as main tools as well as 
cracks and ruptures. Stemming from Jan-Luc Godard films Deleuze states: “This is not an operation of 
association, but of differentiation, as mathematicians say, or of disappearance, as physicists say: given 
one potential, another one has to be chosen, not any whatever, but in such a way that a difference of 
potential is established between the two, which will be productive of a third or of something new” 
(Deleuze, 1989, 179,180). Such a method Deleuze calls “Between”: between two visual or sound 
images, between two affectations, between sound and visual image et ctr. Wallin also uses Godard way 
of montage for the interpretation of I’m not there, and especially Godard words: “It is not where you take 
things from- it’s where you take them to” (Wallin, 2010, 194). 

Working in the same tradition Jagodzinski analyzes films such as Sergei Eisenstein’s Battleship 
Potemkin, (1925), Joaquino Fernandezo, Colino Gunno Indoctrination (2011) or Lana and Lilly 
Wachowskis The Matrix (1999), when first one demonstrates dialectical move and spectator 
involvement into action and third one – erases border between reality and hyper reality. Using these 
and other films Jagodzinski pay attention onto the message of ideology, which is perfectly demonstrated 
in the film of Eisenstein and from the other side – possibility of another construction of world view, which 
is much more complicated and much more rich, integrating what is imaginary, virtual and only possible, 
as it is in the film of Wachowskis. In both cases students are inspired to understand the construction of 
their worlds, though access is different in both films cases: to construct one’s vision according to 
ideology and concrete expectations (Battleship Potemkin) and to show how one can be constructed in 
modern, much more complicated reality, through the erasing borders between real and imaginary, 
natural and technological, human and not human (The Matrix). Jagodzinski criticizes construction of 
people consciousness, especially of students, and following Deleuze outlines new way of presenting 
image, which does not fit for narrow formation of thinking as well as marketization and selling of image 
for the masses. Moreover new way of films montage, based on differentiation and intervals, helps to 
destroy usual way of thinking, which is easy going for manipulations, dominant policy and dominant 
pedagogy.  

                                                
82 According to Nerijus Milerius (2013) it stems from the word montrer (fr. to show) 



Constructionism 2018, Vilnius, Lithuania 

873 

 

The other kind of films, which he chooses for the analysis in the classes – is of performansist Bill Viola, 
who is famous for his video installations such as The Greetings (1995), Five Angels for the Millenium 
(2001), The Raft (2004). His installations allow appearing in different realities. Viola works with different 
consistencies, especially water and absolutely different speed of movement in it. That is also related to 
different time perception, quite close to filming in style of slow mood. Jagodzinski’s examples of video 
projects and fiction films allow understanding world as infinitive; more than one usually see and hear. 
This method helps to open thinking for imperceptible and what is only possible. It is not the matter of 
how film or performances directors express their view, rather how student are involved in film as 
machine, working through affects, percepts and concepts. So the student during the humanities lessons 
participating actively and creatively creates the thought and is created by thoughts. She or he becomes 
one of the elements, integrated in the assemblage as creational machine. Not because of ideological 
construction, but because of creational event, this happens during the classes. Jagodzinski, who follows 
Deleuze, thinks that such a films allows to be much more closer to virtual world, full of surprises, new 
combinations, and in that way to expend teaching and learning possibilities. The aim of visual studies 
according to Jagodzinski is to investigate paradoxes of “lived” life. “The power and force of the image 
in an expanded sense (be it in performance, film, television installation, and so on) reside in its affect or 
intensity in parallel with its contents. This means that semantically or semiotically ordered levels of 
analysis—representation as such—are no longer adequate for the task. A turn to philosophies of the 
unconscious that address the paradox of these two levels—the semantic and the affective—as they 
work and twist with each other in different contexts becomes a necessity for VCAE’s83 advancement” 
(Jagodzinski, 2016, 104).  

The author of this sub chapter experimented with many films, using different methods, working not with 
school students, but with university students of pedagogical studies. The main result working with them 
is their huge interest in new paradigm, new way of thinking, constructing their inner and extrinsic world 
not with very concrete separate elements of clear shape and content, but with elements of absolutely 
different level, plane, from the different assemblages. They work on combining heterogeneous elements 
and consequently inventing the world in the process of becoming. They watch and interpret but also 
create practically during the course of Visual studies and education. Students already created their own 
multimodal projects, trying to find proper images for their ideas, to combine them, to add any existed or 
to create sound track. They presented wonderful examples of mixing elements of different levels or 
fields and producing very unique audio-visual constructs, for example: mixing videos from funeral of 
President Kennedy and concerts of The Beatles. In this combination the visual images, expressing 
different crowd’s emotions are absolutely mischievous. Additionally it was complicated with the sound 
track, which was created separately and was not diegetic - not coincided with visual image. The feeling 
of reality was mixed with fantasy of creator and spectator. The perception and understanding of separate 
events were blundered and in that way created enigma of the film. The other students’ film used the 
image of the legs of school children, their move under the tables, and special sound track. This 
combination provoked to think the idea of film in many directions. The question is – why educational 
programme students, who are ready to go to work in schools choose to experiment with sound and 
image in unexpected way looking for new combinations in contrary to the creating projects in traditional 
way? The same tendency is evident during the analysis of films in the classes, such as Peter Weir Dead 
poet society (1989), Eric Toledano Intouchables (2011), Hal Hartley Unbelievable truth (1989) and Wim 
Wenders Wrong move (1972), then huge attention was shown for the Wrong move, which mostly 
expresses new way of thinking; thinking of infinity, experimenting, inventing and thinking in different 
directions according to the unpredictable vectors of nomad. The result of teaching with films is not 
students’ thinking according to given new constructs of film, but thinking side by side with the invention 
of constructs, experimentation and creativity. Such a methodology of teaching thinking is not as much 
humanistic, as it is post-humanistic, oriented toward link of all fields- human and technologies, natural 
and artificial, actual and virtual, and it is beyond constructionism. Through the differentiation, cracks, 
ruptures, inbetweenness, involving also new elements, it deals with broad scale of elements in the same 
time is the part of much bigger creational and constructional process, which is more than human. 
Coming back to the question about empathy, feelings, which are expressed in the films: will we skip 

                                                
83 VCAE- Visual, cultural and art education 



Constructionism 2018, Vilnius, Lithuania 

874 

 

them? New teaching thinking does not stress emotional field. It combines perceptions, sensations and 
thoughts. All are important, though thoughts are axis for the construction beyond already legitimated 
constructionism. 

5. Constuctivism in Cinema: What Films are Suitable for 
Humanitarian Education?  

Matthew Kearney and David F. Treagust demonstrated how in teaching Physics the educational 
research on constructionism can be united with the development and use of a multimedia computer 
program. Using interactive digital video clips they presented sixteen real world demonstrations to 
Physics students in order to elicit their pre-instructional conceptions of Force and Motion and encourage 
discussion about these views. (Matthew Kearney, David F. Treagust 2001). We ask alternative question: 
can the educational research on constructionism and multimedia be useful in teaching not only Physics, 
but also and Metaphysics, having in mind not only Philosophy, but also the Humanities in the broader 
sense. Is multimedia able to elicit students pre-instructional conceptions of Human reality and 
encourage discussion even about education itself? Can it be considered as the Copernicus turn in 
Humanitarian education?  

Our preliminary hypothesis is that some cases of multimedia really are able to meet this particular 
challenge. We restrict this particular our research to fiction movies. 

The history of fiction movies reveals the origin of the term ‘constructionism’ and its practice. It originated 
in Russia at the beginning of the 20th century in the sphere of revolutionary architecture and design. It 
was also used and reflected by Russian film director Sergej Eisenstein in the process of creation of the 
revolutionary movies.  Eisenstein discovered not only the possibility of the dialectical editing, but also 
reflected how to construct the fiction movie in order to impress the public and to impose the ideas the 
creator intends to impose. Every piece of art, says Eisenstein, has an educational purpose (Eisenstein). 
This educational purpose in film is reached by the dialectical construction of the film as organic whole, 
which leads to the pathos experienced by the spectators when the film reaches its climax.  Eisenstein 
realized the artistic essence of the cinematic image as “producing a shock to thought, communicating 
vibrations to the cortex touching the nervous and cerebral system directly”‘ (Deleuze 1989: 151). In his 
book Problems of Film Director Eisenstein step by step reveals the inner laboratory of the  constructing 
his the most popular movies, which imposed the belief of the inevitability of the Socialist October 
Revolution in masses. Was this revolution in reality so inevitable? Or maybe just the result of the 
successful conspiracy of the small group of Bolsheviks and Eisenstein with his films persuaded the 
public of its historical meaning? After watching the Eisenstein’s film Battleship Potemkin Joseph 
Goebbels, the Nazi propaganda minister, reflected; “anyone who had no firm political conviction could 
become a Bolshevik after seeing the film.’ The most celebrated scene in Battleship Potemkin is the 
massacre on the Odessa Steps. The sequence is built from separate shots combined in a very dynamic, 
rhythmic way. Eisenstein edited the film to produce the greatest emotional response, so that the viewer 
would feel sympathy for the rebellious sailors of the Potemkin and hatred for their overlords. The case 
with the Eisenstein’s constructivist approach used for the aims of destructive and dangerous 
propaganda reveals the limitations and possible pitfalls of the constructivist approach. If the truth about 
the reality is unattainable and we rely as on knowledge on our own world view constructed by ourselves, 
why not to construct our own truth and by the means of personal genius not to impose on the rest of 
population? Where are the limits indicating the film director have to stop? As a matter of fact Eisenstein 
in the history of film making as usual is praised for his genius findings in technique of film constructing 
and the destructive impact of his movies to the history of his country as usual is skipped with silence 
and tolerance (see Baranova 2017). 

The opposition to Eisenstein’s constructivist theory of editing was anti-constructivist approach to film 
editing suggested by the Russian film director Andrei Tarkovsky. Tarkovsky in his book Sculpting in 
Time opposing Eisenstein conception of montage wrote: “I feel that Eisenstein prevents the audience 
from letting their feelings be influenced by their own reaction to what they see. When in October he 
juxtaposes a balalaika with Kerensky, his method has become his aim, in the way that Valery meant. 
The construction of the image becomes an end in itself, and the author proceeds to make a total 



Constructionism 2018, Vilnius, Lithuania 

875 

 

onslaught on the audience, imposing upon them his own attitude to what is happening” (Tarkovsky 
1987: 118).  Tarkovsky rejects constructivist approach trying in films to catch the glimpses of reality 
itself. The signs of reality coincide with the signs of time. Reality reveals itself through flowing time. 
“Time in cinema becomes the basis of bases, like sound in music, colour in painting”, writes Deleuze 
reflecting Tarkovsky’s idea (Deleuze 1989: 288). Montage, says Deleuze, as following Tarkovsky, can 
be only indirect representation of time. But how to reach the direct image of time? How to approach the 
reality itself? To our research the following question is also very important: has an educator moral right 
to use films in teaching process in the manner of the constructionism practiced by Eisenstein (organic 
model of cinema education, using Deleuze’s terms), or should an educator encourage the students to 
be influenced by glimpses of flowing reality  he is able to discern in hors-champ (beyond field) of the 
film (crystalline model of cinema education)? Can the films be used as ideological materials in education 
or just as the source of more profound questions about human reality? If one chooses for the answer 
the second alternative the questions still remains:  how it is possible to create the movie without 
ideological input? Do such type of a film have any educational meaning at all?  What kind of film should 
be used in humanitarian education?  

Deleuze would had answered: good films. Not depending on genre or topic. Good films, according to 
Deleuze, are those which are able to restore the link between man and the world which is recently 
broken: “Only belief in the world can reconnect man to what he sees and hears”, concludes Deleuze 
(Deleuze 1989: 166). Deleuze does not state that the films will open what reality is in itself.  He does 
not join the position of intuitive realism. And in this respect he is closer to constructionism than to realism.  
But emphasizing the need for belief in reality he becomes rather close to William James’ fideism.  This 
statement can be declared as the one of the main educational aims encouraging to include films in the 
curriculums of the humanitarian education. “Something in the world forces us to think. This something 
is an object not of recognition but of fundamental encounter”, writes Deleuze in Difference and 
Repetition (Deleuze 139). Watching films one encounters the glimpses of possibilities from the different 
specter of perspectives one is not able to experience in everyday life. We will add: the selection of films 
for humanitarian education needs to meet the requirement of hidden secret directly not expressed in 
the image. The education process should presuppose the hidden encounter. As one of the first year 
philosophy student wrote in essay about impression of watching Krzystof Kieslowski film Three Colors: 
White Trois couleurs: Blanc: “Every minute of watching film and the feeling afterwards I experienced 
strange feeling: I can define it as puzzlement, at the same time as the silent admiration, but also the 
inability to comprehend what is going on” (K.K.). The learning experiment with the film was provided in 
order to discuss the concepts of optimism and pessimism, the will to belief, the will to die and the will to 
live, stemming from William James pragmatism in the course of the philosophical ethics.  The encounter 
with the film as event leads twenty students who participated in this educational experiment to the 
different conclusions. Some of them concluded that the moving stimulus for the main character Karol 
radically change his life was just the fact of his temperamental optimism, some of them – the obsession 
with love for his lost wife, some of them – the need for revenge, one of the students refused to suggest 
his own explanation saying it would be too oversimplified. All the views were expressed during the 
seminar in the form as a conference. The educator had no purpose to present one final and generalized 
point of view pretending to the ‘truthful interpretation’. She only expressed her own point of view open 
to criticism as well.  

Kearney and Treagust in their already mentioned experiments with using digital multimedia in promoting 
a student’s conceptual development in the domain of Physics discerned four methodical steps: a. 
articulation and/or justification of the student’s own ideas;  b. reflection on the viability of other students’ 
ideas; c. critical reflection on the student’s own ideas; d. construction and/or negotiation of new ideas” 
They also concluded that this  “program provides students with an opportunity to engage in ‘science  
talk’ … and a means of developing science discourse skills (exploration, justification, negotiation, 
challenge etc.) (Kearney and Treagust 2001: 69). 

The first two steps can be noticed in the experiment with the movie White provided in the course of 
philosophical ethics. Are students able to learn from these different points of view in this open discussion 
and to modify their primary insights, as is presupposed in the pedagogy of social constructionism? Is 
there a need for this modification mainly in humanitarian education? Or the educational outcome from 



Constructionism 2018, Vilnius, Lithuania 

876 

 

this teaching experience is the encounter with the inevitability of living of pluralistic social universe? The 
educator also supposes that something in the process of pedagogical experiment should remain as the 
secret also for the educator. On the other hand analysis of the essays reveal that the students are able 
to change their opinions even during the process of the reflection in writing and keeping inner 
monologue with themselves. Student A.L. in essay starts the reflection of movie from sceptical tones. 
He had read in advance and before that from all the trilogy of Kieslowski Three colours this particular 
film White is the weakest at all. After the reflection in written form he ends with rather different 
conclusion: “It is very difficult to summarize such a subtle and in many aspects ambiguous (from a point 
of view of and moral posture) film White by Kieslowsky trying to reduce it to one or the other stimulus. 
It would be an idiotic attempt. Kieslowsky is not sorcerer who pronounces how the things should be and 
how it is necessary to behave. But the geniality of the film and certainly of Kieslowsky reveals itself 
when the situations – hypothetic or realistic open the plan for the question: what is this, which forces us 
to act and not to give up. And the complaints expressed in the beginning of essay do not seem any 
more so justified (because of the unclear end and all other things). The meaningful is the opening up 
the field for discussion” (A.L.). “It was very interesting for me to learn that it is possible to consider 
Karol’s action as the revenge or obsession with love. It did not come to my mind when I watched the 
movie”, reflected one of the students K.B., who relied on the alternative of temperamental optimism.  

So the films suitable for humanitarian education are the films which resist one straightforward 
interpretation and create the field for possible multidimensional social constructionism in learning. 
Deleuze in his philosophy of cinema discerned two kinds of constructionism in film making:  the idea of 
a vertical construction going right to the edge in both directions suggested by Eisenstein – and already 
discussed; “The whole was thus being continually made, in cinema, by internalizing the images and 
externalizing itself in the images, following a double attraction. This was the process of an always open 
totalization, which defined montage or the power of though” (Deleuze 1989: 193). On the other side 
Deleuze mentions the constructionism of French director Jean Luc Godard who’s aim was not to 
construct the whole, but who supposed that 'the whole is the outside'. The point of constructionism of 
Godard is quite different. In the first place, says Deleuze, the question is no longer that of the association 
or attraction of images. “What counts is on the contrary the interstice between images, between two 
images: a spacing which means that each image is plucked from the void and falls back into it” (Deleuze 
1989: 193) From the point of view, of virtual constructionism, which tries to reach the whole Godard 
experiments with the disconnected images which bring together Golda Meir and Hitler in lci et ailleurs, 
Deleuze acknowledges, would be intolerable.  We are also not ready to suggest the reading of Godard 
films for bachelor students. But for the master students who took the course of Deleuze studies seminar 
the experience of reading of Gardard’s films can be productive. Godards experiments with the Hitler 
created the scandal. Deleuze is on the side of Godard: “But this is perhaps proof that we are not yet 
ready for a true 'reading' of the visual image. For, in Godard's method, it is not a question of association. 
Given one image, another image has to be chosen which will induce an interstice between the two. This 
is not an operation of association, but of differentiation…” (Deleuze 1989: 193).  

6. Film as an imagination for creating identity 

Already Aristotle pointed out the mimetic character of the arts that lead to a catharsis. The catharsis - 
hardly described by Aristotle in Poetics - can be understood as the therapeutic concept and insight into 
one’s own emotional relationship to reality and the harmonization of emotion and reflection. The 
catharsis is the result of the mimetic-narrative structure of the identity. In narrative mimetics, the idem 
is challenged to follow the long path of emotional identifications that can lead to a cathartic insight into 
the narrative constructed identity as Mimèsis II. The film Va, vis et deviens (Radu Mihaileanu) illustrates 
this process. Within educational processes he forms an invitation and challenge to purify the own 
mimetic processes by placing them in a broader metaphorical context. The film is the imaginative-
metaphorical enactment of the identification process 

The impressive film Va, vis et deviens paints the intriguing fates of an Ethiopian child who gets lost in 
the misery of an African refugee camp in Sudan. As an adopted orphan, Solomon grew up in Israel. He 
studied medicine in Paris as an adult and married the girl with whom he had been in love for a long time 



Constructionism 2018, Vilnius, Lithuania 

877 

 

in Jerusalem. Eventually the main character returns to Sudan as a Médicin sans frontières and finds his 
old and shriveled mother in an emotional scene. 

At the heart of the movie there is a kind of Talmudic discussion between the white Jewish boy Michael 
and the black adopted son Solomon. The question of Adam’s skin color is at the heart of the discussion. 
Like in a miniature, the central challenge is meticulously worked out.  

The imposed question is: “What is color of Adam’s skin?” Solomon had asked the rabbi to participate in 
the discussion in order to prove his Jewish identity. The white Michael is the first to be given the floor 
and makes the following statement, skillfully supported by references to the Torah:  

Michael: 

Adam was created after the image of God. And the beautifully chosen color was white. We 
were all this, in the beginning.  

After the flood Noah and his sons left the ark. Noah cursed the descent of his son Cham, whose 
grandson Canaan said “Cursed is Canaan: slave to his brothers he will be” (Genesis 9:25).  

Kush, the eldest son of Cham, is the heir of another curse. Certain descendants of Cham are 
said to have black skin.  

This is how it happened: Kush became black and from him were born the Kushim, the black 
people of Africa. The descendants of Cham have become slaves and blacks. 

Michael’s argumentation is built up in the three steps of the classical mythical narrative of the golden 
origin, the decay and the restauration. First of all it is said that man was originally created after the 
image of God. The objective reference is linked to a subjective interpretation from which the conclusion 
is drawn that everyone originally belonged to the white race. The white skin is linked to the created 
original. Then social inequality is justified by the flood and by the curse of one human being by another. 
The curse as a sanction leads to the slave status. Finally, the racial differences are also explained by a 
curse. Social inequality is linked to racial inequality.  

Salomon initially wants to repeat the starting point of his opponent, as it fits within the genre of the 
proposed discussion: 

Salomon:  

Are Adam and God of the same color, white? 

... Michael has said. ...No. 

After the hesitation and interruption of the discourse, Salomon looks at the Qes Amhra, the Jewish black 
religious leader who had fled Sudan with him. Solomon had come to know the man as the figure who 
protested against the second-class position of the Falasha Jews by invoking their recognized Jewish 
identity as legitimate descendants of the Biblical king Salomon and the African queen Sheba. The Qes 
helped him write letters to his mother in Sudan, thus forming the symbolic link between Solomon and 
his lost homeland. When Salomon wants to follow on from Michael’s argumentation, the Qes nods no. 
Solomon remembers his words immediately preceding the discussion. When writing to his mother, his 
letter was rejected as a mere repetition of pre-existing models and formulas: 

No, this is not good. Interpret, Schlomo, do not repeat like a parrot. Interpret. Insert Schlomo into the 
text. Let us take this up again. 

Salomon interrupts his discourse, which threatened to result in a mere repetition of the existing 
arguments. The duplicate can never have the qualities of the original. Pure repetition of actions and 
speech leads to decay. It lacks the imagination of Mimèsis II that links the present with the past and the 
future. Ricoeur understands human identity in a non-substantialist way. Human identity is a fragile 
phenomenon. It rests on a twofold dialectic. The identity can be understood as sameness (idem) and 
selfhood (ipse). Within this dialectic, identity is formed by a threefold mimèsis.  Sameness expresses 
the permanence in time, the structure of my identity, or what I’m. Selfhood expresses the changing 
identity of who I am. Within this dialectic, there is an apodictic element. As sameness, identity expresses 
the permanence in life, the constant element of identity. But this apodictic identity is not adequate. The 



Constructionism 2018, Vilnius, Lithuania 

878 

 

discovery of the meaning of one’s own lidentity is a life-long adventure. Moments of joy and fear, life 
and death, self-loss, psychological traumas, erotic experiences and hospitality form the concrete 
content of the person I am ultimately. This construction of identity is happening in a narrative way. 
Understanding oneself takes place in the exploration of the meanings of the ever-changing ipse. By 
means of narrative identifications, the subject constructs the diachronic self-constancy of the 
experienced identity within the continuity of the identity (ipse). Therefore, identity is not a fact that can 
be unfolded, but the long detour in which the identity gets a concrete meaning throughout the story of 
life. The alterity is multifaceted here. This narrative aspect has a triple mimetic structure. The second, 
central mimesis (Mimèsis II) interweaves the activity of storytelling with acting in its temporal character. 
It is the textual configuration (emplotment) that links with the past (Mimèsis I) as prefiguration and with 
the future (Mimèsis III) as refiguration. This has an imaginative structure. In the narrative mimetic 
process, the identity construction takes place. The relationship to the triple absence of time is 
constitutive. A metaphorical texture is woven through the mimèsis, in which the idem acquires meaning 
as an ipse.  

Salomon makes a radically different choice and takes a new start. The act of speaking is congruent with 
an alternative vision of creation. The contradiction between the two visions of creation summarizes the 
stake of the film in a very concentrated way. Unlike Michael, Solomon understands creation as a 
continuous beginning and a call to responsibility. Alluding to a Midrash passage on Psalm 90:3 where 
the word and the Torah are marked as preceding the creation of the world (“In the beginning, two 
thousand years before the heaven and the earth, seven things were created, the Thora, written with 
black fire and white fire”) and alluding to the opening of the Gospel of John (“In the beginning was the 
word”), Solomon takes a new beginning.  

At first, there was the language, the word. God created the earth and life by giving breath to the word. 
God has believed in Man. In everyone.  

Creation begins anew in every human being and God believes in every human being. In every human 
being there is a new beginning. In this vision, creation is not a one-off event in which every new person 
is a repetition of the original, broken condition of existence that is marked by evil. As Franz Rosenzweig 
elaborates in detail, creation is the continual re-creation of new forms of life, the abundance of being 
born over and over again. Nothing precedes this creation. This means that no determining or limiting 
factor - or determining logic - precedes creation that would restrict free creativity. Every creation is a 
radically new beginning. In this context philosophers and theologians speak of a creation from nothing 
or a creatio ex nihilo. We find this thought very richly expressed in several texts by Jean-Luc Nancy. In 
his book Being Singular Plural, this French philosopher reflects on human existence as absolutely 
irreducible and singular, but also as fundamentally committed to our fellow human beings: 

Right away, then, there is the repetition of the touches of meaning, which meaning demands. This 
incommensurable, absolutely heterogeneous repetition opens up an irreducible strangeness of each 
one of these touches to the other. The other origin is incomparable or inassimilable, not because it is 
simply ”other”, but because it is an origin and touch of meaning. Or rather, the alterity of the other is its 
originary contiguity with the ”proper” origin. You are absolutely strange because the world begins its 
turn with you [le monde commence à son tour à toi]. 

The repetition referred to here is not the faithful copy, which is an imitation of the previous one. However, 
there is a repetition of constantly recurring sources of meaning that are mutually irreducible. Every 
human being has its own individuality because the world in every human being miraculously begins 
anew. Through this new beginning every human being is connected with his own origin. Nothing 
precedes this origin. In other words, being human is not conditioned by the past, the body, the colour of 
the skin, the gender, etc. Nancy explicitly links this thought with the creatio ex nihilo: “Not only is the 
nihil nothing prior but there is also no longer a ‘nothing’ that pre-exists creation; it is the act of appearing 
[surgissement], it is the very origin – insofar as this is understood only as what is designated by the verb 
to originate.” 

The statement about the ever renewed creation is of course not a cosmological statement. It concerns 
the human condition and the ethical responsibility of the human being. Creation takes place by 



Constructionism 2018, Vilnius, Lithuania 

879 

 

interpreting and giving meaning to life and existence over and over again. In order to bring this about 
from his own life and name, Solomon invokes the text: 

He gave us the word so that we could all give it a personal breath, miraculous, different, deep, human. 
By interpreting the word. As for Adam, his name is derived from ‘Adamah’, which means ‘earth’ in 
Hebrew. God created Adam with the earth of clay and with water. He breathed his breath and breathed 
into the miraculous, as he did with the word. That’s how Adam was born. Adam has the color of clay: 
red. Like the Indians. Red in Hebrew is: ‘Adom’. You see, Adam is neither white nor black; he is red. 

As is well known, Hebrew is written in the square-letters, which consists only of consonants. The first 
word of the Torah looks non-vocalized as follows: ב ר א ש י ת. In the first centuries of our era, in order to 

avoid any misunderstandings when reading, the Masorets added the vowels in the form of small dots 
and signs. In his Hebrew grammar, Spinoza reiterates the Jewish-mystical intuition that vowels are the 
soul of the letters. Without vowels, the consonants are a body without a soul. The consonants become 
readable when they are animated by the vowels. This inspiration is found in reading. Solomon speaks 
of man from the same image. Being created is a spiritual event. As a creature, the individual human 
being is not determined by the burden of the Flood with the racial differentiation, but every human being 
is a double being: well-founded and rooted in the earth, but also spiritually brought to life. Human 
existence arises in the creative act: every time physicality is animated and breathed life into in all its 
diversity. In other words, each person is his or her own origin, a creatio ex nihilo. This implies that the 
colour of the skin does not determine identity. And if there were any doubt about that: if the first person 
already has a colour - which is actually an irrelevant question - then it is red. 

After the liberating perspective from creation, Solomon interprets the discussion from his own breath, 
his own personal process. Eroticism and an offspring have an important role here. 

But, does he feel good, alone, red, in this new world?  

Then God thought of Eve. But Adam did not understand what God wanted, what he asked him to do. 
What was he supposed to be and do down here?  

Salomon meets Sarah, a white Jewish woman with curly, red hair. She is the daughter of a politically 
and religiously highly conservative father. By choosing Solomon, she, like the wife of Biblical Abraham, 
has to break all ties with her family. As a white Jewish ‘princess’ - which is the translation ‘Sarah’ - she 
wants to create a new generation by marrying the dark king Solomon. For Salomon, however, the 
intimacy of the sexual relationship means the physical revealing of his identity as a non-Jew. After all, 
he had not been circumcised. What is his responsibility here?  

The question of identity is elaborated narratively in the film in the face of tests:  

And what about all these tests? 

The tests are represented by moments in which the main character looks at the moon with a dreamy 
gaze. The moon depicts the mother who stayed behind in Sudan: the absent origin of his identity. 
Salomon looks at the moon five times. Five times this points to an important turning point. The arrival in 
Israel sealed his fate as a refugee in order to grow up in a foreign country far away from his mother. He 
speaks to the moon and he reverses the stone that his mother had given him as a fetish. Then there is 
a conflict in the school where he is forced to eat and where he claims not to be guilty. The school 
symbolizes the structural initiation into culture. In the conversation with his mother, he tells that he wants 
to keep his own identity and that he refuses to adapt to the new culture. He takes off his shoes in a very 
symbolic way and walks barefoot to the South. A third time Salomon looks at the moon after he has 
read the opening sentence about creation in the Hebrew Bible. After the acquaintance with the Torah 
he asks himself the question what it means to be Jewish: to become white, to speak Yiddish or as the 
well insane Mrs. Silbermann who survived the camps, constantly saying ‘Oï, Oï Mein Gott’. After asking 
this question, he was excluded from school and walked barefoot to the South again. A fourth time he 
looks at the moon when his ultimate proof of being a Jew - winning the Talmud discussion - is not 
convincing. Previously he had become a bar mitza, fell in love with Sarah and was sent away by her 
father. After the Talmud discussion, he went to his adoptive parents and told them not to be their son. 
He leaves for a Kibbutz and tells Sarah that he has a new girlfriend, Mandela. However, the resounding 
name of the African liberation hero is assigned to a bovine animal intended for slaughter. A fifth time 



Constructionism 2018, Vilnius, Lithuania 

880 

 

after seeing images of the famine in Africa, Solomon wants to return to Sudan. De Qes prevents him 
from doing so and tells his own life secret: he has lost wife and children and says he is condemned to 
live. This condemnation consists of an ethical responsibility: to help those who have survived. Ethical 
responsibility is not a free choice of human beings, it is a condemnation. After this, the Qes shows the 
only object he has left from his ‘homeland’: an old, damaged Thora scroll. In the Talmud we read a 
strange story about the Torah (Shabbat, 88a): 

Rav Abdimi bar Chama bar Chassa said: this teaches us that the Holy-Blessed-Be-He has bent the 
mountain over them in the form of an inverted tub and he said to them: If you accept the Torah, the 
better; if not, it will be your tomb. 

We remember that after the exodus from Egypt, the people were wandering through the desert for forty 
years. At one point Moses received the Law from God on Mount Sinai. Rav Abdimi bar Chama bar 
Chassa is said to have said that God, by the gift of the Law to Moses on Mount Sinai, had placed the 
mountain like a tub above the people. When the people “listen and do” the Torah, life comes into being. 
Otherwise the mountain remains a private tomb. Doing the Torah is an ethical task the human being 
cannot escape. But the guidelines of the Torah (Rosenzweig translates the word as Weisung) are also 
the only thing man is given: no country, no people, no religion, nothing. As in the story of the Second 
Testament about Lazarus and Abraham the Qes says to Solomon: you have the Torah, that’s enough. 
There is no more as an orientation in life, you have to do it with that: va-t-en!  

The symbol of the moon is in tension with the Jewish identity: land, education, race, language, the 
Shoah, a community ideal (Kibbutz), the Torah... The tension can be summed up in the topic of the lost 
homeland. What is Salomon’s homeland? The Greek éthos’ means dwelling place. The material, 
political, cultural, domestic identity of a concrete existence connected in an established people or the 
ethical homeland of the Torah? During the struggle with his secret, Solomon did not find a house or 
‘home’ in Israel, but became ill from nostalgia for his country of origin. He wants to go south barefoot. 

In the film, the moon symbolizes homesickness for the homeland: a concrete, historical reality or an 
ethical homeland? In order to develop this, we start from a description of dwelling, inspired by Hannah 
Arendt and Emmanuel Levinas. Identity is never an abstract given, but arises in the course of a lifetime. 
One is not a human being, but becomes a human being. The course of life is always linked to a place 
of dwelling, a home. A small phenomenology of dwelling shows that the identity is supported by a 
threefold attachment. This connectedness is always supported by a separation or an openness to the 
other. The time of living is characterized by three events: natality, eroticism and fertility. These events 
form the connection between the past, the present and the future – the emplotment of Mimèsis II. 

Natality or being born shows the passivity of human identity: no one is the origin of his own life. Natality 
points to some irreducible dimensions of human existence. Man is the result of a relational event of 
which he is not the source. This means that man is fundamentally intersubjective and is carried by a 
past that is unobtainable. The physicality of the birth refers to a transcendental origin. In addition, man 
has been thrown into the world and physically by birth. The fact of the In-der-Welt-Sein - which, unlike 
Heidegger, is understood from the perspective of natality and not death - shows the human openness 
to life in the world. The closed intimacy of natality is through physicality the possibility of life in the world. 

In eroticism man gives himself over to a rhythm of time that is not controllable. Life is physically shared 
with the other person. This interaction is not the sum of a mutual initiative, but the origin of a new 
experience. As in creation, a new sentence springs from the eroticism. This takes place at the 
crossroads of identity and connection. In eroticism one finds oneself through the connection with the 
other. This event creates a new meaning and future. In eroticism there is an ambiguous interplay of 
simultaneity and dissimilarity, presence and ‘coming’. The eroticism as a concrete time of ‘living 
together’ indicates that man is not an original and pure identity (a monadic without windows or doors), 
but grows in relationships with very concrete others. 

Through parenthood, mankind experiences a new future in a child. The term future can be understood 
in two ways. The French ‘futur’ refers to the future as the realization of a project or a plan that man sets 
out for himself. In this vision, every future moment is the extension of the present or the same. It is the 
time in which man makes ‘projects’ that are realized through the development of strategies and 
manipulations: future reality is calculated and manipulated. The French ‘avenir’, on the other hand, 



Constructionism 2018, Vilnius, Lithuania 

881 

 

points to this future that literally ‘arrives’ at man. It is the unexpected and the unplanned that can take 
place in a lifetime. This future rises above all project thinking. It is the time of the difference in which the 
other or the strange ‘arrives’ at man. Parenthood is the flesh-covered experience of the future: in the 
child a time is opened that is irreducible for any systematic thinking. 

The threefold structure of natality, eroticism and parenthood shows the dwelling place of mankind. Man 
is carried by a triple absence. The origin cannot be repeated (Mimèsis I: the stakes of the discussion 
about the meaning of creation); the erotic connection puts identity at risk and forms her (Mimèsis II: 
Solomon’s refusal to reveal the secret of his non-Jew in the eyes of Sarah); fertility is a concrete and 
physical experience of a different future (Mimèsis III: the birth of the son coincides with the retrieval of 
the mother in Sudan).  

The process of constructing identity can respond to this absence in a double way. Either the absent can 
be recovered: the natality or the origin is then understood as the blood identity (the one-time creation of 
the white man as an image of God); the erotic becomes profit and selfishness (the temptation scene 
through the whore and the beating through her pimps); parenthood becomes the insurance of the future 
(the vision of Sarah’s father and Salomon’s adoptive father). The double figure of Solomon, however, is 
the rebuttal of this: his origin is always a lost origin and he goes in search of lost time. The flawless 
erotic relationship with Sarah is impossible because Solomon conceals the secret of his non-Jewish 
identity. Parenting is not the establishment of his Jewish identity, but the crisis of homesickness.  

The identity is characterized by the tension between idem and ipse. Is the identity anchored in a 
substantial and original presence? This is Michael’s thesis. When we approach the identity construction 
from the outlined characteristics of dwelling, it can be seen as a search for the ipse. The place of dwelling 
of this ipse is marked by difference, which makes an ethical identity possible. Is identity an ethical 
identity? Solomon’s tests are the question of his responsibility. What am I doing here on earth? The 
difficulties in exploring the relationship with Sarah show the problems of identity and solidarity.  

In education, constructing identity is a search between the idem and the ipse. Mimetic narrativity can 
be the royal way in this quest. The inscription of one’s own life story in a mimetic plot - for example, 
provided by a film - leads to the question what is the place of identity: bound to a solid origin or 
challenged by the fluidity of an increasingly absence. The answer to this question requires mimetic 
imagination that leads to a catharsis. 

8. Summary as Conclusion 

The authors discovered and suggested the three possible constructive strategies in the process of 
teaching with films: 1. Creation of the students their own multimodal projects, trying to find proper 
images for their ideas, 2. Watching films alongside with reflection of some philosophical concepts, 
afterwards writing essays and presenting them to the group in the discussion as the possibility to 
encounter the glimpses of reality from the different perspectives.3. Using film as a challenge to purify 
student’s own mimetic processes by placing them in a broader metaphorical context. he film in this case 
is the imaginative-metaphorical construction of the personal  identification process. The authors discuss 
the three strategies as parallel, not opposing or excluding each other. All three strategies lead to the 
constructing students world view not with very concrete separate elements of clear shape and content, 
but with elements of absolutely different level, plane, from the different assemblages and enlarge the 
capacity of their critical and creative thinking. Also these approaches develop their social capacities – 
the ability of the understanding and communication with the different other.  

References 

Arendt, Hannah (1958) The Human Condition. Chicago: The University of Chicago Press. 

Aristote (1980) La Poétique. Dupont-Roc, R. & Lallot, J. Editors. Paris: Seuil. 

Auerbach, Erich (1946) Mimesis. Dargestellte Wirklichkeit in der abendländischen Literatur. Bern: 
Francke.  



Constructionism 2018, Vilnius, Lithuania 

882 

 

Berger, P. L., Luckmann T. (1967), The Social Construction of Reality: A Treatise in the Sociology of 
Knowledge. Anchor.  

Braidotti, R. (2013). Posthuman Humanities. European Educational Research Journal, Vol. 12 (1). 
Sage.  pp.1-19. http://dx.doi.org/10.2304/eerj.2013.12.1.1 

Deleuze, Gilles (1986) Cinema 1: The Movement-Image. Trans. Hugh Tomlinson and Barbara 
Habberjam. Minneapolis: University of Minnesota Press. 

Deleuze, Gilles (1989) Cinema 2: The Time-Image. Trans. Hugh Tomlinson and Robert Galeta. 
Minneapolis: University of Minnesota Press. 

Deleuze, Gilles (1994) Difference and Repetition. Trans. Paul Patton. London and New York: 
Continuum. 

Deleuze, G.; Guattari, F. (1987). A Thousand Plateaus: Capitalism and Schizophrenia. Trans. B. 
Massumi. Minneapolis, London: University of Minnesota Press. 

Deleuze, G.; Guattari, F. (1994) What is Philosophy? Trans.H. Tomlinson and G. Burchell, New    York: 
Columbia University Press. 

Deleuze, G. (1995). Negotiations, 1972-1990. New York: Columbia University Press. Dewey, J. (1997). 
Democracy and education: an introduction to the philosophy of education. New York: The Free Press. 

Eisenstein, Sergei (2004) Problems of Film Direction. Honolulu, Hawaii: University Press of the Pacific. 

IJsseling, Samuel (1997) Mimesis. On Appearing and Being. Kapen: Kok Pharos. 

Grandy, R. E. (1998) Constructivism and Objectivity: Disentangling Metaphysics from Pedagogy in M. 
R. Matthews (ed.), Constructivism in Science Education. Dordrecht: Kluwer Academy Publishers, pp. 
113-123. 

Glasersfeld, E. von. Radical Constructivism: a way of knowing and learning. London: Falmer press, 
1995. 

Jagodzinski, J. (2010). Visual Art and Education in an Era of Designer Capitalism. Deconstructing the 
Oral Eye. New York: Palgrave Macmillan.  

Jagodzinski, J.(2014).On Cinema as Micropolitical Pedagogy: Is there an Elephant in the Classroom? 
In Deleuze and Guattari, Politics and Education. For a People-yet-to-Come. (Eds.) M. Carlin, J.Wallin. 
New York, London: Bloomsbury, pp. 1-15. 

Levinas, Emmanuel (1979) Totality and Infinity. An Essay on Exteriority. A. Lingis, Translator. Nijhoff: 
The Hague. 

Levinas, Emmanuel (1987) Time and the Other. R.A. Cohen, Translator. Duquesne: Duquesne 
University Press. 

Kearney, Matthew, Treagust David F. (2001) Constructivism as a Referent in the Design and 
Development of a Computer Program Using Interactive Digital Video to Enhance Learning in Physics, 
Australian Journal of Educational Technology, 2001, 17(1), 64-79.  

Milerius, N. (2013) Montažas ir intervalas kine in Milerius [Montage and interval in film], N., Žukauskaitė, 
A., Baranova, J; Sabolius, K.; Brašiškis, L. (2013). Kinas ir filosofija [Film and Philosophy]. Vilnius: 
Vilniaus universiteto leidykla. 

Nancy, Jean-Luc (2000) Being Singular Plural. R. D. Richardson, Translator. Stanford, California: 
Stanford University Press. 

Nussbaum, Martha (1994) The Therapy of Desire. Theory and Practice in Hellenistic Ethics. Princeton: 
Princeton University Press.  

Papert, S. (1980) Mindstorms: Children, Computers, and Powerful Idea, Harvester Press. 

Piaget, J. (1955) The Child's Construction of Reality. London: Routledge and Kegan Paul. 



Constructionism 2018, Vilnius, Lithuania 

883 

 

Phillips, D.C. (1995) The Good, the Bad, and the Ugly: The many faces of Constructivism in Education 
Researcher 24 (7), pp. 5-12. 

Ricoeur, Paul (1969) Le conflit des interpretations. Essais d’herméneutique. Paris: Seuil. 

Ricoeur, Paul (1975) La métaphore vive. Paris: Seuil. 

Ricoeur, Paul (1983-1984-1985) Temps et récit. Paris: Seuil. 

Ricoeur, Paul (1990) Soi-meme comme un autre. Paris: Seuil. 

Russell, B. W. (2009) Teaching social issues with Films. Information age Publishing Inc. 

Vygotsky L.S. Education Psychology. Boca Raton, Florida: St.Lucie Press, 1997. 

Wallin, J. J. (2010). A Deleuzean approach to curriculum. Essay on a pedagogical life. New York: 
Palgrave Macmillan. 

Wallin, J. (2014) Education needs to Get a Grip on Life. In Deleuze and Guattari, Politics and Education. 
For a People-yet-to-Come. (Eds.) M. Carlin, J.Wallin. New York, London: Bloomsbury.pp.117-141. 

  



Constructionism 2018, Vilnius, Lithuania 

884 

 

WG5: Constructionism in the Classroom: Creative 
Learning Activities on Computational Thinking 

Michael Weigend, mw@creative.informatics.de 

Holzkamp Gesamtschule Witten, University of Münster, Germany 

Zsuzsa Pluhár, pluharzs@caesar.elte.hu 
Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary 

Anita Juškevičienė, anita.juskeviciene@mii.vu.lt   
Vilnius University Institute of Data Science and Digital Technologies, Lithuania 

Jiří Vaníček, vanicek@pf.jcu.cz 
University of South Bohemia, Faculty of Education, Czech Republic 

Kazunari Ito, kaz@si.aoyama.ac.jp 
Aoyama Gakuin University, Japan 

Igor Pesek, igor.pesek@um.si 
University of Maribor, Faculty of Natural Sciences and Mathematics, Slovenia 

Abstract  
An essential assumption of Constructionism is the idea that students learn best when they construct 
artefacts that they consider to be relevant (Papert). Computational thinking (Wing) is made up of thought 
processes, such as abstraction, decomposition, algorithmic thinking, evaluation and generalization. This 
contribution discusses learning activities without computer (“unplugged activities”) related to 
computational thinking, which challenge creativity. In more detail, these arrangements have these 
common properties: 

 Creativity. The students create a product that can be shown around later. This may be a physical 
artefact or a performance, which could be documented (photo, video). The concrete outcome is 
very individual and may be surprising in contrast to analytical tasks with just one correct solution.   

 “Unplugged”. The activity is experience-based. It (ideally) demands all the senses and 
challenges the whole person. The students do not use a computer (“unplugged”) and do not 
develop a program but may use Lego blocks, pencil and paper or other material found in their 
environment.   

 Time. The activity can be performed without preparation ad hoc in one lesson in 5 to 40 minutes, 
in contrast to projects that are carefully planned and require weeks of work. The focus is on 
design ideas. 

Based on Csikszentmihalyi’s system model and Margarete Boden’s psychological model, this 
contribution discusses the possibilities of being creative in the classroom. Extending Csikszentmihalyi’s 
approach, the classroom situation is seen as a “local” creative system.  Specifics of the domain 
“computational thinking” are discussed. 

This contribution suggests to distinguish between four types of creative unplugged activities:  

Type 1: Create an algorithm solving a given problem and present it.  
Type 2: Create to a given algorithm or informatics concept a new situation, in which this algorithm or 
concept can be used as well and present it.  
Type 3: Create an algorithm with certain structural properties (like loops, recursion, functions calls 
etc.) and present it  
Type 4: Create a visualisation for a given algorithm or  concept of computer science and present it. 

More than 300 computer science educators (school and university) from different countries were asked 
about this classification scheme, about their experience with creative unplugged activities and the 



Constructionism 2018, Vilnius, Lithuania 

885 

 

relevance and educational potential of the different types. Qualitative and quantitative analysis of the 
answers suggest that the classification scheme is quite acceptable for the community of CS educators. 
Creative unplugged activities are not often used in CS education but are still considered to be relevant.  

1. Introduction 

An essential assumption of Constructionism is the idea that students learn best when they construct 
artefacts that they consider to be relevant (Papert, 2000). Additionally, the process of creating has 
educational value in itself, since creativity – the ability to generate new ideas – is an educational goal 
of high importance in a modern society (Resnick). Computational thinking (Wing) is made up of thought 
processes, such as abstraction, decomposition, algorithmic thinking, evaluation and generalization. 
Creativity in computer science lessons often refers to creating digital artefacts with a computer 
(programming, visual design). Many students love computer science because they see opportunities to 
be creative using computers (Romeike & Knobelsdorf, 2008). However, computer science (CS) 
education in schools is more than just programming. To develop computational thinking and get a deep 
understanding of CS concepts a variety of different learning activities might be useful. This contribution 
discusses activities without computer (“unplugged activities”) related to computational thinking and 
challenging creativity. In more detail, these arrangements have three common properties: 

 Creativity. The students create a product that can be shown around later. This may be a physical 
artefact or a performance, which could be documented (photo, video). The concrete outcome is 
very individual and may be surprising in contrast to analytical tasks with just one correct solution.   

 “Unplugged”. The activity is experience-based. It (ideally) demands all the senses and challenges 
the whole person. The students do not use a computer (“unplugged”) and do not develop a 
program but may use Lego blocks, pencil and paper or other material found in their environment.   

 Time. The activity can be performed without preparation ad hoc in one lesson in 5 to 40 minutes, 
in contrast to for example software development projects that are carefully planned and require 
weeks of work. The focus is on design ideas. 
 

This article is structured in following way. First, we introduce a classification scheme for creative 
unplugged learning activities Then we discuss theoretical approaches to creativity and computational 
thinking. After that we present our international survey on creative unplugged activities in CS education. 

Creative Unplugged Learning Activities  
A creative task challenges creativity. In the context of Computational Thinking, creative skills may be 
used for finding and representing a problem (that can be solved by an algorithm), an algorithm (solving 
a problem) or a representation (visualisation) of an algorithm. An unplugged activity on computer 
science is an activity without computer. There are wonderful unplugged activities on computational 
thinking (Bell, McKenzie, Witten, Fellows, & Adams, 2015). But some of them are not creative. They are 
often like puzzles with one correct solution. On the other hand, creative tasks have many correct 
solutions and they always lead to a product that can be presented to an audience. We distinguish 
between four types of creative unplugged tasks related to computational thinking: 

Type 1: Create an algorithm solving a given problem and present it without a computer. Here, the 
challenge is to find an algorithm with appropriate commands and data representations. 

Example: Write a description how to walk from the entrance of this building to a certain room that can 
be understood by a person, who has never been in this building before. 

Example: Transmit a sequence of zeros and ones on the school yard from A to B via intermediate 
stations using body language. 

Type 2: Create to a given algorithm or informatics concept a new situation, in which this algorithm or 
concept can be used as well and present it. In this case, the creative challenge to develop a story, a 
problem from a different context, that can be solved with the algorithm. The student must understand 
the given algorithm to be able to check whether the story is appropriate. 



Constructionism 2018, Vilnius, Lithuania 

886 

 

Example: Describe a situation in which binary search is useful. Present the situation in a play using 
things from this room. 

Example: Find situation, which can be modelled by a list of lists. Draw a picture illustrating this situation. 

Type 3: Create an algorithm with certain structural properties (like loops, recursion, functions calls etc.) 
and present it in some way. Here, the creative challenge is both to find a problem and an algorithm. 
This type of task is solved by teachers that create illustrating examples for programming concepts. 

Example: Here is the definition of a function with one parameter in Python style: 

def make_a_ball(thing): 
    open your hand 
    put the thing into your hand. 
    while not thing has the shape of a ball: 
        move your fingers 
    return the thing 
 
# main program 
make_a_ball(paper sheet) 

Create an algorithm in Python style and write it down. The program text should contain the definition of 
a function with two parameters and a function call. Use things from this room as parameters. 

Type 4: Create a visualisation for a given algorithm or concept of computer science and present it. Here, 
the creative challenge is to find a representation that the audience can understand. The students can 
use different materials and expressive means: drawing, role play with dialogs and props, pantomime, 
Lego etc. This kind of creative tasks solve designers who develop illustrations for a textbook. 

Example: There is a collection of cards with informatics concepts. Each individual student or each team 
draws a card and visualizes the concept through a mime.  

 

2. Creativity and Constructionism 

The Creative System 
Mihaly Czikszentmihalyi  (Csikszentmihalyi, 2013) points out that »Creativity is a central source of 
meaning in our lives« (p.8). People feel excited, joyful and »fully living«, when they are creative. 

A person is creative, when she or he produces an idea or artefact that is new. Thus, creative persons 
change our culture by adding new elements. According to Csikszentmihalyi’s system model, creativity 
is not an individual ability but a system consisting of three parts (p.27 ff): 

 A domain, that is a system of symbols and rules (like mathematics, music, computer science) 
 A field that includes all persons that act as gatekeepers to the domain. They decide, whether an 

idea or product is accepted as new part of the domain. 
 An individual person, that is creative and creates new elements within the domain 

The level of creativity is not only depended on a person, but different domains offer different 
opportunities to be creative. Domains with clear structure, high centrality within the culture and good 
accessibility help to develop creativity. 

How can a field (persons) affect creativity? 

 A field can be reactive or proactive. Proactive fields stimulate novelty. In school life, science fairs 
and science slams promote novelty. 

 Narrow or broad filter when selecting novelty 
 A field can be connected well to the rest of the social system and channel support into its own 

domain. 



Constructionism 2018, Vilnius, Lithuania 

887 

 

Psychology of Creativity 
Margarete A. Boden (Boden, 2007) distinguishes historical creativity (H-creativity) and psychological 
creativity (P-creativity). H-creativity takes place, when people come up with ideas that are new and have 
never been shared in the history of mankind. P-creativity happens, when a person comes up with an 
idea that is subjectively new to this person, but has been shared by someone else before. 

According to Boden there are three types of P-creativity: combinational, exploratory, and 
transformational creativity. 

Combinational creativity involves the generation of unfamiliar (statistical unusual) combinations of 
familiar ideas. A typical example is a visual collage, made of found photos. Visualisations of CS 
concepts (using body language, Lego, images) include combinational creativity. However, the CS 
concepts might be less familiar than the elements that are used for visualisation. It also might be that 
the result of the process is an artefact of value and includes many design ideas. 

“In exploratory creativity, the existing stylistic rules or conventions are used to generate novel structures 
(ideas), whose possibility may or may not have been realised before the exploration took place.” (Boden, 
2007). In CS, exploratory creativity may happen, when students experiment and explore a programming 
language and discover new programming techniques that way. 

Transformational creativity is the creation of ideas people had previously thought impossible and which 
they still find counter intuitive. An example from the history of art is starting painting abstract pictures, 
where previously the paintings had all been representational. In transformational creativity the new idea 
is so radical that it is difficult to understand for the social environment. 

Creative unplugged activities in the classroom clearly focus on combinational creativity. It is not 
forbidden that very bright high school students develop exploratory or even transformational creativity, 
but such events are beyond the scope of general education. 

In contrast to Csikszentmihalyi’s system theory, Boden’s concept of P-creativity is subjectivist and 
ignores the social aspect of novelty completely. An idea is new, just if the subject has never thought 
about it and never seen it.  There are two implications: P-creativity might be an illusion and P-creativity 
is dependent on how experienced a person is. 

P-creativity might be an illusion, because people are not completely aware of their experience. Jenny 
might have seen a solution to a problem and forgotten this later. But traces of the knowledge are still in 
the sub consciousness. When she is in a similar situation later and the solution pops is her mind, she 
just thinks it was her idea, but in fact she had taken it from someone else. Someone who is a novice in 
a domain (like children playing with Lego for the first time) probably discovers more frequently 
subjectively new things than an experienced person. 

Gerd E. Schäfer (Schäfer, 2001) points out that young children are “necessarily creative” because 
almost everything in their environment is new to them. They reconstruct the world in their mind by 
observing and experimenting and discover (or create) new knowledge all the time. Each day is full of 
surprises. 

Creativity in the Classroom 

Local Domains and Local Fields 

Csikszentmihalyi’s theory is based on interviews with exceptionally creative individuals from science, 
art and business. They know domains and fields very well. Creative scientists, working in research labs 
and universities, are familiar with relevant literature and attend international conferences. Obviously, 
the perspective of high school students is rather reduced. However, the classroom situation can be 
considered as a micro world representing the society in a small scale. The parts of domains the students 
are familiar with are defined by the school curriculum, textbooks and learning media in the WWW.  We 
call this environment a “local domain”. All materials that are relevant in school life are monitored by 
universities and government administration, which are connected to international educational standards 
in some way. Therefore, the local domain of computer science at an individual school reflects the global 
domain of computer science.  There is one fundamental difference between the local and the global 



Constructionism 2018, Vilnius, Lithuania 

888 

 

domain related to persistency. The local domain might change rather quickly, whereas the global 
domain is rather stable and expands relatively slowly. 

When there are bright students and a supporting teacher in a CS class, in one year the local domain 
might expand quickly. Students do unusual projects and share them in some way with the local 
community. Examples of such sharing are posters in the hall of the science department or artefacts in 
a school exhibition. When these students or the teacher leave the school, this additional knowledge 
might get lost. The next age cohort of students might be less interested in CS and the local CS domain 
shrinks again. 

In addition to the global field of CS, there is a local field of CS at each high school teaching this subject. 
The local field mainly consists of CS teachers. They decide whether a student’s work is “creative” in the 
meaning of “something surprising” or “unexpected”. Many teachers that have filled our questionnaire 
have stated that “creativity” is an important criterion for quality. 

Also, students may be members of the field. They are experts and have specific knowledge about the 
(local) domain of CS and they act as gatekeepers. There are several filtering systems and gatekeeping 
activities in school life that involve the students: 

Programming teams must decide on design issues. “Which idea is new and should be implemented in 
this project? 

Scratch projects which are published in a studio may be commented by classmates. A comment might 
include a statement on “how creative” a solution is. 

The local field may be influenced by parents and students that are not in CS classes. They give a 
feedback on work, shown in private, published in the school or presented in public exhibitions and 
science slams. They are not part of the field because they are not familiar with the domain and because 
they are not directly part of a filtering system. 

The Domain Problem of Creative Computer Science 
When creating a program, the programmer is not creative in the local domain of computer science 
unless she or he develops a new programming technique, which is not mentioned in the textbook or 
curriculum. However, she or he might have found this »new« technique in the internet. This would also 
be a creative act related to the local domain, if this novelty is shared and accepted by the local field. 
Although the idea is not new within the global domain, it is a local novelty and the local domain is 
extended by this idea. 

A software project might be an act of creativity in a different (local) domain if the project implements a 
new idea in this domain. Example: 

Students have learned how to write interactive programs according to the simple structure »input-
process data – output«. The creative task is: “Develop an interactive program that can be used to 
calculate the concentration of methane in a room or building. “ 

A version of this task which can be solved without a computer would be: “Develop an algorithm that can 
be used to calculate the concentration of methane in a room or building and present this algorithm in 
some way.” 

In this case the creative challenge is a) to find an explicit task within the context »concentration, gases, 
methane« and b) to find a solution for this task. 

a) The context is from the domain »high school chemistry«. The students have to solve problems within 
this domain, when designing the task which can be solved by an algorithm: 

 Which are typical rooms that might be contaminated by methane (e.g. school lab with Bunsen 
burners)? Which situation is interesting and relevant (e.g. flames of Bunsen burners are 
extinguished and gas is emitted)? 

 What kind of data are accessible and might be used for input (number of Bunsen burners, amount 
of gas that is emitted from a Bunsen burner per second, Volume of the room)? 



Constructionism 2018, Vilnius, Lithuania 

889 

 

b) In order to create the algorithm, they have to find out how to calculate the concentration of methane 
from the input data. This includes designing automatized dialogs using proper language and units. 

This example illustrates that the application of computational thinking (in this case algorithmic thinking) 
may lead to creativity in other domains. 

Unplugged Creative Tasks on Computational Thinking - Building Bridges 
Between Domains 
Creative tasks without a computer might be creative (in Czikszentmihalyi’s system model), if the symbol 
system of the local domain is extended by fresh ideas how to represent a CS concept. 

When students visualize a recursive algorithm in a role play they do not create a new algorithm. The 
novelty is new metaphorical representations for calling a function, passing parameters, processing data 
and so on. The task “create a role play” encourages to construct connections between domains.  This 
goes well if the students are experienced in role plays. Building connections between concepts from 
different domains (from a familiar source domain to a more unfamiliar target domain) is called 
metaphoric thinking. New metaphors for CS concepts can be considered as an extension of the local 
domain of CS, since affects the way how to understand these concepts and how to use them. Consider 
an example from a different domain: The number line, visualising the set of real numbers, is part of 
mathematics. 

New examples for algorithmic idea can be considered as an enrichment of the domain of CS. Each new 
example extends the already known area of application of the algorithm. This is also part of CS 
knowledge. Abstraction is part of computational thinking. 

Skills and Attributes of Creative Persons 
According to Czikszentmihalyi, being creative is like being involved in a traffic accident. One may have 
a disposition to be creative but every act of creativity depends on several factors. One cannot say that 
a person starts a creative process. Creative people interviewed by Czikszentmihalyi said they were just 
lucky. They were at the right time at the right place. 

Czikszentmihalyi mentions attributes and skills that increase the chance of a person to be creative: 

 Creative people must internalize the creative system: know the domain very well. 
 They are curious and are interested in a domain. 
 Creative persons are playful and have discipline (both is important), they need endurance and self-

confidence to finish a project. 
 Creative people can alternate between fantasy and imagination and a sense of reality. 

The Enjoyment of Being Creative 
Czikszentmihalyi points out that it is joyful to be creative. The optimal experience is called flow, the 
feeling, when things are “going well as an almost automatic, effortless, yet highly focused state of 
consciousness” (Csikszentmihalyi, 2013). The joy of being creative – the joy of novelty – is determined 
by the human genes. Novelty is important for the development of a culture. It increases the fitness to 
adapt to changing environments. Creative unplugged tasks on computational thinking are an 
educational method to motivate students to learn and reflect CS concepts. 

Creative persons interviewed by Mihaly Czikszentmihalyi reported that situations that are experienced 
as enjoyable (flow) contain these elements: 

 There are clear goals in every step of the creation process. In flow we know exactly what to do. 
 There is immediate feedback, which makes it easy to distinguish between good and bad ideas. 
 There is a balance between challenge and skills. 
 Action and awareness are merged. (I am thinking about what I am doing.) 
 Distractions are excluded. 
 There is no worry of failure, the subject is too involved to be concerned 
 The self-consciousness disappears. 
 The sense of time becomes distorted. 



Constructionism 2018, Vilnius, Lithuania 

890 

 

 The activity becomes autotelic. It is joyful per se. 

Teachers designing creative tasks should do everything to keep the joy of the creation situation. 

How to Encourage Creativity? 
An important element of CS classroom education is designed activities. They consist of a task and some 
material which is used to solve the task. “Unplugged” activities use tangible material like blocks or any 
material that is ad hoc available, pencil and paper or just own body, but not computers. The charm of 
“unplugged” activities is often the contrast between the material and the CS concepts that are 
elaborated. 

In research literature and educational programs one can find much advice how to encourage and foster 
creativity. In this section we try to relate this advice to creative unplugged activities, considering 

 activity design, including the task and the used material, 
 scaffolding during the performance of the activity 
 presentation of the results including rules for feedback 

Activity Design 

Boden mentions different ways to encourage creativity depending on the type of creativity which is 
intended to be developed. Combinational creativity can be encouraged by enlarging the variety of 
concepts in a person’s mind. The more concepts I know the more “unusual combinations” I can find. 
Additionally, a person can practice finding new associations between concepts and learn to judge the 
value and novelty of ideas. (This is internalizing the field in Czikszentmihalyi’s system theory.) 

In task design, a simple method to enlarge the repertoire of concepts is to let the students work in teams 
consisting of persons with different interests and knowledge. When people collaborate in diverse 
groups, new and surprising ideas may evolve easier. 

Secondly, the task should be surprising and raise curiosity and interest. Czikszentmihalyi suggests to 
cultivate curiosity and interest. If unusual results are expected, the task should be unusual too.  

Performance 

Czikszentmihalyi suggests to cultivate flow in everyday life. People should wake up with a specific goal 
they look forward to. Everything we do we should do well and joyful. An atmosphere of strength and joy 
should be maintained during the performance of a creative activity. The learning environment should 
make it easy to focus and prevent distractions. An empty school yard might be a good environment for 
some creative activities. Classrooms should be designed to support the creative process, like the 
laboratory in Dalton education. 

Scaffolding during the process should support and encourage the following operations  
(Csikszentmihalyi, 2013): 

 clarify, analyse and re-define the problem or question to uncover new ways of looking at it, 
 try to find connections between seemingly unrelated subject matter, 
 challenge established wisdom by asking: how would I improve this? 
 recognise alternative possibilities, 
 look at things from different perspectives. 

Presentation 

Boden (Boden, 2007) points out that students should not be discouraged by dismissing new and 
surprising ideas as mistakes. Creative persons need self-confidence. The logical consequence is that 
encouraging creative task should always lead to a success.  There is no right and wrong.  Imagine the 
task “Create a role play visualising the execution of a recursive function.” After some time, the team has 
to come up with a role play and perform it. This role play must be a success, even if there is hardly a 
visible connection to recursion at first glimpse. The teacher must support a certain culture of reception, 
which is friendly and appreciating. The audience must appreciate that watching all the little details of 



Constructionism 2018, Vilnius, Lithuania 

891 

 

the play and reflecting and discussing their relation to the CS concept of recursion helps to get a deeper 
understanding. 

During the presentation the field gets active. This is important for the creators since they must internalize 
the field and must learn to distinguish between good and bad ideas, new and old ideas. The presentation 
is a good opportunity to discuss novelty and values. Some ideas, developed in creative unplugged tasks 
might get documented in some way and extend the local domain of high school CS. The challenge for 
the school is to install opportunities for this documentation: science fairs, showcases, posters, wikis etc. 

3. Computational Thinking and Creativity 

In this section the view on creativity from computational thinking (CT) practitioners point of view is 
presented. First the concept of CT is briefly analysed. Next the creativity concept in CT domain is 
presented.  

In 2006 Wing (Wing, 2006) presented the concept of CT: “ ... involves solving problems, designing 
systems, and understanding human behaviour by drawing on the concepts fundamental to computer 
science”. Based on this it can be concluded that CT involves three key components: algorithms, 
abstraction, and automation. However, the rice of this concept can be related to Seymour Papert by 
introducing it in the context of suggesting an alternative, computationally-based mathematics education 
(Papert, 1996).  Hence the researchers are very interested in CT approach and its application in 
education. However, it is still at an early stage of maturity (Lockwood, Mooney, 2017) and the steady 
definition of CT is not provided (Voogt et al., 2015).  In order to explore CT approach (Voogt et al., 2015) 
provided the discussion about the definition and core concepts of CT only in the Computer Science 
domain (excluding other domains). They focus on finding similarities and relationships in the discussions 
about CT. Similarly, the analysis made in (Kalelioglu et al, 2016) provided the word cloud of CT 
definitions used in analysed papers. The generated ‘Wordle‘ by Kalelioglu and others was based on the 
definitions provided by analysed researchers and not included some core concepts of CT.  

CT definition challenge was analysed also in others domains, such as mathematics and science by 
(Weintrop et al., 2016). They reviewed the literature on CT and proposed a definition of CT in the form 
of a taxonomy consisting of four main categories: data practices, modelling and simulation practices, 
computational problem solving practices, and systems thinking practices. Additionally, the set of ten CT 
skills were proposed. This set was developed based on literature review on CT with a focus on 
applications to mathematics and science. 

Some researchers focus on CT skills in order to explain CT (Curzon et al, 2014; Atmatzidou & 
Demetriadis, 2016) or very similar named concepts (Catlin & Woollard, 2014), such us abstraction, 
decomposition, generalization. 

Others interpret CT based on its elements. Such us (Grover & Pea, 2013) identified nine elements: 
Abstractions and pattern generalizations (including models and simulations); Systematic processing of 
information; Symbol systems and representations; Algorithmic notions of flow of control; Structured 
problem decomposition (modularizing); Iterative, recursive, and parallel thinking; Conditional logic; 
Efficiency and performance constraints; Debugging and systematic error detection. Additionally, others 
argue that CT is an activity, often associated with, but not limited to, problem solving (CSTA & ISTE, 
2011; Beecher, 2017, p. 8; Haseski et al., 2018). 

All these concepts (skills, elements) are widely used by researchers and educators with the aim to teach 
computational skills across the different curriculum. In the book by Williams (Williams, 2017) ISTE 
developed concepts are used in K-5 curriculum. Author argues that CT can be incorporated into any 
subject. Also, she gave the case studies with Bee-Bots, Code.org, Scratch and ARIS and presented 
how CT concepts can be applied to these tools in detail. 

CT can be seen as a fundamental skill for everyone, not just for computer scientists. It is applicable in 
either a computerised or unplugged problem-solving process. CT has the potential for application in a 
wide range of disciplines as the creative learning arrangements. Two main strategies are used for CT 
skills development: unplugged activities (activities that 



Constructionism 2018, Vilnius, Lithuania 

892 

 

involve logic games, cards, puzzles, strings or physical movements to get in touch with computer 
science concepts such as algorithms, data transmission or data representation) and computerized 
activities (such as, programming in arrow-based visual environments, programming in block-based 
visual environments, using textual programming languages, programing that is connected with the 
physical world) (Moreno-León et al, 2018).  

In this paper CT is defined as the skills of being able to develop creative solutions for the problem with 
an algorithmic approach by handling a problem by the individuals that could establish healthy 
communication in a cooperative environment (Korkmaz et al., 2017).  

CT is a set of skills that help to set up a problem in such a way that a computer can help you solve it 
(Krauss & Prottsman, 2017, p.47). However, computers are not necessarily. Solutions could be 
represented as computational steps and algorithms (Aho, 2012). Main CT skills are as follows: 

 Abstraction is the process of creating something simple from something complicated, by leaving 
out the irrelevant details, finding the relevant patterns, and separating ideas from tangible details 
(Atmatzidou & Demetriadis, 2016); 

 Algorithmic thinking is the ability to understand, execute, evaluate, and create computational 
procedures (Lamanga, 2015); 

 Decomposition is the process of breaking down problems into smaller parts that may be more 
easily solved (Atmatzidou & Demetriadis, 2016); 

 Generalisation is transferring a problem-solving process to a wide variety of problems (Atmatzidou 
& Demetriadis, 2016); 

 Evaluation is the ability systematically (through criteria and heuristics) make substantiated value 
judgements (Catlin & Woollard, 2014). 

 
Moreover, researchers agree that CT is overlapping with many aspects of 21st century skills such as 
creativity, critical thinking, and problem-solving (Lye, Koh, 2014). According to Korkmaz et al. (2017), 
CT is the extension of the problem solving skills of a person and the development of the creativity and 
critical thinking skills of the people by re-focusing. Thus creativity plays an important role in CT approach 
(Korkmaz, 2017). CT mainly focuses on the creation of algorithms by using problem solving skills. 
Moreover, most of CT parts involve creativity, such us algorithmic design, generalisation and pattern 
matching (e.g., needs big creative leaps to see the links between apparently different situations), 
evaluation (e.g. needs creativity in coming up with logical arguments or ways to explore situations) 
(Curzon, McOwan, 2017, p. 209). Creativity in abstraction occur, e. g. when students invent a new 
representation for recursion - say in a role play. Additionally, Curzon and McOwan (2017) argue that 
most creative ideas come from groups not from individuals. Moreover, CT foster creativity in the 
classroom due it allowances for student to move from technologies’ consumers to developers in order 
to benefit society, also, creativity can be augmented by CT (Mishra et al., 2013). The College Board 
(2017) developed the CT framework for a Computer Science Principles course for high schools in the 
USA. According to it computing is a creative discipline and student are engaged in creative aspects of 
computing by designing and developing computational artefacts, also, by applying computing 
techniques to solve problems (p. 9), such as, by employing non-traditional, non-prescribed techniques, 
the use of novel combinations of artefacts, tools and techniques, as well as, exploration of personal 
curiosities (p.11). Students could be developing artefacts for creative expressions and those can reflect 
personal ideas or interests (p. 12). In such way, computing enables students to use creative 
development processes.   

Many creative unplugged activities examples are presented by Curzon and others (2014). Let's take, 
for example, such a type of creative unplugged activity that aims to create an algorithm for solving a 
given task and present it without a computer. The task is to help person with locked-in syndrome (total 
paralysis due to a stroke) to communicate. The solution could be the communication by blinking: one 
person says the letters of the alphabet, and the other blinks when they get to the letter they wish to 
communicate. Thus the creative algorithmic thinking is demonstrated when the audience are asked to 
think of improvements, the details of this algorithm that need further thought to make it work. As well 
as, generalisation needs the creativity from audience for suggesting things like predictive texting and 



Constructionism 2018, Vilnius, Lithuania 

893 

 

frequency analysis as improvements. Likewise, evaluation needs creativity to discuss an algorithm’s 
functionality, its performance and its usability. 

Creativity has its place in many areas, such as art, economy, psychology and science. In schools it is 
associated with art, music, and writing classes (DeSchryver, Yadav, 2015).  And it is differently defined 
in various fields. Moreover, such a complex concept is difficult to measure, although many approaches 
to the measurement of creativity are developed (Jackson et al., 2012). Creativity in CS field usually aims 
at producing new mechanisms, both hardware and software, that can provide solutions to practical 
problems. However, creativity involves the same kinds of cognitive processes that generate answers in 
computing as well as in the natural sciences (Saunders & Thagard, 2005). Moreover, in CT, creativity 
could be seen as an ability by applying imagination to develop a physical object or some mental or 
emotional construct (Korkmaz et al., 2017) that is judged to be novel and also to be appropriate, useful, 
or valuable by a suitably knowledgeable social group (DeSchryver, Yadav, 2015). 

4. Questionnaire 

In order to get the opinions from the computer science educators at all levels of educational system 
about the creative unplugged activities in the classrooms and also their opinion about the categories 
model of creative unplugged activities, an online survey was conducted. First the questionnaire in 
English language was prepared with questions about the four categories of the creative unplugged tasks 
and questions about the use of such type of tasks in their daily practice in the classrooms. Then the 
questionnaire was translated to the national languages and distributed through different national 
channels to the computer science educators. In the table 1 is the distribution of the educators based on 
their country of origin and total number of answers which is 360. 

Table 1. Country of origin of the respondents 

Country Number of respondents 

Czech republic  133 

Lithuania 8 

Slovenia 25 

Germany 153 

Japan 14 

Other countries 27 

Together 360 

Types of Creative Unplugged Activities in Computer Science 
The questionnaire first presented definitions and examples of four different types of creative unplugged 
activities and asked the respondents how clear the definitions were. The responses were on scale from 
unclear (1) to clear (5). In table 2 descriptive statistics are presented. It can be observed, that for 
educators’ types 1 and 3 are clearer and more understandable than type 2 and 4. It seems that 
educators feel more confident with activities that ask for specific structural features than with more 
general concepts. One of the reasons might be that activities and tasks that fit in type 3 category are 
more frequently used in CS teaching. 



Constructionism 2018, Vilnius, Lithuania 

894 

 

Table 2. Clarity of the definitions of the four types of creative unplugged activities 

Type of unplugged creative learning activity Degree of clarity 

Mean Std. Deviation 

Type 1: Create an algorithm 
Invent an algorithm that solves a given task and present it 
without a computer. 

3.78 1.16 

Type 2: Find an example 
For a computer science algorithm or concept, find a new 
situation in which to apply this algorithm or concept. 

3.24 1.27 

Type 3: Find an example algorithm (more open form) 
Find an algorithm that has certain given structural features (e.g., 
loops, recursion, function calls) and represent it in some way. 

3.77 1.12 

Type 4: Create a visualization 
Invent a visualization for an algorithm or concept of computer 
science. 

3.33 1.25 

Next we asked them if they know about creative unplugged activities that do not fit in presented model. 
30% of the teachers claimed that they know other activities that do not fit. We asked them if they can 
provide an example or comment.  

107 from 360 respondents (more than ¼) claimed that they know other creative informatic activities 
without computer out of our four categories. 38 of them described one or more activities, some 
respondents gave general comments. 

Only about one third from these 38 free text responses can be considered as examples for creative 
unplugged activities according to the given definition. Most of the presented activities were unplugged 
but not creative. They were typical problem-solving activities with only one possible solution (e.g. 
ordering data, comparison of algorithms). Some activities were not from CS (e.g. painting). In some 
cases, it was impossible to decide whether this activity is creative or not, for example from the response 
“puzzles – Sudoku” one cannot not deduce whether the respondent meant solving sudoku or creating 
a new one.  

Some of the responses described concrete creative activities which can be related to one of the four 
types e.g. “Representing the TCP/IP protocol stack through role play using envelopes as packets” which 
is of type 4 (create a visualization).  

However, a few answers from the 38 responses were valid creative unplugged activities that do not fit 
to our model as it is. One teacher suggested this task: “Create a protocol for bidirectional communication 
via one wire”.  Since a protocol is not an algorithm, this activity is not of type 1 (create an algorithm). 
Activities like this would be covered by the model, if we slightly extend the scope of type 1, like: “Create 
an algorithm or part of an algorithm…” Part of an algorithm could be a protocol, a data structure, a class 
model etc. 

Experiences with Creative Unplugged Activities in Computer Science 
Next we asked the respondents about their experiences with creative tasks. On the question “How often 
have you spent the last 12 months doing creative tasks without a computer in computer science 
education or a computer science course?”, 50% of the respondents said they used them once or twice, 
27% used it more than twice and 23% said they never done them in the classroom. If we look at the 
results of the next question about the reaction in the classroom where nearly 60% answered that the 
reaction is positive and combine them with the result from this question where 50% of educators use 
unplugged creative tasks use them only once or twice in one year, the situation is rather disappointing. 



Constructionism 2018, Vilnius, Lithuania 

895 

 

Maybe one reason lies in the fact, that there aren't that many available prepared creative unplugged 
activities that educators could use or educators don't have time to use them in classrooms. 

On the question "If you have engaged in creative tasks, what has been the reaction of the students?"  
we got the following results presented in Table 3. Just 10% of all answers is negative or with no reaction, 
which is good. Fact that almost 60% educators noticed positive reaction must be used to further push 
unplugged activities in the classrooms.  

Table 3. Student’s reaction to creative unplugged activities 

Student’s reaction  Percentage 

Positive 13.6% 

Rather positive 45.8% 

neutral 12.7% 

Rather negative 6.6% 

negative 0.5% 

no reaction 3.6% 

didn't answer 16.9% 

Next, we asked educators, if they could tell us why and how they used creative unplugged tasks. 
Respondents could check multiple options. The results are presented in table 4. Educators are using 
creative unplugged tasks for the activation or as suggestion to think about CS concepts. Note that more 
than one third of educators use unplugged activities also as entertainment element in the classrooms.   

Table 4. Educators’ intentions for using creative unplugged activities 

Intention Percentage 

As an activating entry into a new topic. 51% 

As a suggestion to think about certain abstract concepts. 47% 

To promote creativity. 26% 

As training, e.g. to practice the correct use of technical terms. 25% 

As a diagnostic tool to identify a prior understanding of a topic 
or misconceptions. 

16% 

As an entertainment element to relax a course. 38% 

The last question in this section was "Creative solutions differ from examples previously discussed in 
class. They are novel and original. To what extent do you assess the aspect of creativity in the work of 



Constructionism 2018, Vilnius, Lithuania 

896 

 

your students?". The responses are in Table 5 and show that almost all educators in some way asses 
creativity of their students' work. Nevertheless, more than 50% don't assess creativity as official criteria. 
One of the reasons lie in the fact that educators must comply to national rules for assessment (e.g. in 
Slovenia it is very complicated to assess creativity) and educators sometimes avoid the risks with just 
not assess creativity. Other reason lies in the fact that is already hard to describe and define creativity 
in CS and therefore educators don't feel confident, that they know how to assess creativity of their 
students. 

Table 5. Relevance of assessing creativity 

Assessment of Creativity Percentage 

I have practically never assessed the creativity of my students' 
work. 

8% 

I have occasionally evaluated the creativity of a solution, but 
creativity has not been an official quality criterion for my 
assessment of the work of students. 

48% 

Creativity is one of my official quality criteria for evaluating the 
work of students. However, creativity has only a subordinate 
rank over other criteria (such as correctness of the solution). 

35% 

Creativity is one of my most important official quality criteria for 
evaluating the work of students. Among my evaluation criteria, 
creativity has a similar importance to that of correctness. 

9% 

Educational Potential of Creative Tasks 
In this section we asked the teachers about their opinion on the educational potential of creative tasks. 
More precisely, we asked them about specific potential and which type of creative tasks can be used 
instead. More answers could be selected at each question. Results for different purposes are in Table 
6. As a replacement for programming tasks most educators think that activities that fit into Type 1 
(Create an algorithm) are most useful and appropriate. The reason for such results lies in the fact, that 
Type 1 activities are in conceptual way very similar to the programming tasks, only allowed tools are 
different. For other three type it's not that easy to see, how such activities can replace programming 
tasks. It's interesting to notice, that educators don't feel that Type 3 activities can replace programing 
tasks, although such activities develop understanding of some concept similar as programming tasks 
do. Most of educators think that all types of creative tasks, except Type 3 tasks, are suitable for use in 
the classrooms as enrichment. Analysing the answers more in depth, we see, that almost 90% of 
respondents that checked Type 3 also checked tasks of Type 1 and Type 2. Educators think that tasks 
of Type 2 are most appropriate to use them as encouragement, although other types of activities are 
also used in classrooms. We can conclude that educators think that finding a new situation encourages 
students to think about CS and also helps students to use their CS knowledge in different areas of their 
life. Most educators think that tasks of Type 1 and 2 help students develop such skills that can be used 
in other scientific fields. The reason lies in the fact, that educators think that first two types help to 
develop computational thinking which can be later applied in various fields. 

  



Constructionism 2018, Vilnius, Lithuania 

897 

 

Table 6. Educational potential of creative unplugged activities 

Educational Potential Type 1 
Create an 
algorithm 

Type 2 
Find an 
example 

Type 3 
Example 
algorithm 

Type 4 
Visuali-
sation 

A replacement for programming 
tasks providing a comparable 
learning experience in less time. 

72% 50% 44% 46% 

An enrichment to a lesson or lecture 
to make the content more relevant 
and attractive to the participants. 

68% 58% 39% 62% 

As a encouragement for students to 
think about computer science 
concepts. 

61% 67% 54% 60% 

As a help to develop transferable  
skills. 

62% 71% 49% 56% 

Professional Experience in Informatics Education 
In last section we asked them about their background in Computer science education. Results are in 
Table 7; more than answer was possible. We can observe that our respondents were from all levels of 
education and some of them had experience with authoring a book or being involved in research 
activities. One quarter of respondents were also teacher trainers. We can conclude that such spread of 
experiences gives this survey reliability and important view in how educators think and view creative 
unplugged tasks in CS education. 

Table 7. Respondents’ professional experience 

Experience Percentage 

Teaching computer science-related content at a primary school 28 % 

Teaching computer science related content at a secondary school 88 % 

Teaching computer science related content at a university 14 % 

Authoring or co-authoring a textbook in the field of computer science 12 % 

Research in the field of computer science 13 % 

Teacher training in the field of computer science 27 % 

5. Discussion 

The survey has shown that most teachers use creative unplugged activities in CS classes, but not very 
frequently. One of the reasons we can conclude from the responses is that computer science educators 
consider unplugged creative tasks as not very relevant, since respondents suggested that they usually 



Constructionism 2018, Vilnius, Lithuania 

898 

 

use them in the initial parts of a lessons, as introduction to some topic or as initial phase of problem 
solving tasks. They also suggested that these activities could be used for group work.  

From curricula point of view, teachers saw application of these tasks as an introduction to understanding 
how computer works, in media education and painting art activities and in creating criteria by ordering 
data. This might indicate that some teachers connect creativity more to using ICT than to computer 
science.  

The questionnaire explained four types of creative unplugged task and gave examples. For many 
teachers this might be the first contact with this area and they might have problems to understand this 
short introduction. This could explain some strange answers. 

Teachers gave some attitudes to using creative informatics non-computer tasks. Some attitudes were 
against leaving programming and coding, some of them expressed conviction that they could replace 
programming in some parts of curricula (without specification) and some of them apologize respondents 
for not doing enough for it (because of lack of time in compulsory education that leads teachers to teach 
this as extracurricular activities, e.g children clubs). 

A possible reason that teachers do not use creative unplugged tasks in CS education so much might 
be that focussing on computational thinking is not established so well in CS education. Many CS classes 
are mainly programming classes or teach how to use ICT as a tool.  

How to assess creative work seems to be unclear for many teachers, which might partly be caused by 
the fact that the term “creativity” doesn't have one single definition. On other hand assessing creativity 
can be very subjective (if the teacher dominates the field) and teachers don't feel confident enough to 
assess what is creative.   

6. Conclusion 

We need teachers who are able to support creativity. Designing and conducting creative unplugged 
activities should be part of teacher training. The question is, how to do this. We need concepts for 
workshops inspiring teachers and future teachers. 

Students can only be creative in domains they are familiar with. (For example, visualizing a CS concept 
by mime works, if the students are experienced with mime.) Therefore, teachers creating new creative 
unplugged arrangements should involve their students. 

The four types of creative unplugged activities that we have suggested, are just a start. In future 
research we can use the open text answers of the questionnaire to improve and extend the classification 
scheme. 

References  

Bell T., et al. (2015): CS Unplugged, Computer Science Without a Computer, 
https://classic.csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf 

Futschek, G, Moschitz, J.: Developing algorithmic thinking by inventing and playing algorithms. 
Proceedings of the Constructionism 2010, 1/10 (2010) 

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. 
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf 

Weigend, M. (2017) Smartwalk: computer science on the schoolyard. IFIP World Conference on 
Computers in Education. Springer, Cham. 

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. 

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the Computational 
Thinking Scales (CTS). Computers in Human Behavior, 72, 558-569. 

Csikszentmihalyi, M. (1996). Creativity. Flow and the Psychology of Discovery and Invention 



Constructionism 2018, Vilnius, Lithuania 

899 

 

Cropley, A. J. (1997). Fostering creativity in the classroom: General principles. In M. A. Runco (Ed.), 
The creativity research handbook (Vol. One, pp. 83e114). Cresskill, New Jersey: Hampton Press. 

CAS computational thinking - A Guide for teachers (2015). Guidance for both primary and secondary 
school teachers aimed at developing a shared understanding of computational thinking (Available at: 
https://community.computingatschool.org.uk/resources/2324/single ). 

Krauss, J. & Prottsman, K. (2017). Computational Thinking and Coding for Every Student. The 
Teacher’s Getting-Started Guide. Corwin Press Inc. 

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through 
educational robotics: A study on age and gender relevant differences. Robotics and Autonomous 
Systems, 75, 661-670. 

Lamagna, E. A. (2015). Algorithmic thinking unplugged. Journal of Computing Sciences in Colleges, 
30(6), 45-52. 

Catlin, D., & Woollard, J. (2014, July). Educational robots and computational thinking. In Proceedings 
of 4th International Workshop Teaching Robotics, Teaching with Robotics & 5th International 
Conference Robotics in Education (pp. 144-151). 

Papert, S. (2000) What’s the big idea? Toward a pedagogy of idea power. IBM SYSTEMS JOURNAL, 
Vol. 39, pp. 720−729. 

Boden, M. (2007) How Creativity Works, published by Creativity East Midlands for the Creativity: 
Innovation and Industry conference, 6th December 2007. 

Romeike, R., Knobelsdorf M. (2008) Creativity as a Pathway to Computer Science. ITiCSE’08, June 
30–July 2, 2008, Madrid, Spain, pp. 286-290 

Schäfer, G. E. (2001): Prozesse frühkindlicher Bildung [educational development in early childhood], 
Cologne, Germany. URL: https://www.hf.uni-
koeln.de/data/eso/File/Schaefer/Prozesse_Fruehkindlicher_Bildung_Duplex.pdf 

Saunders, D., & Thagard, P. (2005). Creativity in computer science. Creativity across domains: Faces 
of the muse, 153-167. 

Jackson, L. A., Witt, E. A., Games, A. I., Fitzgerald, H. E., Von Eye, A., & Zhao, Y. (2012). Information 
technology use and creativity: Findings from the Children and Technology Project. Computers in human 
behavior, 28(2), 370-376. 

Mishra, P., Yadav, A., & Deep-Play Research Group. (2013). Rethinking technology & creativity in the 
21st century. TechTrends, 57(3), 10–14. 

Papert, S., (1996) An exploration in the space of mathematics educations. International Journal of 
Computers for Mathematical Learning, 1(1), 95–123. 

Lockwood, J., & Mooney, A. (2017) Computational Thinking in Education: Where does it fit? A 
systematic literary review. arXiv preprint arXiv:1703.07659. 

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory 
education: Towards an agenda for research and practice. Education and Information Technologies, 
20(4), 715-728. 

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a 
systematic research review. Baltic Journal of Modern Computing, 4(3), 583. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 
computational thinking for mathematics and science classrooms. Journal of Science Education and 
Technology, 25(1), 127-147. 

Curzon, P., McOwan, P. W. (2017) The Power of Computational Thinking: Games, Magic and Puzzles 
to Help You Become a Computational Thinker. World Scientific. 



Constructionism 2018, Vilnius, Lithuania 

900 

 

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014) Introducing teachers to computational 
thinking using unplugged storytelling. In ACM Proceedings of the 9th workshop in primary and 
secondary computing education, 89-92. 

Atmatzidou, S., & Demetriadis, S. (2016) Advancing students’ computational thinking skills through 
educational robotics: A study on age and gender relevant differences. Robotics and Autonomous 
Systems, 75, 661-670. 

Grover, S., & Pea, R. (2013) Computational thinking in K–12: A review of the state of the field. 
Educational Researcher, 42(1), 38-43. 

ISTE, CSTA. (2011) Computational Thinking in K–12 Education leadership toolkit. 

Beecher, K. (2017) Computational Thinking: A Beginner's Guide to Problem-Solving and Programming. 

Haseski, H. I., Ilic, U., & Tugtekin, U. (2018) Defining a New 21st Century Skill-Computational Thinking: 
Concepts and Trends. International Education Studies, 11(4), 29. 

Williams, H., (2017).  No Fear Coding: Computational Thinking Across the Curriculum (CODEK5), ISTE. 

Moreno-León, J., Román-González, M., & Robles, G. (2018, April). On computational thinking as a 
universal skill: A review of the latest research on this ability. In Global Engineering Education 
Conference (EDUCON), 2018 IEEE (pp. 1684-1689). IEEE. 

Lamagna, E. A. (2015). Algorithmic thinking unplugged. Journal of Computing Sciences in Colleges, 
30(6), 45-52. 

Lye, S. Y., & Koh, J. H. L. (2014) Review on teaching and learning of computational thinking through 
programming: What is next for K-12?. Computers in Human Behavior, 41, 51-61. 

DeSchryver, M. D., & Yadav, A. (2015). Creative and computational thinking in the context of new 
literacies: Working with teachers to scaffold complex technology-mediated approaches to teaching and 
learning. Journal of Technology and Teacher Education, 23(3), 411-431. 

College Board (2017) AP Computer Science Principles. Course and Exam Description. College Board, 
NY. 

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55, 832–835. 

  



Constructionism 2018, Vilnius, Lithuania 

901 

 

WG6: Learning to Program in a Constructionist Way  

Mattia Monga, mattia.monga@unimi.it  
Università degli Studi di Milano, Milan, Italy 

Michael Lodi, michael.lodi@unibo.it  
Alma Mater Studiorum - Università di Bologna & INRIA Focus, Italy  

Dario Malchiodi, dario.malchiodi@unimi.it  
Anna Morpurgo, anna.morpurgo@unimi.it  
Università degli Studi di Milano, Milan, Italy 

Bernadette Spieler, bernadette.spieler@ist.tugraz.at  
Technische Universität Graz, Austria  

 

Abstract 
Although programming is often seen as a key element of constructionist approaches, the research on 
learning to program through a constructionist strategy is somewhat limited, mostly focusing on how to 
bring the abstract and formal nature of programming languages into “concrete” or even tangible objects, 
graspable even by children with limited abstraction power. However, in order to enable constructionism 
in programming several challenges must be addressed. One of the crucial difficulties for novice 
programmers is to understand the complex relationship between the program itself (the text of the code) 
and the actions that take place when the program is run by the interpreter. A good command of the 
notional machine is a necessary condition to build programming skills, as is recognizing how a relatively 
low number of abstract patterns can be applied to a potentially infinite spectrum of specific conditions. 
Programming languages and environments can either help or distract novices, thus the choice is not 
neutral and their characteristics should be analyzed carefully to foster a good learning context. The 
mastery of the notional machine, however, is just the beginning of the game: to develop a real 
competence one must be able to think about problems in a way suitable to automatic elaboration; to 
devise, analyse, and compare solutions, being able to adapt them to unexpected hurdles and needs. 
Moreover, it is important to learn to work productively in a team, in an “organized” way: agile methods 
seem based on common philosophical grounds with constructionism. 

1. Introduction 

Educators, generals, dieticians, psychologists, and parents program. Armies, students, and 
some societies are programmed. [Alan Perlis] 

mailto:mattia.monga@unimi.it
mailto:michael.lodi@unibo.it
mailto:dario.malchiodi@unimi.it
mailto:anna.morpurgo@unimi.it
mailto:bernadette.spieler@ist.tugraz.at


Constructionism 2018, Vilnius, Lithuania 

902 

 

Constructionism [Papert and Harel 1991] is a strategy of education which has its roots in Piaget’s 
constructivist theory of learning as an active process, in which people actively construct knowledge from 
their personal experience of the world. In general, students do not just receive pre-built ideas from 
teachers: they have to make them up by engaging themselves with problems, projects, and other people 
(instructors, but also peers). Papert’s constructionism indeed emphasizes the importance of having 
personally-meaningful goals and “public artifacts” (not necessarily concrete ones: either “a sand castle 
on the beach or a theory of the universe” [Papert and Harel 1991]] that can be shared and discussed 
with others interested in the same (learning) enterprise [Resnick 1996]. This is sometimes summarized 
with the four P-words: Projects, Peers, Passion, Play and this motto indeed inspired successful 
educational initiatives such as the Scratch programming language [Resnick 2014]. 

1.1 Constructionism and programming 
However, while programming is often seen as a key element of constructionist approaches (starting 
from Papert’s LOGO, a programming language designed to enable the learning of geometry), the 
research on learning to program through a constructionist strategy is somewhat limited, mostly focusing 
on how to bring the abstract and formal nature of programming languages into “concrete” or even 
tangible objects, graspable even by children with limited abstraction power [Resnick et al. 2009; Horn 
and Jacob 2007; Hauswirth, Adamoli, and Azadmanesh 2017]. Notwithstanding this, constructionist 
ideas are floating around mainstream programming practice and they are even codified in some 
software engineering approaches: agile methods like eXtreme Programming [Beck and Andres 2004], 
for example, suggest several techniques that can be easily connected to the constructionist word of 
advice about discussing, sharing, and productively collaborating to successfully build knowledge 
together [Resnick 1996]; moreover the incremental and iterative process of creative thinking and 
learning [Resnick 2007] fits well with the agile preference to “responding to change over following a 
plan” [Beck et al. 2001]. 

The iterative process described by Resnick in [Resnick 2007] originated by observing how 
kindergarteners learn, and is now called "creative learning spiral" (Figure 1), that describes MIT’s view 
on how to learn creatively [Resnick 2017]. When you learn by creating something (e.g. a computer 
program) you imagine what you want to do, create a project based on this idea, play with your creation, 
share your idea and your creation with others, reflect on the experience and feedback received from 
others, and all this leads you to imagine new ideas, new functionalities, new improvements for your 
project, or new projects. The process is iterated many times. 

 

 

Figure 1: Creative learning spiral (Resnick 2017) 



Constructionism 2018, Vilnius, Lithuania 

903 

 

This spiral describes an iterative process, highly overlapping with iterative software development cycle 
(see 5.1). 

2. What does it mean to learn programming? 

The basic assumption/premise behind programming — i.e., producing a precise description of how to 
carry out a task or to solve a problem — is that an interpreter, different from the producer of the 
description, can understand it and effectively carry out the task as described. There are thus two distinct 
but tightly tied aspects in programming: 

1. the program itself (the text of the code), 

2. the actions that take place when the program is run by the interpreter. 

We thus need to know the interpreter in order to program, in particular we need to know: 

 the set of basic actions it is able to perform, 

 a language it is able to understand, with rules on how to compose basic actions, 

 the relation between syntax and semantics, that is what actions it will perform given a 
description, and, conversely, how to describe a given sequence of actions so that it will perform 
them. 

The first aspect, that is the program source code, is explicit, visible. The second one instead, that is the 
actions that take place when the program is run, is somewhat implicit, hidden in the execution time 
world, and not so immediate to grasp for novices. Moreover, this aspect is sometimes underestimated 
by both teachers and learners: teachers, as experts, give it for granted; learners tend to construct 
personal intuitive, not necessarily coherent, ideas of what will happen. 

This dichotomy of programming — its static visible code and its implicit dynamics — emerges as a 
critical issue when learning to program, as shown by studies from different perspectives. To cite a 
few [Sorva 2013]: 

 Phenomenography studies show how novice programmers tend to perceive programming as no 
more than the production of code, missing to relating instructions in the program to what happens 
when the program is executed. 

 Studies on programming misconceptions point out how most of programming misconceptions 
have to do with aspects that are not readily visible in the code but are related to the execution 
time, both in term of what will happen and of what will not unless explicitly specified in the code. 

 Threshold concept theory identifies program dynamics as a candidate threshold concept in 
programming as it has many of the features that characterise threshold concepts; among others: 
it is a troublesome barrier to student understanding, it transforms how the student perceives the 
subject, it marks a boundary between programmers and end users. 

To help novice programmers take into account also the dynamic side of programming, the concept of 
notional machine has been proposed. A notional machine is a characterisation of the computer in its 
role as executor of programs in a particular language (or set of languages, or even a subset of a 
language) for didactic purposes. It thus gives a convenient description of the association syntax-
semantics. The following learning outcomes should therefore be considered when teaching to program: 

 the development by students of a perception of programming that does not reduce to production 
of code, but includes relating instructions to what will happen when the program is executed, 
and eventually comes to include producing applications for use and seeing it as a way to solve 
problems; 

 the development of a mental model of a notional machine that allows them to make the 
association (static) syntax - (dynamic) semantics and to trace program execution correctly and 
coherently. 



Constructionism 2018, Vilnius, Lithuania 

904 

 

In particular this latter outcome goal will include the development of the following skills: 

• given a program (typically one’s own) and an observed behaviour: 

◦ identify when debugging is needed, 

◦ identify where a bug has occurred, 

◦ be able to correct the code; 

• given a program and its specifications, be able to test it; 

• understand that there can be multiple correct ways to program a solution. 

If this is a crucial point in learning to write executable descriptions, however, programming is indeed a 
multifaceted competence, and the knowledge to construct and the skills to develop span over several 
dimensions, besides predicting concrete semantics of abstract descriptions given via programming 
languages: 

• understanding general properties of automatic interpreters able to manipulate digital information; 

• thinking about problems in a way suitable to automatic elaboration; 

• devising, analysing, comparing solutions; 

• adapting solutions to emerging hurdles and needs; 

• organizing team work and productively eliciting, organizing, and sharing the abstract knowledge 
related to a software project. 

2.1 Constructionism and learning to program 
In some sense programming is intrinsically constructionist as it always involves the production of an 
artifact that can be shown and shared. Of course when teaching programming, this aspect can be 
stressed or attenuated. 

Failure rates and dropout percentages in traditional programming courses and the urge to introduce 

programming early in school curricula have fostered new approaches to teaching programming, where 

this aspect has gained importance. Indeed the following points are given particular consideration: 
• motivation: programming tasks should be engaging to keep pupils’ motivation high; 

• syntax: novices should be introduced first to the logical aspects of programming and only at a 
later stage to the syntax; 

• a constructivist approach: the construction of knowledge is to be fostered, for example through 
unplugged activities that are more suitable to group work and shared meta-cognition; 

• constructionism: the production of personal projects and artifacts must be encouraged. 

In this perspective, for educational purposes visual programming languages (Section 3), have been 
developed and unplugged activities have been designed. In particular visual programming languages 
allow novices to concentrate on the logical aspects of programming without having to strive with 
unnatural textual syntactic rules. Moreover, they make it possible to realise small but meaningful 
projects, keeping students motivated, and support a constructionist approach where students are 
encouraged to develop and share their projects — video games, animated stories, or simulations of 
simple real world phenomena. 

2.2 Computers Unplugged 
Offline or unplugged programming activities were often used to explain important concepts or 
vocabulary to students without actually using a PC, laptop, or smartphone, e.g., x/y coordinates, the 
need for precise instructions for computers/robots, or variables and lists. Examples are to program a 
classmate like a robot, paint instructions, pack a rucksack, or send “broadcast messages” to colleagues. 

Unplugged activities in small groups have become popular over the years to introduce basic computer 
science concepts in non vocational contexts. They offer a number of advantages: 



Constructionism 2018, Vilnius, Lithuania 

905 

 

inexpensive set up: they usually require very basic and inexpensive materials, so they can be 
easily proposed in different contexts; 

no technological hurdles: they do not involve the use of technology, with which not all teachers 
are at ease; 

a constructivist environment: indeed 

• by manipulating real objects or dramatising processes, pupils can observe what happens, 
formulate hypotheses, validate them through experiments, i.e. develop a scientific approach to 
the construction of their knowledge; 

• by working in group, pupils are encouraged to participate, share ideas, verbalise and uphold 
their deductions. 

As the results of the activities, be they the execution of a procedure, the design of a solution or the 
construction of an object, are always shared in the class, unplugged activities also have a constructionist 
flavour and can be the first phase of a more structured constructionist proposal. 

The following two examples, taken from CSUnplugged84 and ALaDDIn85, illustrate typical unplugged 
approaches to introduce children to programming. 

In CSUnplugged “Rescue Mission”, pupils are given by the teacher a very simple language with only 
three commands: 1 step forward, 90 degrees left, 90 degrees right. The task is to compose a sequence 
of instructions to move a robot from one given cell on a grid to a given other cell. Pupils are divided into 
groups of three where each one has a role: either programmer, bot, or tester. This division of roles is 
done to emphasise the fact that programs cannot be adjusted on the fly; they must be first planned, 
then implemented, then tested and debugged until they work correctly. So the programmer must write 
down the instructions for the task, then pass them to the tester, who will pass them on to the bot and 
will observe what happens; its role is to underline what doesn’t work and hand them back to the 
programmer, who can then find the bug and fix it. 

ALaDDIn “Algomotricity and Mazes” is an activity designed according to a strategy called 
algomotricity [Lonati et al. 2011; Bellettini et al. 2012, 2013, 2014], where pupils are exposed to an 
informatic concept/process by playful activities which involve a mix of tangible and abstract object 
manipulations; they can investigate it firsthand, make hypotheses that can then be tested in a guided 
context during the activity, and eventually construct viable mental models. Algomotricity starts 
“unplugged” [Bell, Rosamond, and Casey 2012] and ends with a computer-based phase to close the 
loop with pupils’ previous acquaintance with applications  [Taub, Armoni, and Ben-Ari 2012]. 

“Algomotricity and Mazes” focuses on primitives and control structures. The task is that of verbally 
guiding a “human robot”(a blindfolded person) through a simple path. Working in groups, initially pupils 
are allowed to freely interact with the “robot”, then they are requested to propose a very limited set of 
primitives to be written each on a sticky note, and to compose them into a program to be executed by 
the “robot”. Also, they have the possibility of exploiting three basic control structures besides sequence 
(if, repeat-until, repeat-n-times). Groups may try their solutions as they wish and, when they are ready, 
each group is asked to execute its own program. Then the conductor may decide to swap some 
programs, so that a program is executed by the “robot” of another group. This allows the instructor to 
emphasise the ambiguity of some instructions or the dependency of programs on special features of 
the “robot” (e.g., step/foot size). In the last phase, students are given computers and a slightly modified 
version of Scratch. They are requested to write programs that guide a sprite through mazes of increasing 
complexity and foster the use of loop control structures86. 

2.3 Notional machines 
Alan Perlis, in his foreword to “Structure and Interpretation of Computer Programs” (SICP) [Abelson, 
Sussman, and Sussman 1996], sets the stage for learning to program: “Our traffic with the subject 

                                                
84https://csunplugged.org/ 
85http://aladdin.di.unimi.it/ 
86The pictures shown in the first page show the first and last phase of the “Algomotricity and Mazes” activity, respectively. 

https://csunplugged.org/
http://aladdin.di.unimi.it/


Constructionism 2018, Vilnius, Lithuania 

906 

 

matter of this book involves us with three foci of phenomena: the human mind, collections of computer 
programs, and the computer. Every computer program is a model, hatched in the mind, of a real or 
mental process.” And then: “The source of the exhilaration associated with computer programming is 
the continual unfolding within the mind and on the computer of mechanisms expressed as programs 
and the explosion of perception they generate. If art interprets our dreams, the computer executes them 
in the guise of programs!”. 

This seems an important intuition for approaching programming from a constructionist perspective: 
programs are a join point between our mind and the computer, the interpreter of the formal description 
of what we have in mind. Thus, programs appeal to (or even exhilarate) our curiosity and ingenuity and 
are wonderful artifacts to share and discuss with other active minds. Such a sharing, however, assumes 
that the interpreter is a “common ground” among peers. When a group of people program the same 
‘machine’, a shared semantics is in fact given, but unfortunately people, especially novices, do not 
necessarily write their programs for the formal interpreter they use, rather for the notional 
machine [Sorva 2013; Berry and Kölling 2014] they actually have in their minds. 

A notional machine is an abstract computer responsible for executing programs of a particular 
kind [Sorva 2013] and its grasping refers to all the general properties of the machine that one is learning 
to control [Boulay 1986]. The purpose of a notional machine is to explain, to give intuitive meaning to 
the code a programmer writes. It normally encompasses an idealized version of the interpreter and 
other aspects of the development and run-time environment; moreover it should bring also a 
complementary intuition of what the notional machine cannot do, at least without specific directions of 
the programmer. 

To introduce a notional machine to the students is often the initial role of the instructors. Ideally this 
should be somewhat incremental in complexity, but not all programming languages are suitable for 
incremental models: in fact most of the success for introductory courses of visual languages (see 3.5) 
or lisp dialects (see 3.4 and 3.1) is that they allow shallow presentations of syntax, thus focusing the 
learners on the more relevant parts of their notional machines 87. 

An explicit reference to the notional machine can foster meta-cognition and during team work it can help 
in identifying misconceptions (see 2.5). But how can the notional machine be made explicit? The 
discussion with novice programmers should be guided by an effort of tracing the computational process 
and visualizing the execution, in order to make as clear as possible what one expects the notional 
machine will do and what it actually does. 

2.4 Abstract programming patterns 
One of the most relevant competencies to be mastered when learning computer programming is that of 
recognizing how a relatively low number of abstract patterns can be applied to a potentially infinite 
spectrum of specific conditions. This is often a challenge for novices, given that most of the times the 
discipline is taught using a two-step procedure based on: (i) introducing one or more primitive tools (say 
functions, variables, or control flow statements), and (ii) showing some (small number of) examples 
highlighting how these tools can be combined together in order to solve specific problems. This might 
lead to the rise of misconceptions of pupils w.r.t. the above mentioned tools (see 2.5 for more details). 

                                                
87On the other hand, several languages of widespread use by experienced programmers are in this sense more complex to handle in the 
context of introductory courses on programming. This is due to the fact that they force the novice to perform true leaps of faith in accepting an 
intricate syntax required even to write the simplest programs, and definitely obfuscating the underlying notional machine. Just to state an 
example, implementing in Java a canonical “hello, world!” requires the programmer to define a class, add to the latter a public, static, void 
method, provide a contract for this method, written in terms of an array of strings, and actually write the only relevant line of code, yet invoking 
a static method on a class variable of a system class. 



Constructionism 2018, Vilnius, Lithuania 

907 

 

 

The concept of role of variables [Sajaniemi 2002; Proulx 2000] has been proposed in order to suggest 
a more constructionist-like learning path in which knowledge about variables is built exploiting some 
concepts at an intermediate level between those of the operational definition of a variable as the holder 
of a mutable value of a given type (say, of a float variable storing numeric quantities) and its specific 
use cases in order to solve given problems (for instance, that of computing the maximal value within a 
sequence of numeric quantities). Here, the key concept is related to an abstract use of 
variables — regardless of their type — following a small number of roles (namely: fixed value, stepper, 
follower, most-recent holder, most-wanted holder, gatherer, transformation, one-way flag, temporary, 
and organizer). Just to state a couple of examples, 

• most-wanted holder identifies the role of a variable storing the most appropriate value found at 
any intermediate execution time in order to solve a problem (e.g., the variable typically containing 
the maximal encountered value while scanning a sequence), and 

• the follower role applies to all variables whose values is always copied from other variables when 
the latter are about to be changed (like in the naive algorithm used in order to teach how to 
generate the Fibonacci sequence without introducing recursion or the golden ratio). 

Keeping up with the example of finding a maximal value, instead of jumping right away to the algorithmic 
solution, there is a great opportunity in letting pupils reason about how this problem is in fact a special 
case of the more general quest for an optimal value which can be found exploiting a greedy strategy. 
This strategy consists in using a most-wanted holder to be compared each time with a new element of 
the sequence, possibly updating the former if the new element allows us to find a more precise solution. 
This general-purpose method easily fits the search of the maximal value, as well as the minimal one, 
but it allows us to efficiently handle less obvious cases such as that of finding the distinct vowels 
occurring in a sentence. 

The roles themselves fit the constructionist approach also because they can be gradually introduced 
following the hierarchy illustrated in Figure 2, starting from the concept of literal (e.g., an integer value 
or a string) and building knowledge about one role on the top of the knowledge of already understood 
roles. 

Loop patterns [Astrachan and Wallingford 1998] are an analogous interesting teaching subject when 
the concept to be learned identifies with iterations. For instance, the loop and a half pattern is introduced 
as an efficient way of implementing a processing strategy to be applied to a sequence of elements 

Figure 2: Roles of variables, organized in a constructionist-like hierarchy where 
the predecessor of an arrow is a prerequisitefor learning the corresponding 

successor (source: [Sajaniemi 2002]) 



Constructionism 2018, Vilnius, Lithuania 

908 

 

whose end can be detected only after having accessed at least one of the elements themselves. The 
pattern here resorts to rebuilding the almost extinguished repeat/until iterative structure [Roberts 1995] 
using an infinite loop whose body accesses the next sequence element and subsequently checks 
whether or not it is the last one. If it is, the loop is escaped through a controlled jump, otherwise some 
special actions (such as printing a warning) are executed before proceeding to the next iteration. In this 
way, there is no need of duplicating code lines (typically accessing the first element in the sequence 
outside the loop), and the check concerns the end of sequence rather than its logical negation (which 
could be harder to grasp if it involves non-trivial logical connectives). Figure 3 shows one of the 
canonical incarnations of this pattern, namely the possibly repeated check of a value given as input via 
keyboard, detecting and ignoring invalid entries; other incarnations concern in general the handling of 
external inputs (for instance when reading from a file), or the serialization of sequences which have 
been generated computationally. It is worth noting that a loop might encompass more than one pattern 
simultaneously: for instance the code in Figure 3 is also an example of polling loop.Loop patterns fit well 
within a constructionist-based learning path also because they naturally arise when critically analyzing 
a less efficient implementation of a loop: for instance, the previous polling loop could be the point of 
arrival of a reasoning scheme which started from the detection of a duplicated line of code in a quick-
and-dirty implementation proposed by pupils. 

In general, abstract programming patterns are provided in a short number, so as to be easy to fully 
cover this subject within a standard introductory course in computer programming; moreover, the related 
concepts are easily and rapidly grasped by experienced computer science teachers [Ben-Ari and 
Sajaniemi 2004], thus they can be embedded in already existing curricula with low effort. 

2.5 Misconceptions 
Sorva defines a misconceptions as understandings that are deficient or inadequate for many practical 
programming contexts [Sorva 2013]. 

Some authors [Ben-Ari 2001] believe that computer science has an exceptional position in 
constructivist’s view of knowledge constructed by individuals or groups rather than a copy of an 
ontological reality: in fact, the computer forms an "accessible ontological reality" and programming 
features many concepts that are precisely defined and implemented within technical systems [...] 
sometimes a novice programmer “doesn’t get” a concept or “gets it wrong” in a way that is not a harmless 
(or desirable) alternative interpretation. Incorrect and incomplete understandings of programming 
concepts result in unproductive programming behavior and dysfunctional programs [Sorva 2013]. 

According to Clancy [Clancy 2004] there are two macro-causes of misconceptions: over- or under-
generalizing and a confused computational model. High-level languages provide an abstraction on 
control and data, making programming simpler and more powerful, but, by contrast, hiding details of the 
executor to the user, who can consequently find mysterious some constructs and behaviors. 

Much literature about misconceptions in CSEd can be found: we list some of the most important causes 
of misconceptions, experienced especially by novices, divided into different areas, found mainly 
in [Clancy 2004; Sirkiä 2012; Sorva 2013] and in works they reference. For a complete review see for 
example [Qian and Lehman 2017]. 

English Keywords of a language do not have the same meaning in English and programming. For 

example, the word while in English indicates a constantly active test, while the construct while can 

test the condition again only at the beginning of the next iteration. Some students believe that the 

while True: 

  value = input('insert a positive, odd value') 

  if value > 0 and value % 

    break 

  print('the value is not valid') 

 

Figure 3: A typical loop and a half pattern applied to the repeated validation of external input to a 
procedure 



Constructionism 2018, Vilnius, Lithuania 

909 

 

loop ends at the precise moment the condition is falsified. Similarly, some of them think of the if 

construct as a test continuously active and awaiting the occurrence of a condition, others believed 

that the then branch is executed as soon as the condition becomes true. 

Syntax Although one may think the syntax is one of the biggest sources of misconception, studies show 
that it is a problem only in the very early stages. In particular, some students were able to write 
syntactically valid programs, which, however, were not useful for solving the given problem, or were 
semantically incorrect. 

Mathematical notation Reported by many authors, classical is the confusion that generates the 

assignment with the = symbol (for example, seen as an equation or as a swap of values between 

variables) or the increment (a = a + 1) thought of as an impossible equation. 

Examples of over-generalization Some authors found a series of non-existent constraints (e.g., 
methods in different classes that must have different names, arguments that can only be numbers, 
“dot” operator usable just in methods) dictated by the fact that the students had not seen any 
counterexample for such situations. 

Similarities The analogy “a variable is like a box” can foster the idea that - like a box - it can contain 
more elements at the same time. The analogy “programming with the computer is like conversing 
with it” can bring to attribute intentionality to the computer and therefore to think that it: 

• has a hidden intelligence that understands the intentions of the programmer and helps him 
achieve his goal (the so-called “superbug”); 

• has a general vision, knowing also what will happen in lines of code that it is not currently running. 

Some aspects of programming are particular carriers of misconceptions. 

Sequence Many misconceptions are due to lack of understanding of the program flow: all lines active 
at the same time “magic” parallelism, order of instructions not important, difficulty in understanding 
the branches. 

Passing parameters Students present difficulties in this area, for example by confusing the types of 
passing (by value, by reference ...), making confusion with the return value or with parameters scope. 

Input Input statements are particularly problematic. Students do not understand where the input data 
come from, how they are stored and made available to the program. Some of them believe that a 
program remembers all the values associated with a variable (its “history”). 

Memory allocation There are considerable difficulties in understanding the memory model of 
languages where allocation happens implicitly. 

3. Programming languages for learning to program 

Ptydepe, as you know, is a synthetic language, built on a strictly scientific basis. […] There are many 
months of intensive study ahead of you, which can be crowned by success only if it is accompanied by 
diligence, perseverance, discipline, talent and a good memory. And, of course, by faith. [Václav Havel] 

From a constructionist viewpoint of learning, programming languages have a major role: they are a key 
means for sharing artifacts and expressing one’s theories of world. The crucial part is that artifacts can 
be executed independently from the creator: someone’s (coded) mental process can become part of 
the experience of others, and thus criticized, improved, or adapted to a new project. In fact, the origin 
of the notion itself of constructionism goes back to Papert’s experiments with a programming 
environment (LOGO, see 3.1) designed exactly to let pupils tinker with math and geometry (a similar 
approach applied to physics had a smaller impact) [Papert 1980]. Does this strategy work even when 
the learning objective is the programming activity itself? Can a generic programming language be used 
to give a concrete reification of the computational thinking of a novice programmer? Or do we need 
something specifically designed for this activity? Alan Kay says that programming languages can be 
categorized in two classes: “agglutination of features” or “crystalization of style” [Kay 1993]. What is 
more important for learning effectively in a constructivist way? Features or style? 



Constructionism 2018, Vilnius, Lithuania 

910 

 

In the last decade, a number of block-based visual programming tools have been introduced which 
should help students to have an easier time when first practicing programming. These tools, often based 
on web-based technologies like Adobe Flash and later JavaScript, CSS, and HTML5, as well as an 
increase in the number of modern smartphones and tablets, opened up new ways for innovative coding 
concepts [Kahn 2017]. In general, they focus on younger learners, support novices in their first 
programming steps, can be used in informal learning situations, and provide a visual/block-based 
programming language which allows students to recognize blocks instead of recalling syntax [Tumlin 
2017]. Many popular efforts for spreading computer science in schools, like [Goode, Chapman, and 
Margolis 2012] or the teaching material from Code.org [Code.org 2018] rely on the use of such block 
based programming environments. In addition, such tools are broadly integrated in primary through 
secondary schools, and even at universities, thus they have been adopted into many computing classes 
all over the world [Meerbaum-Salant, Armoni, and Ben-Ari 2010]. 

3.1 LOGO 
LOGO was designed (since 1967) for (constructionst) educational purposes by Wally Feurzeig, 
Seymour Papert and Cynthia Solomon [Papert 1980]. Its syntax was heavily influenced by Lisp (at the 
time the standard language for Artificial Intelligence research) and LOGO featured a graphical (at least 
in principle) environment: the instructions the programmer writes are directed to a “turtle” (a small 
isosceles triangle in which the acutest angle marks the head) who moves around the screen, possibly 
leaving a colored trace. The turtle should help learners (typically 6th-8th graders) with a sort of self-
identification: its movements have a clear correspondence with their movements in the real world, 
(although the turtle moves in a 2D space). The patterns drawn by the turtle can be the way the learners 
build their understanding of 2D geometry, discovering in the process even deep mathematical truths as 
the fact that a circle can be approximated by a high number of straight segments [Abelson and DiSessa 
1986] (see Figure 4). 

 

LOGO was conceived to empower learners of geometry and kinematics, not programming. 
Programming is just a means of expression, but one with a great epistemic potential. According to 
Papert: “in teaching the computer how to think, children embark on an exploration about how they 
themselves think. The experience can be heady: Thinking about thinking turns every child into an 
epistemologist, an experience not even shared by most adults” [Papert 1980]. Also, by expressing 
something in a way even the LOGO turtle can “understand” can be fruitful even for real world activities. 
Juggling, for example, a complex motoric activity which requires dedicated training, can be analyzed 
with LOGO: the identification of proper sub-activities (i.e., sub-routines like TOP-RIGHT to recognize 
when one juggling ball is at the top of its trajectory going to the right, or TOSS-LEFT to throw the ball 
with the left hand) may shorten significantly the time for acquiring juggling skills (from days to hours, 
according to [Papert 1980]). And here ‘proper’ should be understood as appropriate to the task, but also 
as “fitting properly with the programming language idiomatic way of describing computational 
processes”. LOGO had many independent implementations and its approach is still very popular, even 

Python has a turtle package in its standard library. 

3.2 Smalltalk 
Smalltalk [Goldberg and Kay 1976] also has its roots in constructionist learning. Back in the early 
seventies, at the Learning Research Group within the Xerox Parc Research Center, people were 
envisioning a world of personal computing devices: they should have intuitive user interfaces and an 
explicit “programmability”. Smalltalk, with whose lineage traces clearly to LOGO and Lisp, was designed 

TO CIRCLE 

   REPEAT FOREVER 

     [ 

      FORWARD 1 

      RIGHT 1 

     ] 

 

Figure 4: A procedure to draw a circle in LOGO 



Constructionism 2018, Vilnius, Lithuania 

911 

 

with a general audience in mind, since everyone should be comfortable with programming and 
computing devices should become ubiquitous in learning environments “along the lines of Montessori 
and Bruner” [Kay 1993]. Thus, although clearly designed to foster a personal learning experience, 
Smalltalk was not directed specifically to children and it has conquered a wide professional audience. 
In Smalltalk everything is an ‘object’ able to react to ‘messages’. RìThere follows a highly consistent 
object-oriented approach and code can be factored out by inheritance and dynamic binding. Smalltalk 
introduces also the idea that everything in the system is programmable: in fact, the tool-chain itself and 
the application a programmer is writing are indistinguishable and available for modifications, even at 
run-time. By design, such a dynamic environment encourages a trial-and-error approach. A common 
practice for Smalltalk developers is programming with the constant support of the debugger: instead of 
creating a method before its call, one sends a message that an object “does not understand”, then they 
use the debugger to catch the exception and write the code that is needed. A specific Smalltalk system 
for children was designed later as an evolution of Squeak Smalltalk: E-toys [Kay et al. 1997] provided a 
world of “sprites”, funny characters that can be moved (concurrently) around the screen by programming 
them in Smalltalk. E-toys then evolved in Scratch (see 3.5), where the programming part was replaced 
by visual blocks. 

3.3 BASIC, Pascal 
The search for programming languages suitable for students in fields other than hard sciences and 
mathematics was in fact started in the sixties. In 1964 at Dartmouth College rose BASIC (Beginner’s 
All-purpose Symbolic Instruction Code) [Kurtz 1978]. It seems legit to mention BASIC in a paper on 
constructionism and programming: for years BASIC has been the elective language for personal 
projects and even before widespread Internet connectivity, several communities shared BASIC 
programs in Bulletin Board Systems and magazines. Its popularity among self-taught programmers, 
however, was due mainly to its availability on personal and home computing devices. Moreover, the 
language was typically implemented using an interpreter, thus naturally fostering the trial-and-error and 
incremental learning styles typical of a constructionist setting. A generation grown with BASIC still thinks 
it is a wonderful approach to get children hooked on programming (see for example [Brin 2016]). 
However, many believe BASIC is not able to foster good abstractions and fear that BASIC programmers 
will bring bad habits to all their future computational activities88. 

In 1970 Niklaus Wirth published Pascal [Wirth 1993], a small, efficient ALGOL-like language intended 
to encourage good programming practices using structured programming and data structuring. For 
about 25 years, Pascal (and its successors like TurboPascal or Modula-2) was the most popular choice 
for undergraduate courses and a whole generation of computer scientist learned to program through its 
discipline of well-structured programs popularized by Wirth in his book “Algorithms + Data Structures = 
Programs”. Only Java had a similar success in undergraduate courses. However, while Java popularity 
was (and is) influenced by trends in software industry, Pascal was appealing mainly for its intrinsic 
discipline, which matched the academic sentiment of the time. Alan Perlis, in his foreword to “Structure 
and Interpretation of Computer Programs” (see 3.4), says: “Pascal is for building pyramids—imposing, 
breathtaking, static structures built by armies pushing heavy blocks into place. Lisp is for building 
organisms—imposing, breathtaking, dynamic structures built by squads fitting fluctuating myriads of 
simpler organisms into place. The organizing principles used are the same in both cases, except for 
one extraordinarily important difference: The discretionary exportable functionality entrusted to the 
individual Lisp programmer is more than an order of magnitude greater than that to be found within 
Pascal enterprises. Lisp programs inflate libraries with functions whose utility transcends the application 
that produced them. The list, Lisp’s native data structure, is largely responsible for such growth of utility. 
The simple structure and natural applicability of lists are reflected in functions that are amazingly 
nonidiosyncratic. In Pascal the plethora of declarable data structures induces a specialization within 
functions that inhibits and penalizes casual cooperation. It is better to have 100 functions operate on 

                                                
88A recent anecdote: Brian Kernighan — one of the designers of C — called a book written by a BASIC programmer “the worst C programming 
textbook ever written”! See https://wozniak.ca/blog/2018/06/25/Massacring-C-Pointers/index.html for the full story. 

https://wozniak.ca/blog/2018/06/25/Massacring-C-Pointers/index.html


Constructionism 2018, Vilnius, Lithuania 

912 

 

one data structure than to have 10 functions operate on 10 data structures. As a result the pyramid must 
stand unchanged for a millennium; the organism must evolve or perish.” 

Structured programming had also some LOGO-like descendants, the most famous one is probably 
Karel [Pattis 1981], in which the programmer controls a simple robot that moves in a grid of streets (left-
right) and avenues (up-down). A programmer can create additional instructions by defining them in 
terms of the five basic instructions, and by using conditional control flow statements with environment 
queries. 

3.4 Scheme, Racket 
Scheme [Abelson et al. 1998] is a language originally aimed at bringing structured programming in the 
lands of Lisp (mainly by adding lexical scoping). The language has been standardized by IEEE in 1999 
and nowadays it has a wide and energetic community of users. Its importance in education, however, 
is chiefly related to a book, “Structure and Interpretation of Computer Programs” (SICP) [Abelson, 
Sussman, and Sussman 1996], which had a tremendous impact on the practice of programming 
education. The book derived from a semester course taught at MIT. It has the peculiarity to present 
programming as a way of organizing thinking and problem solving. Every detail of the Scheme (which, 
being a Lisp dialect, has lightweight syntax) notional machine is worked out in the book: in fact at the 
end, the reader should be able to understand the mechanics of a Scheme interpreter and to program 
one by her/himself (in Scheme). The book, which enjoyed widespread adoption, was originally directed 
to MIT undergraduates and it is certainly not suitable either for children or even adults without a scientific 
background: examples are often taken from college-level mathematics and physics. Its emphasis on 
“organized abstraction” and “procedural epistemology” makes it a fundamental reading for anyone 
reflecting on teaching and learning how to build complex systems. 

A spin-off of SICP explicitly directed to learning is Racket. Born as ‘PLT Scheme’, one of its strength is 
the programming environment DrScheme [Findler et al. 2002] (now DrRacket): it supports educational 
scaffolding, it suggests proper documentation, and it can use different flavours of the language, starting 
from a very basic one (Beginning Student Language, it includes only notation for function definitions, 
function applications, and conditional expressions) to multi-paradigm dialects; this flexibility is relatively 
easy in a Lisp-like world, since most of the “syntax” is in fact provided by macros, that can be active or 
not89. The DrRacket approach is supported by an online book “How to design programs” (HTDP) 90 and 
it has been adapted to other mainstream languages, like Java [Allen, Cartwright, and Stoler 2002] and 
Python. The availability of different languages directed to the progression of learning should help in 
overcoming what the DrRacket proponents identify as “the crucial problem” in the interaction between 
the learner and the programming environment: beginners make mistakes before they know much of the 
language, but development tools yet diagnose these errors as if the programmer already knew the 
whole notional machine. Moreover, DrRacket has a minimal interface aimed at not confusing novices, 
with just two simple interactive panes: a definitions area, and an interactions area, which allows a 
programmer to ask for the evaluation of expressions that may refer to the definitions. Similarly to what 
happens in visual languages, Racket allows for direct manipulation of sprites, see an example in 
Figure 5. 

                                                
89A small syntactic improvement of Racket over Lisp, very useful for beginners, is that nested parentheses can be matched easily by using 
different bracket families: for example, (- {/ [* (+ 2 3) 4] 2 } 1) 
90Current version: http://www.htdp.org/2018-01-06/Book/index.html 

http://www.htdp.org/2018-01-06/Book/index.html


Constructionism 2018, Vilnius, Lithuania 

913 

 

 
The authors of HTDP claim that “program design — but not programming — deserves the same role in 
a liberal-arts education as mathematics and language skills.” They aim at systematically designed 
programs thanks to systematic thought, planning, and understanding from the very beginning, at every 
stage, and for every step. To this end the HTDP approach is to present “design recipes”, supported by 
predefined scaffolding that should be iteratively refined to match the problem at hand. This is indeed 
very close to the idea of micropatterns discussed in 2.4. 

3.5 Scratch, Snap!, Alice, and others 
EToys worlds (see 3.2) with pre-defined — although programmable — objects, evolved in a generic 
environment in which everything can be defined in terms of ‘statement’ blocks. Scratch [Resnick et al. 
2009], originally written in Smalltalk (but this is hidden to most users: only a “secret” key combination 
can bring the Smalltalk environment alive), is the most popular and successful visual block based 
programming environment. Launched in 2007 by the MIT Media Lab, the Scratch site has grown to 
more than 25 million registered members with over 29 million Scratch projects shared programs. 

Unlike traditional programming languages, which require code statements and complex syntax rules, 
here graphical programming blocks are used that automatically snap together like Lego bricks when 
they make syntactical sense [Ford 2009]. In visual programming languages, a block represents a 
command or action and they are arranged in scripts. The composition of individual scripts equals the 
construction of an algorithm. The building blocks offer the possibility, e.g., to animate different objects 
on the stage, thus defining the behavior of the objects. In addition to the basic control structures, there 
are event-triggering building blocks/conditions for event-driven programming [Georgios and Kiriaki 
2009]. Familiar concepts such as variables, variable lists, Boolean logic, user interface design, etc. are 
provided as well. Furthermore, most visual programming environments offer the possibility to integrate 
graphics, animations, music, and sound to create video games, movies, and interactive stories. In that 
way, creative and artistic talents of the students are displayed in their games, stories, and applications. 
Thereby, these visual languages offer the same programming logic and concepts as other (text-based) 
programming languages. 

Some characteristics of the Scratch environment [Maloney et al. 2010] are particularly relevant in the 
constructionist approach. 

Liveness The code is constantly executed and can be changed on the fly, immediately seeing 
the runtime effects of the change; this encourages users to tinker with the code. 

No error messages When you play with Lego bricks, they stack together or they don’t - the 
same happens in Scratch; program always run: syntax errors are prevented from the block 
shapes and connections, and also runtime errors are avoided by doing something 
“reasonable” (e.g., in the case of an out-of-range value); this is particularly important not to 
frustrate kids and to keep them iterating and developing: “A program that runs, even if it is 
not correct, feels closer to working than a program that does not run (or compile) at 
all” [Maloney et al. 2010]. 

Figure 5: Racket code for “landing a rocket” 



Constructionism 2018, Vilnius, Lithuania 

914 

 

Other characteristics are useful to help novices avoiding misconceptions that often arise when starting 
to learn to program. 

Execution made visible A glowing yellow border surrounds running scripts; moreover version 
1.4 (and Snap!, for example) provides a “single-stepping” mode, where each block is 
highlighted when it is executed; this is very helpful in program reading and debugging, and 
helps students form a correct mental model of the notional machine underlying the program 
execution. 

Making data concrete You can see in a variable box, automatically shown, its current value: 
again, this is helpful for making the underlying machine model visible. 

Finally, other characteristics introduce important software engineering and development concepts. 

Open source Each shared project has a “see inside” button that brings you to the project 
source; you can read and edit the blocks to see what happens. 

Remixing If you edit someone else’s project, you create a remix: you are the author, but the 
system automatically gives credits to the original author (at any depth, keeping track of 
multiple remixes in a tree) and suggests you to explicitly declare what changes you made. 

The main limitation of Scratch programs is that they do not scale well from the abstraction point of view: 
only since version 2 you can “make a new block” that is, a procedure with optional parameters. These 
blocks have no possibility to return a value (like a number or a boolean) and so can’t be nested inside 
other blocks, forcing you to modify global variables if needed. 

Snap!91 (originally BYOB, Build Your Own Blocks) is an extended reimplementation of Scratch with 
functions and continuations. These added capabilities make it suitable for a serious introduction to 
computer science for high school or college students: in fact, Snap! is used as the basis for an Advanced 
Placement CS course at Berkeley92. 

The Scratch approach was also ported to mainstream programming languages: in Alice [Dann, Cooper, 
and Pausch 2008] visual blocks are in fact Java instructions. Alice worlds are 3D: this choice makes it 
very attractive and appealing to pupils, who can program amazing 3D animations. It also adds many 
complexities, since moving objects in a 3D space is not trivial. 

Recently, several block-based development environments for web-browsers were published (even the 
last version of Scratch is web based, thus abandoning its Smalltalk inner soul). The most popular is 
probably Google’s Blockly93, which allows for programming both with blocks and textual programming 
languages (Javascript and Python): the programmer can see the source code in different 
interchangeable ways. MIT has developed a version of Blockly that can even be used to create Android 
applications, to be executed on mobile phones and that can take advantage of sensors and Google 
services like maps (App Inventor94). Even Apple recently proposed a block-based interface for its Swift 
programming language95 and other Android-based visual programming language environments exist. 
For example, Pocket Code allows the creation of games, stories, animations, and many types of other 
apps directly on phones or tablets, thereby teaching fundamental programming skills [Slany 2014]. The 
free and open source project Catrobat 96 was initiated 2010 in Austria at TU Graz. This team develops 
free educational apps for teenagers with the aim to introduce young people to programming. With a 
playful approach, young people can be engaged and game development can be promoted with a focus 
on design and creativity. The drag and drop interface provides a variety of bricks that can be joined 
together to develop fully fledged programs. The app is freely available for Android at the Google’s Play 
Store 97 and soon it will be available on the Apple App Store for iOS. The target audience for Pocket 

                                                
91https://snap.berkeley.edu/ 
92https://bjc.berkeley.edu/ 
93https://developers.google.com/blockly/ 
94http://appinventor.mit.edu 
95https://www.apple.com/swift/playgrounds/ 
96https://www.catrobat.org/ 
97https://catrob.at/pc 

https://snap.berkeley.edu/
https://bjc.berkeley.edu/
https://developers.google.com/blockly/
http://appinventor.mit.edu/
https://www.apple.com/swift/playgrounds/
https://www.catrobat.org/
https://catrob.at/pc


Constructionism 2018, Vilnius, Lithuania 

915 

 

Code are teenagers between the age of 11 and 17 years old who have access to or own an Android 
smartphone. 

Since its first versions, Scratch had blocks able to connect and program external (physical) robots. In 
fact most of the mentioned environments can connect to physical devices and sensors, with the goal of 
increasing the constructionist appeal of block programming, and opening to the world of “tinkering” with 
electronics. Resources like the ‘Makey Makey’ 98 tool became popular for activities during coding 
workshops with innovative forms of production and do-it-yourself work [Schön, Ebner, and Kumar 2014; 
Sheth, Bell, and Kaiser 2012]. 

All in all, visual programming languages seem to provide an easier start and a more engaging 
experience for learners. The ease of use, simplicity, and desirability of new visual programming 
environments enables young people to imagine complex goals. A study which compared three classes 
that used either block-based (Scratch), text-based (Java), or hybrid blocks/text (Snap!/JavaScript) 
programming languages showed that students generally found block-based programming to be easier 
than the text-based environments [Weintrop and Wilensky 2015]. Some researchers, however, argue 
that students are not fully convinced that a visual language can help them learn other programming 
languages [Lewis et al. 2014]. 

3.6 Common features 
The above short survey of programming languages for education shows they have some recurrent traits 
that link them to the themes discussed in Sect. 2. 

Personification The interpreter becomes a “persona”, computation is then carried out through 
anthropomorphic (or, better, zoomorphic, since animals are very common) actions. This 
seems to contradict a famous piece of advice coming from no less than 
E. W. Dijkstra [Dijkstra 1985]. Speaking of anthropomorphism in computer science, he 
noted: “The trouble with the metaphor is, firstly, that it invites you to identify yourself with the 
computational processes going on in system components and, secondly, that we see 
ourselves as existing in time. Consequently the use of the metaphor forces one to what we 
call ‘operational reasoning’, that is reasoning in terms of the computational processes that 
could take place. From a methodological point of view this is a well-identified and well-
documented mistake: it induces a combinatorial explosion of the number of cases to 
consider and designs thus conceived are as a result full of bugs.” The reasoning in terms of 
the computational processes, however, is what is probably needed for a novice in order to 
familiarize with the notional machine. Some sort of operational reasoning seems also 
important to foster the basic intuition needed by a constructivist approach, in which concrete, 
public actions are key. 

Visualization and tracking Computational processes that evolve in time are described by 
static texts: the mapping between the two is not trivial and it requires an understanding of 
the notional machine. Educational programming environments often try to make the 
mapping more explicit with some visualization of the ongoing process: the trace left by the 
LOGO turtle, or some other exposition of the changing state of the interpreter. 

Appeal Engagement of learners is crucial: to this end it is important to give learners powerful 
libraries and building blocks. It is not clear, however, how to properly balance amazing 
effects in order to avoid they become a major distraction: sometimes children may spend 
their (limited) time in changing the colors of the sprites, instead of trying to solve problems. 
While they surely learn something even in these trivial activities, they also risk to lose their 
opportunity of recognizing the thrill which comes when solving computational problems by 
themselves. 

                                                
98https://makeymakey.com/ 

https://makeymakey.com/


Constructionism 2018, Vilnius, Lithuania 

916 

 

4 Learning to think computationally 

The expression “Computational Thinking” (CT) has a very special relationship with Papert’s 
constructionisim: the first ascertained attestation is in Papert’s seminal book Mindstorms [Papert 1980]. 
As already stated in 3.1, Papert was not focused on teaching computer science concepts, but on the 
use of computation as a means of self expression and as a tool for learning ideas and concepts of other 
disciplines. 

The expression almost completely disappeared (except for a Papert’s work about math [Papert 1996]) 
till 2006. 

In 2006 Jeannette Wing brought the expression “Computational Thinking” back to the discussion [Wing 
2006], gaining a massive attention99. In that seminal article, Wing didn’t give a definition, but tightened 
the concept to the computer science discipline, stating “Computational thinking involves solving 
problems, designing systems, and understanding human behavior, by drawing on the concepts 
fundamental to computer science” or that “thinking like computer scientists” is a fundamental skill for 
everyone. 

In the following years she proposed (along with Cuny, Snyder and Aho) a formal definition: CT is “the 
thought processes involved in formulating problems and their solutions so that the solutions are 
represented in a form that can be effectively carried out by an information-processing agent” [Wing 
2010]. Wing argues that children who are introduced to CS learn more than just programming and that 
this opens a new way of thinking [Wing 2008]. Moreover, students should think first about possible 
solutions to a given problem (problem solving skills), and second implement their ideas by using a 
computing device (programming skills [Lye and Koh 2014]). In order to successfully implement their 
own solutions, students have to apply different programming concepts, such as loops and conditions, 
as well as practices, such as abstraction and debugging [Kafai and Burke 2013]. For teachers, however, 
developing computational thinking skills in students is actually a challenging task [Sentance and 
Csizmadia 2015]. After Wing’s articles, the discussion about the nature of CT and how to teach it in fact 
exploded. 

In [Corradini, Lodi, and Nardelli 2017] authors analysed different CT definitions and frameworks, finding 
out that all definitions agreed on the fact that CT is a way of thinking (thought process) for problem 
solving but specifying that it is not just problem solving: the formulation and the solution of the problem 
must be expressed in a way that allows a processing agent (a human or a machine) to carry it out. 

Moreover, authors in [Corradini, Lodi, and Nardelli 2017] noticed that each definition listed some 
characteristics of CT, from thinking habits to specific programming concepts. They classified them in 
four categories. We quote here their findings. 

Mental processes: Mental strategies useful to solve problems. 

• Algorithmic thinking: use algorithmic thinking to design a sequence of ordered steps 
(instructions) to solve a problem, achieve a goal or perform a task. 

• Logical thinking: use logical thinking and reasoning to make sense of things, establish and 
check facts. 

• Problem decomposition: split a complex problem in simpler subproblems to solve it more 
easily; modularize; use compositional reasoning. 

• Abstraction: get rid of useless details to focus on relevant information / ideas. 

• Pattern recognition: discover and use regularities in data, problems. 

• Generalization: use discovered similarities to make predictions or to solve more general 
problems. 

Methods: Operational approaches widely used by computer scientists. 

                                                
99Currently (August 2018), the paper has more than 3800 citations, according to Google Scholar 



Constructionism 2018, Vilnius, Lithuania 

917 

 

• Automation: automate the solutions; use a computer or a machine to do repetitive tasks. 

• Data collection, analysis and representation: gather information/data, make sense of them 
by finding patterns, represent them properly; store, retrieve and update values. 

• Parallelization: carry out tasks simultaneously to reach a common goal, use parallel thinking. 

• Simulation: represent data and (real world) processes through models, run experiments on 
models. 

• Evaluation: implement and analyze solutions to judge them, in particular for what concerns 
effectiveness, efficiency in terms of time and resources. 

• Programming: use some common concepts in programming (eg. loops, events, 
conditionals, mathematical and logical operators). 

Practices: Typical practices used in the implementation of computing machinery based 
solutions. 

• Experimenting, iterating, tinkering: in iterative and incremental software development, one 
develops a project with repeated iterations of a design-build-test cycle, incrementally building 
the final result; tinkering means trying things out using a trial and error process, learning by 
playing, exploring, and experimenting. 

• Test and debug: verify that solutions work by trying them out; find and solve problems (bugs) 
in a solution/ program. 

• Reuse and remix: build your solution on existing code, projects, ideas. 

Transversal skills: General ways of seeing and operating in the world; useful life skills 
enhanced by thinking like a computer scientist. 

• Create: design and build things, use computation to be creative and express yourself. 

• Communicate and collaborate: connect with others and work together to create something 
with a common goal and to ensure a better solution. 

• Reflect, learn, meta-reflect: use computation to reflect and understand computational 
aspects of the world. 

• Be tolerant for ambiguity: deal with non-well specified and open-ended real-world problems. 

• Be persistent when dealing with complex problems: be confident in working with difficult or 
complex problems, persevering, being determined, resilient and tenacious. 

As you may notice, a lot of concepts are involved. Sometimes this led to critiques [Hemmendinger 2010]: 
some of these concepts are not exclusively associated with CS, but taught in other disciplines (e.g., 
math) or are general skills that children have been learning for a long time before the birth of CS. Anyway 
CS brings to the discussion some characteristic problem solving methods (e.g., the possibility to 
effectively execute a solution/a model/an abstraction by running an implementation of its 
algorithm [Martini 2012]). Constructionist’s spirit emerges mainly in practices and transversal skills, but 
we should pay attention not to forget mental processes and CS methods: loosing this connection may 
lead to misconceptions about the nature of computational thinking, de-empowering Wing’s idea of the 
importance of “thinking like computer scientists” in many human activities. 

The most used technique to teach CT is teaching to program (with languages suitable for the learner’s 
age and capacity). Programming is in fact the main way computer scientists express their solutions and 
so the main way they learn to think computationally. Teaching to program leads to problems and 
opportunities discussed in the previous sections. Nonetheless, unplugged activities (see 2.2) have been 
proposed as well, as they help kids to act like the computer, becoming aware of the underlying notional 
machine (see 2.3). 



Constructionism 2018, Vilnius, Lithuania 

918 

 

5 Learning to program in teams 

Working in teams requires new skills, especially because software products (even the ones in the reach 
of novices) are often tangled with many dependencies and division of labour is hard: it inevitably requires 
appropriate communication and coordination. Therefore, it is important that novice programmers learn 
to program in an “organized” way, thus discovering that as a group they are able to solve more 
challenging and open-ended problems, maybe with interdisciplinary contributions. 

To this end, agile methodologies seem to fit well with the needs of a constructionist team of learners 
and they are increasingly exploited in educational settings (see for example [Kastl, Kiesmüller, and 
Romeike 2016; Missiroli, Russo, and Ciancarini 2016]): 

• agile teams are typically small groups of 4–8 co-workers; 

• agile values [Beck et al. 2001] (individuals and interactions over processes and tools; customer 
collaboration over contract negotiation; responding to change over following a plan; working 
software over comprehensive documentation) relate well with constructivist philosophies; 

• agile teams are self-organizing and emphasize the need of reflecting regularly on how to become 
more effective, and tune and adjust their behavior accordingly; 

• typical agile techniques like pair programming, test driven development, iterative software 
development, continuous integration are very attractive for a learning context. 

5.1 Iterative software development 
For program development cycles, concepts of agile and iterative software development can be used to 
leverage this process and to see first results very quickly [DeMarco-Brown 2013; Davies and Sedley 
2009]. Figure 6 visualizes the process of game design in reference to agile methods. As the scope of 
this paper is limited, only a simplified life cycle is visualized to describe the process of how a team works 
in iterations to deliver or release software. 

 



Constructionism 2018, Vilnius, Lithuania 

919 

 

 
The first step, Research, includes the development of the core idea by producing a simple game concept 
or a storyboard. In this phase the story, title, genre, and theme of the game should be selected, as well 
as a rough concept about the structure and gameplay. 

In the second step, during the Design, the artwork, game content and other elements (characters, 
assets, avatars, etc.), and the whole gaming word is produced. 

The Development phase, includes all of the actual programming, followed by Testing the code and the 
software (playtesting). Several iterations between testing and bug fixing are possible. 

As a final step, the Release phase is planned. This could include several beta releases or a final release 
for end users. The agile model required to get started with the project works to bring customer 
satisfaction by rapid, continuous delivery of useful software. 

“In an iterative methodology, a rough version of the game is rapidly prototyped as early in the 
design process as possible. This prototype has none of the aesthetic trappings of the final 
game, but begins to define its fundamental rules and core mechanics.”  [Salen and Zimmerman 
2003, p. 11] 

To phrase it differently, before focusing on every detail of the project, focus on the smallest step the 
games needs for playing it, e.g., limited interface control but basic game functionality. 

Collaborative work and the connection with a real world problem makes their learning valuable [Jaime 
and Ruby 2011]. Project work is always student-centered and task oriented. The final artefacts of this 
project work can be shared with a community, thus fostering ownership. The benefits of learning through 
projects include enhanced students’ participation within active learning and self-learning, enhanced 
communication skills, addressing of a wider set of learning styles, and improved critical thinking skills. 
This collaboration is needed for developing the game idea, communicating, sharing, and managing 
assets and codes, playtesting and documentation. 

Teachers have to consider how to support collaboration and communication during the whole game 
production process [Ferreira et al. 2008]. They must therefore stick to certain design patterns and 
iterative cycles (e.g., agile) and explain game elements and rules. The project in general should foster 
the teamwork in producing game assets and software. Teachers have to take into account the different 
preferences of students, e.g., if they feel more confident in the role of developers or artists, or that 

 

Figure 6: Agile Development Cycle (DeMarco-Brown 2013; Davies and Sedley 2009) 



Constructionism 2018, Vilnius, Lithuania 

920 

 

students do not shy away from switching roles. Finally, the teacher has to ensure that the ideas for the 
project are simple and clear, as well as reduce the size and complexity of the game projects. 

5.2 Test-driven development and debugging 
Within the agile framework, a special constructivist emphasis is provided by test-driven development, 
or TDD for short [Beck 2003]. This technique reverses the classical temporal order between the 
implementation of code and the test of its correctness. Namely, the specification of the programming 
task at hand is actually provided with a test the defines correct behavior. The development cycle is then 
based on the iteration of the following three-step procedure: 

1. write a test known to fail according to the current stage of the implementation, 

2. perform the smallest code update which satisfies all considered tests, including the one 
introduced in previous point, and 

3. optionally refactor the produced code. 

TDD makes testing the engine driving the overall development process, and suggesting a good next 
test is one of the hardest-to-find contributions that a facilitator might give in an active programming 
learning context. Such suggestion has indeed the role of letting pupils aware that their belief at a broad 
level (“the program works”) is false, thus an analogous belief at a smaller scale (for instance, “this 
function always returns the correct result”) should be false, too. This amounts to the destruction of 
knowledge necessary to build new knowledge (aka a working program) in a constructivist setting. Even 
the refactoring step corresponds well to the constructivist re-organization of knowledge that follows the 
discovery of more viable solutions. In fact, most of the developing activities consist in realizing that a 
more or less complex system which was thought to correctly work actually it is not able to cope with a 
new arising test case. This applies of course also to the simplest coding tasks faced by students 
engaged in learning the basis of computer programming. 

Once pupils are convinced that their implementation is flawed, the localization of the code lines to be 
reconsidered is the other pillar of an active learning setting. Again, a paramount contribution for a 
successful learning process should be provided by a facilitator suggesting suitable debugging 
techniques (e.g., proposing critical input values to the wrong program, hinting specific points in the 
execution flow to be verified, or giving advice about variables to be tracked during the next run). 

6 Conclusions 

Literature on learning to program through a constructionist strategy mostly focuses on how to bring the 
abstract and formal nature of programming languages into manipulation of more concrete (or even 
tangible) “objects”. Many proposals aim at overcoming the (initial) hurdles which textual rules of syntax 
may pose to children. Also, several environments have been designed in order to increase the appeal 
of programming by connecting this activity to real world devices or providing fancy libraries. Instead, 
more work is probably needed to make educators and learners more aware of the so-called notional 
machine behind the programming language. Programming environments could be more explicit about 
the complex relationship between the code one writes and the actions that take place when the program 
is executed. Moreover, micro-patterns should be exploited in order to enhance problem solving skills of 
novice programmers, such that they become able to think about the solution of problems in the typical 
way that make the former suitable to automatic elaboration. Agile methodologies, now also common in 
professional settings, seem to fit well with constructionist learning. Besides the stress on team working, 
particularly useful seems the agile emphasis on having running artifacts through all the development 
cycle and the common practice of driving development with explicit or even executable “definitions of 
done”. 

References 

Abelson, H., and A.A. DiSessa. 1986. Turtle Geometry: The Computer as a Medium for Exploring 
Mathematics. Artificial Intelligence Series. AAAI Press. 



Constructionism 2018, Vilnius, Lithuania 

921 

 

Abelson, H., R.K. Dybvig, C.T. Haynes, G.J. Rozas, N.I. Adams, D.P. Friedman, E. Kohlbecker, et al. 
1998. “Revised5 Report on the Algorithmic Language Scheme.” Higher-Order and Symbolic 
Computation 11 (1): 7–105. https://doi.org/10.1023/A:1010051815785. 

Abelson, H., G.J. Sussman, and J. Sussman. 1996. Structure and Interpretation of Computer Programs. 
Second. MIT press. 

Allen, Eric, Robert Cartwright, and Brian Stoler. 2002. “DrJava: A Lightweight Pedagogic Environment 
for Java.” SIGCSE Bull. 34 (1). New York, NY, USA: ACM: 137–41. 
https://doi.org/10.1145/563517.563395. 

Astrachan, Owen, and Eugene Wallingford. 1998. “Loop Patterns.” In Proceedings of the Fifth Pattern 
Languages of Programs Conference. 

Beck, Kent. 2003. Test-Driven Development: By Example. Addison-Wesley Professional. 

Beck, Kent, and Cynthia Andres. 2004. Extreme Programming Explained: Embrace Change. Second. 
Addison-Wesley Professional. 

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, 
James Grenning, et al. 2001. “Manifesto for Agile Software Development.” 
http://agilemanifesto.org/iso/en/manifesto.html. 

Bell, T., F. Rosamond, and N. Casey. 2012. “Computer Science Unplugged and Related Projects in 
Math and Computer Science Popularization.” In The Multivariate Algorithmic Revolution and Beyond, 
edited by Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, 398–456. Berlin, 
Heidelberg: Springer-Verlag. http://dl.acm.org/citation.cfm?id=2344236.2344256. 

Bellettini, Carlo, Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna Morpurgo, and Mauro Torelli. 
2012. “Exploring the Processing of Formatted Texts by a Kynesthetic Approach.” In Proc. of the 7th 
Wipsce, 143–44. WiPSCE ’12. New York, NY, USA: ACM. 
https://doi.org/http://dx.doi.org/10.1145/2481449.2481484. 

Carlo Bellettini, Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna Morpurgo, and Mauro Torelli.. 
2013. “What You See Is What You Have in Mind: Constructing Mental Models for Formatted Text 
Processing.” In Proceedings of ISSEP2013, 139–47. Commentarii Informaticae Didacticae 6. 
Universitätsverlag Potsdam. http://opus.kobv.de/ubp/volltexte/2013/6368/pdf/cid06.pdf. 

Bellettini, Carlo, Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna Morpurgo, Mauro Torelli, and 
Luisa Zecca. 2014. “Extracurricular Activities for Improving the Perception of Informatics in Secondary 
Schools.” In Proceedings of ISSEP2014, edited by Yasemin Gülbahar and Erin c Karata s, 8730:161–
72. Lecture Notes in Computer Science. Springer. https://doi.org/http://dx.doi.org/10.1007/978-3-319-
09958-3_15. 

Ben-Ari, Mordechai. 2001. “Constructivism in Computer Science Education.” Journal of Computers in 
Mathematics and Science Teaching 20 (1). Association for the Advancement of Computing in Education 
(AACE): 45–73. 

Ben-Ari, Mordechai, and Jorma Sajaniemi. 2004. “Roles of Variables as Seen by Cs Educators.” In ACM 
Sigcse Bulletin, 36:52–56. 3. ACM. 

Berry, Michael, and Michael Kölling. 2014. “The State of Play: A Notional Machine for Learning 
Programming.” In Proceedings of the 2014 Conference on Innovation &#38; Technology in Computer 
Science Education, 21–26. ITiCSE ’14. New York, NY, USA: ACM. 
https://doi.org/10.1145/2591708.2591721. 

Boulay, Benedict Du. 1986. “Some Difficulties of Learning to Program.” Journal of Educational 
Computing Research 2 (1): 57–73. https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9. 

Brin, David. 2016. “Why Johnny Can’t Code.” https://www.salon.com/2006/09/14/basic_2/. 

Clancy, Michael. 2004. “Misconceptions and Attitudes That Interfere with Learning to Program.” In 
Computer Science Education Research, edited by Sally Fincher and Marian Petre, 85–100. Routledge. 

https://doi.org/10.1023/A:1010051815785
https://doi.org/10.1145/563517.563395
http://agilemanifesto.org/iso/en/manifesto.html
http://dl.acm.org/citation.cfm?id=2344236.2344256
https://doi.org/http:/dx.doi.org/10.1145/2481449.2481484
http://opus.kobv.de/ubp/volltexte/2013/6368/pdf/cid06.pdf
https://doi.org/http:/dx.doi.org/10.1007/978-3-319-09958-3_15
https://doi.org/http:/dx.doi.org/10.1007/978-3-319-09958-3_15
https://doi.org/10.1145/2591708.2591721
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://www.salon.com/2006/09/14/basic_2/


Constructionism 2018, Vilnius, Lithuania 

922 

 

Code.org. 2018. “HOour of Code.” Retrieved July 17, 2018 from https://hourofcode.com/de. 

Corradini, Isabella, Michael Lodi, and Enrico Nardelli. 2017. “Conceptions and Misconceptions About 
Computational Thinking Among Italian Primary School Teachers.” In Proceedings of the 2017 Acm 
Conference on International Computing Education Research, 136–44. ICER ’17. New York, NY, USA: 
ACM. https://doi.org/10.1145/3105726.3106194. 

Dann, Wanda P, Stephen Cooper, and Randy Pausch. 2008. Learning to Program with Alice. Prentice 
Hall Press. 

Davies, Rachel, and Liz Sedley. 2009. Agile Coaching. The Pragmatic Bookshelf. 

DeMarco-Brown, Diana. 2013. Agile User Experience Design - A Practitioner’s Guide to making it work. 
In Elsevier Inc. 

Dijkstra, Edsger W. 1985. “On Anthropomorphism in Science. EWD936.” 
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF. 

Ferreira, Alexandre, Eliane Pereira, Junia Anacleto, Aparecido Carvalho, and Izaura Carelli. 2008. “The 
common sense-based educational quiz game framework ‘What is it?’.” In ACM International Conference 
Proceeding Series. 

Findler, Robert Bruce, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul 
Steckler, and Matthias Felleisen. 2002. “DrScheme: A Programming Environment for Scheme.” Journal 
of Functional Programming 12 (2). Cambridge University Press: 159–82. 

Ford, Jerry Lee. 2009. Scratch programming for Teens. In Computer Science Books. 

Georgios, Fesakis, and Serafeim Kiriaki. 2009. “Influence of the Familiarization with ‘Scratch’ on Future 
Teachers’ Opinions and Attitudes about Programming and ICT in Education.” 

Goldberg, Adele, and Alan Kay. 1976. Smalltalk-72 Instruction Manual. Xerox. 

Goode, Joanna, Gail Chapman, and Jane Margolis. 2012. “Beyond curriculum: the exploring computer 
science program.” In Magazine ACM Inroads. 

Hauswirth, Matthias, Andrea Adamoli, and Mohammad Reza Azadmanesh. 2017. “The Program Is the 
System: Introduction to Programming Without Abstraction.” In Proceedings of the 17th Koli Calling 
International Conference on Computing Education Research, 138–42. Koli Calling ’17. New York, NY, 
USA: ACM. https://doi.org/10.1145/3141880.3141894. 

Hemmendinger, David. 2010. “A Plea for Modesty.” ACM Inroads 1 (2). New York, NY, USA: ACM: 4–
7. https://doi.org/10.1145/1805724.1805725. 

Horn, Michael S., and Robert J. K. Jacob. 2007. “Designing Tangible Programming Languages for 
Classroom Use.” In Proceedings of the 1st International Conference on Tangible and Embedded 
Interaction, 159–62. TEI ’07. New York, NY, USA: ACM. https://doi.org/10.1145/1226969.1227003. 

Jaime, Sanchez, and Olivares Ruby. 2011. “Problem solving and collaboration using mobile serious 
games.” In Elsevier Ltd. 

Kafai, Yasmin, and Q. Burke. 2013. “Computer programming goes back to school.” In Phi Delta Kappan. 

Kahn, Ken. 2017. “A half-century perspective on Computational Thinking.” In Technologias, Sociedade 
E Conhecimento. 

Kastl, Petra, Ulrich Kiesmüller, and Ralf Romeike. 2016. “Starting Out with Projects: Experiences with 
Agile Software Development in High Schools.” In Proceedings of the 11th Workshop in Primary and 
Secondary Computing Education, 60–65. WiPSCE ’16. New York, NY, USA: ACM. 
https://doi.org/10.1145/2978249.2978257. 

Kay, Alan C. 1993. “The Early History of Smalltalk.” SIGPLAN Not. 28 (3). New York, NY, USA: ACM: 
69–95. https://doi.org/10.1145/155360.155364. 

https://hourofcode.com/de
https://doi.org/10.1145/3105726.3106194
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF
https://doi.org/10.1145/3141880.3141894
https://doi.org/10.1145/1805724.1805725
https://doi.org/10.1145/1226969.1227003
https://doi.org/10.1145/2978249.2978257
https://doi.org/10.1145/155360.155364


Constructionism 2018, Vilnius, Lithuania 

923 

 

Kay, A., K. Rose, D. Ingalls, T. Kaehle, J. Maloney, and S. Wallace. 1997. “Etoys & SimStories.” Walt 
Disney Imagineering. 

Kurtz, Thomas E. 1978. “BASIC.” SIGPLAN Not. 13 (8). New York, NY, USA: ACM: 103–18. 
https://doi.org/10.1145/960118.808376. 

Lewis, Colleen, Sarah Esper, Victor Bhattacharyya, Noelle Fa-Kaji, Neftali Dominguez, and Arielle 
Schlesinger. 2014. “Children’s perceptions of what counts as a programming language.” In Journal of 
Computing Sciences in Colleges. 

Lonati, Violetta, Mattia Monga, Anna Morpurgo, and Mauro Torelli. 2011. “What’s the Fun in Informatics? 
Working to Capture Children and Teachers into the Pleasure of Computing.” In Proceedings of 
Issep2011, edited by I. Kalaš and R.T. Mittermeir, 7013:213–24. Lecture Notes in Computer Science. 
Springer-Verlag. https://doi.org/http://dx.doi.org/10.1007/978-3-642-24722-4_19. 

Lye, S.Y., and J.H.L. Koh. 2014. “Review on teaching and learning of computational thinking through 
programming: What is next for K-12?” In Computers in Human Behavior. 

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. “The 
Scratch Programming Language and Environment.” Trans. Comput. Educ. 10 (4). New York, NY, USA: 
ACM: 16:1–16:15. https://doi.org/10.1145/1868358.1868363. 

Martini, Simone. 2012. “Lingua Universalis.” Annali della Pubblica Istruzione 4-5. Le Monnier: 65–70. 
https://hal.inria.fr/hal-00909609. 

Meerbaum-Salant, O., M. Armoni, and M. Ben-Ari. 2010. “Learning computer science concepts with 
scratch.” In Proceedings of the Sixth International Workshop on Computing Education Research, 69–
76. 

Missiroli, Marcello, Daniel Russo, and Paolo Ciancarini. 2016. “Learning Agile Software Development 
in High School: An Investigation.” In Proceedings of the 38th International Conference on Software 
Engineering Companion, 293–302. ICSE ’16. New York, NY, USA: ACM. 
https://doi.org/10.1145/2889160.2889180. 

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New York, NY, USA: 
Basic Books, Inc. 

Papert, Seymour. 1996. “An Exploration in the Space of Mathematics Educations.” International Journal 
of Computers for Mathematical Learning 1 (1): 95–123. https://doi.org/10.1007/BF00191473. 

Papert, Seymour, and Idit Harel. 1991. “Constructionism.” In. Ablex Publishing Corporation. 

Pattis, Richard E. 1981. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley 
& Sons. 

Proulx, Viera K. 2000. “Programming Patterns and Design Patterns in the Introductory Computer 
Science Course.” In ACM Sigcse Bulletin, 32:80–84. 1. ACM. 

Qian, Yizhou, and James Lehman. 2017. “Students&#x2019; Misconceptions and Other Difficulties in 
Introductory Programming: A Literature Review.” ACM Trans. Comput. Educ. 18 (1). New York, NY, 
USA: ACM: 1:1–1:24. https://doi.org/10.1145/3077618. 

Resnick, Mitchel. 1996. “Distributed Constructionism.” In Proceedings of the 1996 International 
Conference on Learning Sciences, 280–84. ICLS ’96. Evanston, Illinois: International Society of the 
Learning Sciences. http://dl.acm.org/citation.cfm?id=1161135.1161173. 

Resnick, Mitchel 2007. “All I Really Need to Know (About Creative Thinking) I Learned (by Studying 
How Children Learn) in Kindergarten.” In Proceedings of the 6th Acm Sigchi Conference on Creativity 
&Amp; Cognition, 1–6. C&C ’07. New York, NY, USA: ACM. https://doi.org/10.1145/1254960.1254961. 

Resnick, Mitchel 2014. “Give P’s a Chance: Projects, Peers, Passion, Play.” In Constructionism and 
Creativity: Proceedings of the Third International Constructionism Conference. Austrian Computer 
Society, Vienna, 13–20. 

https://doi.org/10.1145/960118.808376
https://doi.org/http:/dx.doi.org/10.1007/978-3-642-24722-4_19
https://doi.org/10.1145/1868358.1868363
https://hal.inria.fr/hal-00909609
https://doi.org/10.1145/2889160.2889180
https://doi.org/10.1007/BF00191473
https://doi.org/10.1145/3077618
http://dl.acm.org/citation.cfm?id=1161135.1161173
https://doi.org/10.1145/1254960.1254961


Constructionism 2018, Vilnius, Lithuania 

924 

 

Resnick, Mitchel 2017. Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion, Peers, 
and Play. MIT Press. 

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen 
Brennan, Amon Millner, et al. 2009. “Scratch: Programming for All.” Commun. ACM 52 (11). New York, 
NY, USA: ACM: 60–67. https://doi.org/10.1145/1592761.1592779. 

Roberts, Eric S. 1995. “Loop Exits and Structured Programming: Reopening the Debate.” In ACM 
Sigcse Bulletin, 27:268–72. 1. ACM. 

Sajaniemi, Jorma. 2002. “An Empirical Analysis of Roles of Variables in Novice-Level Procedural 
Programs.” In Human Centric Computing Languages and Environments, 2002. Proceedings. IEEE 2002 
Symposia on, 37–39. IEEE. 

Salen, Katie, and Eric Zimmerman. 2003. “Rules of Play - Game Design Fundamentals.” In the MIT 
Press Cambridge Massachusetts. 

Schön, S., M. Ebner, and S. Kumar. 2014. “Implications of new digital gadgets, fabrication tools and 
spaces for creative learning and teaching.” Special Edition. 

Sentance, S., and A. Csizmadia. 2015. “Teachers’ perspectives on successful strategies for teaching 
Computing in school.” In IFIP TC3 Working Conference. 

Sheth, Swapneel Kalpesh, Jonathan Schaffer Bell, and Gail E. Kaiser. 2012. “Increasing Student 
Engagement in Software Engineering with Gamification.” Columbia University Computer Science 
Technical Reports. 

Sirkiä, Teemu. 2012. “Recognizing Programming Misconceptions: An Analysis of the Data Collected 
from the Uuhistle Program Simulation Tool.” Master’s thesis, Department of Computer Science; 
Engineering, Aalto University. 

Slany, W. 2014. “Tinkering with Pocket Code, a Scratch-like programming app for your smartphone.” In 
Proceedings of Constructionism 2014. 

Sorva, Juha. 2013. “Notional Machines and Introductory Programming Education.” Trans. Comput. 
Educ. 13 (2). New York, NY, USA: ACM: 8:1–8:31. https://doi.org/10.1145/2483710.2483713. 

Taub, Rivka, Michal Armoni, and Mordechai Ben-Ari. 2012. “CS Unplugged and Middle-School 
Students’ Views, Attitudes, and Intentions Regarding CS.” TOCE 12 (2): 8. 
https://doi.org/10.1145/2160547.2160551. 

Tumlin, Nath. 2017. “Teacher Configurable Coding Challenges for Block Languages.” In Proceedings 
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. 

Weintrop, David, and Uri Wilensky. 2015. “To block or not to block, that is the question: students’ 
perceptions of blocks-based programming.” IDC ’15 Proceedings of the 14th International Conference 
on Interaction Design and Children. 

Wing, Jeannette M. 2006. “Computational Thinking.” Commun. ACM 49 (3). New York, NY, USA: ACM: 
33–35. https://doi.org/10.1145/1118178.1118215. 

Wing, Jeannette M. 2008. “Computational thinking and thinking about computing.” In Philosophical 
Transactions of the RoyalSociety. 

Wing, Jeannette M 2010. “Computational Thinking: What and Why?” Link Magazine. 

Wirth, N. 1993. “Recollections About the Development of Pascal.” SIGPLAN Not. 28 (3). New York, NY, 
USA: ACM: 333–42. https://doi.org/10.1145/155360.155378. 

  

https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2160547.2160551
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/155360.155378


Constructionism 2018, Vilnius, Lithuania 

925 

 

WG7: Constructionism in Upper Secondary and 
Tertiary Levels 
Ana Isabel Sacristán, asacrist@cinvestav.mx 
Center for Research and Advanced Studies (Cinvestav), Mexico 

Lina Kaminskienė, l.kaminskiene@pvt.vdu.lt 
Vytautas Magnus University, Lithuania 

Mihaela Sabin, Mihaela.sabin@unh.edu 
University of New Hampshire, USA 

Richard Akrofi Kwabena Baafi, richbaafius@yahoo.com 
Eotvos Lorand University, Hungary 

Abstract  
In the constructionist paradigm, the fundamental premise is to create student-centred learning situations 
for students to consciously engage in constructing shareable, tangible objects, through meaningful 
projects. In Papert’s vision, one particularly valuable means of doing that is in programming the 
computer because, in doing that, the student “establishes an intimate contact with some of the deepest 
ideas from science, from mathematics, and from the art of intellectual model building” (Papert, 1980, p. 
5). Since the 1980s, there have been countless experiences and studies exploring and documenting 
the use of the constructionist paradigm, many of the first ones using Logo computer programming, but 
mostly with young students at primary or middle-school levels. However, experiences in upper 
secondary and university levels are scarcer. Laurillard (2002), nonetheless, advocates for 
constructionist and collaborative technology-based learning environments in higher education; she says 
(p. 42): “the aim of university teaching is to make student learning possible […] not simply impart 
decontextualised knowledge, but must emulate the success of everyday learning by situating knowledge 
in real-world activity” helping students reflect on their experience of the world and ways of representing 
it.  

The purpose of this working group was to share constructionist experiences in upper secondary and 
tertiary educational levels, particularly those involving computer programming and/or computational 
thinking and environments; and to reflect on the challenges, needs and differences of constructionist 
technology-based implementations in the various educational levels, and on how to promote such 
implementations in upper levels. 

The guiding questions for the working group were: 1. What are the characteristics of constructionist 
implementations in upper educational levels? In upper secondary school? At university level? How are 
they different from lower levels? What are the particular challenges? 2. How is, or what could be, the 
role of digital technologies and computer programming in such implementations? 3. How can 
constructionist implementations be integrated and promoted in higher education? What is required for 
that? 4. Can real-life data, phenomena and problems be harnessed for developing such 
implementations? 

Keywords 
Constructionism; upper secondary level; tertiary level; learning environments; project-based learning; 
computer science or technology-enhanced learning 

  

mailto:asacrist@cinvestav.mx
mailto:l.kaminskiene@pvt.vdu.lt
mailto:Mihaela.sabin@unh.edu
mailto:richbaafius@yahoo.com


Constructionism 2018, Vilnius, Lithuania 

926 

 

Introduction 

Despite countless experiences and studies exploring and documenting the use of the constructionist 
paradigm, most of them have been with young students at primary or middle-school levels. However, 
experiences in upper secondary and university levels are scarcer. But there are advocates (e.g. 
Laurillard, 2002) for constructionist and collaborative technology-based learning environments in higher 
education taking into account how students learn. Laurillard (2002) considers that “the aim of university 
teaching is to make student learning possible [...] not simply impart decontextualised knowledge, but 
must emulate the success of everyday learning by situating knowledge in real-world activity” (p. 42) 
helping students reflect on their experience of the world and ways of representing it. However, another 
issue is that implementing constructionist exploratory learning environments in school cultures (at any 
level) is problematic and complex, as has been discussed also by Laurillard (2002) and others.  

The members of this group have all been involved with constructionist or innovative learning 
experiences and environments in secondary school, university level, and even postgraduate level. We 
are interested in contributing and sharing with others, practices and models of applying constructionism 
in different educational contexts and levels, as well as help expand the foundation and background of 
this area for research.  

We all range from very different backgrounds and fields. Some of us are involved only in high-school 
and upper secondary level, while others’ work is more centred at university level, and even graduate 
level and even adult education. Some of us work in STEM education (mathematics, science and 
engineering), others in business and language education, while others are more specifically involved in 
computer science education. And some of us come from developing countries (Ghana or Mexico) and 
others from developed countries (USA or Lithuania), and it is clear that there is a technological gap 
between these. Nevertheless, as is exemplified in this paper, we all have commonalities working in 
constructionist environments with mostly project-based and student-centred learning;  also, most of us 
are interested in issues such as the affective aspect, for instance in how constructionist tools in post-
secondary computing education shape learners' dispositions to engage with peers on complex and 
collaborative projects. 

Key elements of constructionism  

One task that we did in the group, was to compile some of the key elements of constructionism that we 
consider as fundamental or that we have used in the learning environments with which we have been 
involved.  

As I expressed in the plenary paper for this conference (Sacristán, 2018), the fundamental premise of 
the constructionist paradigm, as stated by Papert and Harel (1991), is that it shares “constructivism's 
connotation of learning as ‘building knowledge structures’ […] then [adds] the idea that this happens 
especially felicitously in a context where the learner is consciously engaged in constructing a public 
entity” (p. 1), that is, something shareable.  

Papert (1980) also placed emphasis on a different kind of learning culture, where: 

 educators act as support for learners to build their own intellectual structures;  
 create conditions for construction and invention (rather than providing ready-made knowledge),  
 give students objects-to-think and materials drawn from the surrounding culture, 
 there is an “emotionally supportive working conditions [that] encourage them to keep going” (p. 

197), with  
 students having creative and personally defined end-products that they can genuinely be excited 

about.  
This latter point is the affective dimension which is a fundamental component of Papert’s constructionist 
paradigm. Papert considered that affect had an indispensable role in creating and sustaining learners' 
intellectual engagement (Papert, 1980/1993). And as we will see further below, this affective dimension 
is an important motivation for most of us in the working group. 



Constructionism 2018, Vilnius, Lithuania 

927 

 

Papert (1980) also proposed to use the versatility of computers to create microworlds which he defined 
as incubators for knowledge and powerful ideas; that is, “self-contained world[s], […] each with its own 
set of assumptions and constraints”, where learners “get to know what it is like to explore the properties 
of a chosen microworld undisturbed by extraneous questions [… and] learn to transfer habits of 
exploration from their personal lives to the formal domain of scientific theory construction” (p.117). 
“places” where these ideas can easily hatch and grow.  

In particular, Papert (1980) promoted computer programming as a means for learning, explaining that 
“in teaching the computer how to think, [students] embark on an exploration about how they themselves 
think” (p.19). He also emphasized the value of debugging, stating that errors are of benefit because 
they lead to the need to understand what went wrong, and through that understanding, to fix them 
(Papert, 1980).  
Analysing some of the main descriptions of constructionism, in that paper (Sacristán, 2018), I summarised 

there that I felt a constructionist learning environments could be defined as:  

 student-centred learning situations 
 where students consciously engage in constructing (e.g., program) shareable, tangible objects,  
 through creative personally meaningful projects (e.g. computer-based)  
 where they have objects-to-think-with, access/develop powerful ideas,  
 and have opportunities for explorations,  
 and thinking about their own thinking (analysing) through debugging (fixing).  

 
In that paper (Sacristán, 2018) added, that in my opinion, ideally,  

 there should be a medium (e.g. digital tools) for an exploratory and expressive activity (such as 
computer programming/coding, or building/describing models or structures using an expressive 
medium or software).  

 Students need to be actively involved and mostly in charge of their constructions and explorations.  
 Activities should take place within a structured of learning environments (microworlds) and 

collaborative learning environment with the characteristics described above. 
 

As described further below, the projects that the members of the working group have engaged in, 
most of them have promoted: 
 Project-based activities and learning 
 Engaging in authentic or real-life based problems. Some cases have included experiences or work 

aspects related to future professions or workplace-bound and relevant aspects of work, including 
professional types of digital tools 

 Engaging in making personally-relevant products (such as programming computational artifacts or 
“apps”, or innovative projects) 

 Flexibility (e.g. flexible content) 
 Developing personal strategies 
 Sharing the resulting products  
 Using communication and collaboration platforms (including those that professionals use)  
 A guiding engagement of teachers and even future employers providing expert mentorship 

 
In the following sections, we provide examples of the projects and experiences that each of the team 
members have been involved with and that have fulfilled most of the above characteristics. Although 
not all the examples are from upper secondary school and tertiary levels (some are from lower 
secondary schools) we hope that we can learn lessons from those examples. 



Constructionism 2018, Vilnius, Lithuania 

928 

 

Examples of constructionist experiences in secondary schools 
and tertiary level 

Focussing on the school culture and learning environment in high-schools in 
Ghana 
A first example, by the co-author of this paper Baafi, is an experience of constructionism in upper 
secondary school, which focuses of how the lessons, learning environment and classroom culture are 
organized. It is an example that doesn’t necessarily focus on the use of computers or digital 
technologies, but rather on a constructionist culture in the classroom 

Baafi has been teaching and researching the impact of school learning environments on students’ 
performance in senior high schools in Ghana. Taking into account that the various types of instructional 
strategies that teachers use in the classroom influence significantly students’ learning (Kaya et al., 2011; 
Onweh & Akpan, 2014), it is important for the teacher to organize the lesson (and accordingly select 
appropriate teaching materials) in a manner that enhances students’ learning and understanding. Thus, 
Baafi considers the teacher to be an “architect” in selecting the best ways for helping students learn and 
generate knowledge through the teaching-learning process. He also considers that an important way in 
which constructionism can be implemented at the upper secondary level is through project-based 
learning and computer applications, in an activity designed to help develop innovative skills in learners.  

In this sense, in the high-schools in Ghana where Baafi has been teaching, constructionism is used as 
a teaching and learning strategy to provide useful learning experiences for students, and help them to 
develop and demonstrate their abilities in solving dilemmas in complex tasks (Kynigos, 2015). Most 
students share knowledge through project-based learning. This offers them the opportunity to practically 
connect classroom learning to a given activity where they implement what they learn. The content of 
the lesson is prepared addressing students’ learning needs in order to select appropriately relevant 
teaching techniques, so that students can engage and be motivated by the tasks and find innovative 
solutions. Thus, teachers create a learning environment which employs different teaching-learning 
methods such as presentations, discovery, inquiry, discussions and team-teaching in order to help 
students construct creative learning skills in solving problems (see Figures 1-3). Students may also be 
arranged in groups, to encourage collaborative learning. Generally, students enjoy generating shared 
ideas with their colleagues during learning activities (Olsen et al., 2018). Teachers may also facilitate 
collaborative discussions by having students ask questions to bring about debates on ideas, which also 
helps build a learning relationship between the teacher and the learners. In this way, students develop 
collaborative learning strategies through sharing and constructing ideas.  

 

 

 

Figure 1. A classroom discussion session in a  
high-school in Ghana 

 

Figure 2. A team collaborative project 
presentation on ICT 



Constructionism 2018, Vilnius, Lithuania 

929 

 

 

Figure 3. Team-teaching in the high-school in Ghana 

Emphasis is thus placed on a learning environment that motivates students. For instance, some of 
Baafi’s high-school students were able to solve a task that appeared difficult initially, after a field-trip 
has offered the students new ideas where new ideas emerged and which allowed them to collaborate 
in finishing their term’s project. Thus, the growth of students’ capabilities allows them to manage their 
learning environment in order to realise their potentials fully (Viray, 2017). Likewise, the teacher can be 
an agent of motivation by engaging students in tasks that can test their potentials, helping them become 
conscious of their capabilities and thus facilitating them to develop their cognitive capacity.  

Technology-enhanced personalisation strategies for learning 
Just as Baafi emphasizes the learning culture and environment, designing scenarios that empower 
students, so is Kaminskienė’s case, whose experience with the constructionist approach has been 
mainly in technology-enhanced learning using personalisation strategies in tertiary level and adult 
education (e.g. in business organisations) (Kaminskienė, Trepulė, Rutkienė, Arbutavičius, 2014; 
Teresevičienė et al., 2015; Kaminskienė, Rutkienė, & Trepulė, 2015); and to a lesser extent in 
secondary level. Kaminskienė defines personalisation as something that allows developing different 
learning scenarios with the facilitation of the teacher; however, it is most important that the learning 
scenario be constructed mainly by the learner. The tools for the implementation of personalized learning 
should address the core personalized learning components and characteristics described by Johns and 
Wolking (2015): 

 Student reflection and ownership (scenarios), 
 Flexible content (restructured learning/teaching material), 
 Tools, and learning environments. 

These characteristics are important for the implementation of constructivist implementations at 
secondary or university level.  

Personalisation is usually based on several criteria: the most typical ones are relate to the current level 
of knowledge, a learner‘s motivation and learning aims, learning styles, digital competences and others. 
These criteria relate to the important aspect that Papert (1980) emphasized of student-centred learning, 
and of designing a learning culture where learners can carry out their own meaningful projects. They 
also relate to the extended version of the concept of microworld by Hoyles and Noss (1987) in which 
the student’s knowledge and component is central along with the other components: the technological 
one, the pedagogical design and a new role of teachers,  and a social environment fostering 
collaboration and where products can be shared and collaboratively discussed. 

Kaminskienė explains that as the education level changes (secondary or tertiary), learners grow in 
autonomy. and the skills required in personalisation can be systematically developed. Learning 
autonomy should not be understood as learning alone, nor that collaborative learning is excluded. On 
the contrary, personalisation can improve roles and responsibilities in group work.  

In a research case study that Kaminskienė and colleagues carried out, fifteen, 8th grade, students in a 
Lithuanian secondary school engaged in digital storytelling, during English language lessons, as a 



Constructionism 2018, Vilnius, Lithuania 

930 

 

technology based pedagogical tool, used to provide student-centered learning strategies. Digital 
storytelling is project-based learning that enables learners to organize and present their individual 
stories, bringing more personal essence and improving learners’ engagement. Digital storytelling is a 
constructivist approach in the classroom, that increases peer-to-peer teaching and collaboration. It gives 
students a chance to develop their English language and investigate various e-tools that can help them 
express and digitalise their stories. 

The research indicated that levels of student engagement fluctuated between moderate and high. The 
use of software and conducting searches for digital media, took these levels to very high. In all cases 
students liked using technology, searching the internet, and watching other’s digital stories. Data from 
feedback questionnaires indicated that 80% of the students consider this type of learning different from 
traditional classroom. 

Throughout the study, students worked collaboratively and engaged with digital content. They did more 
work while working in groups and directly using applications and digital resources. This research also 
observed collaboration between groups where different groups helped each other with technical issues. 
This increased their levels of communication. Students have stated that they much enjoyed working 
within their groups and asked for more group-work on each lesson. The findings revealed, however, 
that students could better understand their individual contribution to the team work if they are well 
instructed by teachers and have flexibility to work with the tools and content. 

Results demonstrate (see 0), that 50% of the group consider this type of learning very interesting, 80% 
think it differs from other lessons and they outline that learning process through Digital Storytelling was 
interactive and funny. 71% of children outlined that they have improved ICT skills while working on their 
digital stories, while 50% confirmed the improvement of communication skills. 36% thinks team-working 
skills were also improved throughout this interaction. All children mentioned that they totally enjoyed 
working within their teams, as it helped them to collaborate better. 

 

 

Figure 4. Data from secondary students engaging in digital storytelling for English learning 

A summary of some of the succesful aspects of the above experience, include: 

 More engaged and motivated students (80% of students indicated that working collaboratively 
while developing digital stories was an engaging experience).  

 Broader possibilities to personalise learning (technologies allow to differentiate curriculum 
according to different characteristics of learners yet striving at the end achieving the planned 
learning outcomes).  

 Developing multiple competences (in the above case, in the English language); skills in using 
technology-enhanced tools; and engaging in teamwork.  
 



Constructionism 2018, Vilnius, Lithuania 

931 

 

On the other hand, some challenging aspects included: 
 More focus on the form, rather than on the content. For example, the emphasis on digital 

storytelling could create a misunderstanding that the form (the e-tools and digital materials used 
for the development of digital stories are more important than the content (the problem, idea, etc.). 
In fact, 71% of students indicated that they improved their ICT skills vs. 36% who commented that 
they had improved in their English language skills..  

 More regular feedback is required in cases of personalised learning, project-based learning, which 
is a challenge for teachers.  

Constructionist implementations related to STEM fields in higher education 
Sacristán has been involved also in several constructionist projects in higher education in Mexico and 
Canada, where university students engage in computer programming and/or expressive activities 
(involving topics and data related to real-life phenomena, meaningful for their area of study) for 
mathematical exploration or learning that usually include sharing, collaboration and discussion. These 
are described in more detail in Sacristán (2017a) as well as in the plenary paper for this conference 
(Sacristán, 2018).  

One project involved a distance-learning environment (a virtual laboratory) where university and 
continuing education students engaged in exploratory modelling tasks of various types of real-life 
mathematical problems students (Olivera, Sacristán & Pretelín-Ricárdez, 2013). The tasks, carried out 
through various digital means and interactive tools, involved building models through collaboration; 
sharing, discussing and reflecting through the online platform; and even proposing new explorations. 
The online exchanges constituted additional means for learning, since they forced students to express 
their ideas, thus helping them clarify their own understandings. Although this project of a virtual 
mathematics laboratory was successful, after a couple of years it could not be continued due to the 
differences with the established curricula, which points to the challenges of implementing constructionist 
approaches in institutional settings.  

Another experience in which Sacristán was involved, was one where university engineering students 
engaged in producing working models of certain real-life behaviours (e.g. of water behaviour or 
simulated mechanical systems) within videogames (Sacristán & Pretelín-Ricárdez, 2017). One of the 
aims of this project was for students to develop know-how for their future profession as engineers on 
how to apply mathematical knowledge and modelling. The videogame constructions involved several 
stages of model-building tasks that included some collaborative programming work and whole class 
discussions. The projects were meaningful personal projects, so were highly motivating for the students. 
This experience was so successful that it is became a regular course in the engineering program. 

In a third project (Mascaró, Sacristán & Rufino, 2014), undergraduate and post-graduate environmental 
sciences and biology students engage in sequences of constructionist and collaborative, computer-
programming tasks in the R programming language, for the learning of probability, statistics and 
experimental analysis concepts. These tasks, presented through R-code “worksheets” with guidelines 
and examples, use data adapted from real research situations, so that they are meaningful to students. 
Research findings point in particular to improvements in the affective dimension, with many students 
losing their fear of statistics, and being motivated to engage in the tasks; moreover, many students 
appropriated themselves of the software (e.g. building their own R scripts) for their own research with 
an apparent clearer understanding of statistical concepts. This statistics programme has been 
integrated into regular courses for several years but only by the one teacher who designed the 
sequences of tasks.  

A final project in which Sacristán has been involved, is the Mathematics Integrated with Computers and 
Applications (MICA) program at a Canadian university (see Muller, Buteau, & Sacristán, 2015; Buteau, 
Sacristán & Muller, 2018). In the MICA program, university students, in addition to traditional 
mathematics courses, have non-traditional courses where they engage in programming, using VB.net, 
their own interactive mathematical digital environments, also called Exploratory Objects (or EOs), 
through which they explore their own stated mathematical conjectures, theorems, or real-world 
situations, and need to engage in various types of modelling of the mathematical ideas they explore 
and program. This is an example of a constructionist program that has been sustained successfully as 



Constructionism 2018, Vilnius, Lithuania 

932 

 

part of that university’s curriculum for over 15 years, although some conservative faculty members have 
challenged it. 

Students adapting and building apps for Computer Science learning 
Sabin’s experiences are in computer science education mainly at university and post-graduate levels in 
the USA, but also with high-school girls. In particular she has been involved in developing constructionist 
learning environments in which CS students adapt or build apps, such as with a constructionist tool, 
QuizPower, described further below.  

Sabin considers that constructionist learning environments should use innovative tools that are 
accessible to beginners with no prior disciplinary knowledge (low floors), but are powerful enough to be 
of interest and meaningful to expert users too (high ceiling). Another premise is that these tools should 
facilitate connections to personal knowledge and experiences of all students, who bring in very diverse 
cultural and life backgrounds (wide walls). In CS/IT degree programs at university level, constructionist 
implementations involve computing tools and platforms that professionals use in the workplace. There 
are also tools specifically designed to engage learners from a low ceiling entry point to a high ceiling of 
compellingly complex problems and projects (e.g., pythontutor.com for Python programming, App 
Inventor for app development, Raspberry Pi for physical computing, or Tableau for dashboards) There 
is some prerequisite knowledge that is needed for using these tools, such as run-time environment, 
execution flow, stack frame, object encapsulation, event-driven programming.  

In any case, it is important that the innovative tools should make ideas and abstractions learnable by 
building computational artifacts from which students transfer familiar intellectual constructs into 
understanding new powerful ideas and more formal computing concepts. Block-based programming 
platforms, such as Scratch and App Inventor, are constructionist tools that turn programming and 
computational artifacts into construction materials with which students learn abstractions through 
discovery with concrete objects. Thus, learners follow Papert's call to "make something new" with 
programing, "play with it, build with it" (Papert 1993, p. 120). QuizPower (see Figures 5 & 6) is an 
example of a constructionist tool built with App Inventor (Meehan and Sabin, 2013). The app provides 
beginner students or non CS majors a way to learn computing fundamentals in an engaging and 
effective manner. More advanced students can adapt the app to create quizzes for other courses by 
designing a new web data store and gain more practice and deeper understanding of client-server 
programming and databases. Students in a general education, introductory mobile app development 
course for all majors played a vital role in giving feedback and informing the design of the quiz questions 
and their organization. Computing students in more advanced CS courses can use the app to learn 
more about web service development and deployment using App Inventor, PHP, and MySQL and the 
integration of App Inventor development and packaging service with full-stack execution environments, 
such as XAMPP.  

Sabin’s experiences in post-secondary education includes computing curriculum development, project-
based learning with client-driven open source software, assessing collaborative and experiential 
learning, and creating the constructionist tool described above, QuizPower. 

Constructionism as a teaching practice in computing education situates learners and teachers together 
in a project-based learning environment in which students make and share computational artifacts with 
the help of innovating computing tools and modes of media for the purpose of learning and mastering 
computing concepts and professional practices.  

 



Constructionism 2018, Vilnius, Lithuania 

933 

 

  

     

  
 

  

Figure 5. Activity diagram for the QuizPower  
user interface 

 
Figure 6. QuizPower user experience example 

The importance of situating learning activities in supportive contexts is taken into account in the 
ACM/IEEE Task Group on Information Technology Curricula (2017) report that defined curricular IT 
guidelines for undergraduate programs. The report proposes an operational definition of IT 
competencies as a triad of three interplaying dimensions, knowledge, skills, and dispositions, that do 
not manifest in a vacuum or, what Papert calls "instructionist" environment, where formal and 
impersonal learning is imparted through lecturing and tutorials. Instead, developing and demonstrating 
IT competencies require an intentional context that is personally meaningful and conducive of direct 
interactions between learners and concrete things or "objects-to-think-with" (Papert 1993, p.168). Key 
characteristics of the context in which students form IT competencies are described by Sabin, Alrumaih 
and Impagliazzo (2018) and include:  

● Workplace-bound experiences and relevant IT aspects of work 

● Active involvement of employers to support internship and co-op programs and to provide expert 
mentorship 

● Authentic problems and engagement of diverse teams in relevant IT aspects of work 

● Collaborative and project-based activities leveraged by using professional tools 

● Deliberate and critical reflection on practice to participate effectively in decision-making and to 
stay engaged in a process of continuous learning. 

Some examples of IT learning situated in constructionist contexts are practicum and internship 
experiences, projects with real clients, reflective journals of individual contributions to a complex team 
project, technical presentations judged by external partners, and capstone projects with external 
evaluators.  

In a framework proposed and discussed by MacKellar, Sabin, and Tucker (2013), client-driven open 
source projects have the quality of representing the "source of concepts to think new ideas" that 



Constructionism 2018, Vilnius, Lithuania 

934 

 

constructionist projects, in Papert's view, should have (Papert, 1993, p. 168). They also afford students 
the opportunity to experience new, state-of-the-art technologies from the vibrant and invested free and 
open source software community, which creates excitement and forms a sense of belonging to the 
computing profession (Sabin, 2011). With real clients who interact closely and regularly with the 
students during the project development process, a culture of sharing, reflection, critique, and 
discussion is almost inescapable. In implementing the proposed framework by MacKellar, Sabin & 
Tucker (2013), by three different higher education institutions, an advantage was that the clients were 
non-profit organizations who accommodated learners' "false theory building" through experimentation, 
risk taking, and failures. Two institutions used an an open source codebase and architecture that had 
been previously developed in an academic course at another institution, which helped with striking a 
desirable balance between relying on a traditional self-contained toy project and engaging students in 
an industrial-strength full-scale open source project. The experience report recommends that schools 
develop and share exemplary projects that could be added to a collection of client-driven open sources 
projects. Client-driven open source software projects create opportunities for tackling complex 
computing problems with higher level of engagement among diverse students. 

    

Figure 7. Students engaged in designing and building apps 

At the secondary level, Sabin has studied how to increase confidence and interest in computing for girls. 
According to a report by Google (2014), encouragement to study computer science and connecting 
personal interests to computing areas influence women to pursue degree in computing. Guided by these 
observations, a one-week summer camp for girls in grades 7-9 was designed to improve girls' 
perceptions of computer science (Sabin, Deloge, Smith & DuBow, 2017). The camp curriculum 
incorporated inquiry and equity teaching practices and purposefully combined teaching of computing 
content with culturally responsive pedagogies (Margolis et al., 2014). By using App Inventor to build 
mobile apps, the girls experimented with component-based design and event-driven implementation; 
shared among themselves app designs through gallery walks; worked in pairs to test and refine their 
apps and media assets; and expressed their own interests in personally meaningful apps that told 
stories about the girls' favorite places or hobbies. The analysis of a pre- and post-survey found that the 
camp appeared to have positively influenced the girls, primarily in terms of improving computing 
confidence and positive perceptions of computing careers (Sabin et al., 2017).  

Commonalities of the above experiences  
As can be seen in the above examples, there are many commonalities to the above experiences, as 
are already described in the final list of key characteristic of constructionism given in the first section of 
this paper, such as: 

 Project-based learning: Almost all the above experiences involve this, whether it is projects in 
Ghana, or digital story telling, or constructions, or programming videogames, EOs or apps. 

 These products or artefacts imply making personally-relevant products, which is motivating and 
deals with the affective aspect. This affective component is all of the examples discussed above. 

 It also implies creating learning environments and using personalised learning strategies 
 with emphasis on the importance of the classroom culture, where  
 students are empowered and teachers are more guides and mentors rather than “instructors”. And 

where 
 students engage in collaborative work 



Constructionism 2018, Vilnius, Lithuania 

935 

 

 With many also involving using authentic or workplace-bound problems (such as the authentic 
tasks in the virtual mathematical laboratory, or for some of the videogame designs, of for the EOs, 
or as client-driven project) or work bound tools (such as R, VB.net and others mentioned by Sabin)   

Addressing some of the guiding questions and some 
conclusions 

The guiding questions for the working group were:  

 What are the characteristics of constructionist implementations in upper educational levels? In 
upper secondary school? At university level? How are they different from lower levels? What are 
the particular challenges?  

 How is, or what could be, the role of digital technologies and computer programming in such 
implementations?  

 How can constructionist implementations be integrated and promoted in higher education? What 
is required for that?  

 Can real-life data, phenomena and problems be harnessed for developing such implementations? 
In terms of the first question, at the beginning of the paper, we have already stated some of what we 
consider are key characteristics of constructionism. But an additional aspect that was addressed by the 
working group members, was that as the educational level increases, so does the autonomy of the 
students, and also that at university level learners are more self-regulated. This may help when 
implementing student-centred and project-based learning. 

In terms of the last question, many of the above projects integrate authentic tools, problems or data, as 
described in the previous section.  

As to the other questions, these are somewhat addressed in the following section. 

Some detected challenges and possible strategies for more successful 
constructionist implementations in higher educational levels 
Constructionism is still an innovative approach in the education, and many typical barriers still exist, 
including those related to the integration of technologies in general (see Sacristán, 2017b), and others 
such as: 

 Regulatory and institutional requirements; 
 The barrier to change ways of working, which is one of the greatest  barriers to innovation, and 

which Sacristán calls the inertia of school cultures 
 Instructor's role as mentor and learner is counter learners' common expectation that instructors 

impart knowledge and have all the answers.  
 Course evaluations are designed with a preset course curriculum in mind (course objectives) and 

a 'sage on the stage' instructor model (answered questions effectively) 
 Fear of using technologies; fear of technological risk. 
 Increasing digital gaps between the digital and networked society and the traditional curriculum of 

educational systems. As well as in terms of social, economic and geographical stratification. 
 Lack of personal leadership; 
 Lack of institutional support. 
 Technocentrism: focus on the technology, rather than on the subject matter and content 
 More regular feedback is required in cases of personalised learning, project-based learning, which 

is a challenge for teachers.  
 The difficulty  of transference (e.g. of “constructionist methodologies or projects”) 
 Collaborative projects need to mediate diverse personal interests 
 Assessing student learning in constructionist learning environments 
 Another barrier to implementing constructionist learning environments that use project-based 

learning in university upper-level courses relates to deemphasizing grading and evaluation of 
computational artifacts. If computational artifacts contribute to a high-stakes real-world project, 



Constructionism 2018, Vilnius, Lithuania 

936 

 

evaluating student performance is predominantly determined by the quality of work products rather 
than participatory activities and collaborative processes.  

In order to integrate constructionist implementations be integrated and promoted in higher education, it 
is clear we have to develop an appropriate learning culture in higher education institutions. University 
degree programs as a whole should enjoy a constructionist culture. They have to be integral part of the 
program curricula. So there needs to be a shift in the culture. 

Innovations in how school cultures work may be needed, but also it may be that compromises need be 
made between the utopic constructionist visions (such as those of Papert) and institutional 
requirements. For example, in Mascaró & Sacristán (2018), in these conference proceedings, we give 
an example of “constructionist-compatible” ways that were developed to assess students’ learning, in 
order to grade them for the university courses in which they are enrolled. 

There may also need to be considerable investments (time, human resources training) and 
work/preparation of students. The implementation of constructivist approaches in tertiary level may be 
related to technology enhanced learning. Nevertheless, as has been noted by researchers (e.g. 
Schneckenberg, 2010), technology-driven innovation in universities depends much on active 
involvement of the faculty in organisational change. Schneckenberg (2010) speaks of the need of 
institutions to develop a so-called eCompetence model, which is understood as a complex unit of 
personal and institutional dimensions (covering micro, meso and macro levels); the eCompetence 
model is composed of competence, academic staff, competence development measures, eStrategy in 
universities, and pervasive potential of ICT in educational contexts. 

In the case of computing education in higher levels, Sabin points out that Psenka and colleagues (2017) 
discussed the applicability of constructionism to create learning environments for engineering design 
and offered a set of observations to be considered by the engineering design education. All observations 
point to conditions and strategies that are instrumental to designing constructionist learning 
environments for computing education in higher education. For example, project-based learning and 
inclusion of real-world problems have been largely adopted in the undergraduate curricula in the USA. 
The literature is vast and findings are compelling to continue on this path. In the USA, the ABET 
Computing Accreditation Commission updated the Computer Science program accreditation criteria to 
reflect curriculum guidelines for undergraduate computer science programs and includes a student 
outcome for learning to "apply design and development principles in the construction of software 
systems of varying complexity" (ABET, 2018),  supporting the guideline that all CS graduates be 
involved in at least one substantial project.   

Sabin also points out, that in the case of Computer Science degrees, there are tools used widely by 
computing professionals (e.g. GitHub, a version control platform: Slack,a communication tool; and 
Amazon Web Services, a cloud deployment service); Sabin sees all three as constructionist tools that 
a CS/IT degree program should integrate across program curricula.  

In terms of collaborative projects of significant scope and scale and possibly involving real clients, there 
are, however, considerable challenges. Such projects constrain the playfulness of more relaxed 
environments in which students have conditions to be "let loose", and unplanned, emergent learning is 
more likely to happen. There is also the tension between giving students the freedom to select their own 
projects and having adequate mentoring capacity in large classes with too many individual projects.  

We end with some questions of interest to implementing constructionism in higher education: 

 How to let undergraduate students loose to create computational artefacts as learning materials 
when constrained by grades and highly specialized curriculum in upper level courses? 

 What curricular changes of undergraduate courses are needed to facilitate natural and 
spontaneous ways of making ideas concrete in the classroom? 

 How to design or adapt innovative computing tools with which students can have multiple ways of 
knowing through senses, movement, and other interactions to make concepts and theories "simple 
and concrete" (Papert 1980/1993, p.7)? 



Constructionism 2018, Vilnius, Lithuania 

937 

 

 What preparation and learning do teachers need to change the learning culture in the classroom 
and take into account the learners' affect and their dispositions to tinker, embrace persistent 
struggle, and reflect upon their learning experiences? 

References  

ABET (2018). Criteria for Accrediting Computing Programs 2018-2019. 
http://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-
2018-2019/  

ACM/IEEE Task Group on Information Technology Curricula (2017). Information Technology Curricula 
2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology (IT2017). 
ACM (Association for Computing Machinery) and IEEE Computer Society. doi:10.1145/3173161 

Buteau, Sacristán & Muller (2018). Teaching in a Sustained Post-Secondary Constructionist 
Implementation of Computational Thinking for Mathematics. In Proceedings Constructionism 2018, 
Vilnius, Lithuania. 

Google (2014). Women Who Choose Computer Science—What Really Matters (White Paper). 
Retrieved from https://docs.google.com/file/d/0B-E2rcvhnlQ_a1Q4VUxWQ2dtTHM/  

Hoyles, C., & Noss, R. (1987). Synthesizing mathematical conceptions and their formalization through 

the construction of a Logo‐based school mathematics curriculum. International Journal of Mathematical 

Education in Science and Technology, 18, 581–595. doi:10.1080/0020739870180411 

Johns, S., & Wolking, M. (2015). The Core Four of Personalized Learning: The Elements You Need to 
Succeed (White Paper). Education Elements. Retrieved from https://www.edelements.com/core-four-
elements-of-personalized-learning 

Kaminskienė, L., Rutkienė, A., Trepulė, E. (2015). Integration of technology enhanced learning within 
business organizations: which strategy to choose? Turkish Online Journal of Educational Technology, 
14 (4,) 78-92. 

Kaminskienė, L., Trepulė, E., Rutkienė, A., Arbutavičius, G. (2014). A responsive paradigm for 
technology enhanced learning (TEL) integration into business organizations. European Journal of Open, 
Distance and E-Learning (EURODL) 17 (2), 194-206. Budapest: EDEN.  

Kaya, I., Habaci, I., Küçük, S., Adigüzelli, F., & Habaci, M. (2011). Development of instructional 
strategies scale: Reliability and validity. World Applied Sciences Journal, 15(4), 507–516. Retrieved 
from http://idosi.org/wasj/wasj15(4)11/8.pdf  

Kynigos, C. (2015). Constructionism: Theory of Learning or Theory of Design? In S.J. Cho (ed.) 
Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 417–
438). Springer, Cham. doi:10.1007/978-3-319-17187-6_24 

Laurillard, D. (2002). Rethinking university teaching: A conversational framework for the effective use 
of learning technologies. 2nd Edition. Routledge.  

MacKellar, B.K., Sabin, M., & Tucker, A. (2013). Scaling a framework for client-driven open source 
software projects: a report from three schools. Journal of Computing Sciences in Colleges 28 (6): 140–
147.  

Margolis, J., Goode, J., Chapman, G., Ryoo, J. (2014). That classroom “magic:” teaching practices for 
broadening participation in computer science. Communications of the ACM, 57 (7): 31-33 (July 2014). 
doi: 10.1145/2618107 

Mascaró, M., Sacristán, A. I. & Rufino M. (2014). Teaching and learning statistics and experimental 
analysis for environmental science students, through programming activities in R. In G. Futschek & C. 
Kynigos (Eds.), Constructionism and Creativity - Proceedings 3rd Intl. Constructionism Conf. 2014 (pp. 
407-416). Vienna, Austria: OCG. 

https://doi.org/10.1145/3173161
https://docs.google.com/file/d/0B-E2rcvhnlQ_a1Q4VUxWQ2dtTHM/edit?usp=embed_facebook
https://doi.org/10.1080/0020739870180411
https://www.edelements.com/core-four-elements-of-personalized-learning
https://www.edelements.com/core-four-elements-of-personalized-learning
https://doi.org/10.1007/978-3-319-17187-6_24


Constructionism 2018, Vilnius, Lithuania 

938 

 

Meehan, D., & Sabin, M. (2013). QuizPower: a mobile app with App Inventor and XAMPP service 
integration. In Proceedings of the 14th annual ACM SIGITE conference on Information technology 
education (pp. 103–108). Orlando, Florida: ACM. doi:10.1145/2512276.2512300 

Muller, E., Buteau, C., & Sacristán, A. I. (2015). Through the Looking-Glass: Programming Interactive 
Environments for Advanced Mathematics. Mathematics Today, 51(6), 212–217. 

Olivera, M.A., Sacristán, A.I. & Pretelín-Ricárdez, A. (2013). Mathematical learning derived from virtual 
collaboration, exploration and discussion of free-fall videos, amongst continuing education students. In 
E. Faggiano & A. Montone (Eds), Proceedings of the 11th International Conference on Technology in 
Mathematics Teaching (ICTMT11) (pp. 232-237). Bari, Italia: University of Bari. 

Olsen, J., Preston, A. I., Algozzine, B., Algozzine, K., & Cusumano, D. (2018). A Review and Analysis 
of Selected School Climate Measures. The Clearing House: A Journal of Educational Strategies, Issues 
and Ideas, 91(2), 47–58. doi:10.1080/00098655.2017.1385999 

Onweh, V. E., & Akpan, U. T. (2014). Instructional strategies and students academic performance in 
electrical installation in technical colleges in Akwa Ibom State: Instructional skills for structuring 
appropriate learning experiences for students. International Journal of Educational Administration and 
Policy Studies, 6(5), 80–86. doi:10.5897/IJEAPS2014.0347 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.  

Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New York: 
Basic Books. 

Papert, S. & Harel, I. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism. 
Norwood, NJ: Ablex. Retrieved from http://www.papert.org/articles/SituatingConstructionism.html 

Psenka, C. E., Kim, K.-Y., Okudan Kremer, O., E, G., Haapala, K. R., & Jackson, K. L. (2017). 
Translating Constructionist Learning to Engineering Design Education. Journal of Integrated Design and 
Process Science, 21(2), 3–20. doi:10.3233/jid-2017-0004 

Sabin, M. (2011). Free and Open Source Software Development of IT Systems. In Proceedings of the 
2011 Conference on Information Technology Education (pp. 27–32). New York, NY, USA: ACM. 
doi:10.1145/2047594.2047601 

Sabin, M. Alrumaih, H.  & Impagliazzo, J. (2018). A competency-based approach toward curricular 
guidelines for information technology education. In 2018 IEEE Global Engineering Education 
Conference (EDUCON) (pp. 1214–1221) Santa Cruz de Tenerife, Spain: IEEEXplore. 
doi:10.1109/EDUCON.2018.8363368 

Sabin, M., Deloge, R., Smith, A., & DuBow, W. (2017). Summer Learning Experience for Girls in Grades 
7–9 Boosts Confidence and Interest in Computing Careers. Journal of Computing Sciences in Colleges, 
32(6), 79–87. Retrieved from http://dl.acm.org/citation.cfm?id=3069658.3069673 

Sacristán, A. I. (2017a). Constructionist computer programming for the teaching and learning of 
mathematical ideas at university level. In Göller, R., Biehler, R., Hochmuth, R., Rück, H.- G. Didactics 
of Mathematics in Higher Education as a Scientific Discipline. khdm-Report 17-05 (pp. 124–131). 
Kassel, Germany: Universitätsbibliothek Kassel.  

Sacristán, A. I. (2017b). Digital technologies in mathematics classrooms: barriers, lessons and focus on 
teachers. In E. Galindo & J. Newton (Ed.), Proceedings of the 39th PME-NA (pp. 90–99). Indianapolis, 
IN: Hoosier Association of Mathematics Teacher Educators. 
http://www.pmena.org/pmenaproceedings/PMENA%2039%202017%20Proceedings.pdf 

Sacristán, A. I., & Pretelín-Ricárdez, A. (2017). Gaining modelling and mathematical experience by 
constructing virtual sensory systems in maze-videogames. Teaching Mathematics and Its Applications: 
An International Journal of the IMA, 36(3), 151–166. doi:10.1093/teamat/hrw019 

Sacristán, A.I. (2018). Constructionist experiences for mathematics across educational levels. In 
Proceedings Constructionism 2018, Vilnius, Lithuania. 

https://doi.org/10.1145/2512276.2512300
https://doi.org/10.1080/00098655.2017.1385999
https://doi.org/10.5897/IJEAPS2014.0347
http://www.papert.org/articles/SituatingConstructionism.html
https://doi.org/10.3233/jid-2017-0004
https://doi.org/10.1145/2047594.2047601
https://doi.org/10.1109/EDUCON.2018.8363368
http://dl.acm.org/citation.cfm?id=3069658.3069673
http://www.pmena.org/pmenaproceedings/PMENA%2039%202017%20Proceedings.pdf
https://doi.org/10.1093/teamat/hrw019


Constructionism 2018, Vilnius, Lithuania 

939 

 

Schneckenberg, D. (2010). What is e-Competence? Conceptual Framework and Implications for 
Faculty Engagement. In U.D. Ehlers & D Schneckenberg (Eds), Changing Cultures in Higher Education 
(pp. 239–256). Springer: Berlin, Heidelberg. doi:10.1007/978-3-642-03582-1_19 

Teresevičienė, M., Volungevičienė, A., Trepulė, E., Žydžiūnaitė, V., Rutkienė, A., Tait, A. W., & 
Kaminskienė, L. (2015). Technology enhanced learning integration into organizations. Versus Aureus. 
https://eltalpykla.vdu.lt/handle/123456789/95 

Viray, J. S. (2016). Parental Involvement as Predictor of Student Academic Performance. Imperial 
Journal of Interdisciplinary Research, 2(6), 1379–1382. Retrieved from 
http://www.imperialjournals.com/index.php/IJIR/article/view/1023 

 

  

https://eltalpykla.vdu.lt/handle/123456789/95
http://www.imperialjournals.com/index.php/IJIR/article/view/1023


Constructionism 2018, Vilnius, Lithuania 

940 

 

Teachers’ Day 

  



Constructionism 2018, Vilnius, Lithuania 

941 

 

The beauty in science and the science in beauty or 
mathematics, informatics and science teaching 
as an eye-opener of the beauty of ideas 

Evgenia Sendova, jenny.sendova@gmail.com 
Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences, Bulgaria 

Abstract  
In this talk I will discuss my involvement in different roles in some educational practices in Bulgarian and 
international context of opening students’ eyes for the beauty of science in general with an emphasis 
on mathematics and informatics. 

I had the chance of being involved in education relatively late in my professional carrier in the frames of 
the Research Group on Education experiment (1979-1991) where the leading principles embraced 
learning by doing and exploring, integration of school subjects, making the computer a natural 
component of the curriculum and enhancing the creativity of both teachers and students. The research 
team developing the educational resources in a newly designed subject Language and Informatics 
(integrating three natural languages – Bulgarian, Russian and English, with two artificial ones – 
mathematics and Logo) was given the freedom to implement the Logo educational philosophy 
(constructionism) in an attempt to make the children love the school in general (and math and science 
in particular). The experiment lasted for 12 years and what our team tried to transfer in the next 
educational projects in national and international setting was that mathematics and science could be 
viewed and taught as a game of ideas, as painting with ideas. Thus, we got involved with the design 
and implementation of educational resources – textbooks and dynamic scenarios in mathematics, IT, 
and informatics (5th-12th grade, Figure 1) as well as in the development of computer microworlds, tuned 
to specific domains (e.g. Geomland, a language-based mathematics laboratory for explorations in 
Euclidean geometry, Figure 2). Such microworlds were launched within various Educational national 
and European projects and used in numerous PD courses for teachers as platforms for testing and 
editing various ideas in math, science and arts allowing the participants to discover the beauty of 
mathematics and science in terms of ideas – an experience  they would convey further to their 
students. 

It is the very ideas behind some projects developed by the participants in PD courses at Sofia University 
on implementing IT in math classes on the theme The beauty in mathematics and the mathematics in 
the beautiful that I will present (Figure 3). Furthermore, I will discuss how  educational resources 
developed in the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences (IMI-
BAS) in support of the inquiry based mathematics and science education (IBMSE) are being 
implemented in in-service teacher education (Figure 4). 

The experience gained confirms our belief that the learners construct new knowledge with particular 
effectiveness when they are engaged in modeling and constructing something that is meaningful to 
themselves and to others around them (Figures 5 and 6).  



Constructionism 2018, Vilnius, Lithuania 

942 

 

 

 Figure 1. Textbooks of the Research Group on Education (4th, 5th and 6th grade) 

 

Figure 2. Different hypocycloids generated in Geomland 

(http://sunsite.univie.ac.at/elica/PGS/INDEX.HTM) 

  

Figure 3. In search for the golden angle in nature – a PD course for IT teachers at Sofia University 

http://sunsite.univie.ac.at/elica/PGS/INDEX.HTM


Constructionism 2018, Vilnius, Lithuania 

943 

 

 

Figure 4. Educational resources developed by the IMI-BAS team within the projects VirMathLab 
(www.cabinet.bg) – left; Mascil (www.math.bas.bg/omi/mascil) – middle, and Scientix (http://www.scientix.eu/) -  

right 

 

Figure 5. Celebrating the STEM Discovery week (April, 2018, http://www.scientix.eu/stem-discovery-week) at the 
IMI-BAS - the Scientix Bulgarian contact point, with the event Mathematics in the world around me 

 

Figure 6. A visit to a Math and Science Fair in Varna, Bulgaria, within an international workshop of the STEM PD 
Net project (http://stem-pd-net.eu/en/) 

Keywords/phrases  
Beauty; mathematics, informatics, IT and science education; creativity; Logo, Inquiry based learning  

  

http://www.cabinet.bg/
http://www.math.bas.bg/omi/mascil
http://www.scientix.eu/)%20-
http://www.scientix.eu/stem-discovery-week
http://stem-pd-net.eu/en/


Constructionism 2018, Vilnius, Lithuania 

944 

 

Ateities švietimas:  naujos galimybės Lietuvai? 

Rimantas Želvys rimantas.zelvys@fsf.vu.lt 
Vilnius University, Lithuania 

Viena iš trijų Lietuvos šimtmečio proga paskelbtų idėjų Lietuvai  – „Mokytojas – prestižinė profesija iki 
2025 metų“.  Ar ši misija įmanoma? Teigiama užsienio patirtis rodo, kad iš principo tokios idėjos 

įgyvendinimas įmanomas. Tačiau kyla kitas ne mažiau svarbus klausimas: ar mes ją įgyvendinsime? 

Deja, tokia galimybė labai abejotina, jeigu įgyvendinimo sieksime tokiais būdais, kaip siekėme iki šiol. 

Šiuo metu matome pastangas įgyvendinti pokyčius švietime, tačiau vyrauja kiti prioritetai: klasių 

krepšelio įdiegimas, etatinis mokytojų darbo apmokėjimas, universitetų jungimas ir pedagogų rengimo 
centrų steigimas. Nė vienas iš šių prioritetų tiesiogiai neprisideda prie mokytojo prestižo kėlimo ar 
šviesesnės švietimo ateities. Mūsų manymu, tam, kad idėja Lietuvai būtų įgyvendinta, švietimo 

prioritetai turėtų būti kiti: 

1. Aiškių švietimo tikslų ir ateities vizijos suformulavimas. „Pradėkite kampaniją, kuri padėtų iš 
naujo sukurti švietimo viziją, nes, jei nežinosite, kokios mokyklos norite, neverta nieko net 
pradėti“, sako vienas iš labiausiai pasaulyje žinomų švietimo ekspertų P. Salbergas. Ar mokyklai 
lemta būti pramonininkų ir verslininkų poreikius tenkinančiu ekonomikos priedeliu, ar mūsų siekis 
– pagal tarptautinio PISA tyrimo rezultatus pavyti ir pralenkti Estiją, ar ir toliau vadovaujamės 
Lietuvos švietimo koncepcijos nuostata, kad pagrindinė švietimo misija – ugdyti aukštos 
kultūros, pilietiškai orientuotą ir socialiai atsakingą jaunąją kartą? Kiekvienas iš šių siekių 
reikalauja skirtingų įgyvendinimo priemonių, o mokytojo prestižas bus aukštas tuomet, kai 
suvoksime mokytoją visų pirma kaip kultūros nešėją, o ne kaip paslaugos teikėją.   

2. Aukštesnis ir geresnis išsilavinimas. Daugelyje Europos Sąjungos šalių manoma, kad mokytojo 
darbui būtinas magistro išsilavinimas. Kodėl mūsų šalyje galvojama, kad, norint tapti vaikų 
gydytoju, reikia mokytis daugelį metų, o vaikų mokytojui tai nėra būtina? Ar pažinti jauno 
žmogaus sielą yra lengvesnis uždavinys, negu pažinti jauno žmogaus kūną? Profesijos 
prestižas tiesiogiai susijęs su išsilavinimu – vargu ar žemesnio išsilavinimo reikalaujanti profesija 
gali būti prestižine.  

3. Švietimas turi būti grįstas mokslu. Visuomenė, nepaisant visų pastarųjų dešimtmečių pokyčių, 
vis dar gerbia mokslininkus ir pasitiki mokslo žiniomis. Deja, politikai, priimdami sprendimus, vis 
rečiau remiasi moksliniais tyrimais, o pati edukologija žeminama ir abejojama, ar tai iš viso 
mokslas. Jei netinka pavadinimas – keiskime, jei netenkina mūsų mokslininkų lygis – kvieskime 
iš užsienio pripažintus autoritetus, bet negalima mokslo aplamai ignoruoti. Mokytojas turės 
didesnį prestižą tuomet, kai visuomenė žinos, jog savo darbe jis vadovaujasi naujausiais mokslo 
pasiekimais.  

4. Turi būti aktyviai kuriamas teigiamas mokytojo įvaizdis. Savaime jis tikrai nesusiklostys toks, 

kokio norime. Jei pageidaujame mus tenkinančio įvaizdžio, turime aktyviai ir kryptingai dirbti: 
bendrauti su žiniasklaida, plėtoti ryšius su visuomene, tinkamai propaguoti mokytojo profesiją. 
Pavyzdžių toli ieškoti nereikia – pakanka prisiminti, kiek pastangų pastaraisiais metais buvo 
dedama, gerinant profesinio rengimo įvaizdį. Kryptinga veikla šioje srityje jau duoda 
apčiuopiamų rezultatų. Beje, ir patys mokytojai turi saugoti savo įvaizdį ir jo negadinti 
neapgalvotais lozungais ir akcijomis.  

5. Prestižas tiesiogiai susijęs su atlyginimu už atliekamą darbą. Egzistuoja neprestižinės, bet gerai 

apmokamos profesijos: yra nemalonių darbų, kurių niekas nenori imtis, todėl bandoma surasti 

norinčių juos atlikti už gerus pinigus. Tačiau nėra prestižinių, bet prastai apmokamų profesijų.  
Juk žmonės mąsto paprastai – jei atlygis menkas, tai ir darbas, matyt, nėra nei būtinas, nei 
reikšmingas.  

Taigi, šiandien Lietuvoje inicijuojami pokyčiai sudaro potencialias galimybes sėkmingai kurti ateities 
švietimą. Tačiau tam, kad šios galimybės būtų realizuotos, būtinas kitoks mąstymas ir kiti prioritetai.   



Constructionism 2018, Vilnius, Lithuania 

945 

 

WS1: Dynamic Teaching Ideas for teaching Music 
Theory 

Judith Bell, jbell@chisnallwood.school.nz 
Chisnallwood Intermediate School, Christchurch, New Zealand 

Abstract 
In this workshop you will try out a range of effective, outside-the-square, tried-and-true theory activities 
based on Judith’s creative work with the very popular Chisnallwood School Theory Club. You will learn 
about music theory games are suitable for a range of ages and easily adaptable for different levels and 
music abilities, but ideally from ages 7 – 12. Some activities use digital technology, while others are 
completely unplugged. They are suitable for use in groups – even of mixed levels – and you’ll be amazed 
at the learning that comes out as well as the amount of fun. 

 

WS2: Computer Science Unplugged for Teachers 

Tim Bell, tim.bell@canterbury.ac.nz 
University of Canterbury, New Zealand 

Abstract 
This workshop will demonstrate ideas from the "Unplugged" approach to teaching Computational 
Thinking topics. This approach provides opportunities for students to encounter the great ideas in 
computer science away from computers, and is a useful complement to classes that focus on "coding". 
We will look at how you can engage your own students with the material, and also "plugged in" activities, 
which connect the activities to programming. You will learn about free resources that you can use in 
your classroom immediately, and also how you can integrate these activities with other school subjects. 
The workshop will be suitable for both primary and secondary educators. 

 

WS3: Developing Algebraic Habits of Mind in 
Students  

Paul Goldenberg, pgoldenberg@edc.org 
Education Development Center, Waltham, MA, USA 

Cynthia J. Carter, CCarter@rashi.org  
The Rashi School, USA 

Abstract 
Participants will see one puzzle-centric approach (elaborating on the work of mathematician W.W. 
Sawyer) aimed at developing the language and logic of algebra in grades 5 and up. Most of the focus 
of the workshop will be on the beginnings of that algebraic development, but we will also spend some 
time looking at activities - from paper-ripping to factorials of negative numbers - that help build students’ 
comfort with the mathematical idea of extension, extending ideas that have “natural” meanings in the 
natural numbers and extending them to “unnatural” places, like negative numbers and fractions. 
Participants will be encouraged to pose problems of their own, extending problems presented in the 
workshop, and will receive a packet of materials they can adapt and use with their classes.  



Constructionism 2018, Vilnius, Lithuania 

946 

 

WS4: Puzzles & Programming to Develop 
Mathematical Habits of Mind in 6–10 year Olds 

Paul Goldenberg, pgoldenberg@edc.org 
Education Development Center, Waltham, MA, USA 

Cynthia J. Carter, CCarter@rashi.org  
The Rashi School, USA 

Abstract 
This workshop will focus on tested work using a puzzle-centric primary mathematics curriculum with an 
algebraic focus(inspired by mathematician W.W. Sawyer), and new work we are doing now to infuse 
that curriculum with programming (inspired by work by Jenny Sendova and others in Bulgaria and by 
the ScratchMaths work done by Richard Noss and Celia Hoyles of the UK and Ivan Kalaš of Slovakia). 
Puzzles help develop children’s logic; programming provides an extra language to help them express 
that logic. Expressing and experimenting with one’s mathematical ideas helps develop them further. 
Participants will solve and create puzzles that are suitable for young students and will see how computer 
programming by young students can support their mathematical learning. All materials that will be used 
or described are available free. 

 

WS5: Powerful Ideas in Lower Primary 
Programming: High Time to Recognize Them 

Ivan Kalaš, kalas@fmph.uniba.sk 
Comenius University, Bratislava, Slovakia 

Abstract 
We think that using any of the dozens of existing programming environments in regular primary school 
setting, with general primary teacher does not work well, mostly because of the following reasons: (a) 
these environments are not designed for collaborative constructivist teaching where the teacher has to 
support everybody in the class, and (b) these environments often neglect basic, simple, but key 
important powerful ideas that pupils should discover and adopt before computational constructs that are 
considered in general as introductory (sequence, selection, repetition, variables...) 

In the workshop we will use our latest development of Emil, a new programming environment and its 
systematic pedagogy constructed and trialled in a group of design primary schools, with pupils aged 8. 
Together with the participants we will experience, identify and discuss several powerful ideas that pupils 
should experience before all other powerful ideas that we have exploited in our ScratchMaths 
curriculum. 

  



Constructionism 2018, Vilnius, Lithuania 

947 

 

WS6: Snap! - Beauty & Joy of Computing (visually) 

Witek Kranas, witek@oeiizk.waw.pl 
OEIiZK, Poland 

Abstract 
It is worth noting that Snap! is not a toy for children. It was created to help you learn programming 
understood as creating and implementing algorithms. And although the floor, like in Scratch, is quite 
low, the ceiling is much higher. In our (Poland) realities, it can be reasonably used at the level of grades 
7-8, although one can imagine an IT course for a high school based on Snap!, as the main programming 
environment. 

Prepared for a Teachers Day workshop during Constructionism 2018 conference in Vilnius. 

Based on my articles published in a magazine “W cyfrowej szkole” and conference “Informatyka 
w edukacji” materials, 2018. 

About Snap! (snap.berkeley.edu) 

Snap! is a Scratch clone created by Brian Harvey and Jens Mönig. In the first version, the environment 
was named BYOB (Build Your Own Blocks). This name contained the main reason for the creation of 
the environment - the possibility of creating own blocks by the user because in the version of Scratch 
1.4 it was not possible. The creators decided to change name due to the other popular use of this 
abbreviation – bring your own bottle, added on party invitations. They write about it in the textbook: “The 
name of the program has been changed, because some teachers have no sense of humour.” 

Snap! is programmed in HTML5 and can be run in almost any system, on any device. Creating new 
blocks is much more complex than in Scratch. You can choose a palette for a new block and specify 
whether it will be a command (fragment of a puzzle with a tab), a function (a rounded block) or a 
predicate (a hexagonal block). It is also possible to insert prefix parameters. In addition to a set of blocks 
almost identical to Scratch, Snap! contains several extensions - additional block libraries. There is also 
the possibility of switching on step work to trace scripts. The palette of blocks supporting lists has been 
greatly expanded, which means that it is possible to use full capabilities of this data structure (list as a 
variable, lists of lists ...). 

Seemingly Snap! is a Scratch clone (version 1.4). The set of blocks is almost identical to Scratch, their 
appearance is very similar. So, is it worth to deal with the Snap! I will try to convince you that it is worth 
it.  

 The first reason - running on tablets. 

Snap! has been programmed in HTML5, so it will work on the vast majority of mobile devices 
basically regardless of the system. Installation of the offline version is also very simple, it does not 
require any additions. This reason may disappear at the end of 2018, if Scratch's team will launch 
a new version 3.0 using Google Blockly blocks. 

 Second reason – easy localization (if you have local version of Scrtach). 

 Third reason - a new block can be a function (return value). 

 Fourth reason - additional blocks of libraries. 

In addition to the standard set of blocks - almost identical to Scratch, Snap! offers several 
extensions, additional block libraries. We add them to the palettes by selecting from the menu File 
/ Library. 

 Fifth reason - lists like in Logo. 

 Sixth reason - visualization of script execution (step work). 



Constructionism 2018, Vilnius, Lithuania 

948 

 

 Seventh reason - easy preparation of materials. 

 Last (but first for the authors) – first class procedures 

From Brian Harvey letter: …most important to me: first class procedures.  The FOR block, … is 
written in Snap!, not a primitive, and that's possible only because we can capture the script in the 
C-slot as an input value, and the FOR block can then RUN it repeatedly.  And of course MAP, KEEP, 
and COMBINE require this feature. 

About BJC (bjc.berkeley.edu) 

The American computer science course "The Beauty and Joy of Computing", called here in brief BJC 
is intended for students aged 16-18, what means the level of high school (lyceum). It belongs to 
Advanced Placement courses, it finishes with an exam and gives you the opportunity to get points for 
university admissions. 

 

The course contains detailed materials in a form that allows the student to work independently. 

The course consists of six compulsory parts: 

Unit 1: Introduction to Programming 

Unit 2: Abstraction 

Unit 3: Data Processing and Lists 

Unit 4: How the Internet Works 

 AP Explore Task 

Unit 5: Algorithms and Simulations 

 AP Create Task 

Unit 6: How Computers Work 

and two additional parts to be processed after the exam: 

Unit 7: Fractals and Recursion 

Unit 8: Recursive Functions 

The authors write: “In this course, you will create programs using the Snap programming 
language, you will learn some of the most powerful ideas of computer science, you will be 



Constructionism 2018, Vilnius, Lithuania 

949 

 

creative, and you will discuss the social implications of computing, thinking deeply about how 
you can be personally active in promoting the benefits and reducing the possible harms.” 

Signalist (vee)  
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=sygnalistaA
ng 

 

This example was prepared by the authors of Snap! to show environments strength. We start with a few 
new blocks drawing simple figures (triang, star, …). 

   

Now we create variable shapes and give it the value of an empty list. 

Then, on this list, we place the created blocks so that they can be 
executed, i.e. in the grey envelope, (located in the Operators palette). 
You can do this by using the add ... to ... block, as in the green flag 
script in the picture. 

It's time to create a main block (sign) that will draw a signal composed 
of two flags with random shapes. Running this block will draw two 
flags. But how can you get a picture like the top picture, where there 
are many more flags? Just put a few sign blocks on the list in grey 
envelopes. Add and delete them, for example, using the scripts 
shown in the last pictures. 

https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=sygnalistaAng
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=sygnalistaAng


Constructionism 2018, Vilnius, Lithuania 

950 

 

        

Well, now we have recursion without a base case and thus without a stop condition! 

 

Polygon, pinwheel and for loop  
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC3dlaAn
g 

The second example refers to programming in Logo. How to draw a polygon? We can create a new 
block in the Motion palette and in the block editor build a command script (i.e. the new block will have 
a blue colour and a tab layout). Let's add to the standard polygon (with a number of brunches and size) 
the third parameter out and the block, which will cause the section of its length to stick out from one 
side. Let's call this creation a pinwheel. The polygon is obtained in the extreme case, when the 
parameter out will be equal to zero. And what figure will we get when it's equal to size? 

  

Now import the tools from the File menu. At the bottom of the Control palette 
there will be a block for – a convenient iteration loop. In the same palette we 
will find a grey block warp that does not appear in Scratch, and it will execute 
the turbo mode only for the blocks contained in it. We can already build a script 
with animation, showing changes in the drawing when the value of the 
parameter out changes. 

Many interesting drawings can be made with the help of for loop. Here are two 
examples to try. 

     

Which images will be done by scripts? 

One more example of using for loop – countdown from 0 to 99. In the script, we use the function if, 
which allows you to not write zeros at the beginning of the countdown. 

https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC3dlaAng
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC3dlaAng


Constructionism 2018, Vilnius, Lithuania 

951 

 

  

Symmetric encryption 
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC43CCA
ng 

In part 4 of the BJC course "How the Internet Works" in the laboratory "Cybersecurity" there are topics 
related to cryptography, among them Caesar Cipher Project. Encryption is done by shifting letters in the 
(Latin) alphabet by a given number (1-26). This can be illustrated with the help of two independently 
rotating wheels containing all letters of the alphabet around the circumference. You can see it in the 
picture, which is a screenshot of a fragment of students BJC materials. 

 

We start project in Snap! creating three global variables named: input text, shift and output text. In the 
script run by pressing the spacebar, we ask for the text to be encrypted, the letter’s shift and ask to 
choose whether to encrypt (1) or decrypt (2). 

https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC43CCAng
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC43CCAng


Constructionism 2018, Vilnius, Lithuania 

952 

 

 

The last part of this script starts encryption. It is executed by the encode block, which must be defined. 
The new block will belong to the reporter category (i.e. function, rounded shape) and will have two 
parameters: the text to be coded and the letter shift in the alphabet. 

Building this block requires a for loop, 
located in the tools library. So you have to 
import the tools using the File menu. In 
the block we create a local variable 
(codedText), which will store the coded 
text, and then for all letters of the input 
text we call the encodeLetter block, 
joining them into one encoded text. 

You still need to create this last block. 
A simple solution is to replace the letter 
with its ASCII code, add shift to it and 
change it back to the letter. Let's see how 
this block codes the letter Z with shift 1. 

 
You can see that we have not closed the wheel. We 
have to modify this block by moving codes modulo 26 
(the number of letters in the Latin alphabet). It's done 
by two blocks if identifying uppercase and lowercase 
letters. Now only the letters are coded but with cyclical 
behaviour.  

And how to get decoding? Look closely at the green 
flag script. 

 

  



Constructionism 2018, Vilnius, Lithuania 

953 

 

Sierpiński gasket  
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC72SGA
ng 

The last example is a fractal - a gasket (triangle) by 
Sierpiński. In the BJC course, recursion is introduced very 
slowly in additional chapters (7 and 8). Let's look at the 
introductory script for the Sierpiński triangle recursive 
construction. We have here, three times repeated, script 
drawing a triangle. It is worth analysing this script first, 
imagine how the next smaller and smaller triangles will be 
drawn, and then start. This is not a typical Sierpiński 
triangle, but let's try to draw it using recursion. You have to 
decide when to finish the duplication of triangles. The 
simplest way is to stop drawing when the side length is 
small enough. This implements a block if in Triangle. We 
draw only triangles with a side longer than 5, and in the 
middle we have a recursive call. Now let's consider the 
position of this call in the script. It can be moved to the 
beginning or the end. Try.  

But you can also have fun inserting it inside the rotation, if 
you swap the block turn (right) 120 degrees for two, e.g. 

turn 30 degrees and turn 90 degrees, you can insert a recursive call between these two blocks. 

Let's look at the block StriangleA, whose last parameter (turn1) is the angle of the first rotation (the 
second is easy to calculate) and the result of its operation.    

    

Using blocks for and warp like in the second project, we can get a nice animation showing the change 
in the drawing when the angle of the first rotation changes.   

https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC72SGAng
https://snap.berkeley.edu/snapsource/snap.html#present:Username=witek&ProjectName=BJC72SGAng


Constructionism 2018, Vilnius, Lithuania 

954 

 

WS7: ViLLE – E. Learning Path for Mathematics and 
Programming 
Mikko-Jussi Laakso, milaak@utu.fi, Petra Enges-Pyykönen, phenge@utu.fi 
University of Turku, Finland 

Abstract 

ViLLE is an exercise-based education environment that enables easy learning and teaching of mathematics, 
programming and other topics. The development is research-based, and the features and the methodology 
utilized have been thoroughly studied with various setups in the Centre for Learning Analytics at University 
of Turku. For students, ViLLE offers more than 15 000 carefully designed, motivating and activating exercises 
for learning mathematics and programming. All exercises are automatically assessed and provide immediate 
feedback. For teachers, ViLLE provides comprehensive learning analytics that visualize everything you need 
to know about your students’ learning process – including automatic detection of misconceptions and real-
time analysis of students’ progress. ViLLE is used to transfer one lesson a week into an electronic learning 
experience. There are existing exercises and materials for all nine grades of primary and middle school. 
Moreover, there are programming exercises integrated into all levels to give students a head start in learning 
computational thinking and basics of computer science. 

Using ViLLE provides evidence-based, scientifically proven results for all grades. In the studies 
conducted in Finland – the country that excels the Pisa assessments each year – it was confirmed that 
the students using ViLLE improve their learning significantly more than the control group learning 
mathematics with traditional pen and paper method. With matching skill levels before the experience, 
groups using ViLLE achieved at least 20 percent higher scores in the exams conducted at end of the 
school year. Students using ViLLE also make 70 % less errors than students in a control group. 
Moreover, the students find ViLLE as highly motivating and fun tool to use. 

WS8: Constructionism in Action: Do we Need to 
Start from Scratch? 
Evgenia Sendova, jenny.sendova@gmail.com  
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria 

Nikolina Nikolova, nnikolova@fmi.uni-sofia.bg 
Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, Bulgaria 

Abstract 
Children in the digital era are surrounded by information and communication technologies. The 
development of digital competences and more specifically –the ability to express their creativity through 
computational thinking, is evaluated by the society as vital for the contemporary society. This makes it 
natural to introduce programming courses for students of younger age, new curriculum and even a new 
school subject – computer modeling. 

Should the programming be taught per se though? Does the introduction of new syllabus put a threshold 
and ceiling on the performance of the teachers? What about programming languages with no threshold 
and no ceiling (the ceiling being only the user’s imagination)? Bulgaria has a long-term experience in 
teaching programming, and even better – in learning through programming. The Logo philosophy 
promotes the programming as a means for learning and creative self-expression. It is in harmony with 
the family of contemporary programming languages, successors to Logo and developed specially for 
children. 

There will be no threshold for the participants. However, this does not mean that we would start from 
scratch. Rather, we will start with the traditions of the Logo philosophy and Logo culture in international 
setting, we’ll present the potential of their development through Scratch and of course, we’ll work, create 
and have fun together! Most importantly, we’ll rely on high enough ceiling! 

mailto:jenny.sendova@gmail.com


Constructionism 2018, Vilnius, Lithuania 

955 

 

WS9: Teaching Coding and Physical Computing  

Gary S. Stager, gary@stager.org 
Constructing Modern Knowledge, USA 

Abstract 
Learn how a project-approach to computer programming, robotics, and physical computing can serve a 
diverse student population while developing your own skills. This workshop will explore powerful ideas 
from computer science and engineering that may be employed in the solving of problems across the 
curriculum. A review of software and hardware options will be explored in addition to two focused 
programming and robotics activities. Participants will also have experience with Hummingbird Robotics, 
the BBC Micro:bit and other low-cost "microcontroller development boards" offering great potential for 
learning through making, tinkering, and engineering in the classroom. 

 

WS10: The Essence of Programming at School – 
Logo in a Spiral Curriculum 

Jacqueline Staub, Jacqueline.staub@inf.ethz.ch 
ETH Zürich, Pädagogische Hochschule Graubünden, Chur, Switzerland 

Abstract 
School is responsible for priming and preparing pupils such that they develop a deep understanding of 
technology. Computer science education serves a vital role in fostering algorithmic thinking and problem 
solving skills, as exemplified by programming. This form of learning is constructive, enriches creativity 
and teaches precision. We have been introducing primary school pupils and their teachers to 
programming in Logo for more than a decade and thousands of children across Switzerland have 
learned to program using our curriculum and purpose-built programming environment. In this workshop, 
we give insights into how our curriculum guides pupils to progress individually and how we make pupils 
building up competence by recovering from their programming errors autonomously. This workshop 
caters towards educators and people interested in how to introduce computer science to novices. 
Participants gain practical insights into our curriculum and discuss its didactic structure. 

  

mailto:gary@stager.org


Constructionism 2018, Vilnius, Lithuania 

956 

 

WS11: How to Create and Sustain a Progressive 
Pedagogy in a Traditional Setting (Roundtable 
Discussion) 
Carol Sperry Suziedelis, Carol.Sperry@millersville.edu 
Millersville University, USA 

Abstract 
Format of the workshop: We will encourage a vibrant discussion of ideas, efforts, questions, and fears 
about creating dynamic and engaging projects as well as the nurturing of an atmosphere of free 
expression and exploration in the classroom.  Without the support of each other, it may be difficult to 
relax and let go of the “controls” many think are necessary for a workable classroom. However, students 
and teachers must have the latitude to pursue the construction of their own knowledge, the freedom to 
make mistakes and “recalibrate,” and the time to discuss the powerful effects of the process. We will 
consider ways to do it all within the constraints of the average classroom setting. 

Along the way, we will revisit some of Seymour Papert’s profound insights into the remarkable 
endeavour of teaching and learning. 

I believe the prediction of “expected outputs” is usually precarious for a constructionist teacher.  To 
“expect” certain outputs is, to my mind, a way of limiting them.  So, I would say, I hope that we have a 
lively discussion that inspires ideas, creates new relationships, and bolsters the courage needed to 
follow a joyful and innovative path. 

WS12: Joyful Learning of Geometry in Cultural 
Context. Analysis and Construction of Geometric 
Ornaments 
Igor Verner, ttrigor@technion.ac.il  
Technion – Israel Institute of Technology, Israel 

Khayriah Massarwe, massarwe@technion.ac.il 
Technion – Israel Institute of Technology, The Arab Academic College for Education, Israel 

Daoud Bshouty, daoud@technion.ac.il 
Technion – Israel Institute of Technology, Israel 

Abstract 
Mathematics education seeks to accommodate pedagogical approaches that enhance learning 
mathematics and make it relevant to today's students who prefer hands-on visual and joyful activities, 
and are socially inclined. The challenge of teaching is to expose students to the interconnection between 
real world practices and culturally rooted mathematical ideas. The subject Geometry is unique in its 
combination of intuitively rooted figural concepts and abstract logical statements. The geometry teacher 
should facilitate the learner to acquire the language of geometric terms and the ability to use this 
language correctly when communicating geometric ideas. We have been developed two courses that 
introduce prospective and in-service teachers to teaching and learning geometry in cultural context 
using the ethnomathematical approach. The teachers analyzed and constructed, by compass and 
straightedge, geometric ornaments from different cultures, posed and solved geometric problems 
related to the ornaments. In this workshop, we aim to engage the participants in constructing and 
analyzing of culturally meaningful geometric ornaments. The participants will solve geometric problems 
related to the ornaments and develop new problem by themselves. Then we will discuss the arguments 
for introducing activities with geometric ornaments in school geometry learning.  



Constructionism 2018, Vilnius, Lithuania 

957 

 

Author Index 

A 

Abee, Kazuhiro · 745 

Adiguzel, Tufan · 777 

Agatolio, Francesca · 498 

Akcay, Nevin · 777 

Angel-Fernandez, Julian · 150, 506, 686, 690 

Angulo, Carol · 514 

Anton, Gabriella · 380, 554 

Asiain, Alfredo · 498 

Aslan, Ümit · 125 

Atieno, Loice Victorine · 838 

Avci, Hulya · 777 

B 

Baafi, Richard Akrofi Kwabena · 925 

Barendsen, Erik · 570 

Baumann, Wilfried · 838 

Bell, Judith · 520, 945 

Bell, Tim · 21, 520, 945 

Berger, Neeltje · 767 

Beynon, Meurig · 437 

Blikstein, Paulo · 29, 203, 472, 481, 754 

Boran, Ian · 449 

Brady, Corey · 263, 761, 769 

Bray, Aibhín · 449 

Broll, Brian · 769 

Bshouty, Daoud · 657, 956 

Buteau, Chantal · 528 

Byrne, Jake Rowan · 138 

C 

Cabibihan, John-John · 150 

Campos, Flavio · 536 

Cañas, Alberto J. · 514 

Carter, J. Cynthia · 945, 946 

Castro, Ana Gabriela · 514 

Catlin, Dave · 150 

Černochová, Miroslava · 543 

Chan, Monica · 781 

Chukhnov, Anton · 160 

Chytas, Christos · 547, 855 

Clayson, James · 30 

Csizmadia, Andrew Paul · 150, 794 

Čuma, Radek · 543 

D 

Dabholkar, Sugat · 554 

Dagienė, Valentina · 4, 169, 180, 305, 344, 731, 838 

Davey, Caitlin · 561 

Diethelm, Ira · 547 

Dolgopolovas, Vladimiras · 180 

Du, Xiaoxue · 193 

Duca, Annalise · 686, 690, 773 

E 

Enges-Pyykönen Petra · 954 

F 

Fields, Deborah A. · 203, 214, 601, 754 

Foss, Jonathan · 437 

Futschek, Gerald · 38, 678, 794 

G 

Girvan, Carina · 506, 649, 686, 690 

Giuliano, Angele · 686, 773 

Göcking, Fenja · 672 

Goldenberg, Paul · 39, 945, 946 

Goodman, Lizbeth · 759 

Greka, Xristina · 690 

Grgurina, Natasa · 570 

Griffin, Jean M. · 225 

Grizioti, Marianthi · 357, 369, 649, 686 

Gueorguiev, Ivaylo · 649, 686, 690 

Gungor, Ali · 777 

Guo, Yu · 238 

H 

Harada, Yasunori · 741 

Harvey, Brain · 53 

Heldens, Peter · 767 

Hickmott, Daniel · 251, 577 

Hjorth, Arthur · 68, 263, 274 

Holbert, Nathan · 460, 561, 754 

Holmquist, Stephanie · 150 

Horn, Michael · 392 

Horváth, Győző · 736 

Howell, Stephen · 759, 767, 786 



Constructionism 2018, Vilnius, Lithuania 

958 

 

Hoyles, Celia · 69, 754 

I 

Igwe, Kay Chioma · 193 

Ito, Kazunari · 585, 593, 745, 884 

Ivanović, Mirjana · 608 

J 

Jasutė, Eglė · 180 

Jatzlau, Sven · 285 

Jevsikova, Tatjana · 180 

Jung, Ungyeol · 295 

Jūratė Baranova · 868 

Juškevičienė, Anita · 305, 884 

K 

Kafai, Yasmin B. · 214, 601, 754 

Kahn, Ken · 315, 765, 788 

Kalaš, Ivan · 71, 946 

Kaminskienė, Lina · 925 

Kandlhofer, Martin · 150 

Kishi, Nobuko · 325 

Klašnja-Milićević, Aleksandra · 608 

Klein, Markus · 791 

Klimeková, Eva · 334 

Knox, Tony · 449 

Knuth, Alexander · 672 

Koppensteiner, Gottfried · 791 

Koza, Clemens · 791 

Kranas, Witek · 947 

Kryvoruchka, Liudmyla · 694 

Kumar Luhana, Kirshan · 104 

Kuno, Yasushi · 741 

Kurvinen, Einari · 344 

Kynigos, Chronis · 81, 357, 369, 506, 686, 773 

L 

Laakso, Mikko-Jussi · 344, 954 

Lee, Gary C. F. · 781 

Lee, Young-jun · 295 

Lepuschitz, Wilfried · 686, 791 

Lilija Duoblienė · 868 

Lodi, Michael · 901 

Luc Anckaert · 868 

M 

Mäkiaho, Pekka · 698 

Malchiodi, Dario · 901 

Marshall, Kevin · 767 

Martin, Kit · 380, 392 

Martinez, Sylvia · 121, 755 

Mascaró, Maite · 615 

Massarwe, Khayriah · 657, 956 

Matsuzawa, Yoshiaki · 703 

Mayerová, Karolína · 623 

Maytarattanakhon, Athit · 160 

Michaeli, Tilman · 405 

Monga, Mattia · 901 

Mönig, Jens · 82 

Moro, Michele · 498 

Morpurgo, Anna · 901 

Mueller, Matthias · 104 

Muller, Eric · 528 

Muñoz, Leda · 514 

N 

Nakano, Issei · 703 

Nakayama, Yuriko · 741 

Niemelä, Pia · 415 

Nikitopoulou, Sofia · 773 

Nikolova, Nikolina · 954 

Noguchi, Misako · 703 

Noss, Richard · 69, 754 

O 

O’Sullivan, Katriona · 138 

Oie, Yuichi · 593 

Olędzka, Katarzyna · 855 

Ortega Torres, Enric · 707 

P 

Partanen, Tiina · 415 

Passey, Don · 838 

Patarakin, Evgeny · 426 

Peppler, Kylie · 754 

Pereira de Souza, Elmara · 631 

Pereira, Patrick Pais · 672 

Pesek, Igor · 884 

Petrosino, Tony · 761 

Pina, Alfredo · 498 

Pluhár, Zsuzsa · 884 

Pope, Nicolas · 437 



Constructionism 2018, Vilnius, Lithuania 

959 

 

Poranen, Timo · 415, 698 

Posov, Ilya · 160 

Poviliūnas, Arūnas · 4 

Pozdniakov, Sergei · 160 

Prieto-Rodriguez, Elena · 251, 577 

R 

Riley, Clare · 767 

Romeike, Ralf · 285, 405, 855 

Rubio, Gabriel · 498 

S 

Sabin, Mihaela · 925 

Sabitzer, Barbara · 711 

Sacristán, Ana Isabel · 83, 528, 615, 925 

Sanjosé López, Vicent · 707 

Schindler, Christian · 104 

Schmidt, Laura · 672 

Seegerer, Stefan · 405 

Selcuk, Hasan · 543 

Sendova, Evgenia · 94, 855, 941, 954 

Sharkov, George · 649, 690 

Shaw, Mia S. · 214 

Slany, Wolfgang · 104, 637, 855 

Solaz Portolés, Joan-Josep · 707 

Souza Moura, Luísa · 631 

Spieler, Bernadette · 104, 637, 901 

Stager, Gary S. · 120, 121, 955 

Standl, Bernhard · 678, 794 

Staub, Jacqueline · 756, 955 

Stroup, Walter · 761 

Stupurienė, Gabrielė · 169 

Suhre, Cor · 570 

Sullivan, Kevin · 138 

Suziedelis, Carol Sperrry · 122, 956 

T 

Takeuchi, Yugo · 723 

Tan, Michael · 714 

Tangney, Brendan · 449 

Thanapornsangsuth, Sawaros · 460, 561, 718 

Todorova, Christina · 649, 686, 690 

Tohyama, Sayaka · 723 

Tutiyaphuengprasert, Nalin · 727 

V 

Valente, José Armando · 472, 481 

van Veen, Klaas · 570 

Vaníček, Jiří · 488, 884 

Varbanov, Pavel · 649, 690 

Vartiainen, Katriina · 698 

Verner, Igor · 657, 956 

Veselovská, Michaela · 623 

Vincze, Markus · 506, 686 

Vinikienė, Lina · 731, 794 

Visnovitz, Márton · 736 

Vittori, Lisa · 690 

W 

Waite, Jan · 794 

Watanabe, Takeshi · 741 

Weigend, Michael · 664, 672, 884 

Wetzinger, Elisabeth · 678 

Wilensky, Uri · 123, 125, 238, 263, 274, 392, 554, 761 

Wilfried Baumann · 868 

Winters, Niall · 315 

Y 

Yiannoutsou, Nikoleta · 506, 649, 690, 773 

Yoneda, Takashi · 593 

Yoshida, Aoi · 325, 593, 745 

Yoshida, Mari · 325 

Yoshizawa, Minori · 325 

Z 

Zamora, Natalia · 514 

Želvys, Rimantas · 20, 944 

Zhang, Jinbao · 750 

Zwaneveld, Bert · 570 

 




